op_helper.c 27.7 KB
Newer Older
M
Max Filippov 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the Open Source and Linux Lab nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "cpu.h"
29
#include "helper.h"
30
#include "qemu/host-utils.h"
31
#include "exec/softmmu_exec.h"
32
#include "exec/address-spaces.h"
M
Max Filippov 已提交
33

34 35
static void do_unaligned_access(CPUXtensaState *env,
        target_ulong addr, int is_write, int is_user, uintptr_t retaddr);
36 37

#define ALIGNED_ONLY
M
Max Filippov 已提交
38 39 40
#define MMUSUFFIX _mmu

#define SHIFT 0
41
#include "exec/softmmu_template.h"
M
Max Filippov 已提交
42 43

#define SHIFT 1
44
#include "exec/softmmu_template.h"
M
Max Filippov 已提交
45 46

#define SHIFT 2
47
#include "exec/softmmu_template.h"
M
Max Filippov 已提交
48 49

#define SHIFT 3
50
#include "exec/softmmu_template.h"
M
Max Filippov 已提交
51

52 53
static void do_unaligned_access(CPUXtensaState *env,
        target_ulong addr, int is_write, int is_user, uintptr_t retaddr)
54 55 56
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_UNALIGNED_EXCEPTION) &&
            !xtensa_option_enabled(env->config, XTENSA_OPTION_HW_ALIGNMENT)) {
B
Blue Swirl 已提交
57
        cpu_restore_state(env, retaddr);
58
        HELPER(exception_cause_vaddr)(env,
59 60 61 62
                env->pc, LOAD_STORE_ALIGNMENT_CAUSE, addr);
    }
}

63 64
void tlb_fill(CPUXtensaState *env,
        target_ulong vaddr, int is_write, int mmu_idx, uintptr_t retaddr)
M
Max Filippov 已提交
65
{
66 67 68 69 70
    uint32_t paddr;
    uint32_t page_size;
    unsigned access;
    int ret = xtensa_get_physical_addr(env, true, vaddr, is_write, mmu_idx,
            &paddr, &page_size, &access);
71

72 73
    qemu_log("%s(%08x, %d, %d) -> %08x, ret = %d\n", __func__,
            vaddr, is_write, mmu_idx, paddr, ret);
74

75 76 77 78 79 80
    if (ret == 0) {
        tlb_set_page(env,
                vaddr & TARGET_PAGE_MASK,
                paddr & TARGET_PAGE_MASK,
                access, mmu_idx, page_size);
    } else {
B
Blue Swirl 已提交
81
        cpu_restore_state(env, retaddr);
82
        HELPER(exception_cause_vaddr)(env, env->pc, ret, vaddr);
83
    }
M
Max Filippov 已提交
84
}
85

86 87 88 89 90
static void tb_invalidate_virtual_addr(CPUXtensaState *env, uint32_t vaddr)
{
    uint32_t paddr;
    uint32_t page_size;
    unsigned access;
91
    int ret = xtensa_get_physical_addr(env, false, vaddr, 2, 0,
92 93
            &paddr, &page_size, &access);
    if (ret == 0) {
94
        tb_invalidate_phys_addr(&address_space_memory, paddr);
95 96 97
    }
}

98
void HELPER(exception)(CPUXtensaState *env, uint32_t excp)
99
{
100 101 102
    CPUState *cs = CPU(xtensa_env_get_cpu(env));

    cs->exception_index = excp;
103 104 105
    if (excp == EXCP_DEBUG) {
        env->exception_taken = 0;
    }
106 107
    cpu_loop_exit(env);
}
108

109
void HELPER(exception_cause)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
{
    uint32_t vector;

    env->pc = pc;
    if (env->sregs[PS] & PS_EXCM) {
        if (env->config->ndepc) {
            env->sregs[DEPC] = pc;
        } else {
            env->sregs[EPC1] = pc;
        }
        vector = EXC_DOUBLE;
    } else {
        env->sregs[EPC1] = pc;
        vector = (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
    }

    env->sregs[EXCCAUSE] = cause;
    env->sregs[PS] |= PS_EXCM;

129
    HELPER(exception)(env, vector);
130 131
}

132 133
void HELPER(exception_cause_vaddr)(CPUXtensaState *env,
        uint32_t pc, uint32_t cause, uint32_t vaddr)
134 135
{
    env->sregs[EXCVADDR] = vaddr;
136
    HELPER(exception_cause)(env, pc, cause);
137 138
}

139
void debug_exception_env(CPUXtensaState *env, uint32_t cause)
140
{
141 142
    if (xtensa_get_cintlevel(env) < env->config->debug_level) {
        HELPER(debug_exception)(env, env->pc, cause);
143 144 145
    }
}

146
void HELPER(debug_exception)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
147 148 149 150 151 152 153 154 155
{
    unsigned level = env->config->debug_level;

    env->pc = pc;
    env->sregs[DEBUGCAUSE] = cause;
    env->sregs[EPC1 + level - 1] = pc;
    env->sregs[EPS2 + level - 2] = env->sregs[PS];
    env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | PS_EXCM |
        (level << PS_INTLEVEL_SHIFT);
156
    HELPER(exception)(env, EXC_DEBUG);
157 158
}

159 160 161 162 163 164 165 166 167 168 169 170
uint32_t HELPER(nsa)(uint32_t v)
{
    if (v & 0x80000000) {
        v = ~v;
    }
    return v ? clz32(v) - 1 : 31;
}

uint32_t HELPER(nsau)(uint32_t v)
{
    return v ? clz32(v) : 32;
}
171

172
static void copy_window_from_phys(CPUXtensaState *env,
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
        uint32_t window, uint32_t phys, uint32_t n)
{
    assert(phys < env->config->nareg);
    if (phys + n <= env->config->nareg) {
        memcpy(env->regs + window, env->phys_regs + phys,
                n * sizeof(uint32_t));
    } else {
        uint32_t n1 = env->config->nareg - phys;
        memcpy(env->regs + window, env->phys_regs + phys,
                n1 * sizeof(uint32_t));
        memcpy(env->regs + window + n1, env->phys_regs,
                (n - n1) * sizeof(uint32_t));
    }
}

188
static void copy_phys_from_window(CPUXtensaState *env,
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
        uint32_t phys, uint32_t window, uint32_t n)
{
    assert(phys < env->config->nareg);
    if (phys + n <= env->config->nareg) {
        memcpy(env->phys_regs + phys, env->regs + window,
                n * sizeof(uint32_t));
    } else {
        uint32_t n1 = env->config->nareg - phys;
        memcpy(env->phys_regs + phys, env->regs + window,
                n1 * sizeof(uint32_t));
        memcpy(env->phys_regs, env->regs + window + n1,
                (n - n1) * sizeof(uint32_t));
    }
}


205
static inline unsigned windowbase_bound(unsigned a, const CPUXtensaState *env)
206 207 208 209
{
    return a & (env->config->nareg / 4 - 1);
}

210
static inline unsigned windowstart_bit(unsigned a, const CPUXtensaState *env)
211 212 213 214
{
    return 1 << windowbase_bound(a, env);
}

215
void xtensa_sync_window_from_phys(CPUXtensaState *env)
216 217 218 219
{
    copy_window_from_phys(env, 0, env->sregs[WINDOW_BASE] * 4, 16);
}

220
void xtensa_sync_phys_from_window(CPUXtensaState *env)
221 222 223 224
{
    copy_phys_from_window(env, env->sregs[WINDOW_BASE] * 4, 0, 16);
}

225
static void rotate_window_abs(CPUXtensaState *env, uint32_t position)
226 227 228 229 230 231
{
    xtensa_sync_phys_from_window(env);
    env->sregs[WINDOW_BASE] = windowbase_bound(position, env);
    xtensa_sync_window_from_phys(env);
}

232
static void rotate_window(CPUXtensaState *env, uint32_t delta)
233
{
234
    rotate_window_abs(env, env->sregs[WINDOW_BASE] + delta);
235 236
}

237
void HELPER(wsr_windowbase)(CPUXtensaState *env, uint32_t v)
238
{
239
    rotate_window_abs(env, v);
240 241
}

242
void HELPER(entry)(CPUXtensaState *env, uint32_t pc, uint32_t s, uint32_t imm)
243 244 245 246 247
{
    int callinc = (env->sregs[PS] & PS_CALLINC) >> PS_CALLINC_SHIFT;
    if (s > 3 || ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
        qemu_log("Illegal entry instruction(pc = %08x), PS = %08x\n",
                pc, env->sregs[PS]);
248
        HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
249 250
    } else {
        env->regs[(callinc << 2) | (s & 3)] = env->regs[s] - (imm << 3);
251
        rotate_window(env, callinc);
252 253 254 255 256
        env->sregs[WINDOW_START] |=
            windowstart_bit(env->sregs[WINDOW_BASE], env);
    }
}

257
void HELPER(window_check)(CPUXtensaState *env, uint32_t pc, uint32_t w)
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
{
    uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
    uint32_t windowstart = env->sregs[WINDOW_START];
    uint32_t m, n;

    if ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) {
        return;
    }

    for (n = 1; ; ++n) {
        if (n > w) {
            return;
        }
        if (windowstart & windowstart_bit(windowbase + n, env)) {
            break;
        }
    }

    m = windowbase_bound(windowbase + n, env);
277
    rotate_window(env, n);
278 279 280 281 282
    env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
        (windowbase << PS_OWB_SHIFT) | PS_EXCM;
    env->sregs[EPC1] = env->pc = pc;

    if (windowstart & windowstart_bit(m + 1, env)) {
283
        HELPER(exception)(env, EXC_WINDOW_OVERFLOW4);
284
    } else if (windowstart & windowstart_bit(m + 2, env)) {
285
        HELPER(exception)(env, EXC_WINDOW_OVERFLOW8);
286
    } else {
287
        HELPER(exception)(env, EXC_WINDOW_OVERFLOW12);
288 289 290
    }
}

291
uint32_t HELPER(retw)(CPUXtensaState *env, uint32_t pc)
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
{
    int n = (env->regs[0] >> 30) & 0x3;
    int m = 0;
    uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
    uint32_t windowstart = env->sregs[WINDOW_START];
    uint32_t ret_pc = 0;

    if (windowstart & windowstart_bit(windowbase - 1, env)) {
        m = 1;
    } else if (windowstart & windowstart_bit(windowbase - 2, env)) {
        m = 2;
    } else if (windowstart & windowstart_bit(windowbase - 3, env)) {
        m = 3;
    }

    if (n == 0 || (m != 0 && m != n) ||
            ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
        qemu_log("Illegal retw instruction(pc = %08x), "
                "PS = %08x, m = %d, n = %d\n",
                pc, env->sregs[PS], m, n);
312
        HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
313 314 315 316 317
    } else {
        int owb = windowbase;

        ret_pc = (pc & 0xc0000000) | (env->regs[0] & 0x3fffffff);

318
        rotate_window(env, -n);
319 320 321 322 323 324 325 326 327
        if (windowstart & windowstart_bit(env->sregs[WINDOW_BASE], env)) {
            env->sregs[WINDOW_START] &= ~windowstart_bit(owb, env);
        } else {
            /* window underflow */
            env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
                (windowbase << PS_OWB_SHIFT) | PS_EXCM;
            env->sregs[EPC1] = env->pc = pc;

            if (n == 1) {
328
                HELPER(exception)(env, EXC_WINDOW_UNDERFLOW4);
329
            } else if (n == 2) {
330
                HELPER(exception)(env, EXC_WINDOW_UNDERFLOW8);
331
            } else if (n == 3) {
332
                HELPER(exception)(env, EXC_WINDOW_UNDERFLOW12);
333 334 335 336 337 338
            }
        }
    }
    return ret_pc;
}

339
void HELPER(rotw)(CPUXtensaState *env, uint32_t imm4)
340
{
341
    rotate_window(env, imm4);
342 343
}

344
void HELPER(restore_owb)(CPUXtensaState *env)
345
{
346
    rotate_window_abs(env, (env->sregs[PS] & PS_OWB) >> PS_OWB_SHIFT);
347 348
}

349
void HELPER(movsp)(CPUXtensaState *env, uint32_t pc)
350 351 352 353 354
{
    if ((env->sregs[WINDOW_START] &
            (windowstart_bit(env->sregs[WINDOW_BASE] - 3, env) |
             windowstart_bit(env->sregs[WINDOW_BASE] - 2, env) |
             windowstart_bit(env->sregs[WINDOW_BASE] - 1, env))) == 0) {
355
        HELPER(exception_cause)(env, pc, ALLOCA_CAUSE);
356 357 358
    }
}

359
void HELPER(wsr_lbeg)(CPUXtensaState *env, uint32_t v)
360 361
{
    if (env->sregs[LBEG] != v) {
362
        tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
363 364 365 366
        env->sregs[LBEG] = v;
    }
}

367
void HELPER(wsr_lend)(CPUXtensaState *env, uint32_t v)
368 369
{
    if (env->sregs[LEND] != v) {
370
        tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
371
        env->sregs[LEND] = v;
372
        tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
373 374 375
    }
}

376
void HELPER(dump_state)(CPUXtensaState *env)
377
{
378 379 380
    XtensaCPU *cpu = xtensa_env_get_cpu(env);

    cpu_dump_state(CPU(cpu), stderr, fprintf, 0);
381
}
382

383
void HELPER(waiti)(CPUXtensaState *env, uint32_t pc, uint32_t intlevel)
384
{
385 386
    CPUState *cpu;

387 388 389 390 391 392 393 394 395
    env->pc = pc;
    env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) |
        (intlevel << PS_INTLEVEL_SHIFT);
    check_interrupts(env);
    if (env->pending_irq_level) {
        cpu_loop_exit(env);
        return;
    }

396
    cpu = CPU(xtensa_env_get_cpu(env));
397
    env->halt_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
398
    cpu->halted = 1;
399 400 401
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_TIMER_INTERRUPT)) {
        xtensa_rearm_ccompare_timer(env);
    }
402
    HELPER(exception)(env, EXCP_HLT);
403 404
}

405
void HELPER(timer_irq)(CPUXtensaState *env, uint32_t id, uint32_t active)
406 407 408 409
{
    xtensa_timer_irq(env, id, active);
}

410
void HELPER(advance_ccount)(CPUXtensaState *env, uint32_t d)
411 412 413 414
{
    xtensa_advance_ccount(env, d);
}

415
void HELPER(check_interrupts)(CPUXtensaState *env)
416 417 418
{
    check_interrupts(env);
}
419

420 421 422 423 424
void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr)
{
    get_page_addr_code(env, vaddr);
}

M
Max Filippov 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
/*!
 * Check vaddr accessibility/cache attributes and raise an exception if
 * specified by the ATOMCTL SR.
 *
 * Note: local memory exclusion is not implemented
 */
void HELPER(check_atomctl)(CPUXtensaState *env, uint32_t pc, uint32_t vaddr)
{
    uint32_t paddr, page_size, access;
    uint32_t atomctl = env->sregs[ATOMCTL];
    int rc = xtensa_get_physical_addr(env, true, vaddr, 1,
            xtensa_get_cring(env), &paddr, &page_size, &access);

    /*
     * s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions,
     * see opcode description in the ISA
     */
    if (rc == 0 &&
            (access & (PAGE_READ | PAGE_WRITE)) != (PAGE_READ | PAGE_WRITE)) {
        rc = STORE_PROHIBITED_CAUSE;
    }

    if (rc) {
        HELPER(exception_cause_vaddr)(env, pc, rc, vaddr);
    }

    /*
     * When data cache is not configured use ATOMCTL bypass field.
     * See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL)
     * under the Conditional Store Option.
     */
    if (!xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) {
        access = PAGE_CACHE_BYPASS;
    }

    switch (access & PAGE_CACHE_MASK) {
    case PAGE_CACHE_WB:
        atomctl >>= 2;
463
        /* fall through */
M
Max Filippov 已提交
464 465
    case PAGE_CACHE_WT:
        atomctl >>= 2;
466
        /* fall through */
M
Max Filippov 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
    case PAGE_CACHE_BYPASS:
        if ((atomctl & 0x3) == 0) {
            HELPER(exception_cause_vaddr)(env, pc,
                    LOAD_STORE_ERROR_CAUSE, vaddr);
        }
        break;

    case PAGE_CACHE_ISOLATE:
        HELPER(exception_cause_vaddr)(env, pc,
                LOAD_STORE_ERROR_CAUSE, vaddr);
        break;

    default:
        break;
    }
}

484
void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
485 486 487 488 489 490 491 492
{
    v = (v & 0xffffff00) | 0x1;
    if (v != env->sregs[RASID]) {
        env->sregs[RASID] = v;
        tlb_flush(env, 1);
    }
}

493
static uint32_t get_page_size(const CPUXtensaState *env, bool dtlb, uint32_t way)
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
{
    uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];

    switch (way) {
    case 4:
        return (tlbcfg >> 16) & 0x3;

    case 5:
        return (tlbcfg >> 20) & 0x1;

    case 6:
        return (tlbcfg >> 24) & 0x1;

    default:
        return 0;
    }
}

/*!
 * Get bit mask for the virtual address bits translated by the TLB way
 */
515
uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        bool varway56 = dtlb ?
            env->config->dtlb.varway56 :
            env->config->itlb.varway56;

        switch (way) {
        case 4:
            return 0xfff00000 << get_page_size(env, dtlb, way) * 2;

        case 5:
            if (varway56) {
                return 0xf8000000 << get_page_size(env, dtlb, way);
            } else {
                return 0xf8000000;
            }

        case 6:
            if (varway56) {
                return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
            } else {
                return 0xf0000000;
            }

        default:
            return 0xfffff000;
        }
    } else {
        return REGION_PAGE_MASK;
    }
}

/*!
 * Get bit mask for the 'VPN without index' field.
 * See ISA, 4.6.5.6, data format for RxTLB0
 */
552
static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
{
    if (way < 4) {
        bool is32 = (dtlb ?
                env->config->dtlb.nrefillentries :
                env->config->itlb.nrefillentries) == 32;
        return is32 ? 0xffff8000 : 0xffffc000;
    } else if (way == 4) {
        return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
    } else if (way <= 6) {
        uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
        bool varway56 = dtlb ?
            env->config->dtlb.varway56 :
            env->config->itlb.varway56;

        if (varway56) {
            return mask << (way == 5 ? 2 : 3);
        } else {
            return mask << 1;
        }
    } else {
        return 0xfffff000;
    }
}

/*!
 * Split virtual address into VPN (with index) and entry index
 * for the given TLB way
 */
581
void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v, bool dtlb,
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
        uint32_t *vpn, uint32_t wi, uint32_t *ei)
{
    bool varway56 = dtlb ?
        env->config->dtlb.varway56 :
        env->config->itlb.varway56;

    if (!dtlb) {
        wi &= 7;
    }

    if (wi < 4) {
        bool is32 = (dtlb ?
                env->config->dtlb.nrefillentries :
                env->config->itlb.nrefillentries) == 32;
        *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
    } else {
        switch (wi) {
        case 4:
            {
                uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
                *ei = (v >> eibase) & 0x3;
            }
            break;

        case 5:
            if (varway56) {
                uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
                *ei = (v >> eibase) & 0x3;
            } else {
                *ei = (v >> 27) & 0x1;
            }
            break;

        case 6:
            if (varway56) {
                uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
                *ei = (v >> eibase) & 0x7;
            } else {
                *ei = (v >> 28) & 0x1;
            }
            break;

        default:
            *ei = 0;
            break;
        }
    }
    *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
}

/*!
 * Split TLB address into TLB way, entry index and VPN (with index).
 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
 */
636
static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
637 638 639 640 641 642 643 644 645 646 647 648
        uint32_t *vpn, uint32_t *wi, uint32_t *ei)
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        *wi = v & (dtlb ? 0xf : 0x7);
        split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
    } else {
        *vpn = v & REGION_PAGE_MASK;
        *wi = 0;
        *ei = (v >> 29) & 0x7;
    }
}

649 650
static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
        uint32_t v, bool dtlb, uint32_t *pwi)
651 652 653 654 655
{
    uint32_t vpn;
    uint32_t wi;
    uint32_t ei;

656
    split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
657 658 659 660 661 662
    if (pwi) {
        *pwi = wi;
    }
    return xtensa_tlb_get_entry(env, dtlb, wi, ei);
}

663
uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
664 665 666
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        uint32_t wi;
667
        const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
668 669 670 671 672 673
        return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
    } else {
        return v & REGION_PAGE_MASK;
    }
}

674
uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
675
{
676
    const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
677 678 679
    return entry->paddr | entry->attr;
}

680
void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
681 682 683
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        uint32_t wi;
684
        xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
685 686 687 688 689 690 691
        if (entry->variable && entry->asid) {
            tlb_flush_page(env, entry->vaddr);
            entry->asid = 0;
        }
    }
}

692
uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        uint32_t wi;
        uint32_t ei;
        uint8_t ring;
        int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);

        switch (res) {
        case 0:
            if (ring >= xtensa_get_ring(env)) {
                return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
            }
            break;

        case INST_TLB_MULTI_HIT_CAUSE:
        case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
709
            HELPER(exception_cause_vaddr)(env, env->pc, res, v);
710 711 712 713 714 715 716 717
            break;
        }
        return 0;
    } else {
        return (v & REGION_PAGE_MASK) | 0x1;
    }
}

718 719 720 721 722 723 724 725 726 727
void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
        xtensa_tlb_entry *entry, bool dtlb,
        unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
{
    entry->vaddr = vpn;
    entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
    entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
    entry->attr = pte & 0xf;
}

728
void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
729 730 731 732 733 734 735 736 737
        unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
{
    xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);

    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        if (entry->variable) {
            if (entry->asid) {
                tlb_flush_page(env, entry->vaddr);
            }
738
            xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
739
            tlb_flush_page(env, entry->vaddr);
740 741 742 743 744 745 746 747 748 749 750 751 752 753
        } else {
            qemu_log("%s %d, %d, %d trying to set immutable entry\n",
                    __func__, dtlb, wi, ei);
        }
    } else {
        tlb_flush_page(env, entry->vaddr);
        if (xtensa_option_enabled(env->config,
                    XTENSA_OPTION_REGION_TRANSLATION)) {
            entry->paddr = pte & REGION_PAGE_MASK;
        }
        entry->attr = pte & 0xf;
    }
}

754
void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
755 756 757 758
{
    uint32_t vpn;
    uint32_t wi;
    uint32_t ei;
759
    split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
760 761
    xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
}
762 763


764
void HELPER(wsr_ibreakenable)(CPUXtensaState *env, uint32_t v)
765 766 767 768 769 770
{
    uint32_t change = v ^ env->sregs[IBREAKENABLE];
    unsigned i;

    for (i = 0; i < env->config->nibreak; ++i) {
        if (change & (1 << i)) {
771
            tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
772 773 774 775 776
        }
    }
    env->sregs[IBREAKENABLE] = v & ((1 << env->config->nibreak) - 1);
}

777
void HELPER(wsr_ibreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
778 779
{
    if (env->sregs[IBREAKENABLE] & (1 << i) && env->sregs[IBREAKA + i] != v) {
780 781
        tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
        tb_invalidate_virtual_addr(env, v);
782 783 784
    }
    env->sregs[IBREAKA + i] = v;
}
785

786 787
static void set_dbreak(CPUXtensaState *env, unsigned i, uint32_t dbreaka,
        uint32_t dbreakc)
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
{
    int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
    uint32_t mask = dbreakc | ~DBREAKC_MASK;

    if (env->cpu_watchpoint[i]) {
        cpu_watchpoint_remove_by_ref(env, env->cpu_watchpoint[i]);
    }
    if (dbreakc & DBREAKC_SB) {
        flags |= BP_MEM_WRITE;
    }
    if (dbreakc & DBREAKC_LB) {
        flags |= BP_MEM_READ;
    }
    /* contiguous mask after inversion is one less than some power of 2 */
    if ((~mask + 1) & ~mask) {
        qemu_log("DBREAKC mask is not contiguous: 0x%08x\n", dbreakc);
        /* cut mask after the first zero bit */
        mask = 0xffffffff << (32 - clo32(mask));
    }
    if (cpu_watchpoint_insert(env, dbreaka & mask, ~mask + 1,
            flags, &env->cpu_watchpoint[i])) {
        env->cpu_watchpoint[i] = NULL;
        qemu_log("Failed to set data breakpoint at 0x%08x/%d\n",
                dbreaka & mask, ~mask + 1);
    }
}

815
void HELPER(wsr_dbreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
816 817 818 819 820
{
    uint32_t dbreakc = env->sregs[DBREAKC + i];

    if ((dbreakc & DBREAKC_SB_LB) &&
            env->sregs[DBREAKA + i] != v) {
821
        set_dbreak(env, i, v, dbreakc);
822 823 824 825
    }
    env->sregs[DBREAKA + i] = v;
}

826
void HELPER(wsr_dbreakc)(CPUXtensaState *env, uint32_t i, uint32_t v)
827 828 829
{
    if ((env->sregs[DBREAKC + i] ^ v) & (DBREAKC_SB_LB | DBREAKC_MASK)) {
        if (v & DBREAKC_SB_LB) {
830
            set_dbreak(env, i, env->sregs[DBREAKA + i], v);
831 832 833 834 835 836 837 838 839
        } else {
            if (env->cpu_watchpoint[i]) {
                cpu_watchpoint_remove_by_ref(env, env->cpu_watchpoint[i]);
                env->cpu_watchpoint[i] = NULL;
            }
        }
    }
    env->sregs[DBREAKC + i] = v;
}
M
Max Filippov 已提交
840 841 842 843 844 845 846 847 848 849 850 851 852

void HELPER(wur_fcr)(CPUXtensaState *env, uint32_t v)
{
    static const int rounding_mode[] = {
        float_round_nearest_even,
        float_round_to_zero,
        float_round_up,
        float_round_down,
    };

    env->uregs[FCR] = v & 0xfffff07f;
    set_float_rounding_mode(rounding_mode[v & 3], &env->fp_status);
}
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889

float32 HELPER(abs_s)(float32 v)
{
    return float32_abs(v);
}

float32 HELPER(neg_s)(float32 v)
{
    return float32_chs(v);
}

float32 HELPER(add_s)(CPUXtensaState *env, float32 a, float32 b)
{
    return float32_add(a, b, &env->fp_status);
}

float32 HELPER(sub_s)(CPUXtensaState *env, float32 a, float32 b)
{
    return float32_sub(a, b, &env->fp_status);
}

float32 HELPER(mul_s)(CPUXtensaState *env, float32 a, float32 b)
{
    return float32_mul(a, b, &env->fp_status);
}

float32 HELPER(madd_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
{
    return float32_muladd(b, c, a, 0,
            &env->fp_status);
}

float32 HELPER(msub_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
{
    return float32_muladd(b, c, a, float_muladd_negate_product,
            &env->fp_status);
}
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926

uint32_t HELPER(ftoi)(float32 v, uint32_t rounding_mode, uint32_t scale)
{
    float_status fp_status = {0};

    set_float_rounding_mode(rounding_mode, &fp_status);
    return float32_to_int32(
            float32_scalbn(v, scale, &fp_status), &fp_status);
}

uint32_t HELPER(ftoui)(float32 v, uint32_t rounding_mode, uint32_t scale)
{
    float_status fp_status = {0};
    float32 res;

    set_float_rounding_mode(rounding_mode, &fp_status);

    res = float32_scalbn(v, scale, &fp_status);

    if (float32_is_neg(v) && !float32_is_any_nan(v)) {
        return float32_to_int32(res, &fp_status);
    } else {
        return float32_to_uint32(res, &fp_status);
    }
}

float32 HELPER(itof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
{
    return float32_scalbn(int32_to_float32(v, &env->fp_status),
            (int32_t)scale, &env->fp_status);
}

float32 HELPER(uitof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
{
    return float32_scalbn(uint32_to_float32(v, &env->fp_status),
            (int32_t)scale, &env->fp_status);
}
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973

static inline void set_br(CPUXtensaState *env, bool v, uint32_t br)
{
    if (v) {
        env->sregs[BR] |= br;
    } else {
        env->sregs[BR] &= ~br;
    }
}

void HELPER(un_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
    set_br(env, float32_unordered_quiet(a, b, &env->fp_status), br);
}

void HELPER(oeq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
    set_br(env, float32_eq_quiet(a, b, &env->fp_status), br);
}

void HELPER(ueq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
    int v = float32_compare_quiet(a, b, &env->fp_status);
    set_br(env, v == float_relation_equal || v == float_relation_unordered, br);
}

void HELPER(olt_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
    set_br(env, float32_lt_quiet(a, b, &env->fp_status), br);
}

void HELPER(ult_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
    int v = float32_compare_quiet(a, b, &env->fp_status);
    set_br(env, v == float_relation_less || v == float_relation_unordered, br);
}

void HELPER(ole_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
    set_br(env, float32_le_quiet(a, b, &env->fp_status), br);
}

void HELPER(ule_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
    int v = float32_compare_quiet(a, b, &env->fp_status);
    set_br(env, v != float_relation_greater, br);
}