op_helper.c 27.8 KB
Newer Older
M
Max Filippov 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the Open Source and Linux Lab nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "cpu.h"
29
#include "exec/helper-proto.h"
30
#include "qemu/host-utils.h"
P
Paolo Bonzini 已提交
31
#include "exec/cpu_ldst.h"
32
#include "exec/address-spaces.h"
33
#include "qemu/timer.h"
M
Max Filippov 已提交
34

35 36
void xtensa_cpu_do_unaligned_access(CPUState *cs,
        vaddr addr, int is_write, int is_user, uintptr_t retaddr)
37
{
38 39
    XtensaCPU *cpu = XTENSA_CPU(cs);
    CPUXtensaState *env = &cpu->env;
40

41 42
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_UNALIGNED_EXCEPTION) &&
            !xtensa_option_enabled(env->config, XTENSA_OPTION_HW_ALIGNMENT)) {
43
        cpu_restore_state(CPU(cpu), retaddr);
44
        HELPER(exception_cause_vaddr)(env,
45 46 47 48
                env->pc, LOAD_STORE_ALIGNMENT_CAUSE, addr);
    }
}

49 50
void tlb_fill(CPUState *cs,
              target_ulong vaddr, int is_write, int mmu_idx, uintptr_t retaddr)
M
Max Filippov 已提交
51
{
52 53
    XtensaCPU *cpu = XTENSA_CPU(cs);
    CPUXtensaState *env = &cpu->env;
54 55 56 57 58
    uint32_t paddr;
    uint32_t page_size;
    unsigned access;
    int ret = xtensa_get_physical_addr(env, true, vaddr, is_write, mmu_idx,
            &paddr, &page_size, &access);
59

60 61
    qemu_log("%s(%08x, %d, %d) -> %08x, ret = %d\n", __func__,
            vaddr, is_write, mmu_idx, paddr, ret);
62

63
    if (ret == 0) {
64 65 66 67
        tlb_set_page(cs,
                     vaddr & TARGET_PAGE_MASK,
                     paddr & TARGET_PAGE_MASK,
                     access, mmu_idx, page_size);
68
    } else {
69
        cpu_restore_state(cs, retaddr);
70
        HELPER(exception_cause_vaddr)(env, env->pc, ret, vaddr);
71
    }
M
Max Filippov 已提交
72
}
73

74 75 76 77 78
static void tb_invalidate_virtual_addr(CPUXtensaState *env, uint32_t vaddr)
{
    uint32_t paddr;
    uint32_t page_size;
    unsigned access;
79
    int ret = xtensa_get_physical_addr(env, false, vaddr, 2, 0,
80 81
            &paddr, &page_size, &access);
    if (ret == 0) {
82
        tb_invalidate_phys_addr(&address_space_memory, paddr);
83 84 85
    }
}

86
void HELPER(exception)(CPUXtensaState *env, uint32_t excp)
87
{
88 89 90
    CPUState *cs = CPU(xtensa_env_get_cpu(env));

    cs->exception_index = excp;
91 92 93
    if (excp == EXCP_DEBUG) {
        env->exception_taken = 0;
    }
94
    cpu_loop_exit(cs);
95
}
96

97
void HELPER(exception_cause)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
{
    uint32_t vector;

    env->pc = pc;
    if (env->sregs[PS] & PS_EXCM) {
        if (env->config->ndepc) {
            env->sregs[DEPC] = pc;
        } else {
            env->sregs[EPC1] = pc;
        }
        vector = EXC_DOUBLE;
    } else {
        env->sregs[EPC1] = pc;
        vector = (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
    }

    env->sregs[EXCCAUSE] = cause;
    env->sregs[PS] |= PS_EXCM;

117
    HELPER(exception)(env, vector);
118 119
}

120 121
void HELPER(exception_cause_vaddr)(CPUXtensaState *env,
        uint32_t pc, uint32_t cause, uint32_t vaddr)
122 123
{
    env->sregs[EXCVADDR] = vaddr;
124
    HELPER(exception_cause)(env, pc, cause);
125 126
}

127
void debug_exception_env(CPUXtensaState *env, uint32_t cause)
128
{
129 130
    if (xtensa_get_cintlevel(env) < env->config->debug_level) {
        HELPER(debug_exception)(env, env->pc, cause);
131 132 133
    }
}

134
void HELPER(debug_exception)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
135 136 137 138 139 140 141 142 143
{
    unsigned level = env->config->debug_level;

    env->pc = pc;
    env->sregs[DEBUGCAUSE] = cause;
    env->sregs[EPC1 + level - 1] = pc;
    env->sregs[EPS2 + level - 2] = env->sregs[PS];
    env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | PS_EXCM |
        (level << PS_INTLEVEL_SHIFT);
144
    HELPER(exception)(env, EXC_DEBUG);
145 146
}

147 148 149 150 151 152 153 154 155 156 157 158
uint32_t HELPER(nsa)(uint32_t v)
{
    if (v & 0x80000000) {
        v = ~v;
    }
    return v ? clz32(v) - 1 : 31;
}

uint32_t HELPER(nsau)(uint32_t v)
{
    return v ? clz32(v) : 32;
}
159

160
static void copy_window_from_phys(CPUXtensaState *env,
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
        uint32_t window, uint32_t phys, uint32_t n)
{
    assert(phys < env->config->nareg);
    if (phys + n <= env->config->nareg) {
        memcpy(env->regs + window, env->phys_regs + phys,
                n * sizeof(uint32_t));
    } else {
        uint32_t n1 = env->config->nareg - phys;
        memcpy(env->regs + window, env->phys_regs + phys,
                n1 * sizeof(uint32_t));
        memcpy(env->regs + window + n1, env->phys_regs,
                (n - n1) * sizeof(uint32_t));
    }
}

176
static void copy_phys_from_window(CPUXtensaState *env,
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
        uint32_t phys, uint32_t window, uint32_t n)
{
    assert(phys < env->config->nareg);
    if (phys + n <= env->config->nareg) {
        memcpy(env->phys_regs + phys, env->regs + window,
                n * sizeof(uint32_t));
    } else {
        uint32_t n1 = env->config->nareg - phys;
        memcpy(env->phys_regs + phys, env->regs + window,
                n1 * sizeof(uint32_t));
        memcpy(env->phys_regs, env->regs + window + n1,
                (n - n1) * sizeof(uint32_t));
    }
}


193
static inline unsigned windowbase_bound(unsigned a, const CPUXtensaState *env)
194 195 196 197
{
    return a & (env->config->nareg / 4 - 1);
}

198
static inline unsigned windowstart_bit(unsigned a, const CPUXtensaState *env)
199 200 201 202
{
    return 1 << windowbase_bound(a, env);
}

203
void xtensa_sync_window_from_phys(CPUXtensaState *env)
204 205 206 207
{
    copy_window_from_phys(env, 0, env->sregs[WINDOW_BASE] * 4, 16);
}

208
void xtensa_sync_phys_from_window(CPUXtensaState *env)
209 210 211 212
{
    copy_phys_from_window(env, env->sregs[WINDOW_BASE] * 4, 0, 16);
}

213
static void rotate_window_abs(CPUXtensaState *env, uint32_t position)
214 215 216 217 218 219
{
    xtensa_sync_phys_from_window(env);
    env->sregs[WINDOW_BASE] = windowbase_bound(position, env);
    xtensa_sync_window_from_phys(env);
}

220
static void rotate_window(CPUXtensaState *env, uint32_t delta)
221
{
222
    rotate_window_abs(env, env->sregs[WINDOW_BASE] + delta);
223 224
}

225
void HELPER(wsr_windowbase)(CPUXtensaState *env, uint32_t v)
226
{
227
    rotate_window_abs(env, v);
228 229
}

230
void HELPER(entry)(CPUXtensaState *env, uint32_t pc, uint32_t s, uint32_t imm)
231 232 233 234 235
{
    int callinc = (env->sregs[PS] & PS_CALLINC) >> PS_CALLINC_SHIFT;
    if (s > 3 || ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
        qemu_log("Illegal entry instruction(pc = %08x), PS = %08x\n",
                pc, env->sregs[PS]);
236
        HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
237
    } else {
238 239 240 241 242 243
        uint32_t windowstart = xtensa_replicate_windowstart(env) >>
            (env->sregs[WINDOW_BASE] + 1);

        if (windowstart & ((1 << callinc) - 1)) {
            HELPER(window_check)(env, pc, callinc);
        }
244
        env->regs[(callinc << 2) | (s & 3)] = env->regs[s] - (imm << 3);
245
        rotate_window(env, callinc);
246 247 248 249 250
        env->sregs[WINDOW_START] |=
            windowstart_bit(env->sregs[WINDOW_BASE], env);
    }
}

251
void HELPER(window_check)(CPUXtensaState *env, uint32_t pc, uint32_t w)
252 253
{
    uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
254 255 256
    uint32_t windowstart = xtensa_replicate_windowstart(env) >>
        (env->sregs[WINDOW_BASE] + 1);
    uint32_t n = ctz32(windowstart) + 1;
257

258
    assert(n <= w);
259

260
    rotate_window(env, n);
261 262 263 264
    env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
        (windowbase << PS_OWB_SHIFT) | PS_EXCM;
    env->sregs[EPC1] = env->pc = pc;

265 266
    switch (ctz32(windowstart >> n)) {
    case 0:
267
        HELPER(exception)(env, EXC_WINDOW_OVERFLOW4);
268 269
        break;
    case 1:
270
        HELPER(exception)(env, EXC_WINDOW_OVERFLOW8);
271 272
        break;
    default:
273
        HELPER(exception)(env, EXC_WINDOW_OVERFLOW12);
274
        break;
275 276 277
    }
}

278
uint32_t HELPER(retw)(CPUXtensaState *env, uint32_t pc)
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
{
    int n = (env->regs[0] >> 30) & 0x3;
    int m = 0;
    uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
    uint32_t windowstart = env->sregs[WINDOW_START];
    uint32_t ret_pc = 0;

    if (windowstart & windowstart_bit(windowbase - 1, env)) {
        m = 1;
    } else if (windowstart & windowstart_bit(windowbase - 2, env)) {
        m = 2;
    } else if (windowstart & windowstart_bit(windowbase - 3, env)) {
        m = 3;
    }

    if (n == 0 || (m != 0 && m != n) ||
            ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
        qemu_log("Illegal retw instruction(pc = %08x), "
                "PS = %08x, m = %d, n = %d\n",
                pc, env->sregs[PS], m, n);
299
        HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
300 301 302 303 304
    } else {
        int owb = windowbase;

        ret_pc = (pc & 0xc0000000) | (env->regs[0] & 0x3fffffff);

305
        rotate_window(env, -n);
306 307 308 309 310 311 312 313 314
        if (windowstart & windowstart_bit(env->sregs[WINDOW_BASE], env)) {
            env->sregs[WINDOW_START] &= ~windowstart_bit(owb, env);
        } else {
            /* window underflow */
            env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
                (windowbase << PS_OWB_SHIFT) | PS_EXCM;
            env->sregs[EPC1] = env->pc = pc;

            if (n == 1) {
315
                HELPER(exception)(env, EXC_WINDOW_UNDERFLOW4);
316
            } else if (n == 2) {
317
                HELPER(exception)(env, EXC_WINDOW_UNDERFLOW8);
318
            } else if (n == 3) {
319
                HELPER(exception)(env, EXC_WINDOW_UNDERFLOW12);
320 321 322 323 324 325
            }
        }
    }
    return ret_pc;
}

326
void HELPER(rotw)(CPUXtensaState *env, uint32_t imm4)
327
{
328
    rotate_window(env, imm4);
329 330
}

331
void HELPER(restore_owb)(CPUXtensaState *env)
332
{
333
    rotate_window_abs(env, (env->sregs[PS] & PS_OWB) >> PS_OWB_SHIFT);
334 335
}

336
void HELPER(movsp)(CPUXtensaState *env, uint32_t pc)
337 338 339 340 341
{
    if ((env->sregs[WINDOW_START] &
            (windowstart_bit(env->sregs[WINDOW_BASE] - 3, env) |
             windowstart_bit(env->sregs[WINDOW_BASE] - 2, env) |
             windowstart_bit(env->sregs[WINDOW_BASE] - 1, env))) == 0) {
342
        HELPER(exception_cause)(env, pc, ALLOCA_CAUSE);
343 344 345
    }
}

346
void HELPER(wsr_lbeg)(CPUXtensaState *env, uint32_t v)
347 348
{
    if (env->sregs[LBEG] != v) {
349
        tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
350 351 352 353
        env->sregs[LBEG] = v;
    }
}

354
void HELPER(wsr_lend)(CPUXtensaState *env, uint32_t v)
355 356
{
    if (env->sregs[LEND] != v) {
357
        tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
358
        env->sregs[LEND] = v;
359
        tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
360 361 362
    }
}

363
void HELPER(dump_state)(CPUXtensaState *env)
364
{
365 366 367
    XtensaCPU *cpu = xtensa_env_get_cpu(env);

    cpu_dump_state(CPU(cpu), stderr, fprintf, 0);
368
}
369

370
void HELPER(waiti)(CPUXtensaState *env, uint32_t pc, uint32_t intlevel)
371
{
372 373
    CPUState *cpu;

374 375 376 377 378
    env->pc = pc;
    env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) |
        (intlevel << PS_INTLEVEL_SHIFT);
    check_interrupts(env);
    if (env->pending_irq_level) {
379
        cpu_loop_exit(CPU(xtensa_env_get_cpu(env)));
380 381 382
        return;
    }

383
    cpu = CPU(xtensa_env_get_cpu(env));
384
    env->halt_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
385
    cpu->halted = 1;
386 387 388
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_TIMER_INTERRUPT)) {
        xtensa_rearm_ccompare_timer(env);
    }
389
    HELPER(exception)(env, EXCP_HLT);
390 391
}

392
void HELPER(timer_irq)(CPUXtensaState *env, uint32_t id, uint32_t active)
393 394 395 396
{
    xtensa_timer_irq(env, id, active);
}

397
void HELPER(advance_ccount)(CPUXtensaState *env, uint32_t d)
398 399 400 401
{
    xtensa_advance_ccount(env, d);
}

402
void HELPER(check_interrupts)(CPUXtensaState *env)
403 404 405
{
    check_interrupts(env);
}
406

407 408 409 410 411
void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr)
{
    get_page_addr_code(env, vaddr);
}

M
Max Filippov 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
/*!
 * Check vaddr accessibility/cache attributes and raise an exception if
 * specified by the ATOMCTL SR.
 *
 * Note: local memory exclusion is not implemented
 */
void HELPER(check_atomctl)(CPUXtensaState *env, uint32_t pc, uint32_t vaddr)
{
    uint32_t paddr, page_size, access;
    uint32_t atomctl = env->sregs[ATOMCTL];
    int rc = xtensa_get_physical_addr(env, true, vaddr, 1,
            xtensa_get_cring(env), &paddr, &page_size, &access);

    /*
     * s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions,
     * see opcode description in the ISA
     */
    if (rc == 0 &&
            (access & (PAGE_READ | PAGE_WRITE)) != (PAGE_READ | PAGE_WRITE)) {
        rc = STORE_PROHIBITED_CAUSE;
    }

    if (rc) {
        HELPER(exception_cause_vaddr)(env, pc, rc, vaddr);
    }

    /*
     * When data cache is not configured use ATOMCTL bypass field.
     * See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL)
     * under the Conditional Store Option.
     */
    if (!xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) {
        access = PAGE_CACHE_BYPASS;
    }

    switch (access & PAGE_CACHE_MASK) {
    case PAGE_CACHE_WB:
        atomctl >>= 2;
450
        /* fall through */
M
Max Filippov 已提交
451 452
    case PAGE_CACHE_WT:
        atomctl >>= 2;
453
        /* fall through */
M
Max Filippov 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
    case PAGE_CACHE_BYPASS:
        if ((atomctl & 0x3) == 0) {
            HELPER(exception_cause_vaddr)(env, pc,
                    LOAD_STORE_ERROR_CAUSE, vaddr);
        }
        break;

    case PAGE_CACHE_ISOLATE:
        HELPER(exception_cause_vaddr)(env, pc,
                LOAD_STORE_ERROR_CAUSE, vaddr);
        break;

    default:
        break;
    }
}

471
void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
472
{
473 474
    XtensaCPU *cpu = xtensa_env_get_cpu(env);

475 476 477
    v = (v & 0xffffff00) | 0x1;
    if (v != env->sregs[RASID]) {
        env->sregs[RASID] = v;
478
        tlb_flush(CPU(cpu), 1);
479 480 481
    }
}

482
static uint32_t get_page_size(const CPUXtensaState *env, bool dtlb, uint32_t way)
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
{
    uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];

    switch (way) {
    case 4:
        return (tlbcfg >> 16) & 0x3;

    case 5:
        return (tlbcfg >> 20) & 0x1;

    case 6:
        return (tlbcfg >> 24) & 0x1;

    default:
        return 0;
    }
}

/*!
 * Get bit mask for the virtual address bits translated by the TLB way
 */
504
uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        bool varway56 = dtlb ?
            env->config->dtlb.varway56 :
            env->config->itlb.varway56;

        switch (way) {
        case 4:
            return 0xfff00000 << get_page_size(env, dtlb, way) * 2;

        case 5:
            if (varway56) {
                return 0xf8000000 << get_page_size(env, dtlb, way);
            } else {
                return 0xf8000000;
            }

        case 6:
            if (varway56) {
                return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
            } else {
                return 0xf0000000;
            }

        default:
            return 0xfffff000;
        }
    } else {
        return REGION_PAGE_MASK;
    }
}

/*!
 * Get bit mask for the 'VPN without index' field.
 * See ISA, 4.6.5.6, data format for RxTLB0
 */
541
static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
{
    if (way < 4) {
        bool is32 = (dtlb ?
                env->config->dtlb.nrefillentries :
                env->config->itlb.nrefillentries) == 32;
        return is32 ? 0xffff8000 : 0xffffc000;
    } else if (way == 4) {
        return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
    } else if (way <= 6) {
        uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
        bool varway56 = dtlb ?
            env->config->dtlb.varway56 :
            env->config->itlb.varway56;

        if (varway56) {
            return mask << (way == 5 ? 2 : 3);
        } else {
            return mask << 1;
        }
    } else {
        return 0xfffff000;
    }
}

/*!
 * Split virtual address into VPN (with index) and entry index
 * for the given TLB way
 */
570
void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v, bool dtlb,
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
        uint32_t *vpn, uint32_t wi, uint32_t *ei)
{
    bool varway56 = dtlb ?
        env->config->dtlb.varway56 :
        env->config->itlb.varway56;

    if (!dtlb) {
        wi &= 7;
    }

    if (wi < 4) {
        bool is32 = (dtlb ?
                env->config->dtlb.nrefillentries :
                env->config->itlb.nrefillentries) == 32;
        *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
    } else {
        switch (wi) {
        case 4:
            {
                uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
                *ei = (v >> eibase) & 0x3;
            }
            break;

        case 5:
            if (varway56) {
                uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
                *ei = (v >> eibase) & 0x3;
            } else {
                *ei = (v >> 27) & 0x1;
            }
            break;

        case 6:
            if (varway56) {
                uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
                *ei = (v >> eibase) & 0x7;
            } else {
                *ei = (v >> 28) & 0x1;
            }
            break;

        default:
            *ei = 0;
            break;
        }
    }
    *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
}

/*!
 * Split TLB address into TLB way, entry index and VPN (with index).
 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
 */
625
static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
626 627 628 629 630 631 632 633 634 635 636 637
        uint32_t *vpn, uint32_t *wi, uint32_t *ei)
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        *wi = v & (dtlb ? 0xf : 0x7);
        split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
    } else {
        *vpn = v & REGION_PAGE_MASK;
        *wi = 0;
        *ei = (v >> 29) & 0x7;
    }
}

638 639
static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
        uint32_t v, bool dtlb, uint32_t *pwi)
640 641 642 643 644
{
    uint32_t vpn;
    uint32_t wi;
    uint32_t ei;

645
    split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
646 647 648 649 650 651
    if (pwi) {
        *pwi = wi;
    }
    return xtensa_tlb_get_entry(env, dtlb, wi, ei);
}

652
uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
653 654 655
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        uint32_t wi;
656
        const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
657 658 659 660 661 662
        return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
    } else {
        return v & REGION_PAGE_MASK;
    }
}

663
uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
664
{
665
    const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
666 667 668
    return entry->paddr | entry->attr;
}

669
void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
670 671 672
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        uint32_t wi;
673
        xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
674
        if (entry->variable && entry->asid) {
675
            tlb_flush_page(CPU(xtensa_env_get_cpu(env)), entry->vaddr);
676 677 678 679 680
            entry->asid = 0;
        }
    }
}

681
uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        uint32_t wi;
        uint32_t ei;
        uint8_t ring;
        int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);

        switch (res) {
        case 0:
            if (ring >= xtensa_get_ring(env)) {
                return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
            }
            break;

        case INST_TLB_MULTI_HIT_CAUSE:
        case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
698
            HELPER(exception_cause_vaddr)(env, env->pc, res, v);
699 700 701 702 703 704 705 706
            break;
        }
        return 0;
    } else {
        return (v & REGION_PAGE_MASK) | 0x1;
    }
}

707 708 709 710 711 712 713 714 715 716
void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
        xtensa_tlb_entry *entry, bool dtlb,
        unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
{
    entry->vaddr = vpn;
    entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
    entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
    entry->attr = pte & 0xf;
}

717
void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
718 719
        unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
{
720 721
    XtensaCPU *cpu = xtensa_env_get_cpu(env);
    CPUState *cs = CPU(cpu);
722 723 724 725 726
    xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);

    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        if (entry->variable) {
            if (entry->asid) {
727
                tlb_flush_page(cs, entry->vaddr);
728
            }
729
            xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
730
            tlb_flush_page(cs, entry->vaddr);
731 732 733 734 735
        } else {
            qemu_log("%s %d, %d, %d trying to set immutable entry\n",
                    __func__, dtlb, wi, ei);
        }
    } else {
736
        tlb_flush_page(cs, entry->vaddr);
737 738 739 740 741 742 743 744
        if (xtensa_option_enabled(env->config,
                    XTENSA_OPTION_REGION_TRANSLATION)) {
            entry->paddr = pte & REGION_PAGE_MASK;
        }
        entry->attr = pte & 0xf;
    }
}

745
void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
746 747 748 749
{
    uint32_t vpn;
    uint32_t wi;
    uint32_t ei;
750
    split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
751 752
    xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
}
753 754


755
void HELPER(wsr_ibreakenable)(CPUXtensaState *env, uint32_t v)
756 757 758 759 760 761
{
    uint32_t change = v ^ env->sregs[IBREAKENABLE];
    unsigned i;

    for (i = 0; i < env->config->nibreak; ++i) {
        if (change & (1 << i)) {
762
            tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
763 764 765 766 767
        }
    }
    env->sregs[IBREAKENABLE] = v & ((1 << env->config->nibreak) - 1);
}

768
void HELPER(wsr_ibreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
769 770
{
    if (env->sregs[IBREAKENABLE] & (1 << i) && env->sregs[IBREAKA + i] != v) {
771 772
        tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
        tb_invalidate_virtual_addr(env, v);
773 774 775
    }
    env->sregs[IBREAKA + i] = v;
}
776

777 778
static void set_dbreak(CPUXtensaState *env, unsigned i, uint32_t dbreaka,
        uint32_t dbreakc)
779
{
780
    CPUState *cs = CPU(xtensa_env_get_cpu(env));
781 782 783 784
    int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
    uint32_t mask = dbreakc | ~DBREAKC_MASK;

    if (env->cpu_watchpoint[i]) {
785
        cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]);
786 787 788 789 790 791 792 793 794 795 796 797 798
    }
    if (dbreakc & DBREAKC_SB) {
        flags |= BP_MEM_WRITE;
    }
    if (dbreakc & DBREAKC_LB) {
        flags |= BP_MEM_READ;
    }
    /* contiguous mask after inversion is one less than some power of 2 */
    if ((~mask + 1) & ~mask) {
        qemu_log("DBREAKC mask is not contiguous: 0x%08x\n", dbreakc);
        /* cut mask after the first zero bit */
        mask = 0xffffffff << (32 - clo32(mask));
    }
799
    if (cpu_watchpoint_insert(cs, dbreaka & mask, ~mask + 1,
800 801 802 803 804 805 806
            flags, &env->cpu_watchpoint[i])) {
        env->cpu_watchpoint[i] = NULL;
        qemu_log("Failed to set data breakpoint at 0x%08x/%d\n",
                dbreaka & mask, ~mask + 1);
    }
}

807
void HELPER(wsr_dbreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
808 809 810 811 812
{
    uint32_t dbreakc = env->sregs[DBREAKC + i];

    if ((dbreakc & DBREAKC_SB_LB) &&
            env->sregs[DBREAKA + i] != v) {
813
        set_dbreak(env, i, v, dbreakc);
814 815 816 817
    }
    env->sregs[DBREAKA + i] = v;
}

818
void HELPER(wsr_dbreakc)(CPUXtensaState *env, uint32_t i, uint32_t v)
819 820 821
{
    if ((env->sregs[DBREAKC + i] ^ v) & (DBREAKC_SB_LB | DBREAKC_MASK)) {
        if (v & DBREAKC_SB_LB) {
822
            set_dbreak(env, i, env->sregs[DBREAKA + i], v);
823 824
        } else {
            if (env->cpu_watchpoint[i]) {
825 826 827
                CPUState *cs = CPU(xtensa_env_get_cpu(env));

                cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]);
828 829 830 831 832 833
                env->cpu_watchpoint[i] = NULL;
            }
        }
    }
    env->sregs[DBREAKC + i] = v;
}
M
Max Filippov 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846

void HELPER(wur_fcr)(CPUXtensaState *env, uint32_t v)
{
    static const int rounding_mode[] = {
        float_round_nearest_even,
        float_round_to_zero,
        float_round_up,
        float_round_down,
    };

    env->uregs[FCR] = v & 0xfffff07f;
    set_float_rounding_mode(rounding_mode[v & 3], &env->fp_status);
}
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883

float32 HELPER(abs_s)(float32 v)
{
    return float32_abs(v);
}

float32 HELPER(neg_s)(float32 v)
{
    return float32_chs(v);
}

float32 HELPER(add_s)(CPUXtensaState *env, float32 a, float32 b)
{
    return float32_add(a, b, &env->fp_status);
}

float32 HELPER(sub_s)(CPUXtensaState *env, float32 a, float32 b)
{
    return float32_sub(a, b, &env->fp_status);
}

float32 HELPER(mul_s)(CPUXtensaState *env, float32 a, float32 b)
{
    return float32_mul(a, b, &env->fp_status);
}

float32 HELPER(madd_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
{
    return float32_muladd(b, c, a, 0,
            &env->fp_status);
}

float32 HELPER(msub_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
{
    return float32_muladd(b, c, a, float_muladd_negate_product,
            &env->fp_status);
}
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920

uint32_t HELPER(ftoi)(float32 v, uint32_t rounding_mode, uint32_t scale)
{
    float_status fp_status = {0};

    set_float_rounding_mode(rounding_mode, &fp_status);
    return float32_to_int32(
            float32_scalbn(v, scale, &fp_status), &fp_status);
}

uint32_t HELPER(ftoui)(float32 v, uint32_t rounding_mode, uint32_t scale)
{
    float_status fp_status = {0};
    float32 res;

    set_float_rounding_mode(rounding_mode, &fp_status);

    res = float32_scalbn(v, scale, &fp_status);

    if (float32_is_neg(v) && !float32_is_any_nan(v)) {
        return float32_to_int32(res, &fp_status);
    } else {
        return float32_to_uint32(res, &fp_status);
    }
}

float32 HELPER(itof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
{
    return float32_scalbn(int32_to_float32(v, &env->fp_status),
            (int32_t)scale, &env->fp_status);
}

float32 HELPER(uitof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
{
    return float32_scalbn(uint32_to_float32(v, &env->fp_status),
            (int32_t)scale, &env->fp_status);
}
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967

static inline void set_br(CPUXtensaState *env, bool v, uint32_t br)
{
    if (v) {
        env->sregs[BR] |= br;
    } else {
        env->sregs[BR] &= ~br;
    }
}

void HELPER(un_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
    set_br(env, float32_unordered_quiet(a, b, &env->fp_status), br);
}

void HELPER(oeq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
    set_br(env, float32_eq_quiet(a, b, &env->fp_status), br);
}

void HELPER(ueq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
    int v = float32_compare_quiet(a, b, &env->fp_status);
    set_br(env, v == float_relation_equal || v == float_relation_unordered, br);
}

void HELPER(olt_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
    set_br(env, float32_lt_quiet(a, b, &env->fp_status), br);
}

void HELPER(ult_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
    int v = float32_compare_quiet(a, b, &env->fp_status);
    set_br(env, v == float_relation_less || v == float_relation_unordered, br);
}

void HELPER(ole_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
    set_br(env, float32_le_quiet(a, b, &env->fp_status), br);
}

void HELPER(ule_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
    int v = float32_compare_quiet(a, b, &env->fp_status);
    set_br(env, v != float_relation_greater, br);
}