exec.c 117.2 KB
Newer Older
B
bellard 已提交
1
/*
2
 *  Virtual page mapping
3
 *
B
bellard 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
B
bellard 已提交
18
 */
P
Peter Maydell 已提交
19
#include "qemu/osdep.h"
20
#include "qapi/error.h"
B
bellard 已提交
21

22
#include "qemu/cutils.h"
B
bellard 已提交
23
#include "cpu.h"
24
#include "exec/exec-all.h"
25
#include "exec/target_page.h"
B
bellard 已提交
26
#include "tcg.h"
27
#include "hw/qdev-core.h"
F
Fam Zheng 已提交
28
#include "hw/qdev-properties.h"
29
#if !defined(CONFIG_USER_ONLY)
30
#include "hw/boards.h"
31
#include "hw/xen/xen.h"
32
#endif
33
#include "sysemu/kvm.h"
34
#include "sysemu/sysemu.h"
35 36
#include "qemu/timer.h"
#include "qemu/config-file.h"
37
#include "qemu/error-report.h"
38
#if defined(CONFIG_USER_ONLY)
39
#include "qemu.h"
J
Jun Nakajima 已提交
40
#else /* !CONFIG_USER_ONLY */
41 42
#include "hw/hw.h"
#include "exec/memory.h"
P
Paolo Bonzini 已提交
43
#include "exec/ioport.h"
44
#include "sysemu/dma.h"
45
#include "sysemu/numa.h"
46
#include "sysemu/hw_accel.h"
47
#include "exec/address-spaces.h"
48
#include "sysemu/xen-mapcache.h"
49
#include "trace-root.h"
50

51 52 53 54
#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
#include <linux/falloc.h>
#endif

55
#endif
M
Mike Day 已提交
56
#include "qemu/rcu_queue.h"
57
#include "qemu/main-loop.h"
58
#include "translate-all.h"
59
#include "sysemu/replay.h"
60

61
#include "exec/memory-internal.h"
62
#include "exec/ram_addr.h"
63
#include "exec/log.h"
64

65 66
#include "migration/vmstate.h"

67
#include "qemu/range.h"
68 69 70
#ifndef _WIN32
#include "qemu/mmap-alloc.h"
#endif
71

72 73
#include "monitor/monitor.h"

74
//#define DEBUG_SUBPAGE
T
ths 已提交
75

76
#if !defined(CONFIG_USER_ONLY)
M
Mike Day 已提交
77 78 79
/* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
 * are protected by the ramlist lock.
 */
M
Mike Day 已提交
80
RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
A
Avi Kivity 已提交
81 82

static MemoryRegion *system_memory;
83
static MemoryRegion *system_io;
A
Avi Kivity 已提交
84

85 86
AddressSpace address_space_io;
AddressSpace address_space_memory;
87

88
MemoryRegion io_mem_rom, io_mem_notdirty;
89
static MemoryRegion io_mem_unassigned;
90

91 92 93
/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
#define RAM_PREALLOC   (1 << 0)

94 95 96
/* RAM is mmap-ed with MAP_SHARED */
#define RAM_SHARED     (1 << 1)

97 98 99 100 101
/* Only a portion of RAM (used_length) is actually used, and migrated.
 * This used_length size can change across reboots.
 */
#define RAM_RESIZEABLE (1 << 2)

102 103 104 105 106
/* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
 * zero the page and wake waiting processes.
 * (Set during postcopy)
 */
#define RAM_UF_ZEROPAGE (1 << 3)
107 108 109

/* RAM can be migrated */
#define RAM_MIGRATABLE (1 << 4)
110
#endif
111

112 113 114 115 116
#ifdef TARGET_PAGE_BITS_VARY
int target_page_bits;
bool target_page_bits_decided;
#endif

A
Andreas Färber 已提交
117
struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
B
bellard 已提交
118 119
/* current CPU in the current thread. It is only valid inside
   cpu_exec() */
P
Paolo Bonzini 已提交
120
__thread CPUState *current_cpu;
P
pbrook 已提交
121
/* 0 = Do not count executed instructions.
T
ths 已提交
122
   1 = Precise instruction counting.
P
pbrook 已提交
123
   2 = Adaptive rate instruction counting.  */
124
int use_icount;
B
bellard 已提交
125

Y
Yang Zhong 已提交
126 127 128
uintptr_t qemu_host_page_size;
intptr_t qemu_host_page_mask;

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
bool set_preferred_target_page_bits(int bits)
{
    /* The target page size is the lowest common denominator for all
     * the CPUs in the system, so we can only make it smaller, never
     * larger. And we can't make it smaller once we've committed to
     * a particular size.
     */
#ifdef TARGET_PAGE_BITS_VARY
    assert(bits >= TARGET_PAGE_BITS_MIN);
    if (target_page_bits == 0 || target_page_bits > bits) {
        if (target_page_bits_decided) {
            return false;
        }
        target_page_bits = bits;
    }
#endif
    return true;
}

148
#if !defined(CONFIG_USER_ONLY)
149

150 151 152 153 154 155 156 157 158 159
static void finalize_target_page_bits(void)
{
#ifdef TARGET_PAGE_BITS_VARY
    if (target_page_bits == 0) {
        target_page_bits = TARGET_PAGE_BITS_MIN;
    }
    target_page_bits_decided = true;
#endif
}

160 161 162
typedef struct PhysPageEntry PhysPageEntry;

struct PhysPageEntry {
M
Michael S. Tsirkin 已提交
163
    /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
164
    uint32_t skip : 6;
M
Michael S. Tsirkin 已提交
165
     /* index into phys_sections (!skip) or phys_map_nodes (skip) */
166
    uint32_t ptr : 26;
167 168
};

169 170
#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)

171
/* Size of the L2 (and L3, etc) page tables.  */
172
#define ADDR_SPACE_BITS 64
173

M
Michael S. Tsirkin 已提交
174
#define P_L2_BITS 9
175 176 177 178 179
#define P_L2_SIZE (1 << P_L2_BITS)

#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)

typedef PhysPageEntry Node[P_L2_SIZE];
180

181
typedef struct PhysPageMap {
182 183
    struct rcu_head rcu;

184 185 186 187 188 189 190 191
    unsigned sections_nb;
    unsigned sections_nb_alloc;
    unsigned nodes_nb;
    unsigned nodes_nb_alloc;
    Node *nodes;
    MemoryRegionSection *sections;
} PhysPageMap;

192
struct AddressSpaceDispatch {
193
    MemoryRegionSection *mru_section;
194 195 196 197
    /* This is a multi-level map on the physical address space.
     * The bottom level has pointers to MemoryRegionSections.
     */
    PhysPageEntry phys_map;
198
    PhysPageMap map;
199 200
};

201 202 203
#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
typedef struct subpage_t {
    MemoryRegion iomem;
204
    FlatView *fv;
205
    hwaddr base;
206
    uint16_t sub_section[];
207 208
} subpage_t;

209 210 211 212
#define PHYS_SECTION_UNASSIGNED 0
#define PHYS_SECTION_NOTDIRTY 1
#define PHYS_SECTION_ROM 2
#define PHYS_SECTION_WATCH 3
213

214
static void io_mem_init(void);
A
Avi Kivity 已提交
215
static void memory_map_init(void);
216
static void tcg_commit(MemoryListener *listener);
217

218
static MemoryRegion io_mem_watch;
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

/**
 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
 * @cpu: the CPU whose AddressSpace this is
 * @as: the AddressSpace itself
 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
 * @tcg_as_listener: listener for tracking changes to the AddressSpace
 */
struct CPUAddressSpace {
    CPUState *cpu;
    AddressSpace *as;
    struct AddressSpaceDispatch *memory_dispatch;
    MemoryListener tcg_as_listener;
};

234 235 236 237 238 239
struct DirtyBitmapSnapshot {
    ram_addr_t start;
    ram_addr_t end;
    unsigned long dirty[];
};

240
#endif
B
bellard 已提交
241

242
#if !defined(CONFIG_USER_ONLY)
243

244
static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
245
{
246
    static unsigned alloc_hint = 16;
247
    if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
248
        map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
249 250
        map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
        map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
251
        alloc_hint = map->nodes_nb_alloc;
252
    }
253 254
}

255
static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
256 257
{
    unsigned i;
258
    uint32_t ret;
259 260
    PhysPageEntry e;
    PhysPageEntry *p;
261

262
    ret = map->nodes_nb++;
263
    p = map->nodes[ret];
264
    assert(ret != PHYS_MAP_NODE_NIL);
265
    assert(ret != map->nodes_nb_alloc);
266 267 268

    e.skip = leaf ? 0 : 1;
    e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
269
    for (i = 0; i < P_L2_SIZE; ++i) {
270
        memcpy(&p[i], &e, sizeof(e));
271
    }
272
    return ret;
273 274
}

275 276
static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
                                hwaddr *index, hwaddr *nb, uint16_t leaf,
277
                                int level)
278 279
{
    PhysPageEntry *p;
280
    hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
281

M
Michael S. Tsirkin 已提交
282
    if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
283
        lp->ptr = phys_map_node_alloc(map, level == 0);
B
bellard 已提交
284
    }
285
    p = map->nodes[lp->ptr];
286
    lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
287

288
    while (*nb && lp < &p[P_L2_SIZE]) {
289
        if ((*index & (step - 1)) == 0 && *nb >= step) {
M
Michael S. Tsirkin 已提交
290
            lp->skip = 0;
291
            lp->ptr = leaf;
292 293
            *index += step;
            *nb -= step;
294
        } else {
295
            phys_page_set_level(map, lp, index, nb, leaf, level - 1);
296 297
        }
        ++lp;
298 299 300
    }
}

A
Avi Kivity 已提交
301
static void phys_page_set(AddressSpaceDispatch *d,
A
Avi Kivity 已提交
302
                          hwaddr index, hwaddr nb,
303
                          uint16_t leaf)
304
{
305
    /* Wildly overreserve - it doesn't matter much. */
306
    phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
307

308
    phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
B
bellard 已提交
309 310
}

311 312 313
/* Compact a non leaf page entry. Simply detect that the entry has a single child,
 * and update our entry so we can skip it and go directly to the destination.
 */
314
static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
{
    unsigned valid_ptr = P_L2_SIZE;
    int valid = 0;
    PhysPageEntry *p;
    int i;

    if (lp->ptr == PHYS_MAP_NODE_NIL) {
        return;
    }

    p = nodes[lp->ptr];
    for (i = 0; i < P_L2_SIZE; i++) {
        if (p[i].ptr == PHYS_MAP_NODE_NIL) {
            continue;
        }

        valid_ptr = i;
        valid++;
        if (p[i].skip) {
334
            phys_page_compact(&p[i], nodes);
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
        }
    }

    /* We can only compress if there's only one child. */
    if (valid != 1) {
        return;
    }

    assert(valid_ptr < P_L2_SIZE);

    /* Don't compress if it won't fit in the # of bits we have. */
    if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
        return;
    }

    lp->ptr = p[valid_ptr].ptr;
    if (!p[valid_ptr].skip) {
        /* If our only child is a leaf, make this a leaf. */
        /* By design, we should have made this node a leaf to begin with so we
         * should never reach here.
         * But since it's so simple to handle this, let's do it just in case we
         * change this rule.
         */
        lp->skip = 0;
    } else {
        lp->skip += p[valid_ptr].skip;
    }
}

364
void address_space_dispatch_compact(AddressSpaceDispatch *d)
365 366
{
    if (d->phys_map.skip) {
367
        phys_page_compact(&d->phys_map, d->map.nodes);
368 369 370
    }
}

F
Fam Zheng 已提交
371 372 373 374 375 376
static inline bool section_covers_addr(const MemoryRegionSection *section,
                                       hwaddr addr)
{
    /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
     * the section must cover the entire address space.
     */
377
    return int128_gethi(section->size) ||
F
Fam Zheng 已提交
378
           range_covers_byte(section->offset_within_address_space,
379
                             int128_getlo(section->size), addr);
F
Fam Zheng 已提交
380 381
}

382
static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
B
bellard 已提交
383
{
384 385 386
    PhysPageEntry lp = d->phys_map, *p;
    Node *nodes = d->map.nodes;
    MemoryRegionSection *sections = d->map.sections;
387
    hwaddr index = addr >> TARGET_PAGE_BITS;
388
    int i;
389

M
Michael S. Tsirkin 已提交
390
    for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
391
        if (lp.ptr == PHYS_MAP_NODE_NIL) {
392
            return &sections[PHYS_SECTION_UNASSIGNED];
393
        }
394
        p = nodes[lp.ptr];
395
        lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
396
    }
397

F
Fam Zheng 已提交
398
    if (section_covers_addr(&sections[lp.ptr], addr)) {
399 400 401 402
        return &sections[lp.ptr];
    } else {
        return &sections[PHYS_SECTION_UNASSIGNED];
    }
403 404
}

B
Blue Swirl 已提交
405 406
bool memory_region_is_unassigned(MemoryRegion *mr)
{
P
Paolo Bonzini 已提交
407
    return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
408
        && mr != &io_mem_watch;
B
bellard 已提交
409
}
410

411
/* Called from RCU critical section */
412
static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
413 414
                                                        hwaddr addr,
                                                        bool resolve_subpage)
415
{
416
    MemoryRegionSection *section = atomic_read(&d->mru_section);
417 418
    subpage_t *subpage;

419 420
    if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
        !section_covers_addr(section, addr)) {
421
        section = phys_page_find(d, addr);
422
        atomic_set(&d->mru_section, section);
423
    }
424 425
    if (resolve_subpage && section->mr->subpage) {
        subpage = container_of(section->mr, subpage_t, iomem);
426
        section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
427 428
    }
    return section;
429 430
}

431
/* Called from RCU critical section */
432
static MemoryRegionSection *
433
address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
434
                                 hwaddr *plen, bool resolve_subpage)
435 436
{
    MemoryRegionSection *section;
437
    MemoryRegion *mr;
438
    Int128 diff;
439

440
    section = address_space_lookup_region(d, addr, resolve_subpage);
441 442 443 444 445 446
    /* Compute offset within MemoryRegionSection */
    addr -= section->offset_within_address_space;

    /* Compute offset within MemoryRegion */
    *xlat = addr + section->offset_within_region;

447
    mr = section->mr;
448 449 450 451 452 453 454 455 456 457 458 459

    /* MMIO registers can be expected to perform full-width accesses based only
     * on their address, without considering adjacent registers that could
     * decode to completely different MemoryRegions.  When such registers
     * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
     * regions overlap wildly.  For this reason we cannot clamp the accesses
     * here.
     *
     * If the length is small (as is the case for address_space_ldl/stl),
     * everything works fine.  If the incoming length is large, however,
     * the caller really has to do the clamping through memory_access_size.
     */
460
    if (memory_region_is_ram(mr)) {
461
        diff = int128_sub(section->size, int128_make64(addr));
462 463
        *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
    }
464 465
    return section;
}
466

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
/**
 * address_space_translate_iommu - translate an address through an IOMMU
 * memory region and then through the target address space.
 *
 * @iommu_mr: the IOMMU memory region that we start the translation from
 * @addr: the address to be translated through the MMU
 * @xlat: the translated address offset within the destination memory region.
 *        It cannot be %NULL.
 * @plen_out: valid read/write length of the translated address. It
 *            cannot be %NULL.
 * @page_mask_out: page mask for the translated address. This
 *            should only be meaningful for IOMMU translated
 *            addresses, since there may be huge pages that this bit
 *            would tell. It can be %NULL if we don't care about it.
 * @is_write: whether the translation operation is for write
 * @is_mmio: whether this can be MMIO, set true if it can
 * @target_as: the address space targeted by the IOMMU
484
 * @attrs: transaction attributes
485 486 487 488 489 490 491 492 493 494
 *
 * This function is called from RCU critical section.  It is the common
 * part of flatview_do_translate and address_space_translate_cached.
 */
static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
                                                         hwaddr *xlat,
                                                         hwaddr *plen_out,
                                                         hwaddr *page_mask_out,
                                                         bool is_write,
                                                         bool is_mmio,
495 496
                                                         AddressSpace **target_as,
                                                         MemTxAttrs attrs)
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
{
    MemoryRegionSection *section;
    hwaddr page_mask = (hwaddr)-1;

    do {
        hwaddr addr = *xlat;
        IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
        IOMMUTLBEntry iotlb = imrc->translate(iommu_mr, addr, is_write ?
                                              IOMMU_WO : IOMMU_RO);

        if (!(iotlb.perm & (1 << is_write))) {
            goto unassigned;
        }

        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
                | (addr & iotlb.addr_mask));
        page_mask &= iotlb.addr_mask;
        *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
        *target_as = iotlb.target_as;

        section = address_space_translate_internal(
                address_space_to_dispatch(iotlb.target_as), addr, xlat,
                plen_out, is_mmio);

        iommu_mr = memory_region_get_iommu(section->mr);
    } while (unlikely(iommu_mr));

    if (page_mask_out) {
        *page_mask_out = page_mask;
    }
    return *section;

unassigned:
    return (MemoryRegionSection) { .mr = &io_mem_unassigned };
}

533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
/**
 * flatview_do_translate - translate an address in FlatView
 *
 * @fv: the flat view that we want to translate on
 * @addr: the address to be translated in above address space
 * @xlat: the translated address offset within memory region. It
 *        cannot be @NULL.
 * @plen_out: valid read/write length of the translated address. It
 *            can be @NULL when we don't care about it.
 * @page_mask_out: page mask for the translated address. This
 *            should only be meaningful for IOMMU translated
 *            addresses, since there may be huge pages that this bit
 *            would tell. It can be @NULL if we don't care about it.
 * @is_write: whether the translation operation is for write
 * @is_mmio: whether this can be MMIO, set true if it can
548
 * @target_as: the address space targeted by the IOMMU
549
 * @attrs: memory transaction attributes
550 551 552
 *
 * This function is called from RCU critical section
 */
553 554 555
static MemoryRegionSection flatview_do_translate(FlatView *fv,
                                                 hwaddr addr,
                                                 hwaddr *xlat,
556 557
                                                 hwaddr *plen_out,
                                                 hwaddr *page_mask_out,
558 559
                                                 bool is_write,
                                                 bool is_mmio,
560 561
                                                 AddressSpace **target_as,
                                                 MemTxAttrs attrs)
562 563
{
    MemoryRegionSection *section;
564
    IOMMUMemoryRegion *iommu_mr;
565 566
    hwaddr plen = (hwaddr)(-1);

567 568
    if (!plen_out) {
        plen_out = &plen;
569
    }
570

571 572 573
    section = address_space_translate_internal(
            flatview_to_dispatch(fv), addr, xlat,
            plen_out, is_mmio);
574

575 576 577 578 579
    iommu_mr = memory_region_get_iommu(section->mr);
    if (unlikely(iommu_mr)) {
        return address_space_translate_iommu(iommu_mr, xlat,
                                             plen_out, page_mask_out,
                                             is_write, is_mmio,
580
                                             target_as, attrs);
581
    }
582
    if (page_mask_out) {
583 584
        /* Not behind an IOMMU, use default page size. */
        *page_mask_out = ~TARGET_PAGE_MASK;
585 586
    }

587
    return *section;
588 589 590
}

/* Called from RCU critical section */
591
IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
592
                                            bool is_write, MemTxAttrs attrs)
593
{
594
    MemoryRegionSection section;
595
    hwaddr xlat, page_mask;
A
Avi Kivity 已提交
596

597 598 599 600 601
    /*
     * This can never be MMIO, and we don't really care about plen,
     * but page mask.
     */
    section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
602 603
                                    NULL, &page_mask, is_write, false, &as,
                                    attrs);
A
Avi Kivity 已提交
604

605 606 607 608
    /* Illegal translation */
    if (section.mr == &io_mem_unassigned) {
        goto iotlb_fail;
    }
A
Avi Kivity 已提交
609

610 611 612 613 614
    /* Convert memory region offset into address space offset */
    xlat += section.offset_within_address_space -
        section.offset_within_region;

    return (IOMMUTLBEntry) {
615
        .target_as = as,
616 617 618
        .iova = addr & ~page_mask,
        .translated_addr = xlat & ~page_mask,
        .addr_mask = page_mask,
619 620 621 622 623 624 625 626 627
        /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
        .perm = IOMMU_RW,
    };

iotlb_fail:
    return (IOMMUTLBEntry) {0};
}

/* Called from RCU critical section */
628
MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
629 630
                                 hwaddr *plen, bool is_write,
                                 MemTxAttrs attrs)
631 632 633
{
    MemoryRegion *mr;
    MemoryRegionSection section;
634
    AddressSpace *as = NULL;
635 636

    /* This can be MMIO, so setup MMIO bit. */
637
    section = flatview_do_translate(fv, addr, xlat, plen, NULL,
638
                                    is_write, true, &as, attrs);
639 640
    mr = section.mr;

641
    if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
642
        hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
643
        *plen = MIN(page, *plen);
644 645
    }

A
Avi Kivity 已提交
646
    return mr;
647 648
}

649
/* Called from RCU critical section */
650
MemoryRegionSection *
651
address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
P
Paolo Bonzini 已提交
652
                                  hwaddr *xlat, hwaddr *plen)
653
{
A
Avi Kivity 已提交
654
    MemoryRegionSection *section;
655
    AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
656 657

    section = address_space_translate_internal(d, addr, xlat, plen, false);
A
Avi Kivity 已提交
658

659
    assert(!memory_region_is_iommu(section->mr));
A
Avi Kivity 已提交
660
    return section;
661
}
662
#endif
B
bellard 已提交
663

664
#if !defined(CONFIG_USER_ONLY)
665 666

static int cpu_common_post_load(void *opaque, int version_id)
B
bellard 已提交
667
{
668
    CPUState *cpu = opaque;
B
bellard 已提交
669

670 671
    /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
       version_id is increased. */
672
    cpu->interrupt_request &= ~0x01;
673
    tlb_flush(cpu);
674

675 676 677 678 679 680 681
    /* loadvm has just updated the content of RAM, bypassing the
     * usual mechanisms that ensure we flush TBs for writes to
     * memory we've translated code from. So we must flush all TBs,
     * which will now be stale.
     */
    tb_flush(cpu);

682
    return 0;
B
bellard 已提交
683
}
B
bellard 已提交
684

685 686 687 688
static int cpu_common_pre_load(void *opaque)
{
    CPUState *cpu = opaque;

689
    cpu->exception_index = -1;
690 691 692 693 694 695 696 697

    return 0;
}

static bool cpu_common_exception_index_needed(void *opaque)
{
    CPUState *cpu = opaque;

698
    return tcg_enabled() && cpu->exception_index != -1;
699 700 701 702 703 704
}

static const VMStateDescription vmstate_cpu_common_exception_index = {
    .name = "cpu_common/exception_index",
    .version_id = 1,
    .minimum_version_id = 1,
705
    .needed = cpu_common_exception_index_needed,
706 707 708 709 710 711
    .fields = (VMStateField[]) {
        VMSTATE_INT32(exception_index, CPUState),
        VMSTATE_END_OF_LIST()
    }
};

712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
static bool cpu_common_crash_occurred_needed(void *opaque)
{
    CPUState *cpu = opaque;

    return cpu->crash_occurred;
}

static const VMStateDescription vmstate_cpu_common_crash_occurred = {
    .name = "cpu_common/crash_occurred",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = cpu_common_crash_occurred_needed,
    .fields = (VMStateField[]) {
        VMSTATE_BOOL(crash_occurred, CPUState),
        VMSTATE_END_OF_LIST()
    }
};

730
const VMStateDescription vmstate_cpu_common = {
731 732 733
    .name = "cpu_common",
    .version_id = 1,
    .minimum_version_id = 1,
734
    .pre_load = cpu_common_pre_load,
735
    .post_load = cpu_common_post_load,
736
    .fields = (VMStateField[]) {
737 738
        VMSTATE_UINT32(halted, CPUState),
        VMSTATE_UINT32(interrupt_request, CPUState),
739
        VMSTATE_END_OF_LIST()
740
    },
741 742
    .subsections = (const VMStateDescription*[]) {
        &vmstate_cpu_common_exception_index,
743
        &vmstate_cpu_common_crash_occurred,
744
        NULL
745 746
    }
};
747

748
#endif
B
bellard 已提交
749

750
CPUState *qemu_get_cpu(int index)
B
bellard 已提交
751
{
A
Andreas Färber 已提交
752
    CPUState *cpu;
B
bellard 已提交
753

A
Andreas Färber 已提交
754
    CPU_FOREACH(cpu) {
755
        if (cpu->cpu_index == index) {
A
Andreas Färber 已提交
756
            return cpu;
757
        }
B
bellard 已提交
758
    }
759

A
Andreas Färber 已提交
760
    return NULL;
B
bellard 已提交
761 762
}

763
#if !defined(CONFIG_USER_ONLY)
P
Peter Xu 已提交
764 765
void cpu_address_space_init(CPUState *cpu, int asidx,
                            const char *prefix, MemoryRegion *mr)
766
{
767
    CPUAddressSpace *newas;
P
Peter Xu 已提交
768
    AddressSpace *as = g_new0(AddressSpace, 1);
769
    char *as_name;
P
Peter Xu 已提交
770 771

    assert(mr);
772 773 774
    as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
    address_space_init(as, mr, as_name);
    g_free(as_name);
775 776 777 778

    /* Target code should have set num_ases before calling us */
    assert(asidx < cpu->num_ases);

779 780 781 782 783
    if (asidx == 0) {
        /* address space 0 gets the convenience alias */
        cpu->as = as;
    }

784 785
    /* KVM cannot currently support multiple address spaces. */
    assert(asidx == 0 || !kvm_enabled());
786

787 788
    if (!cpu->cpu_ases) {
        cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
789
    }
790

791 792 793
    newas = &cpu->cpu_ases[asidx];
    newas->cpu = cpu;
    newas->as = as;
794
    if (tcg_enabled()) {
795 796
        newas->tcg_as_listener.commit = tcg_commit;
        memory_listener_register(&newas->tcg_as_listener, as);
797
    }
798
}
799 800 801 802 803 804

AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
{
    /* Return the AddressSpace corresponding to the specified index */
    return cpu->cpu_ases[asidx].as;
}
805 806
#endif

807
void cpu_exec_unrealizefn(CPUState *cpu)
808
{
809 810
    CPUClass *cc = CPU_GET_CLASS(cpu);

811
    cpu_list_remove(cpu);
812 813 814 815 816 817 818

    if (cc->vmsd != NULL) {
        vmstate_unregister(NULL, cc->vmsd, cpu);
    }
    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
        vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
    }
819 820
}

F
Fam Zheng 已提交
821 822 823 824 825 826 827 828 829 830 831 832 833 834
Property cpu_common_props[] = {
#ifndef CONFIG_USER_ONLY
    /* Create a memory property for softmmu CPU object,
     * so users can wire up its memory. (This can't go in qom/cpu.c
     * because that file is compiled only once for both user-mode
     * and system builds.) The default if no link is set up is to use
     * the system address space.
     */
    DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
                     MemoryRegion *),
#endif
    DEFINE_PROP_END_OF_LIST(),
};

L
Laurent Vivier 已提交
835
void cpu_exec_initfn(CPUState *cpu)
B
bellard 已提交
836
{
837
    cpu->as = NULL;
838
    cpu->num_ases = 0;
839

840 841
#ifndef CONFIG_USER_ONLY
    cpu->thread_id = qemu_get_thread_id();
842 843
    cpu->memory = system_memory;
    object_ref(OBJECT(cpu->memory));
844
#endif
L
Laurent Vivier 已提交
845 846
}

847
void cpu_exec_realizefn(CPUState *cpu, Error **errp)
L
Laurent Vivier 已提交
848
{
849
    CPUClass *cc = CPU_GET_CLASS(cpu);
850
    static bool tcg_target_initialized;
851

852
    cpu_list_add(cpu);
853

854 855
    if (tcg_enabled() && !tcg_target_initialized) {
        tcg_target_initialized = true;
856 857 858
        cc->tcg_initialize();
    }

859
#ifndef CONFIG_USER_ONLY
860
    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
861
        vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
862
    }
863
    if (cc->vmsd != NULL) {
864
        vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
865
    }
866
#endif
B
bellard 已提交
867 868
}

869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
const char *parse_cpu_model(const char *cpu_model)
{
    ObjectClass *oc;
    CPUClass *cc;
    gchar **model_pieces;
    const char *cpu_type;

    model_pieces = g_strsplit(cpu_model, ",", 2);

    oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
    if (oc == NULL) {
        error_report("unable to find CPU model '%s'", model_pieces[0]);
        g_strfreev(model_pieces);
        exit(EXIT_FAILURE);
    }

    cpu_type = object_class_get_name(oc);
    cc = CPU_CLASS(oc);
    cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
    g_strfreev(model_pieces);
    return cpu_type;
}

892
#if defined(CONFIG_USER_ONLY)
893
static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
894
{
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
    mmap_lock();
    tb_lock();
    tb_invalidate_phys_page_range(pc, pc + 1, 0);
    tb_unlock();
    mmap_unlock();
}
#else
static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
{
    MemTxAttrs attrs;
    hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
    int asidx = cpu_asidx_from_attrs(cpu, attrs);
    if (phys != -1) {
        /* Locks grabbed by tb_invalidate_phys_addr */
        tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
910
                                phys | (pc & ~TARGET_PAGE_MASK), attrs);
911
    }
912
}
913
#endif
B
bellard 已提交
914

915
#if defined(CONFIG_USER_ONLY)
916
void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
917 918 919 920

{
}

921 922 923 924 925 926 927 928 929 930
int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
                          int flags)
{
    return -ENOSYS;
}

void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
{
}

931
int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
932 933 934 935 936
                          int flags, CPUWatchpoint **watchpoint)
{
    return -ENOSYS;
}
#else
937
/* Add a watchpoint.  */
938
int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
939
                          int flags, CPUWatchpoint **watchpoint)
940
{
941
    CPUWatchpoint *wp;
942

943
    /* forbid ranges which are empty or run off the end of the address space */
944
    if (len == 0 || (addr + len - 1) < addr) {
945 946
        error_report("tried to set invalid watchpoint at %"
                     VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
947 948
        return -EINVAL;
    }
949
    wp = g_malloc(sizeof(*wp));
950 951

    wp->vaddr = addr;
952
    wp->len = len;
953 954
    wp->flags = flags;

955
    /* keep all GDB-injected watchpoints in front */
956 957 958 959 960
    if (flags & BP_GDB) {
        QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
    } else {
        QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
    }
961

962
    tlb_flush_page(cpu, addr);
963 964 965 966

    if (watchpoint)
        *watchpoint = wp;
    return 0;
967 968
}

969
/* Remove a specific watchpoint.  */
970
int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
971
                          int flags)
972
{
973
    CPUWatchpoint *wp;
974

975
    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
976
        if (addr == wp->vaddr && len == wp->len
977
                && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
978
            cpu_watchpoint_remove_by_ref(cpu, wp);
979 980 981
            return 0;
        }
    }
982
    return -ENOENT;
983 984
}

985
/* Remove a specific watchpoint by reference.  */
986
void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
987
{
988
    QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
989

990
    tlb_flush_page(cpu, watchpoint->vaddr);
991

992
    g_free(watchpoint);
993 994 995
}

/* Remove all matching watchpoints.  */
996
void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
997
{
998
    CPUWatchpoint *wp, *next;
999

1000
    QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1001 1002 1003
        if (wp->flags & mask) {
            cpu_watchpoint_remove_by_ref(cpu, wp);
        }
1004
    }
1005
}
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026

/* Return true if this watchpoint address matches the specified
 * access (ie the address range covered by the watchpoint overlaps
 * partially or completely with the address range covered by the
 * access).
 */
static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
                                                  vaddr addr,
                                                  vaddr len)
{
    /* We know the lengths are non-zero, but a little caution is
     * required to avoid errors in the case where the range ends
     * exactly at the top of the address space and so addr + len
     * wraps round to zero.
     */
    vaddr wpend = wp->vaddr + wp->len - 1;
    vaddr addrend = addr + len - 1;

    return !(addr > wpend || wp->vaddr > addrend);
}

1027
#endif
1028

1029
/* Add a breakpoint.  */
1030
int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1031
                          CPUBreakpoint **breakpoint)
B
bellard 已提交
1032
{
1033
    CPUBreakpoint *bp;
1034

1035
    bp = g_malloc(sizeof(*bp));
B
bellard 已提交
1036

1037 1038 1039
    bp->pc = pc;
    bp->flags = flags;

1040
    /* keep all GDB-injected breakpoints in front */
1041
    if (flags & BP_GDB) {
1042
        QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1043
    } else {
1044
        QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1045
    }
1046

1047
    breakpoint_invalidate(cpu, pc);
1048

1049
    if (breakpoint) {
1050
        *breakpoint = bp;
1051
    }
B
bellard 已提交
1052 1053 1054
    return 0;
}

1055
/* Remove a specific breakpoint.  */
1056
int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1057 1058 1059
{
    CPUBreakpoint *bp;

1060
    QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1061
        if (bp->pc == pc && bp->flags == flags) {
1062
            cpu_breakpoint_remove_by_ref(cpu, bp);
1063 1064
            return 0;
        }
1065
    }
1066
    return -ENOENT;
1067 1068
}

1069
/* Remove a specific breakpoint by reference.  */
1070
void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
B
bellard 已提交
1071
{
1072 1073 1074
    QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);

    breakpoint_invalidate(cpu, breakpoint->pc);
1075

1076
    g_free(breakpoint);
1077 1078 1079
}

/* Remove all matching breakpoints. */
1080
void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1081
{
1082
    CPUBreakpoint *bp, *next;
1083

1084
    QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1085 1086 1087
        if (bp->flags & mask) {
            cpu_breakpoint_remove_by_ref(cpu, bp);
        }
1088
    }
B
bellard 已提交
1089 1090
}

B
bellard 已提交
1091 1092
/* enable or disable single step mode. EXCP_DEBUG is returned by the
   CPU loop after each instruction */
1093
void cpu_single_step(CPUState *cpu, int enabled)
B
bellard 已提交
1094
{
1095 1096 1097
    if (cpu->singlestep_enabled != enabled) {
        cpu->singlestep_enabled = enabled;
        if (kvm_enabled()) {
1098
            kvm_update_guest_debug(cpu, 0);
1099
        } else {
S
Stuart Brady 已提交
1100
            /* must flush all the translated code to avoid inconsistencies */
1101
            /* XXX: only flush what is necessary */
1102
            tb_flush(cpu);
1103
        }
B
bellard 已提交
1104 1105 1106
    }
}

1107
void cpu_abort(CPUState *cpu, const char *fmt, ...)
B
bellard 已提交
1108 1109
{
    va_list ap;
P
pbrook 已提交
1110
    va_list ap2;
B
bellard 已提交
1111 1112

    va_start(ap, fmt);
P
pbrook 已提交
1113
    va_copy(ap2, ap);
B
bellard 已提交
1114 1115 1116
    fprintf(stderr, "qemu: fatal: ");
    vfprintf(stderr, fmt, ap);
    fprintf(stderr, "\n");
1117
    cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1118
    if (qemu_log_separate()) {
1119
        qemu_log_lock();
1120 1121 1122
        qemu_log("qemu: fatal: ");
        qemu_log_vprintf(fmt, ap2);
        qemu_log("\n");
1123
        log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1124
        qemu_log_flush();
1125
        qemu_log_unlock();
1126
        qemu_log_close();
1127
    }
P
pbrook 已提交
1128
    va_end(ap2);
1129
    va_end(ap);
1130
    replay_finish();
1131 1132 1133 1134 1135
#if defined(CONFIG_USER_ONLY)
    {
        struct sigaction act;
        sigfillset(&act.sa_mask);
        act.sa_handler = SIG_DFL;
1136
        act.sa_flags = 0;
1137 1138 1139
        sigaction(SIGABRT, &act, NULL);
    }
#endif
B
bellard 已提交
1140 1141 1142
    abort();
}

1143
#if !defined(CONFIG_USER_ONLY)
M
Mike Day 已提交
1144
/* Called from RCU critical section */
P
Paolo Bonzini 已提交
1145 1146 1147 1148
static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
{
    RAMBlock *block;

P
Paolo Bonzini 已提交
1149
    block = atomic_rcu_read(&ram_list.mru_block);
1150
    if (block && addr - block->offset < block->max_length) {
1151
        return block;
P
Paolo Bonzini 已提交
1152
    }
P
Peter Xu 已提交
1153
    RAMBLOCK_FOREACH(block) {
1154
        if (addr - block->offset < block->max_length) {
P
Paolo Bonzini 已提交
1155 1156 1157 1158 1159 1160 1161 1162
            goto found;
        }
    }

    fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
    abort();

found:
P
Paolo Bonzini 已提交
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
    /* It is safe to write mru_block outside the iothread lock.  This
     * is what happens:
     *
     *     mru_block = xxx
     *     rcu_read_unlock()
     *                                        xxx removed from list
     *                  rcu_read_lock()
     *                  read mru_block
     *                                        mru_block = NULL;
     *                                        call_rcu(reclaim_ramblock, xxx);
     *                  rcu_read_unlock()
     *
     * atomic_rcu_set is not needed here.  The block was already published
     * when it was placed into the list.  Here we're just making an extra
     * copy of the pointer.
     */
P
Paolo Bonzini 已提交
1179 1180 1181 1182
    ram_list.mru_block = block;
    return block;
}

1183
static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
J
Juan Quintela 已提交
1184
{
1185
    CPUState *cpu;
P
Paolo Bonzini 已提交
1186
    ram_addr_t start1;
1187 1188 1189 1190 1191
    RAMBlock *block;
    ram_addr_t end;

    end = TARGET_PAGE_ALIGN(start + length);
    start &= TARGET_PAGE_MASK;
J
Juan Quintela 已提交
1192

M
Mike Day 已提交
1193
    rcu_read_lock();
P
Paolo Bonzini 已提交
1194 1195
    block = qemu_get_ram_block(start);
    assert(block == qemu_get_ram_block(end - 1));
1196
    start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1197 1198 1199
    CPU_FOREACH(cpu) {
        tlb_reset_dirty(cpu, start1, length);
    }
M
Mike Day 已提交
1200
    rcu_read_unlock();
J
Juan Quintela 已提交
1201 1202
}

P
pbrook 已提交
1203
/* Note: start and end must be within the same ram block.  */
1204 1205 1206
bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
                                              ram_addr_t length,
                                              unsigned client)
1207
{
1208
    DirtyMemoryBlocks *blocks;
1209
    unsigned long end, page;
1210
    bool dirty = false;
1211 1212 1213 1214

    if (length == 0) {
        return false;
    }
B
bellard 已提交
1215

1216 1217
    end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
    page = start >> TARGET_PAGE_BITS;
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233

    rcu_read_lock();

    blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);

    while (page < end) {
        unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);

        dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
                                              offset, num);
        page += num;
    }

    rcu_read_unlock();
1234 1235

    if (dirty && tcg_enabled()) {
1236
        tlb_reset_dirty_range_all(start, length);
P
pbrook 已提交
1237
    }
1238 1239

    return dirty;
1240 1241
}

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
     (ram_addr_t start, ram_addr_t length, unsigned client)
{
    DirtyMemoryBlocks *blocks;
    unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
    ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
    ram_addr_t last  = QEMU_ALIGN_UP(start + length, align);
    DirtyBitmapSnapshot *snap;
    unsigned long page, end, dest;

    snap = g_malloc0(sizeof(*snap) +
                     ((last - first) >> (TARGET_PAGE_BITS + 3)));
    snap->start = first;
    snap->end   = last;

    page = first >> TARGET_PAGE_BITS;
    end  = last  >> TARGET_PAGE_BITS;
    dest = 0;

    rcu_read_lock();

    blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);

    while (page < end) {
        unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);

        assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
        assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
        offset >>= BITS_PER_LEVEL;

        bitmap_copy_and_clear_atomic(snap->dirty + dest,
                                     blocks->blocks[idx] + offset,
                                     num);
        page += num;
        dest += num >> BITS_PER_LEVEL;
    }

    rcu_read_unlock();

    if (tcg_enabled()) {
        tlb_reset_dirty_range_all(start, length);
    }

    return snap;
}

bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
                                            ram_addr_t start,
                                            ram_addr_t length)
{
    unsigned long page, end;

    assert(start >= snap->start);
    assert(start + length <= snap->end);

    end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
    page = (start - snap->start) >> TARGET_PAGE_BITS;

    while (page < end) {
        if (test_bit(page, snap->dirty)) {
            return true;
        }
        page++;
    }
    return false;
}

1311
/* Called from RCU critical section */
1312
hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1313 1314 1315 1316 1317
                                       MemoryRegionSection *section,
                                       target_ulong vaddr,
                                       hwaddr paddr, hwaddr xlat,
                                       int prot,
                                       target_ulong *address)
B
Blue Swirl 已提交
1318
{
A
Avi Kivity 已提交
1319
    hwaddr iotlb;
B
Blue Swirl 已提交
1320 1321
    CPUWatchpoint *wp;

1322
    if (memory_region_is_ram(section->mr)) {
B
Blue Swirl 已提交
1323
        /* Normal RAM.  */
1324
        iotlb = memory_region_get_ram_addr(section->mr) + xlat;
B
Blue Swirl 已提交
1325
        if (!section->readonly) {
1326
            iotlb |= PHYS_SECTION_NOTDIRTY;
B
Blue Swirl 已提交
1327
        } else {
1328
            iotlb |= PHYS_SECTION_ROM;
B
Blue Swirl 已提交
1329 1330
        }
    } else {
1331 1332
        AddressSpaceDispatch *d;

1333
        d = flatview_to_dispatch(section->fv);
1334
        iotlb = section - d->map.sections;
1335
        iotlb += xlat;
B
Blue Swirl 已提交
1336 1337 1338 1339
    }

    /* Make accesses to pages with watchpoints go via the
       watchpoint trap routines.  */
1340
    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1341
        if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
B
Blue Swirl 已提交
1342 1343
            /* Avoid trapping reads of pages with a write breakpoint. */
            if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1344
                iotlb = PHYS_SECTION_WATCH + paddr;
B
Blue Swirl 已提交
1345 1346 1347 1348 1349 1350 1351 1352
                *address |= TLB_MMIO;
                break;
            }
        }
    }

    return iotlb;
}
1353 1354
#endif /* defined(CONFIG_USER_ONLY) */

1355
#if !defined(CONFIG_USER_ONLY)
1356

A
Anthony Liguori 已提交
1357
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1358
                             uint16_t section);
1359
static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1360

1361
static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1362
                               qemu_anon_ram_alloc;
1363 1364 1365 1366 1367 1368

/*
 * Set a custom physical guest memory alloator.
 * Accelerators with unusual needs may need this.  Hopefully, we can
 * get rid of it eventually.
 */
1369
void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1370 1371 1372 1373
{
    phys_mem_alloc = alloc;
}

1374 1375
static uint16_t phys_section_add(PhysPageMap *map,
                                 MemoryRegionSection *section)
1376
{
1377 1378 1379 1380
    /* The physical section number is ORed with a page-aligned
     * pointer to produce the iotlb entries.  Thus it should
     * never overflow into the page-aligned value.
     */
1381
    assert(map->sections_nb < TARGET_PAGE_SIZE);
1382

1383 1384 1385 1386
    if (map->sections_nb == map->sections_nb_alloc) {
        map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
        map->sections = g_renew(MemoryRegionSection, map->sections,
                                map->sections_nb_alloc);
1387
    }
1388
    map->sections[map->sections_nb] = *section;
P
Paolo Bonzini 已提交
1389
    memory_region_ref(section->mr);
1390
    return map->sections_nb++;
1391 1392
}

1393 1394
static void phys_section_destroy(MemoryRegion *mr)
{
D
Don Slutz 已提交
1395 1396
    bool have_sub_page = mr->subpage;

P
Paolo Bonzini 已提交
1397 1398
    memory_region_unref(mr);

D
Don Slutz 已提交
1399
    if (have_sub_page) {
1400
        subpage_t *subpage = container_of(mr, subpage_t, iomem);
P
Peter Crosthwaite 已提交
1401
        object_unref(OBJECT(&subpage->iomem));
1402 1403 1404 1405
        g_free(subpage);
    }
}

P
Paolo Bonzini 已提交
1406
static void phys_sections_free(PhysPageMap *map)
1407
{
1408 1409
    while (map->sections_nb > 0) {
        MemoryRegionSection *section = &map->sections[--map->sections_nb];
1410 1411
        phys_section_destroy(section->mr);
    }
1412 1413
    g_free(map->sections);
    g_free(map->nodes);
1414 1415
}

1416
static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1417
{
1418
    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1419
    subpage_t *subpage;
A
Avi Kivity 已提交
1420
    hwaddr base = section->offset_within_address_space
1421
        & TARGET_PAGE_MASK;
1422
    MemoryRegionSection *existing = phys_page_find(d, base);
1423 1424
    MemoryRegionSection subsection = {
        .offset_within_address_space = base,
1425
        .size = int128_make64(TARGET_PAGE_SIZE),
1426
    };
A
Avi Kivity 已提交
1427
    hwaddr start, end;
1428

1429
    assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1430

1431
    if (!(existing->mr->subpage)) {
1432 1433
        subpage = subpage_init(fv, base);
        subsection.fv = fv;
1434
        subsection.mr = &subpage->iomem;
A
Avi Kivity 已提交
1435
        phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1436
                      phys_section_add(&d->map, &subsection));
1437
    } else {
1438
        subpage = container_of(existing->mr, subpage_t, iomem);
1439 1440
    }
    start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1441
    end = start + int128_get64(section->size) - 1;
1442 1443
    subpage_register(subpage, start, end,
                     phys_section_add(&d->map, section));
1444 1445 1446
}


1447
static void register_multipage(FlatView *fv,
1448
                               MemoryRegionSection *section)
1449
{
1450
    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
A
Avi Kivity 已提交
1451
    hwaddr start_addr = section->offset_within_address_space;
1452
    uint16_t section_index = phys_section_add(&d->map, section);
1453 1454
    uint64_t num_pages = int128_get64(int128_rshift(section->size,
                                                    TARGET_PAGE_BITS));
1455

1456 1457
    assert(num_pages);
    phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1458 1459
}

1460
void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1461
{
1462
    MemoryRegionSection now = *section, remain = *section;
1463
    Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1464

1465 1466 1467 1468
    if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
        uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
                       - now.offset_within_address_space;

1469
        now.size = int128_min(int128_make64(left), now.size);
1470
        register_subpage(fv, &now);
1471
    } else {
1472
        now.size = int128_zero();
1473
    }
1474 1475 1476 1477
    while (int128_ne(remain.size, now.size)) {
        remain.size = int128_sub(remain.size, now.size);
        remain.offset_within_address_space += int128_get64(now.size);
        remain.offset_within_region += int128_get64(now.size);
1478
        now = remain;
1479
        if (int128_lt(remain.size, page_size)) {
1480
            register_subpage(fv, &now);
1481
        } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1482
            now.size = page_size;
1483
            register_subpage(fv, &now);
1484
        } else {
1485
            now.size = int128_and(now.size, int128_neg(page_size));
1486
            register_multipage(fv, &now);
1487
        }
1488 1489 1490
    }
}

1491 1492 1493 1494 1495 1496
void qemu_flush_coalesced_mmio_buffer(void)
{
    if (kvm_enabled())
        kvm_flush_coalesced_mmio_buffer();
}

1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
void qemu_mutex_lock_ramlist(void)
{
    qemu_mutex_lock(&ram_list.mutex);
}

void qemu_mutex_unlock_ramlist(void)
{
    qemu_mutex_unlock(&ram_list.mutex);
}

1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
void ram_block_dump(Monitor *mon)
{
    RAMBlock *block;
    char *psize;

    rcu_read_lock();
    monitor_printf(mon, "%24s %8s  %18s %18s %18s\n",
                   "Block Name", "PSize", "Offset", "Used", "Total");
    RAMBLOCK_FOREACH(block) {
        psize = size_to_str(block->page_size);
        monitor_printf(mon, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
                       " 0x%016" PRIx64 "\n", block->idstr, psize,
                       (uint64_t)block->offset,
                       (uint64_t)block->used_length,
                       (uint64_t)block->max_length);
        g_free(psize);
    }
    rcu_read_unlock();
}

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
#ifdef __linux__
/*
 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
 * may or may not name the same files / on the same filesystem now as
 * when we actually open and map them.  Iterate over the file
 * descriptors instead, and use qemu_fd_getpagesize().
 */
static int find_max_supported_pagesize(Object *obj, void *opaque)
{
    long *hpsize_min = opaque;

    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1539 1540
        long hpsize = host_memory_backend_pagesize(MEMORY_BACKEND(obj));

1541 1542
        if (hpsize < *hpsize_min) {
            *hpsize_min = hpsize;
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
        }
    }

    return 0;
}

long qemu_getrampagesize(void)
{
    long hpsize = LONG_MAX;
    long mainrampagesize;
    Object *memdev_root;

1555
    mainrampagesize = qemu_mempath_getpagesize(mem_path);
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598

    /* it's possible we have memory-backend objects with
     * hugepage-backed RAM. these may get mapped into system
     * address space via -numa parameters or memory hotplug
     * hooks. we want to take these into account, but we
     * also want to make sure these supported hugepage
     * sizes are applicable across the entire range of memory
     * we may boot from, so we take the min across all
     * backends, and assume normal pages in cases where a
     * backend isn't backed by hugepages.
     */
    memdev_root = object_resolve_path("/objects", NULL);
    if (memdev_root) {
        object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
    }
    if (hpsize == LONG_MAX) {
        /* No additional memory regions found ==> Report main RAM page size */
        return mainrampagesize;
    }

    /* If NUMA is disabled or the NUMA nodes are not backed with a
     * memory-backend, then there is at least one node using "normal" RAM,
     * so if its page size is smaller we have got to report that size instead.
     */
    if (hpsize > mainrampagesize &&
        (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
        static bool warned;
        if (!warned) {
            error_report("Huge page support disabled (n/a for main memory).");
            warned = true;
        }
        return mainrampagesize;
    }

    return hpsize;
}
#else
long qemu_getrampagesize(void)
{
    return getpagesize();
}
#endif

1599
#ifdef __linux__
1600 1601 1602 1603 1604 1605 1606 1607 1608
static int64_t get_file_size(int fd)
{
    int64_t size = lseek(fd, 0, SEEK_END);
    if (size < 0) {
        return -errno;
    }
    return size;
}

1609 1610 1611 1612
static int file_ram_open(const char *path,
                         const char *region_name,
                         bool *created,
                         Error **errp)
1613 1614
{
    char *filename;
1615 1616
    char *sanitized_name;
    char *c;
1617
    int fd = -1;
1618

1619
    *created = false;
1620 1621 1622 1623 1624
    for (;;) {
        fd = open(path, O_RDWR);
        if (fd >= 0) {
            /* @path names an existing file, use it */
            break;
1625
        }
1626 1627 1628 1629
        if (errno == ENOENT) {
            /* @path names a file that doesn't exist, create it */
            fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
            if (fd >= 0) {
1630
                *created = true;
1631 1632 1633 1634 1635
                break;
            }
        } else if (errno == EISDIR) {
            /* @path names a directory, create a file there */
            /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1636
            sanitized_name = g_strdup(region_name);
1637 1638 1639 1640 1641
            for (c = sanitized_name; *c != '\0'; c++) {
                if (*c == '/') {
                    *c = '_';
                }
            }
1642

1643 1644 1645
            filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
                                       sanitized_name);
            g_free(sanitized_name);
1646

1647 1648 1649 1650 1651 1652 1653
            fd = mkstemp(filename);
            if (fd >= 0) {
                unlink(filename);
                g_free(filename);
                break;
            }
            g_free(filename);
1654
        }
1655 1656 1657 1658
        if (errno != EEXIST && errno != EINTR) {
            error_setg_errno(errp, errno,
                             "can't open backing store %s for guest RAM",
                             path);
1659
            return -1;
1660 1661 1662 1663 1664
        }
        /*
         * Try again on EINTR and EEXIST.  The latter happens when
         * something else creates the file between our two open().
         */
1665
    }
1666

1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
    return fd;
}

static void *file_ram_alloc(RAMBlock *block,
                            ram_addr_t memory,
                            int fd,
                            bool truncate,
                            Error **errp)
{
    void *area;

1678
    block->page_size = qemu_fd_getpagesize(fd);
1679 1680 1681 1682 1683 1684 1685
    if (block->mr->align % block->page_size) {
        error_setg(errp, "alignment 0x%" PRIx64
                   " must be multiples of page size 0x%zx",
                   block->mr->align, block->page_size);
        return NULL;
    }
    block->mr->align = MAX(block->page_size, block->mr->align);
1686 1687 1688 1689 1690
#if defined(__s390x__)
    if (kvm_enabled()) {
        block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
    }
#endif
1691

1692
    if (memory < block->page_size) {
1693
        error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1694 1695
                   "or larger than page size 0x%zx",
                   memory, block->page_size);
1696
        return NULL;
1697 1698
    }

1699
    memory = ROUND_UP(memory, block->page_size);
1700 1701 1702 1703 1704 1705

    /*
     * ftruncate is not supported by hugetlbfs in older
     * hosts, so don't bother bailing out on errors.
     * If anything goes wrong with it under other filesystems,
     * mmap will fail.
1706 1707 1708 1709 1710 1711 1712 1713
     *
     * Do not truncate the non-empty backend file to avoid corrupting
     * the existing data in the file. Disabling shrinking is not
     * enough. For example, the current vNVDIMM implementation stores
     * the guest NVDIMM labels at the end of the backend file. If the
     * backend file is later extended, QEMU will not be able to find
     * those labels. Therefore, extending the non-empty backend file
     * is disabled as well.
1714
     */
1715
    if (truncate && ftruncate(fd, memory)) {
Y
Yoshiaki Tamura 已提交
1716
        perror("ftruncate");
1717
    }
1718

1719 1720
    area = qemu_ram_mmap(fd, memory, block->mr->align,
                         block->flags & RAM_SHARED);
1721
    if (area == MAP_FAILED) {
1722
        error_setg_errno(errp, errno,
1723
                         "unable to map backing store for guest RAM");
1724
        return NULL;
1725
    }
1726 1727

    if (mem_prealloc) {
1728
        os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1729
        if (errp && *errp) {
1730 1731
            qemu_ram_munmap(area, memory);
            return NULL;
1732
        }
1733 1734
    }

A
Alex Williamson 已提交
1735
    block->fd = fd;
1736 1737 1738 1739
    return area;
}
#endif

1740 1741 1742 1743
/* Allocate space within the ram_addr_t space that governs the
 * dirty bitmaps.
 * Called with the ramlist lock held.
 */
1744
static ram_addr_t find_ram_offset(ram_addr_t size)
A
Alex Williamson 已提交
1745 1746
{
    RAMBlock *block, *next_block;
A
Alex Williamson 已提交
1747
    ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
A
Alex Williamson 已提交
1748

1749 1750
    assert(size != 0); /* it would hand out same offset multiple times */

M
Mike Day 已提交
1751
    if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
A
Alex Williamson 已提交
1752
        return 0;
M
Mike Day 已提交
1753
    }
A
Alex Williamson 已提交
1754

P
Peter Xu 已提交
1755
    RAMBLOCK_FOREACH(block) {
1756
        ram_addr_t candidate, next = RAM_ADDR_MAX;
A
Alex Williamson 已提交
1757

1758 1759 1760
        /* Align blocks to start on a 'long' in the bitmap
         * which makes the bitmap sync'ing take the fast path.
         */
1761
        candidate = block->offset + block->max_length;
1762
        candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
A
Alex Williamson 已提交
1763

1764 1765 1766
        /* Search for the closest following block
         * and find the gap.
         */
P
Peter Xu 已提交
1767
        RAMBLOCK_FOREACH(next_block) {
1768
            if (next_block->offset >= candidate) {
A
Alex Williamson 已提交
1769 1770 1771
                next = MIN(next, next_block->offset);
            }
        }
1772 1773 1774 1775 1776 1777 1778 1779

        /* If it fits remember our place and remember the size
         * of gap, but keep going so that we might find a smaller
         * gap to fill so avoiding fragmentation.
         */
        if (next - candidate >= size && next - candidate < mingap) {
            offset = candidate;
            mingap = next - candidate;
A
Alex Williamson 已提交
1780
        }
1781 1782

        trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
A
Alex Williamson 已提交
1783
    }
A
Alex Williamson 已提交
1784 1785 1786 1787 1788 1789 1790

    if (offset == RAM_ADDR_MAX) {
        fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
                (uint64_t)size);
        abort();
    }

1791 1792
    trace_find_ram_offset(size, offset);

A
Alex Williamson 已提交
1793 1794 1795
    return offset;
}

1796
unsigned long last_ram_page(void)
1797 1798 1799 1800
{
    RAMBlock *block;
    ram_addr_t last = 0;

M
Mike Day 已提交
1801
    rcu_read_lock();
P
Peter Xu 已提交
1802
    RAMBLOCK_FOREACH(block) {
1803
        last = MAX(last, block->offset + block->max_length);
M
Mike Day 已提交
1804
    }
M
Mike Day 已提交
1805
    rcu_read_unlock();
1806
    return last >> TARGET_PAGE_BITS;
1807 1808
}

1809 1810 1811 1812 1813
static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
{
    int ret;

    /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1814
    if (!machine_dump_guest_core(current_machine)) {
1815 1816 1817 1818 1819 1820 1821 1822 1823
        ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
        if (ret) {
            perror("qemu_madvise");
            fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
                            "but dump_guest_core=off specified\n");
        }
    }
}

D
Dr. David Alan Gilbert 已提交
1824 1825 1826 1827 1828
const char *qemu_ram_get_idstr(RAMBlock *rb)
{
    return rb->idstr;
}

1829 1830 1831 1832 1833
bool qemu_ram_is_shared(RAMBlock *rb)
{
    return rb->flags & RAM_SHARED;
}

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
/* Note: Only set at the start of postcopy */
bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
{
    return rb->flags & RAM_UF_ZEROPAGE;
}

void qemu_ram_set_uf_zeroable(RAMBlock *rb)
{
    rb->flags |= RAM_UF_ZEROPAGE;
}

1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
bool qemu_ram_is_migratable(RAMBlock *rb)
{
    return rb->flags & RAM_MIGRATABLE;
}

void qemu_ram_set_migratable(RAMBlock *rb)
{
    rb->flags |= RAM_MIGRATABLE;
}

void qemu_ram_unset_migratable(RAMBlock *rb)
{
    rb->flags &= ~RAM_MIGRATABLE;
}

1860
/* Called with iothread lock held.  */
G
Gonglei 已提交
1861
void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1862
{
G
Gonglei 已提交
1863
    RAMBlock *block;
1864

1865 1866
    assert(new_block);
    assert(!new_block->idstr[0]);
1867

1868 1869
    if (dev) {
        char *id = qdev_get_dev_path(dev);
1870 1871
        if (id) {
            snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1872
            g_free(id);
1873 1874 1875 1876
        }
    }
    pstrcat(new_block->idstr, sizeof(new_block->idstr), name);

G
Gonglei 已提交
1877
    rcu_read_lock();
P
Peter Xu 已提交
1878
    RAMBLOCK_FOREACH(block) {
G
Gonglei 已提交
1879 1880
        if (block != new_block &&
            !strcmp(block->idstr, new_block->idstr)) {
1881 1882 1883 1884 1885
            fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
                    new_block->idstr);
            abort();
        }
    }
M
Mike Day 已提交
1886
    rcu_read_unlock();
1887 1888
}

1889
/* Called with iothread lock held.  */
G
Gonglei 已提交
1890
void qemu_ram_unset_idstr(RAMBlock *block)
1891
{
1892 1893 1894 1895
    /* FIXME: arch_init.c assumes that this is not called throughout
     * migration.  Ignore the problem since hot-unplug during migration
     * does not work anyway.
     */
1896 1897 1898 1899 1900
    if (block) {
        memset(block->idstr, 0, sizeof(block->idstr));
    }
}

1901 1902 1903 1904 1905
size_t qemu_ram_pagesize(RAMBlock *rb)
{
    return rb->page_size;
}

1906 1907 1908 1909 1910 1911
/* Returns the largest size of page in use */
size_t qemu_ram_pagesize_largest(void)
{
    RAMBlock *block;
    size_t largest = 0;

P
Peter Xu 已提交
1912
    RAMBLOCK_FOREACH(block) {
1913 1914 1915 1916 1917 1918
        largest = MAX(largest, qemu_ram_pagesize(block));
    }

    return largest;
}

1919 1920
static int memory_try_enable_merging(void *addr, size_t len)
{
1921
    if (!machine_mem_merge(current_machine)) {
1922 1923 1924 1925 1926 1927 1928
        /* disabled by the user */
        return 0;
    }

    return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
}

1929 1930 1931 1932 1933 1934 1935
/* Only legal before guest might have detected the memory size: e.g. on
 * incoming migration, or right after reset.
 *
 * As memory core doesn't know how is memory accessed, it is up to
 * resize callback to update device state and/or add assertions to detect
 * misuse, if necessary.
 */
G
Gonglei 已提交
1936
int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1937 1938 1939
{
    assert(block);

1940
    newsize = HOST_PAGE_ALIGN(newsize);
1941

1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
    if (block->used_length == newsize) {
        return 0;
    }

    if (!(block->flags & RAM_RESIZEABLE)) {
        error_setg_errno(errp, EINVAL,
                         "Length mismatch: %s: 0x" RAM_ADDR_FMT
                         " in != 0x" RAM_ADDR_FMT, block->idstr,
                         newsize, block->used_length);
        return -EINVAL;
    }

    if (block->max_length < newsize) {
        error_setg_errno(errp, EINVAL,
                         "Length too large: %s: 0x" RAM_ADDR_FMT
                         " > 0x" RAM_ADDR_FMT, block->idstr,
                         newsize, block->max_length);
        return -EINVAL;
    }

    cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
    block->used_length = newsize;
1964 1965
    cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
                                        DIRTY_CLIENTS_ALL);
1966 1967 1968 1969 1970 1971 1972
    memory_region_set_size(block->mr, newsize);
    if (block->resized) {
        block->resized(block->idstr, newsize, block->host);
    }
    return 0;
}

1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
/* Called with ram_list.mutex held */
static void dirty_memory_extend(ram_addr_t old_ram_size,
                                ram_addr_t new_ram_size)
{
    ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
                                             DIRTY_MEMORY_BLOCK_SIZE);
    ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
                                             DIRTY_MEMORY_BLOCK_SIZE);
    int i;

    /* Only need to extend if block count increased */
    if (new_num_blocks <= old_num_blocks) {
        return;
    }

    for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
        DirtyMemoryBlocks *old_blocks;
        DirtyMemoryBlocks *new_blocks;
        int j;

        old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
        new_blocks = g_malloc(sizeof(*new_blocks) +
                              sizeof(new_blocks->blocks[0]) * new_num_blocks);

        if (old_num_blocks) {
            memcpy(new_blocks->blocks, old_blocks->blocks,
                   old_num_blocks * sizeof(old_blocks->blocks[0]));
        }

        for (j = old_num_blocks; j < new_num_blocks; j++) {
            new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
        }

        atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);

        if (old_blocks) {
            g_free_rcu(old_blocks, rcu);
        }
    }
}

2014
static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2015
{
2016
    RAMBlock *block;
M
Mike Day 已提交
2017
    RAMBlock *last_block = NULL;
2018
    ram_addr_t old_ram_size, new_ram_size;
2019
    Error *err = NULL;
2020

2021
    old_ram_size = last_ram_page();
2022

2023
    qemu_mutex_lock_ramlist();
2024
    new_block->offset = find_ram_offset(new_block->max_length);
2025 2026 2027

    if (!new_block->host) {
        if (xen_enabled()) {
2028
            xen_ram_alloc(new_block->offset, new_block->max_length,
2029 2030 2031 2032
                          new_block->mr, &err);
            if (err) {
                error_propagate(errp, err);
                qemu_mutex_unlock_ramlist();
2033
                return;
2034
            }
2035
        } else {
2036
            new_block->host = phys_mem_alloc(new_block->max_length,
2037
                                             &new_block->mr->align, shared);
2038
            if (!new_block->host) {
2039 2040 2041 2042
                error_setg_errno(errp, errno,
                                 "cannot set up guest memory '%s'",
                                 memory_region_name(new_block->mr));
                qemu_mutex_unlock_ramlist();
2043
                return;
2044
            }
2045
            memory_try_enable_merging(new_block->host, new_block->max_length);
2046
        }
2047
    }
P
pbrook 已提交
2048

L
Li Zhijian 已提交
2049 2050 2051
    new_ram_size = MAX(old_ram_size,
              (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
    if (new_ram_size > old_ram_size) {
2052
        dirty_memory_extend(old_ram_size, new_ram_size);
L
Li Zhijian 已提交
2053
    }
M
Mike Day 已提交
2054 2055 2056 2057
    /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
     * QLIST (which has an RCU-friendly variant) does not have insertion at
     * tail, so save the last element in last_block.
     */
P
Peter Xu 已提交
2058
    RAMBLOCK_FOREACH(block) {
M
Mike Day 已提交
2059
        last_block = block;
2060
        if (block->max_length < new_block->max_length) {
2061 2062 2063 2064
            break;
        }
    }
    if (block) {
M
Mike Day 已提交
2065
        QLIST_INSERT_BEFORE_RCU(block, new_block, next);
M
Mike Day 已提交
2066
    } else if (last_block) {
M
Mike Day 已提交
2067
        QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
M
Mike Day 已提交
2068
    } else { /* list is empty */
M
Mike Day 已提交
2069
        QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2070
    }
2071
    ram_list.mru_block = NULL;
P
pbrook 已提交
2072

M
Mike Day 已提交
2073 2074
    /* Write list before version */
    smp_wmb();
U
Umesh Deshpande 已提交
2075
    ram_list.version++;
2076
    qemu_mutex_unlock_ramlist();
U
Umesh Deshpande 已提交
2077

2078
    cpu_physical_memory_set_dirty_range(new_block->offset,
2079 2080
                                        new_block->used_length,
                                        DIRTY_CLIENTS_ALL);
P
pbrook 已提交
2081

2082 2083 2084
    if (new_block->host) {
        qemu_ram_setup_dump(new_block->host, new_block->max_length);
        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
C
Cao jin 已提交
2085
        /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2086
        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
P
Paolo Bonzini 已提交
2087
        ram_block_notify_add(new_block->host, new_block->max_length);
2088
    }
P
pbrook 已提交
2089
}
B
bellard 已提交
2090

2091
#ifdef __linux__
2092 2093 2094
RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
                                 bool share, int fd,
                                 Error **errp)
2095 2096
{
    RAMBlock *new_block;
2097
    Error *local_err = NULL;
2098
    int64_t file_size;
2099 2100

    if (xen_enabled()) {
2101
        error_setg(errp, "-mem-path not supported with Xen");
2102
        return NULL;
2103 2104
    }

2105 2106 2107 2108 2109 2110
    if (kvm_enabled() && !kvm_has_sync_mmu()) {
        error_setg(errp,
                   "host lacks kvm mmu notifiers, -mem-path unsupported");
        return NULL;
    }

2111 2112 2113 2114 2115 2116
    if (phys_mem_alloc != qemu_anon_ram_alloc) {
        /*
         * file_ram_alloc() needs to allocate just like
         * phys_mem_alloc, but we haven't bothered to provide
         * a hook there.
         */
2117 2118
        error_setg(errp,
                   "-mem-path not supported with this accelerator");
2119
        return NULL;
2120 2121
    }

2122
    size = HOST_PAGE_ALIGN(size);
2123 2124 2125 2126 2127 2128 2129 2130
    file_size = get_file_size(fd);
    if (file_size > 0 && file_size < size) {
        error_setg(errp, "backing store %s size 0x%" PRIx64
                   " does not match 'size' option 0x" RAM_ADDR_FMT,
                   mem_path, file_size, size);
        return NULL;
    }

2131 2132
    new_block = g_malloc0(sizeof(*new_block));
    new_block->mr = mr;
2133 2134
    new_block->used_length = size;
    new_block->max_length = size;
2135
    new_block->flags = share ? RAM_SHARED : 0;
2136
    new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2137 2138
    if (!new_block->host) {
        g_free(new_block);
2139
        return NULL;
2140 2141
    }

2142
    ram_block_add(new_block, &local_err, share);
2143 2144 2145
    if (local_err) {
        g_free(new_block);
        error_propagate(errp, local_err);
2146
        return NULL;
2147
    }
2148
    return new_block;
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

}


RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
                                   bool share, const char *mem_path,
                                   Error **errp)
{
    int fd;
    bool created;
    RAMBlock *block;

    fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
    if (fd < 0) {
        return NULL;
    }

    block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
    if (!block) {
        if (created) {
            unlink(mem_path);
        }
        close(fd);
        return NULL;
    }

    return block;
2176
}
2177
#endif
2178

2179
static
2180 2181 2182 2183
RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
                                  void (*resized)(const char*,
                                                  uint64_t length,
                                                  void *host),
2184
                                  void *host, bool resizeable, bool share,
2185
                                  MemoryRegion *mr, Error **errp)
2186 2187
{
    RAMBlock *new_block;
2188
    Error *local_err = NULL;
2189

2190 2191
    size = HOST_PAGE_ALIGN(size);
    max_size = HOST_PAGE_ALIGN(max_size);
2192 2193
    new_block = g_malloc0(sizeof(*new_block));
    new_block->mr = mr;
2194
    new_block->resized = resized;
2195 2196
    new_block->used_length = size;
    new_block->max_length = max_size;
2197
    assert(max_size >= size);
2198
    new_block->fd = -1;
2199
    new_block->page_size = getpagesize();
2200 2201
    new_block->host = host;
    if (host) {
2202
        new_block->flags |= RAM_PREALLOC;
2203
    }
2204 2205 2206
    if (resizeable) {
        new_block->flags |= RAM_RESIZEABLE;
    }
2207
    ram_block_add(new_block, &local_err, share);
2208 2209 2210
    if (local_err) {
        g_free(new_block);
        error_propagate(errp, local_err);
2211
        return NULL;
2212
    }
2213
    return new_block;
2214 2215
}

2216
RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2217 2218
                                   MemoryRegion *mr, Error **errp)
{
2219 2220
    return qemu_ram_alloc_internal(size, size, NULL, host, false,
                                   false, mr, errp);
2221 2222
}

2223 2224
RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
                         MemoryRegion *mr, Error **errp)
2225
{
2226 2227
    return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
                                   share, mr, errp);
2228 2229
}

2230
RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2231 2232 2233 2234 2235
                                     void (*resized)(const char*,
                                                     uint64_t length,
                                                     void *host),
                                     MemoryRegion *mr, Error **errp)
{
2236 2237
    return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
                                   false, mr, errp);
2238 2239
}

P
Paolo Bonzini 已提交
2240 2241 2242 2243 2244 2245 2246 2247
static void reclaim_ramblock(RAMBlock *block)
{
    if (block->flags & RAM_PREALLOC) {
        ;
    } else if (xen_enabled()) {
        xen_invalidate_map_cache_entry(block->host);
#ifndef _WIN32
    } else if (block->fd >= 0) {
2248
        qemu_ram_munmap(block->host, block->max_length);
P
Paolo Bonzini 已提交
2249 2250 2251 2252 2253 2254 2255 2256
        close(block->fd);
#endif
    } else {
        qemu_anon_ram_free(block->host, block->max_length);
    }
    g_free(block);
}

2257
void qemu_ram_free(RAMBlock *block)
B
bellard 已提交
2258
{
2259 2260 2261 2262
    if (!block) {
        return;
    }

P
Paolo Bonzini 已提交
2263 2264 2265 2266
    if (block->host) {
        ram_block_notify_remove(block->host, block->max_length);
    }

2267
    qemu_mutex_lock_ramlist();
2268 2269 2270 2271 2272 2273
    QLIST_REMOVE_RCU(block, next);
    ram_list.mru_block = NULL;
    /* Write list before version */
    smp_wmb();
    ram_list.version++;
    call_rcu(block, reclaim_ramblock, rcu);
2274
    qemu_mutex_unlock_ramlist();
B
bellard 已提交
2275 2276
}

H
Huang Ying 已提交
2277 2278 2279 2280 2281 2282 2283 2284
#ifndef _WIN32
void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
{
    RAMBlock *block;
    ram_addr_t offset;
    int flags;
    void *area, *vaddr;

P
Peter Xu 已提交
2285
    RAMBLOCK_FOREACH(block) {
H
Huang Ying 已提交
2286
        offset = addr - block->offset;
2287
        if (offset < block->max_length) {
2288
            vaddr = ramblock_ptr(block, offset);
2289
            if (block->flags & RAM_PREALLOC) {
H
Huang Ying 已提交
2290
                ;
2291 2292
            } else if (xen_enabled()) {
                abort();
H
Huang Ying 已提交
2293 2294
            } else {
                flags = MAP_FIXED;
2295
                if (block->fd >= 0) {
2296 2297
                    flags |= (block->flags & RAM_SHARED ?
                              MAP_SHARED : MAP_PRIVATE);
2298 2299
                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
                                flags, block->fd, offset);
H
Huang Ying 已提交
2300
                } else {
2301 2302 2303 2304 2305 2306 2307
                    /*
                     * Remap needs to match alloc.  Accelerators that
                     * set phys_mem_alloc never remap.  If they did,
                     * we'd need a remap hook here.
                     */
                    assert(phys_mem_alloc == qemu_anon_ram_alloc);

H
Huang Ying 已提交
2308 2309 2310 2311 2312
                    flags |= MAP_PRIVATE | MAP_ANONYMOUS;
                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
                                flags, -1, 0);
                }
                if (area != vaddr) {
2313 2314 2315
                    error_report("Could not remap addr: "
                                 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
                                 length, addr);
H
Huang Ying 已提交
2316 2317
                    exit(1);
                }
2318
                memory_try_enable_merging(vaddr, length);
2319
                qemu_ram_setup_dump(vaddr, length);
H
Huang Ying 已提交
2320 2321 2322 2323 2324 2325
            }
        }
    }
}
#endif /* !_WIN32 */

2326
/* Return a host pointer to ram allocated with qemu_ram_alloc.
2327 2328 2329
 * This should not be used for general purpose DMA.  Use address_space_map
 * or address_space_rw instead. For local memory (e.g. video ram) that the
 * device owns, use memory_region_get_ram_ptr.
M
Mike Day 已提交
2330
 *
2331
 * Called within RCU critical section.
2332
 */
2333
void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2334
{
2335 2336 2337 2338
    RAMBlock *block = ram_block;

    if (block == NULL) {
        block = qemu_get_ram_block(addr);
2339
        addr -= block->offset;
2340
    }
2341 2342

    if (xen_enabled() && block->host == NULL) {
2343 2344 2345 2346 2347
        /* We need to check if the requested address is in the RAM
         * because we don't want to map the entire memory in QEMU.
         * In that case just map until the end of the page.
         */
        if (block->offset == 0) {
2348
            return xen_map_cache(addr, 0, 0, false);
2349
        }
2350

2351
        block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2352
    }
2353
    return ramblock_ptr(block, addr);
2354 2355
}

2356
/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2357
 * but takes a size argument.
M
Mike Day 已提交
2358
 *
2359
 * Called within RCU critical section.
2360
 */
2361
static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2362
                                 hwaddr *size, bool lock)
2363
{
2364
    RAMBlock *block = ram_block;
2365 2366 2367
    if (*size == 0) {
        return NULL;
    }
2368

2369 2370
    if (block == NULL) {
        block = qemu_get_ram_block(addr);
2371
        addr -= block->offset;
2372
    }
2373
    *size = MIN(*size, block->max_length - addr);
2374 2375 2376 2377 2378 2379 2380

    if (xen_enabled() && block->host == NULL) {
        /* We need to check if the requested address is in the RAM
         * because we don't want to map the entire memory in QEMU.
         * In that case just map the requested area.
         */
        if (block->offset == 0) {
2381
            return xen_map_cache(addr, *size, lock, lock);
2382 2383
        }

2384
        block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2385
    }
2386

2387
    return ramblock_ptr(block, addr);
2388 2389
}

2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
/* Return the offset of a hostpointer within a ramblock */
ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
{
    ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
    assert((uintptr_t)host >= (uintptr_t)rb->host);
    assert(res < rb->max_length);

    return res;
}

D
Dr. David Alan Gilbert 已提交
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
/*
 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
 * in that RAMBlock.
 *
 * ptr: Host pointer to look up
 * round_offset: If true round the result offset down to a page boundary
 * *ram_addr: set to result ram_addr
 * *offset: set to result offset within the RAMBlock
 *
 * Returns: RAMBlock (or NULL if not found)
2410 2411 2412 2413 2414 2415 2416
 *
 * By the time this function returns, the returned pointer is not protected
 * by RCU anymore.  If the caller is not within an RCU critical section and
 * does not hold the iothread lock, it must have other means of protecting the
 * pointer, such as a reference to the region that includes the incoming
 * ram_addr_t.
 */
D
Dr. David Alan Gilbert 已提交
2417 2418
RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
                                   ram_addr_t *offset)
P
pbrook 已提交
2419
{
P
pbrook 已提交
2420 2421 2422
    RAMBlock *block;
    uint8_t *host = ptr;

2423
    if (xen_enabled()) {
2424
        ram_addr_t ram_addr;
M
Mike Day 已提交
2425
        rcu_read_lock();
2426 2427
        ram_addr = xen_ram_addr_from_mapcache(ptr);
        block = qemu_get_ram_block(ram_addr);
D
Dr. David Alan Gilbert 已提交
2428
        if (block) {
2429
            *offset = ram_addr - block->offset;
D
Dr. David Alan Gilbert 已提交
2430
        }
M
Mike Day 已提交
2431
        rcu_read_unlock();
D
Dr. David Alan Gilbert 已提交
2432
        return block;
2433 2434
    }

M
Mike Day 已提交
2435 2436
    rcu_read_lock();
    block = atomic_rcu_read(&ram_list.mru_block);
2437
    if (block && block->host && host - block->host < block->max_length) {
2438 2439 2440
        goto found;
    }

P
Peter Xu 已提交
2441
    RAMBLOCK_FOREACH(block) {
J
Jun Nakajima 已提交
2442 2443 2444 2445
        /* This case append when the block is not mapped. */
        if (block->host == NULL) {
            continue;
        }
2446
        if (host - block->host < block->max_length) {
2447
            goto found;
A
Alex Williamson 已提交
2448
        }
P
pbrook 已提交
2449
    }
J
Jun Nakajima 已提交
2450

M
Mike Day 已提交
2451
    rcu_read_unlock();
2452
    return NULL;
2453 2454

found:
D
Dr. David Alan Gilbert 已提交
2455 2456 2457 2458
    *offset = (host - block->host);
    if (round_offset) {
        *offset &= TARGET_PAGE_MASK;
    }
M
Mike Day 已提交
2459
    rcu_read_unlock();
D
Dr. David Alan Gilbert 已提交
2460 2461 2462
    return block;
}

D
Dr. David Alan Gilbert 已提交
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
/*
 * Finds the named RAMBlock
 *
 * name: The name of RAMBlock to find
 *
 * Returns: RAMBlock (or NULL if not found)
 */
RAMBlock *qemu_ram_block_by_name(const char *name)
{
    RAMBlock *block;

P
Peter Xu 已提交
2474
    RAMBLOCK_FOREACH(block) {
D
Dr. David Alan Gilbert 已提交
2475 2476 2477 2478 2479 2480 2481 2482
        if (!strcmp(name, block->idstr)) {
            return block;
        }
    }

    return NULL;
}

D
Dr. David Alan Gilbert 已提交
2483 2484
/* Some of the softmmu routines need to translate from a host pointer
   (typically a TLB entry) back to a ram offset.  */
2485
ram_addr_t qemu_ram_addr_from_host(void *ptr)
D
Dr. David Alan Gilbert 已提交
2486 2487
{
    RAMBlock *block;
2488
    ram_addr_t offset;
D
Dr. David Alan Gilbert 已提交
2489

2490
    block = qemu_ram_block_from_host(ptr, false, &offset);
D
Dr. David Alan Gilbert 已提交
2491
    if (!block) {
2492
        return RAM_ADDR_INVALID;
D
Dr. David Alan Gilbert 已提交
2493 2494
    }

2495
    return block->offset + offset;
M
Marcelo Tosatti 已提交
2496
}
A
Alex Williamson 已提交
2497

2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
/* Called within RCU critical section. */
void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
                          CPUState *cpu,
                          vaddr mem_vaddr,
                          ram_addr_t ram_addr,
                          unsigned size)
{
    ndi->cpu = cpu;
    ndi->ram_addr = ram_addr;
    ndi->mem_vaddr = mem_vaddr;
    ndi->size = size;
    ndi->locked = false;
2510

2511
    assert(tcg_enabled());
2512
    if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2513
        ndi->locked = true;
2514
        tb_lock();
2515
        tb_invalidate_phys_page_fast(ram_addr, size);
2516
    }
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
}

/* Called within RCU critical section. */
void memory_notdirty_write_complete(NotDirtyInfo *ndi)
{
    if (ndi->locked) {
        tb_unlock();
    }

    /* Set both VGA and migration bits for simplicity and to remove
     * the notdirty callback faster.
     */
    cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
                                        DIRTY_CLIENTS_NOCODE);
    /* we remove the notdirty callback only if the code has been
       flushed */
    if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
        tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
    }
}

/* Called within RCU critical section.  */
static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
                               uint64_t val, unsigned size)
{
    NotDirtyInfo ndi;

    memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
                         ram_addr, size);

2547
    stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
2548
    memory_notdirty_write_complete(&ndi);
2549 2550
}

2551
static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2552 2553
                                 unsigned size, bool is_write,
                                 MemTxAttrs attrs)
2554 2555 2556 2557
{
    return is_write;
}

2558 2559
static const MemoryRegionOps notdirty_mem_ops = {
    .write = notdirty_mem_write,
2560
    .valid.accepts = notdirty_mem_accepts,
2561
    .endianness = DEVICE_NATIVE_ENDIAN,
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
    .valid = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
    .impl = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
2572 2573
};

P
pbrook 已提交
2574
/* Generate a debug exception if a watchpoint has been hit.  */
2575
static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
P
pbrook 已提交
2576
{
2577
    CPUState *cpu = current_cpu;
2578
    CPUClass *cc = CPU_GET_CLASS(cpu);
P
pbrook 已提交
2579
    target_ulong vaddr;
2580
    CPUWatchpoint *wp;
P
pbrook 已提交
2581

2582
    assert(tcg_enabled());
2583
    if (cpu->watchpoint_hit) {
2584 2585 2586
        /* We re-entered the check after replacing the TB. Now raise
         * the debug interrupt so that is will trigger after the
         * current instruction. */
2587
        cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2588 2589
        return;
    }
2590
    vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2591
    vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2592
    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2593 2594
        if (cpu_watchpoint_address_matches(wp, vaddr, len)
            && (wp->flags & flags)) {
2595 2596 2597 2598 2599 2600
            if (flags == BP_MEM_READ) {
                wp->flags |= BP_WATCHPOINT_HIT_READ;
            } else {
                wp->flags |= BP_WATCHPOINT_HIT_WRITE;
            }
            wp->hitaddr = vaddr;
2601
            wp->hitattrs = attrs;
2602
            if (!cpu->watchpoint_hit) {
2603 2604 2605 2606 2607
                if (wp->flags & BP_CPU &&
                    !cc->debug_check_watchpoint(cpu, wp)) {
                    wp->flags &= ~BP_WATCHPOINT_HIT;
                    continue;
                }
2608
                cpu->watchpoint_hit = wp;
2609

2610 2611 2612
                /* Both tb_lock and iothread_mutex will be reset when
                 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
                 * back into the cpu_exec main loop.
2613 2614
                 */
                tb_lock();
2615
                tb_check_watchpoint(cpu);
2616
                if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2617
                    cpu->exception_index = EXCP_DEBUG;
2618
                    cpu_loop_exit(cpu);
2619
                } else {
2620 2621
                    /* Force execution of one insn next time.  */
                    cpu->cflags_next_tb = 1 | curr_cflags();
2622
                    cpu_loop_exit_noexc(cpu);
2623
                }
2624
            }
2625 2626
        } else {
            wp->flags &= ~BP_WATCHPOINT_HIT;
P
pbrook 已提交
2627 2628 2629 2630
        }
    }
}

2631 2632 2633
/* Watchpoint access routines.  Watchpoints are inserted using TLB tricks,
   so these check for a hit then pass through to the normal out-of-line
   phys routines.  */
2634 2635
static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
                                  unsigned size, MemTxAttrs attrs)
2636
{
2637 2638
    MemTxResult res;
    uint64_t data;
2639 2640
    int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
    AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2641 2642

    check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2643
    switch (size) {
2644
    case 1:
2645
        data = address_space_ldub(as, addr, attrs, &res);
2646 2647
        break;
    case 2:
2648
        data = address_space_lduw(as, addr, attrs, &res);
2649 2650
        break;
    case 4:
2651
        data = address_space_ldl(as, addr, attrs, &res);
2652
        break;
2653 2654 2655
    case 8:
        data = address_space_ldq(as, addr, attrs, &res);
        break;
2656 2657
    default: abort();
    }
2658 2659
    *pdata = data;
    return res;
2660 2661
}

2662 2663 2664
static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
                                   uint64_t val, unsigned size,
                                   MemTxAttrs attrs)
2665
{
2666
    MemTxResult res;
2667 2668
    int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
    AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2669 2670

    check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2671
    switch (size) {
2672
    case 1:
2673
        address_space_stb(as, addr, val, attrs, &res);
2674 2675
        break;
    case 2:
2676
        address_space_stw(as, addr, val, attrs, &res);
2677 2678
        break;
    case 4:
2679
        address_space_stl(as, addr, val, attrs, &res);
2680
        break;
2681 2682 2683
    case 8:
        address_space_stq(as, addr, val, attrs, &res);
        break;
2684 2685
    default: abort();
    }
2686
    return res;
2687 2688
}

2689
static const MemoryRegionOps watch_mem_ops = {
2690 2691
    .read_with_attrs = watch_mem_read,
    .write_with_attrs = watch_mem_write,
2692
    .endianness = DEVICE_NATIVE_ENDIAN,
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
    .valid = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
    .impl = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
2703 2704
};

2705 2706
static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
                                      MemTxAttrs attrs, uint8_t *buf, int len);
2707 2708 2709
static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
                                  const uint8_t *buf, int len);
static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2710
                                  bool is_write, MemTxAttrs attrs);
2711

2712 2713
static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
                                unsigned len, MemTxAttrs attrs)
2714
{
2715
    subpage_t *subpage = opaque;
2716
    uint8_t buf[8];
2717
    MemTxResult res;
2718

2719
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2720
    printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2721
           subpage, len, addr);
2722
#endif
2723
    res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2724 2725
    if (res) {
        return res;
2726
    }
2727 2728
    *data = ldn_p(buf, len);
    return MEMTX_OK;
2729 2730
}

2731 2732
static MemTxResult subpage_write(void *opaque, hwaddr addr,
                                 uint64_t value, unsigned len, MemTxAttrs attrs)
2733
{
2734
    subpage_t *subpage = opaque;
2735
    uint8_t buf[8];
2736

2737
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2738
    printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2739 2740
           " value %"PRIx64"\n",
           __func__, subpage, len, addr, value);
2741
#endif
2742
    stn_p(buf, len, value);
2743
    return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2744 2745
}

2746
static bool subpage_accepts(void *opaque, hwaddr addr,
2747 2748
                            unsigned len, bool is_write,
                            MemTxAttrs attrs)
2749
{
2750
    subpage_t *subpage = opaque;
2751
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2752
    printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2753
           __func__, subpage, is_write ? 'w' : 'r', len, addr);
2754 2755
#endif

2756
    return flatview_access_valid(subpage->fv, addr + subpage->base,
2757
                                 len, is_write, attrs);
2758 2759
}

2760
static const MemoryRegionOps subpage_ops = {
2761 2762
    .read_with_attrs = subpage_read,
    .write_with_attrs = subpage_write,
2763 2764 2765 2766
    .impl.min_access_size = 1,
    .impl.max_access_size = 8,
    .valid.min_access_size = 1,
    .valid.max_access_size = 8,
2767
    .valid.accepts = subpage_accepts,
2768
    .endianness = DEVICE_NATIVE_ENDIAN,
2769 2770
};

A
Anthony Liguori 已提交
2771
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2772
                             uint16_t section)
2773 2774 2775 2776 2777 2778 2779 2780
{
    int idx, eidx;

    if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
        return -1;
    idx = SUBPAGE_IDX(start);
    eidx = SUBPAGE_IDX(end);
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2781 2782
    printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
           __func__, mmio, start, end, idx, eidx, section);
2783 2784
#endif
    for (; idx <= eidx; idx++) {
2785
        mmio->sub_section[idx] = section;
2786 2787 2788 2789 2790
    }

    return 0;
}

2791
static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2792
{
A
Anthony Liguori 已提交
2793
    subpage_t *mmio;
2794

2795
    mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2796
    mmio->fv = fv;
2797
    mmio->base = base;
2798
    memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
P
Peter Crosthwaite 已提交
2799
                          NULL, TARGET_PAGE_SIZE);
A
Avi Kivity 已提交
2800
    mmio->iomem.subpage = true;
2801
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2802 2803
    printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
           mmio, base, TARGET_PAGE_SIZE);
2804
#endif
2805
    subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2806 2807 2808 2809

    return mmio;
}

2810
static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2811
{
2812
    assert(fv);
2813
    MemoryRegionSection section = {
2814
        .fv = fv,
2815 2816 2817
        .mr = mr,
        .offset_within_address_space = 0,
        .offset_within_region = 0,
2818
        .size = int128_2_64(),
2819 2820
    };

2821
    return phys_section_add(map, &section);
2822 2823
}

2824 2825 2826 2827 2828 2829 2830
static void readonly_mem_write(void *opaque, hwaddr addr,
                               uint64_t val, unsigned size)
{
    /* Ignore any write to ROM. */
}

static bool readonly_mem_accepts(void *opaque, hwaddr addr,
2831 2832
                                 unsigned size, bool is_write,
                                 MemTxAttrs attrs)
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
{
    return is_write;
}

/* This will only be used for writes, because reads are special cased
 * to directly access the underlying host ram.
 */
static const MemoryRegionOps readonly_mem_ops = {
    .write = readonly_mem_write,
    .valid.accepts = readonly_mem_accepts,
    .endianness = DEVICE_NATIVE_ENDIAN,
    .valid = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
    .impl = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
};

2856 2857
MemoryRegionSection *iotlb_to_section(CPUState *cpu,
                                      hwaddr index, MemTxAttrs attrs)
2858
{
2859 2860
    int asidx = cpu_asidx_from_attrs(cpu, attrs);
    CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2861
    AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2862
    MemoryRegionSection *sections = d->map.sections;
P
Paolo Bonzini 已提交
2863

2864
    return &sections[index & ~TARGET_PAGE_MASK];
2865 2866
}

A
Avi Kivity 已提交
2867 2868
static void io_mem_init(void)
{
2869 2870
    memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
                          NULL, NULL, UINT64_MAX);
2871
    memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2872
                          NULL, UINT64_MAX);
2873 2874 2875 2876

    /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
     * which can be called without the iothread mutex.
     */
2877
    memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2878
                          NULL, UINT64_MAX);
2879 2880
    memory_region_clear_global_locking(&io_mem_notdirty);

2881
    memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2882
                          NULL, UINT64_MAX);
A
Avi Kivity 已提交
2883 2884
}

2885
AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2886
{
2887 2888 2889
    AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
    uint16_t n;

2890
    n = dummy_section(&d->map, fv, &io_mem_unassigned);
2891
    assert(n == PHYS_SECTION_UNASSIGNED);
2892
    n = dummy_section(&d->map, fv, &io_mem_notdirty);
2893
    assert(n == PHYS_SECTION_NOTDIRTY);
2894
    n = dummy_section(&d->map, fv, &io_mem_rom);
2895
    assert(n == PHYS_SECTION_ROM);
2896
    n = dummy_section(&d->map, fv, &io_mem_watch);
2897
    assert(n == PHYS_SECTION_WATCH);
2898

M
Michael S. Tsirkin 已提交
2899
    d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2900 2901

    return d;
2902 2903
}

2904
void address_space_dispatch_free(AddressSpaceDispatch *d)
2905 2906 2907 2908 2909
{
    phys_sections_free(&d->map);
    g_free(d);
}

2910
static void tcg_commit(MemoryListener *listener)
2911
{
2912 2913
    CPUAddressSpace *cpuas;
    AddressSpaceDispatch *d;
2914 2915 2916

    /* since each CPU stores ram addresses in its TLB cache, we must
       reset the modified entries */
2917 2918 2919 2920 2921 2922
    cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
    cpu_reloading_memory_map();
    /* The CPU and TLB are protected by the iothread lock.
     * We reload the dispatch pointer now because cpu_reloading_memory_map()
     * may have split the RCU critical section.
     */
2923
    d = address_space_to_dispatch(cpuas->as);
2924
    atomic_rcu_set(&cpuas->memory_dispatch, d);
2925
    tlb_flush(cpuas->cpu);
2926 2927
}

A
Avi Kivity 已提交
2928 2929
static void memory_map_init(void)
{
2930
    system_memory = g_malloc(sizeof(*system_memory));
2931

2932
    memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2933
    address_space_init(&address_space_memory, system_memory, "memory");
2934

2935
    system_io = g_malloc(sizeof(*system_io));
2936 2937
    memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
                          65536);
2938
    address_space_init(&address_space_io, system_io, "I/O");
A
Avi Kivity 已提交
2939 2940 2941 2942 2943 2944 2945
}

MemoryRegion *get_system_memory(void)
{
    return system_memory;
}

2946 2947 2948 2949 2950
MemoryRegion *get_system_io(void)
{
    return system_io;
}

2951 2952
#endif /* !defined(CONFIG_USER_ONLY) */

B
bellard 已提交
2953 2954
/* physical memory access (slow version, mainly for debug) */
#if defined(CONFIG_USER_ONLY)
2955
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
P
Paul Brook 已提交
2956
                        uint8_t *buf, int len, int is_write)
B
bellard 已提交
2957 2958 2959
{
    int l, flags;
    target_ulong page;
2960
    void * p;
B
bellard 已提交
2961 2962 2963 2964 2965 2966 2967 2968

    while (len > 0) {
        page = addr & TARGET_PAGE_MASK;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
        flags = page_get_flags(page);
        if (!(flags & PAGE_VALID))
P
Paul Brook 已提交
2969
            return -1;
B
bellard 已提交
2970 2971
        if (is_write) {
            if (!(flags & PAGE_WRITE))
P
Paul Brook 已提交
2972
                return -1;
2973
            /* XXX: this code should not depend on lock_user */
A
aurel32 已提交
2974
            if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
P
Paul Brook 已提交
2975
                return -1;
A
aurel32 已提交
2976 2977
            memcpy(p, buf, l);
            unlock_user(p, addr, l);
B
bellard 已提交
2978 2979
        } else {
            if (!(flags & PAGE_READ))
P
Paul Brook 已提交
2980
                return -1;
2981
            /* XXX: this code should not depend on lock_user */
A
aurel32 已提交
2982
            if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
P
Paul Brook 已提交
2983
                return -1;
A
aurel32 已提交
2984
            memcpy(buf, p, l);
A
aurel32 已提交
2985
            unlock_user(p, addr, 0);
B
bellard 已提交
2986 2987 2988 2989 2990
        }
        len -= l;
        buf += l;
        addr += l;
    }
P
Paul Brook 已提交
2991
    return 0;
B
bellard 已提交
2992
}
B
bellard 已提交
2993

B
bellard 已提交
2994
#else
2995

2996
static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
A
Avi Kivity 已提交
2997
                                     hwaddr length)
2998
{
2999
    uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3000 3001
    addr += memory_region_get_ram_addr(mr);

3002 3003 3004 3005 3006 3007 3008 3009 3010
    /* No early return if dirty_log_mask is or becomes 0, because
     * cpu_physical_memory_set_dirty_range will still call
     * xen_modified_memory.
     */
    if (dirty_log_mask) {
        dirty_log_mask =
            cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
    }
    if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3011
        assert(tcg_enabled());
3012
        tb_lock();
3013
        tb_invalidate_phys_range(addr, addr + length);
3014
        tb_unlock();
3015
        dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3016
    }
3017
    cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3018 3019
}

3020
static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3021
{
3022
    unsigned access_size_max = mr->ops->valid.max_access_size;
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035

    /* Regions are assumed to support 1-4 byte accesses unless
       otherwise specified.  */
    if (access_size_max == 0) {
        access_size_max = 4;
    }

    /* Bound the maximum access by the alignment of the address.  */
    if (!mr->ops->impl.unaligned) {
        unsigned align_size_max = addr & -addr;
        if (align_size_max != 0 && align_size_max < access_size_max) {
            access_size_max = align_size_max;
        }
3036
    }
3037 3038 3039 3040

    /* Don't attempt accesses larger than the maximum.  */
    if (l > access_size_max) {
        l = access_size_max;
3041
    }
3042
    l = pow2floor(l);
3043 3044

    return l;
3045 3046
}

3047
static bool prepare_mmio_access(MemoryRegion *mr)
3048
{
3049 3050 3051 3052 3053 3054 3055 3056
    bool unlocked = !qemu_mutex_iothread_locked();
    bool release_lock = false;

    if (unlocked && mr->global_locking) {
        qemu_mutex_lock_iothread();
        unlocked = false;
        release_lock = true;
    }
3057
    if (mr->flush_coalesced_mmio) {
3058 3059 3060
        if (unlocked) {
            qemu_mutex_lock_iothread();
        }
3061
        qemu_flush_coalesced_mmio_buffer();
3062 3063 3064
        if (unlocked) {
            qemu_mutex_unlock_iothread();
        }
3065
    }
3066 3067

    return release_lock;
3068 3069
}

3070
/* Called within RCU critical section.  */
3071 3072 3073 3074 3075
static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
                                           MemTxAttrs attrs,
                                           const uint8_t *buf,
                                           int len, hwaddr addr1,
                                           hwaddr l, MemoryRegion *mr)
B
bellard 已提交
3076 3077
{
    uint8_t *ptr;
3078
    uint64_t val;
3079
    MemTxResult result = MEMTX_OK;
3080
    bool release_lock = false;
3081

3082
    for (;;) {
3083 3084 3085 3086 3087
        if (!memory_access_is_direct(mr, true)) {
            release_lock |= prepare_mmio_access(mr);
            l = memory_access_size(mr, l, addr1);
            /* XXX: could force current_cpu to NULL to avoid
               potential bugs */
3088 3089
            val = ldn_p(buf, l);
            result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
B
bellard 已提交
3090
        } else {
3091
            /* RAM case */
3092
            ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3093 3094
            memcpy(ptr, buf, l);
            invalidate_and_set_dirty(mr, addr1, l);
B
bellard 已提交
3095
        }
3096 3097 3098 3099 3100 3101

        if (release_lock) {
            qemu_mutex_unlock_iothread();
            release_lock = false;
        }

B
bellard 已提交
3102 3103 3104
        len -= l;
        buf += l;
        addr += l;
3105 3106 3107 3108 3109 3110

        if (!len) {
            break;
        }

        l = len;
3111
        mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
B
bellard 已提交
3112
    }
3113

3114
    return result;
B
bellard 已提交
3115
}
B
bellard 已提交
3116

3117
/* Called from RCU critical section.  */
3118 3119
static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
                                  const uint8_t *buf, int len)
A
Avi Kivity 已提交
3120
{
3121 3122 3123 3124 3125
    hwaddr l;
    hwaddr addr1;
    MemoryRegion *mr;
    MemTxResult result = MEMTX_OK;

3126
    l = len;
3127
    mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3128 3129
    result = flatview_write_continue(fv, addr, attrs, buf, len,
                                     addr1, l, mr);
3130 3131 3132 3133 3134

    return result;
}

/* Called within RCU critical section.  */
3135 3136 3137 3138
MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
                                   MemTxAttrs attrs, uint8_t *buf,
                                   int len, hwaddr addr1, hwaddr l,
                                   MemoryRegion *mr)
3139 3140 3141 3142 3143
{
    uint8_t *ptr;
    uint64_t val;
    MemTxResult result = MEMTX_OK;
    bool release_lock = false;
3144

3145
    for (;;) {
3146 3147 3148 3149
        if (!memory_access_is_direct(mr, false)) {
            /* I/O case */
            release_lock |= prepare_mmio_access(mr);
            l = memory_access_size(mr, l, addr1);
3150 3151
            result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
            stn_p(buf, l, val);
3152 3153
        } else {
            /* RAM case */
3154
            ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
            memcpy(buf, ptr, l);
        }

        if (release_lock) {
            qemu_mutex_unlock_iothread();
            release_lock = false;
        }

        len -= l;
        buf += l;
        addr += l;
3166 3167 3168 3169 3170 3171

        if (!len) {
            break;
        }

        l = len;
3172
        mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3173 3174 3175 3176 3177
    }

    return result;
}

3178 3179 3180
/* Called from RCU critical section.  */
static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
                                 MemTxAttrs attrs, uint8_t *buf, int len)
3181 3182 3183 3184
{
    hwaddr l;
    hwaddr addr1;
    MemoryRegion *mr;
3185

3186
    l = len;
3187
    mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3188 3189
    return flatview_read_continue(fv, addr, attrs, buf, len,
                                  addr1, l, mr);
A
Avi Kivity 已提交
3190 3191
}

3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
                                    MemTxAttrs attrs, uint8_t *buf, int len)
{
    MemTxResult result = MEMTX_OK;
    FlatView *fv;

    if (len > 0) {
        rcu_read_lock();
        fv = address_space_to_flatview(as);
        result = flatview_read(fv, addr, attrs, buf, len);
        rcu_read_unlock();
    }

    return result;
}

3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
                                MemTxAttrs attrs,
                                const uint8_t *buf, int len)
{
    MemTxResult result = MEMTX_OK;
    FlatView *fv;

    if (len > 0) {
        rcu_read_lock();
        fv = address_space_to_flatview(as);
        result = flatview_write(fv, addr, attrs, buf, len);
        rcu_read_unlock();
    }

    return result;
}

3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
                             uint8_t *buf, int len, bool is_write)
{
    if (is_write) {
        return address_space_write(as, addr, attrs, buf, len);
    } else {
        return address_space_read_full(as, addr, attrs, buf, len);
    }
}

A
Avi Kivity 已提交
3235
void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
A
Avi Kivity 已提交
3236 3237
                            int len, int is_write)
{
3238 3239
    address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
                     buf, len, is_write);
A
Avi Kivity 已提交
3240 3241
}

3242 3243 3244 3245 3246
enum write_rom_type {
    WRITE_DATA,
    FLUSH_CACHE,
};

3247
static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
3248
    hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
B
bellard 已提交
3249
{
3250
    hwaddr l;
B
bellard 已提交
3251
    uint8_t *ptr;
3252
    hwaddr addr1;
3253
    MemoryRegion *mr;
3254

3255
    rcu_read_lock();
B
bellard 已提交
3256
    while (len > 0) {
3257
        l = len;
3258 3259
        mr = address_space_translate(as, addr, &addr1, &l, true,
                                     MEMTXATTRS_UNSPECIFIED);
3260

3261 3262
        if (!(memory_region_is_ram(mr) ||
              memory_region_is_romd(mr))) {
3263
            l = memory_access_size(mr, l, addr1);
B
bellard 已提交
3264 3265
        } else {
            /* ROM/RAM case */
3266
            ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3267 3268 3269
            switch (type) {
            case WRITE_DATA:
                memcpy(ptr, buf, l);
3270
                invalidate_and_set_dirty(mr, addr1, l);
3271 3272 3273 3274 3275
                break;
            case FLUSH_CACHE:
                flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
                break;
            }
B
bellard 已提交
3276 3277 3278 3279 3280
        }
        len -= l;
        buf += l;
        addr += l;
    }
3281
    rcu_read_unlock();
B
bellard 已提交
3282 3283
}

3284
/* used for ROM loading : can write in RAM and ROM */
3285
void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
3286 3287
                                   const uint8_t *buf, int len)
{
3288
    cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
}

void cpu_flush_icache_range(hwaddr start, int len)
{
    /*
     * This function should do the same thing as an icache flush that was
     * triggered from within the guest. For TCG we are always cache coherent,
     * so there is no need to flush anything. For KVM / Xen we need to flush
     * the host's instruction cache at least.
     */
    if (tcg_enabled()) {
        return;
    }

3303 3304
    cpu_physical_memory_write_rom_internal(&address_space_memory,
                                           start, NULL, len, FLUSH_CACHE);
3305 3306
}

3307
typedef struct {
3308
    MemoryRegion *mr;
3309
    void *buffer;
A
Avi Kivity 已提交
3310 3311
    hwaddr addr;
    hwaddr len;
F
Fam Zheng 已提交
3312
    bool in_use;
3313 3314 3315 3316
} BounceBuffer;

static BounceBuffer bounce;

3317
typedef struct MapClient {
3318
    QEMUBH *bh;
B
Blue Swirl 已提交
3319
    QLIST_ENTRY(MapClient) link;
3320 3321
} MapClient;

3322
QemuMutex map_client_list_lock;
B
Blue Swirl 已提交
3323 3324
static QLIST_HEAD(map_client_list, MapClient) map_client_list
    = QLIST_HEAD_INITIALIZER(map_client_list);
3325

3326 3327 3328 3329 3330 3331
static void cpu_unregister_map_client_do(MapClient *client)
{
    QLIST_REMOVE(client, link);
    g_free(client);
}

3332 3333 3334 3335 3336 3337
static void cpu_notify_map_clients_locked(void)
{
    MapClient *client;

    while (!QLIST_EMPTY(&map_client_list)) {
        client = QLIST_FIRST(&map_client_list);
3338 3339
        qemu_bh_schedule(client->bh);
        cpu_unregister_map_client_do(client);
3340 3341 3342
    }
}

3343
void cpu_register_map_client(QEMUBH *bh)
3344
{
3345
    MapClient *client = g_malloc(sizeof(*client));
3346

3347
    qemu_mutex_lock(&map_client_list_lock);
3348
    client->bh = bh;
B
Blue Swirl 已提交
3349
    QLIST_INSERT_HEAD(&map_client_list, client, link);
3350 3351 3352
    if (!atomic_read(&bounce.in_use)) {
        cpu_notify_map_clients_locked();
    }
3353
    qemu_mutex_unlock(&map_client_list_lock);
3354 3355
}

3356
void cpu_exec_init_all(void)
3357
{
3358
    qemu_mutex_init(&ram_list.mutex);
3359 3360 3361 3362 3363 3364 3365 3366
    /* The data structures we set up here depend on knowing the page size,
     * so no more changes can be made after this point.
     * In an ideal world, nothing we did before we had finished the
     * machine setup would care about the target page size, and we could
     * do this much later, rather than requiring board models to state
     * up front what their requirements are.
     */
    finalize_target_page_bits();
3367
    io_mem_init();
3368
    memory_map_init();
3369
    qemu_mutex_init(&map_client_list_lock);
3370 3371
}

3372
void cpu_unregister_map_client(QEMUBH *bh)
3373 3374 3375
{
    MapClient *client;

3376 3377 3378 3379 3380 3381
    qemu_mutex_lock(&map_client_list_lock);
    QLIST_FOREACH(client, &map_client_list, link) {
        if (client->bh == bh) {
            cpu_unregister_map_client_do(client);
            break;
        }
3382
    }
3383
    qemu_mutex_unlock(&map_client_list_lock);
3384 3385 3386 3387
}

static void cpu_notify_map_clients(void)
{
3388
    qemu_mutex_lock(&map_client_list_lock);
3389
    cpu_notify_map_clients_locked();
3390
    qemu_mutex_unlock(&map_client_list_lock);
3391 3392
}

3393
static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3394
                                  bool is_write, MemTxAttrs attrs)
3395
{
3396
    MemoryRegion *mr;
3397 3398 3399 3400
    hwaddr l, xlat;

    while (len > 0) {
        l = len;
3401
        mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3402 3403
        if (!memory_access_is_direct(mr, is_write)) {
            l = memory_access_size(mr, l, addr);
3404
            if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
                return false;
            }
        }

        len -= l;
        addr += l;
    }
    return true;
}

3415
bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3416 3417
                                int len, bool is_write,
                                MemTxAttrs attrs)
3418
{
3419 3420 3421 3422 3423
    FlatView *fv;
    bool result;

    rcu_read_lock();
    fv = address_space_to_flatview(as);
3424
    result = flatview_access_valid(fv, addr, len, is_write, attrs);
3425 3426
    rcu_read_unlock();
    return result;
3427 3428
}

3429
static hwaddr
3430
flatview_extend_translation(FlatView *fv, hwaddr addr,
3431 3432 3433
                            hwaddr target_len,
                            MemoryRegion *mr, hwaddr base, hwaddr len,
                            bool is_write, MemTxAttrs attrs)
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
{
    hwaddr done = 0;
    hwaddr xlat;
    MemoryRegion *this_mr;

    for (;;) {
        target_len -= len;
        addr += len;
        done += len;
        if (target_len == 0) {
            return done;
        }

        len = target_len;
3448
        this_mr = flatview_translate(fv, addr, &xlat,
3449
                                     &len, is_write, attrs);
3450 3451 3452 3453 3454 3455
        if (this_mr != mr || xlat != base + done) {
            return done;
        }
    }
}

3456 3457 3458 3459
/* Map a physical memory region into a host virtual address.
 * May map a subset of the requested range, given by and returned in *plen.
 * May return NULL if resources needed to perform the mapping are exhausted.
 * Use only for reads OR writes - not for read-modify-write operations.
3460 3461
 * Use cpu_register_map_client() to know when retrying the map operation is
 * likely to succeed.
3462
 */
A
Avi Kivity 已提交
3463
void *address_space_map(AddressSpace *as,
A
Avi Kivity 已提交
3464 3465
                        hwaddr addr,
                        hwaddr *plen,
3466 3467
                        bool is_write,
                        MemTxAttrs attrs)
3468
{
A
Avi Kivity 已提交
3469
    hwaddr len = *plen;
3470 3471
    hwaddr l, xlat;
    MemoryRegion *mr;
3472
    void *ptr;
3473
    FlatView *fv;
3474

3475 3476 3477
    if (len == 0) {
        return NULL;
    }
3478

3479
    l = len;
3480
    rcu_read_lock();
3481
    fv = address_space_to_flatview(as);
3482
    mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3483

3484
    if (!memory_access_is_direct(mr, is_write)) {
F
Fam Zheng 已提交
3485
        if (atomic_xchg(&bounce.in_use, true)) {
3486
            rcu_read_unlock();
3487
            return NULL;
3488
        }
3489 3490 3491
        /* Avoid unbounded allocations */
        l = MIN(l, TARGET_PAGE_SIZE);
        bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3492 3493
        bounce.addr = addr;
        bounce.len = l;
3494 3495 3496

        memory_region_ref(mr);
        bounce.mr = mr;
3497
        if (!is_write) {
3498
            flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3499
                               bounce.buffer, l);
3500
        }
3501

3502
        rcu_read_unlock();
3503 3504 3505 3506 3507
        *plen = l;
        return bounce.buffer;
    }


3508
    memory_region_ref(mr);
3509
    *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3510
                                        l, is_write, attrs);
3511
    ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3512 3513 3514
    rcu_read_unlock();

    return ptr;
3515 3516
}

A
Avi Kivity 已提交
3517
/* Unmaps a memory region previously mapped by address_space_map().
3518 3519 3520
 * Will also mark the memory as dirty if is_write == 1.  access_len gives
 * the amount of memory that was actually read or written by the caller.
 */
A
Avi Kivity 已提交
3521 3522
void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
                         int is_write, hwaddr access_len)
3523 3524
{
    if (buffer != bounce.buffer) {
3525 3526 3527
        MemoryRegion *mr;
        ram_addr_t addr1;

3528
        mr = memory_region_from_host(buffer, &addr1);
3529
        assert(mr != NULL);
3530
        if (is_write) {
3531
            invalidate_and_set_dirty(mr, addr1, access_len);
3532
        }
3533
        if (xen_enabled()) {
J
Jan Kiszka 已提交
3534
            xen_invalidate_map_cache_entry(buffer);
A
Anthony PERARD 已提交
3535
        }
3536
        memory_region_unref(mr);
3537 3538 3539
        return;
    }
    if (is_write) {
3540 3541
        address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
                            bounce.buffer, access_len);
3542
    }
3543
    qemu_vfree(bounce.buffer);
3544
    bounce.buffer = NULL;
3545
    memory_region_unref(bounce.mr);
F
Fam Zheng 已提交
3546
    atomic_mb_set(&bounce.in_use, false);
3547
    cpu_notify_map_clients();
3548
}
B
bellard 已提交
3549

A
Avi Kivity 已提交
3550 3551
void *cpu_physical_memory_map(hwaddr addr,
                              hwaddr *plen,
A
Avi Kivity 已提交
3552 3553
                              int is_write)
{
3554 3555
    return address_space_map(&address_space_memory, addr, plen, is_write,
                             MEMTXATTRS_UNSPECIFIED);
A
Avi Kivity 已提交
3556 3557
}

A
Avi Kivity 已提交
3558 3559
void cpu_physical_memory_unmap(void *buffer, hwaddr len,
                               int is_write, hwaddr access_len)
A
Avi Kivity 已提交
3560 3561 3562 3563
{
    return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
}

P
Paolo Bonzini 已提交
3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
#define ARG1_DECL                AddressSpace *as
#define ARG1                     as
#define SUFFIX
#define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
#define IS_DIRECT(mr, is_write)  memory_access_is_direct(mr, is_write)
#define MAP_RAM(mr, ofs)         qemu_map_ram_ptr((mr)->ram_block, ofs)
#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
#define RCU_READ_LOCK(...)       rcu_read_lock()
#define RCU_READ_UNLOCK(...)     rcu_read_unlock()
#include "memory_ldst.inc.c"
3574

P
Paolo Bonzini 已提交
3575 3576 3577 3578 3579 3580
int64_t address_space_cache_init(MemoryRegionCache *cache,
                                 AddressSpace *as,
                                 hwaddr addr,
                                 hwaddr len,
                                 bool is_write)
{
3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
    AddressSpaceDispatch *d;
    hwaddr l;
    MemoryRegion *mr;

    assert(len > 0);

    l = len;
    cache->fv = address_space_get_flatview(as);
    d = flatview_to_dispatch(cache->fv);
    cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);

    mr = cache->mrs.mr;
    memory_region_ref(mr);
    if (memory_access_is_direct(mr, is_write)) {
3595 3596 3597 3598
        /* We don't care about the memory attributes here as we're only
         * doing this if we found actual RAM, which behaves the same
         * regardless of attributes; so UNSPECIFIED is fine.
         */
3599
        l = flatview_extend_translation(cache->fv, addr, len, mr,
3600 3601
                                        cache->xlat, l, is_write,
                                        MEMTXATTRS_UNSPECIFIED);
3602 3603 3604 3605 3606 3607 3608 3609
        cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
    } else {
        cache->ptr = NULL;
    }

    cache->len = l;
    cache->is_write = is_write;
    return l;
P
Paolo Bonzini 已提交
3610 3611 3612 3613 3614 3615
}

void address_space_cache_invalidate(MemoryRegionCache *cache,
                                    hwaddr addr,
                                    hwaddr access_len)
{
3616 3617 3618 3619
    assert(cache->is_write);
    if (likely(cache->ptr)) {
        invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
    }
P
Paolo Bonzini 已提交
3620 3621 3622 3623
}

void address_space_cache_destroy(MemoryRegionCache *cache)
{
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
    if (!cache->mrs.mr) {
        return;
    }

    if (xen_enabled()) {
        xen_invalidate_map_cache_entry(cache->ptr);
    }
    memory_region_unref(cache->mrs.mr);
    flatview_unref(cache->fv);
    cache->mrs.mr = NULL;
    cache->fv = NULL;
}

/* Called from RCU critical section.  This function has the same
 * semantics as address_space_translate, but it only works on a
 * predefined range of a MemoryRegion that was mapped with
 * address_space_cache_init.
 */
static inline MemoryRegion *address_space_translate_cached(
    MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3644
    hwaddr *plen, bool is_write, MemTxAttrs attrs)
3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
{
    MemoryRegionSection section;
    MemoryRegion *mr;
    IOMMUMemoryRegion *iommu_mr;
    AddressSpace *target_as;

    assert(!cache->ptr);
    *xlat = addr + cache->xlat;

    mr = cache->mrs.mr;
    iommu_mr = memory_region_get_iommu(mr);
    if (!iommu_mr) {
        /* MMIO region.  */
        return mr;
    }

    section = address_space_translate_iommu(iommu_mr, xlat, plen,
                                            NULL, is_write, true,
3663
                                            &target_as, attrs);
3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677
    return section.mr;
}

/* Called from RCU critical section. address_space_read_cached uses this
 * out of line function when the target is an MMIO or IOMMU region.
 */
void
address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
                                   void *buf, int len)
{
    hwaddr addr1, l;
    MemoryRegion *mr;

    l = len;
3678 3679
    mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
                                        MEMTXATTRS_UNSPECIFIED);
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
    flatview_read_continue(cache->fv,
                           addr, MEMTXATTRS_UNSPECIFIED, buf, len,
                           addr1, l, mr);
}

/* Called from RCU critical section. address_space_write_cached uses this
 * out of line function when the target is an MMIO or IOMMU region.
 */
void
address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
                                    const void *buf, int len)
{
    hwaddr addr1, l;
    MemoryRegion *mr;

    l = len;
3696 3697
    mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
                                        MEMTXATTRS_UNSPECIFIED);
3698 3699 3700
    flatview_write_continue(cache->fv,
                            addr, MEMTXATTRS_UNSPECIFIED, buf, len,
                            addr1, l, mr);
P
Paolo Bonzini 已提交
3701 3702 3703 3704
}

#define ARG1_DECL                MemoryRegionCache *cache
#define ARG1                     cache
3705 3706 3707 3708
#define SUFFIX                   _cached_slow
#define TRANSLATE(...)           address_space_translate_cached(cache, __VA_ARGS__)
#define IS_DIRECT(mr, is_write)  memory_access_is_direct(mr, is_write)
#define MAP_RAM(mr, ofs)         (cache->ptr + (ofs - cache->xlat))
P
Paolo Bonzini 已提交
3709
#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3710 3711
#define RCU_READ_LOCK()          ((void)0)
#define RCU_READ_UNLOCK()        ((void)0)
P
Paolo Bonzini 已提交
3712 3713
#include "memory_ldst.inc.c"

3714
/* virtual memory access for debug (includes writing to ROM) */
3715
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3716
                        uint8_t *buf, int len, int is_write)
B
bellard 已提交
3717 3718
{
    int l;
A
Avi Kivity 已提交
3719
    hwaddr phys_addr;
3720
    target_ulong page;
B
bellard 已提交
3721

3722
    cpu_synchronize_state(cpu);
B
bellard 已提交
3723
    while (len > 0) {
3724 3725 3726
        int asidx;
        MemTxAttrs attrs;

B
bellard 已提交
3727
        page = addr & TARGET_PAGE_MASK;
3728 3729
        phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
        asidx = cpu_asidx_from_attrs(cpu, attrs);
B
bellard 已提交
3730 3731 3732 3733 3734 3735
        /* if no physical page mapped, return an error */
        if (phys_addr == -1)
            return -1;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
3736
        phys_addr += (addr & ~TARGET_PAGE_MASK);
3737
        if (is_write) {
3738 3739
            cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
                                          phys_addr, buf, l);
3740
        } else {
3741 3742
            address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
                             MEMTXATTRS_UNSPECIFIED,
3743
                             buf, l, 0);
3744
        }
B
bellard 已提交
3745 3746 3747 3748 3749 3750
        len -= l;
        buf += l;
        addr += l;
    }
    return 0;
}
3751 3752 3753 3754 3755

/*
 * Allows code that needs to deal with migration bitmaps etc to still be built
 * target independent.
 */
3756
size_t qemu_target_page_size(void)
3757
{
3758
    return TARGET_PAGE_SIZE;
3759 3760
}

3761 3762 3763 3764 3765 3766 3767 3768 3769
int qemu_target_page_bits(void)
{
    return TARGET_PAGE_BITS;
}

int qemu_target_page_bits_min(void)
{
    return TARGET_PAGE_BITS_MIN;
}
P
Paul Brook 已提交
3770
#endif
B
bellard 已提交
3771

3772 3773 3774 3775
/*
 * A helper function for the _utterly broken_ virtio device model to find out if
 * it's running on a big endian machine. Don't do this at home kids!
 */
3776 3777
bool target_words_bigendian(void);
bool target_words_bigendian(void)
3778 3779 3780 3781 3782 3783 3784 3785
{
#if defined(TARGET_WORDS_BIGENDIAN)
    return true;
#else
    return false;
#endif
}

3786
#ifndef CONFIG_USER_ONLY
A
Avi Kivity 已提交
3787
bool cpu_physical_memory_is_io(hwaddr phys_addr)
3788
{
3789
    MemoryRegion*mr;
3790
    hwaddr l = 1;
3791
    bool res;
3792

3793
    rcu_read_lock();
3794
    mr = address_space_translate(&address_space_memory,
3795 3796
                                 phys_addr, &phys_addr, &l, false,
                                 MEMTXATTRS_UNSPECIFIED);
3797

3798 3799 3800
    res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
    rcu_read_unlock();
    return res;
3801
}
3802

3803
int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3804 3805
{
    RAMBlock *block;
3806
    int ret = 0;
3807

M
Mike Day 已提交
3808
    rcu_read_lock();
P
Peter Xu 已提交
3809
    RAMBLOCK_FOREACH(block) {
3810 3811 3812 3813 3814
        ret = func(block->idstr, block->host, block->offset,
                   block->used_length, opaque);
        if (ret) {
            break;
        }
3815
    }
M
Mike Day 已提交
3816
    rcu_read_unlock();
3817
    return ret;
3818
}
3819

3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
int qemu_ram_foreach_migratable_block(RAMBlockIterFunc func, void *opaque)
{
    RAMBlock *block;
    int ret = 0;

    rcu_read_lock();
    RAMBLOCK_FOREACH(block) {
        if (!qemu_ram_is_migratable(block)) {
            continue;
        }
        ret = func(block->idstr, block->host, block->offset,
                   block->used_length, opaque);
        if (ret) {
            break;
        }
    }
    rcu_read_unlock();
    return ret;
}

3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
/*
 * Unmap pages of memory from start to start+length such that
 * they a) read as 0, b) Trigger whatever fault mechanism
 * the OS provides for postcopy.
 * The pages must be unmapped by the end of the function.
 * Returns: 0 on success, none-0 on failure
 *
 */
int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
{
    int ret = -1;

    uint8_t *host_startaddr = rb->host + start;

    if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
        error_report("ram_block_discard_range: Unaligned start address: %p",
                     host_startaddr);
        goto err;
    }

    if ((start + length) <= rb->used_length) {
3861
        bool need_madvise, need_fallocate;
3862 3863 3864 3865 3866 3867 3868 3869 3870
        uint8_t *host_endaddr = host_startaddr + length;
        if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
            error_report("ram_block_discard_range: Unaligned end address: %p",
                         host_endaddr);
            goto err;
        }

        errno = ENOTSUP; /* If we are missing MADVISE etc */

3871 3872 3873 3874 3875 3876 3877 3878 3879 3880
        /* The logic here is messy;
         *    madvise DONTNEED fails for hugepages
         *    fallocate works on hugepages and shmem
         */
        need_madvise = (rb->page_size == qemu_host_page_size);
        need_fallocate = rb->fd != -1;
        if (need_fallocate) {
            /* For a file, this causes the area of the file to be zero'd
             * if read, and for hugetlbfs also causes it to be unmapped
             * so a userfault will trigger.
3881 3882 3883 3884
             */
#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
            ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
                            start, length);
3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897
            if (ret) {
                ret = -errno;
                error_report("ram_block_discard_range: Failed to fallocate "
                             "%s:%" PRIx64 " +%zx (%d)",
                             rb->idstr, start, length, ret);
                goto err;
            }
#else
            ret = -ENOSYS;
            error_report("ram_block_discard_range: fallocate not available/file"
                         "%s:%" PRIx64 " +%zx (%d)",
                         rb->idstr, start, length, ret);
            goto err;
3898 3899
#endif
        }
3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
        if (need_madvise) {
            /* For normal RAM this causes it to be unmapped,
             * for shared memory it causes the local mapping to disappear
             * and to fall back on the file contents (which we just
             * fallocate'd away).
             */
#if defined(CONFIG_MADVISE)
            ret =  madvise(host_startaddr, length, MADV_DONTNEED);
            if (ret) {
                ret = -errno;
                error_report("ram_block_discard_range: Failed to discard range "
                             "%s:%" PRIx64 " +%zx (%d)",
                             rb->idstr, start, length, ret);
                goto err;
            }
#else
            ret = -ENOSYS;
            error_report("ram_block_discard_range: MADVISE not available"
3918 3919
                         "%s:%" PRIx64 " +%zx (%d)",
                         rb->idstr, start, length, ret);
3920 3921
            goto err;
#endif
3922
        }
3923 3924
        trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
                                      need_madvise, need_fallocate, ret);
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
    } else {
        error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
                     "/%zx/" RAM_ADDR_FMT")",
                     rb->idstr, start, length, rb->used_length);
    }

err:
    return ret;
}

3935
#endif
Y
Yang Zhong 已提交
3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948

void page_size_init(void)
{
    /* NOTE: we can always suppose that qemu_host_page_size >=
       TARGET_PAGE_SIZE */
    if (qemu_host_page_size == 0) {
        qemu_host_page_size = qemu_real_host_page_size;
    }
    if (qemu_host_page_size < TARGET_PAGE_SIZE) {
        qemu_host_page_size = TARGET_PAGE_SIZE;
    }
    qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
}
3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032

#if !defined(CONFIG_USER_ONLY)

static void mtree_print_phys_entries(fprintf_function mon, void *f,
                                     int start, int end, int skip, int ptr)
{
    if (start == end - 1) {
        mon(f, "\t%3d      ", start);
    } else {
        mon(f, "\t%3d..%-3d ", start, end - 1);
    }
    mon(f, " skip=%d ", skip);
    if (ptr == PHYS_MAP_NODE_NIL) {
        mon(f, " ptr=NIL");
    } else if (!skip) {
        mon(f, " ptr=#%d", ptr);
    } else {
        mon(f, " ptr=[%d]", ptr);
    }
    mon(f, "\n");
}

#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
                           int128_sub((size), int128_one())) : 0)

void mtree_print_dispatch(fprintf_function mon, void *f,
                          AddressSpaceDispatch *d, MemoryRegion *root)
{
    int i;

    mon(f, "  Dispatch\n");
    mon(f, "    Physical sections\n");

    for (i = 0; i < d->map.sections_nb; ++i) {
        MemoryRegionSection *s = d->map.sections + i;
        const char *names[] = { " [unassigned]", " [not dirty]",
                                " [ROM]", " [watch]" };

        mon(f, "      #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
            i,
            s->offset_within_address_space,
            s->offset_within_address_space + MR_SIZE(s->mr->size),
            s->mr->name ? s->mr->name : "(noname)",
            i < ARRAY_SIZE(names) ? names[i] : "",
            s->mr == root ? " [ROOT]" : "",
            s == d->mru_section ? " [MRU]" : "",
            s->mr->is_iommu ? " [iommu]" : "");

        if (s->mr->alias) {
            mon(f, " alias=%s", s->mr->alias->name ?
                    s->mr->alias->name : "noname");
        }
        mon(f, "\n");
    }

    mon(f, "    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
               P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
    for (i = 0; i < d->map.nodes_nb; ++i) {
        int j, jprev;
        PhysPageEntry prev;
        Node *n = d->map.nodes + i;

        mon(f, "      [%d]\n", i);

        for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
            PhysPageEntry *pe = *n + j;

            if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
                continue;
            }

            mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);

            jprev = j;
            prev = *pe;
        }

        if (jprev != ARRAY_SIZE(*n)) {
            mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
        }
    }
}

#endif