op_helper.c 42.1 KB
Newer Older
B
bellard 已提交
1 2
/*
 *  ARM helper routines
3
 *
P
pbrook 已提交
4
 *  Copyright (c) 2005-2007 CodeSourcery, LLC
B
bellard 已提交
5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
B
bellard 已提交
18
 */
P
Peter Maydell 已提交
19
#include "qemu/osdep.h"
20
#include "qemu/log.h"
21
#include "qemu/main-loop.h"
B
Blue Swirl 已提交
22
#include "cpu.h"
23
#include "exec/helper-proto.h"
24
#include "internals.h"
25
#include "exec/exec-all.h"
P
Paolo Bonzini 已提交
26
#include "exec/cpu_ldst.h"
B
bellard 已提交
27

P
pbrook 已提交
28 29 30
#define SIGNBIT (uint32_t)0x80000000
#define SIGNBIT64 ((uint64_t)1 << 63)

31 32
static void raise_exception(CPUARMState *env, uint32_t excp,
                            uint32_t syndrome, uint32_t target_el)
B
bellard 已提交
33
{
34
    CPUState *cs = CPU(arm_env_get_cpu(env));
35

36 37 38 39
    assert(!excp_is_internal(excp));
    cs->exception_index = excp;
    env->exception.syndrome = syndrome;
    env->exception.target_el = target_el;
40
    cpu_loop_exit(cs);
B
bellard 已提交
41 42
}

43 44 45 46 47 48 49 50 51 52 53 54 55 56
static int exception_target_el(CPUARMState *env)
{
    int target_el = MAX(1, arm_current_el(env));

    /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL
     * to EL3 in this case.
     */
    if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
        target_el = 3;
    }

    return target_el;
}

57 58
uint32_t HELPER(neon_tbl)(uint32_t ireg, uint32_t def, void *vn,
                          uint32_t maxindex)
P
pbrook 已提交
59
{
60 61 62
    uint32_t val, shift;
    uint64_t *table = vn;

P
pbrook 已提交
63 64
    val = 0;
    for (shift = 0; shift < 32; shift += 8) {
65
        uint32_t index = (ireg >> shift) & 0xff;
P
pbrook 已提交
66
        if (index < maxindex) {
67
            uint32_t tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff;
P
pbrook 已提交
68 69
            val |= tmp << shift;
        } else {
P
pbrook 已提交
70
            val |= def & (0xff << shift);
P
pbrook 已提交
71 72
        }
    }
P
pbrook 已提交
73
    return val;
P
pbrook 已提交
74 75
}

B
bellard 已提交
76 77
#if !defined(CONFIG_USER_ONLY)

78 79
static inline uint32_t merge_syn_data_abort(uint32_t template_syn,
                                            unsigned int target_el,
80
                                            bool same_el, bool ea,
81
                                            bool s1ptw, bool is_write,
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
                                            int fsc)
{
    uint32_t syn;

    /* ISV is only set for data aborts routed to EL2 and
     * never for stage-1 page table walks faulting on stage 2.
     *
     * Furthermore, ISV is only set for certain kinds of load/stores.
     * If the template syndrome does not have ISV set, we should leave
     * it cleared.
     *
     * See ARMv8 specs, D7-1974:
     * ISS encoding for an exception from a Data Abort, the
     * ISV field.
     */
    if (!(template_syn & ARM_EL_ISV) || target_el != 2 || s1ptw) {
        syn = syn_data_abort_no_iss(same_el,
99
                                    ea, 0, s1ptw, is_write, fsc);
100 101 102 103 104 105 106
    } else {
        /* Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template
         * syndrome created at translation time.
         * Now we create the runtime syndrome with the remaining fields.
         */
        syn = syn_data_abort_with_iss(same_el,
                                      0, 0, 0, 0, 0,
107
                                      ea, 0, s1ptw, is_write, fsc,
108 109 110 111 112 113 114
                                      false);
        /* Merge the runtime syndrome with the template syndrome.  */
        syn |= template_syn;
    }
    return syn;
}

115
static void deliver_fault(ARMCPU *cpu, vaddr addr, MMUAccessType access_type,
116
                          int mmu_idx, ARMMMUFaultInfo *fi)
117 118 119 120
{
    CPUARMState *env = &cpu->env;
    int target_el;
    bool same_el;
121 122
    uint32_t syn, exc, fsr, fsc;
    ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx);
123 124 125 126 127 128 129 130

    target_el = exception_target_el(env);
    if (fi->stage2) {
        target_el = 2;
        env->cp15.hpfar_el2 = extract64(fi->s2addr, 12, 47) << 4;
    }
    same_el = (arm_current_el(env) == target_el);

131 132 133 134 135 136 137 138 139 140 141 142 143
    if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
        arm_s1_regime_using_lpae_format(env, arm_mmu_idx)) {
        /* LPAE format fault status register : bottom 6 bits are
         * status code in the same form as needed for syndrome
         */
        fsr = arm_fi_to_lfsc(fi);
        fsc = extract32(fsr, 0, 6);
    } else {
        fsr = arm_fi_to_sfsc(fi);
        /* Short format FSR : this fault will never actually be reported
         * to an EL that uses a syndrome register. Use a (currently)
         * reserved FSR code in case the constructed syndrome does leak
         * into the guest somehow.
144
         */
145
        fsc = 0x3f;
146 147 148
    }

    if (access_type == MMU_INST_FETCH) {
149
        syn = syn_insn_abort(same_el, fi->ea, fi->s1ptw, fsc);
150 151 152
        exc = EXCP_PREFETCH_ABORT;
    } else {
        syn = merge_syn_data_abort(env->exception.syndrome, target_el,
153
                                   same_el, fi->ea, fi->s1ptw,
154 155 156 157 158 159 160 161 162 163 164 165 166 167
                                   access_type == MMU_DATA_STORE,
                                   fsc);
        if (access_type == MMU_DATA_STORE
            && arm_feature(env, ARM_FEATURE_V6)) {
            fsr |= (1 << 11);
        }
        exc = EXCP_DATA_ABORT;
    }

    env->exception.vaddress = addr;
    env->exception.fsr = fsr;
    raise_exception(env, exc, syn, target_el);
}

B
bellard 已提交
168
/* try to fill the TLB and return an exception if error. If retaddr is
169 170 171
 * NULL, it means that the function was called in C code (i.e. not
 * from generated code or from helper.c)
 */
172 173
void tlb_fill(CPUState *cs, target_ulong addr, int size,
              MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
B
bellard 已提交
174
{
175
    bool ret;
176
    ARMMMUFaultInfo fi = {};
B
bellard 已提交
177

178
    ret = arm_tlb_fill(cs, addr, access_type, mmu_idx, &fi);
179
    if (unlikely(ret)) {
180 181
        ARMCPU *cpu = ARM_CPU(cs);

182
        /* now we have a real cpu fault */
183
        cpu_restore_state(cs, retaddr, true);
184

185
        deliver_fault(cpu, addr, access_type, mmu_idx, &fi);
B
bellard 已提交
186 187
    }
}
188 189

/* Raise a data fault alignment exception for the specified virtual address */
190 191 192
void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
                                 MMUAccessType access_type,
                                 int mmu_idx, uintptr_t retaddr)
193 194
{
    ARMCPU *cpu = ARM_CPU(cs);
195
    ARMMMUFaultInfo fi = {};
196

197
    /* now we have a real cpu fault */
198
    cpu_restore_state(cs, retaddr, true);
199

200 201
    fi.type = ARMFault_Alignment;
    deliver_fault(cpu, vaddr, access_type, mmu_idx, &fi);
202 203
}

204 205 206 207 208 209 210 211 212 213 214 215 216
/* arm_cpu_do_transaction_failed: handle a memory system error response
 * (eg "no device/memory present at address") by raising an external abort
 * exception
 */
void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
                                   vaddr addr, unsigned size,
                                   MMUAccessType access_type,
                                   int mmu_idx, MemTxAttrs attrs,
                                   MemTxResult response, uintptr_t retaddr)
{
    ARMCPU *cpu = ARM_CPU(cs);
    ARMMMUFaultInfo fi = {};

217
    /* now we have a real cpu fault */
218
    cpu_restore_state(cs, retaddr, true);
219

220
    fi.ea = arm_extabort_type(response);
221 222
    fi.type = ARMFault_SyncExternal;
    deliver_fault(cpu, addr, access_type, mmu_idx, &fi);
223 224
}

225
#endif /* !defined(CONFIG_USER_ONLY) */
P
pbrook 已提交
226

227
uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
P
pbrook 已提交
228 229 230 231 232 233 234
{
    uint32_t res = a + b;
    if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
        env->QF = 1;
    return res;
}

235
uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
P
pbrook 已提交
236 237 238 239 240 241 242 243 244
{
    uint32_t res = a + b;
    if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
        env->QF = 1;
        res = ~(((int32_t)a >> 31) ^ SIGNBIT);
    }
    return res;
}

245
uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
P
pbrook 已提交
246 247 248 249 250 251 252 253 254
{
    uint32_t res = a - b;
    if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
        env->QF = 1;
        res = ~(((int32_t)a >> 31) ^ SIGNBIT);
    }
    return res;
}

255
uint32_t HELPER(double_saturate)(CPUARMState *env, int32_t val)
P
pbrook 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269
{
    uint32_t res;
    if (val >= 0x40000000) {
        res = ~SIGNBIT;
        env->QF = 1;
    } else if (val <= (int32_t)0xc0000000) {
        res = SIGNBIT;
        env->QF = 1;
    } else {
        res = val << 1;
    }
    return res;
}

270
uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
P
pbrook 已提交
271 272 273 274 275 276 277 278 279
{
    uint32_t res = a + b;
    if (res < a) {
        env->QF = 1;
        res = ~0;
    }
    return res;
}

280
uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
P
pbrook 已提交
281 282 283 284 285 286 287 288 289
{
    uint32_t res = a - b;
    if (res > a) {
        env->QF = 1;
        res = 0;
    }
    return res;
}

P
pbrook 已提交
290
/* Signed saturation.  */
291
static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
P
pbrook 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
{
    int32_t top;
    uint32_t mask;

    top = val >> shift;
    mask = (1u << shift) - 1;
    if (top > 0) {
        env->QF = 1;
        return mask;
    } else if (top < -1) {
        env->QF = 1;
        return ~mask;
    }
    return val;
}

/* Unsigned saturation.  */
309
static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
P
pbrook 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
{
    uint32_t max;

    max = (1u << shift) - 1;
    if (val < 0) {
        env->QF = 1;
        return 0;
    } else if (val > max) {
        env->QF = 1;
        return max;
    }
    return val;
}

/* Signed saturate.  */
325
uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
P
pbrook 已提交
326
{
327
    return do_ssat(env, x, shift);
P
pbrook 已提交
328 329 330
}

/* Dual halfword signed saturate.  */
331
uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
P
pbrook 已提交
332 333 334
{
    uint32_t res;

335 336
    res = (uint16_t)do_ssat(env, (int16_t)x, shift);
    res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
P
pbrook 已提交
337 338 339 340
    return res;
}

/* Unsigned saturate.  */
341
uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
P
pbrook 已提交
342
{
343
    return do_usat(env, x, shift);
P
pbrook 已提交
344 345 346
}

/* Dual halfword unsigned saturate.  */
347
uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
P
pbrook 已提交
348 349 350
{
    uint32_t res;

351 352
    res = (uint16_t)do_usat(env, (int16_t)x, shift);
    res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
P
pbrook 已提交
353 354
    return res;
}
P
pbrook 已提交
355

P
Paolo Bonzini 已提交
356 357 358 359 360
void HELPER(setend)(CPUARMState *env)
{
    env->uncached_cpsr ^= CPSR_E;
}

361 362 363 364 365 366 367 368 369
/* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
 * The function returns the target EL (1-3) if the instruction is to be trapped;
 * otherwise it returns 0 indicating it is not trapped.
 */
static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
{
    int cur_el = arm_current_el(env);
    uint64_t mask;

370 371 372 373 374
    if (arm_feature(env, ARM_FEATURE_M)) {
        /* M profile cores can never trap WFI/WFE. */
        return 0;
    }

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
    /* If we are currently in EL0 then we need to check if SCTLR is set up for
     * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
     */
    if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
        int target_el;

        mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
        if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
            /* Secure EL0 and Secure PL1 is at EL3 */
            target_el = 3;
        } else {
            target_el = 1;
        }

        if (!(env->cp15.sctlr_el[target_el] & mask)) {
            return target_el;
        }
    }

    /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
     * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
     * bits will be zero indicating no trap.
     */
    if (cur_el < 2 && !arm_is_secure(env)) {
        mask = (is_wfe) ? HCR_TWE : HCR_TWI;
        if (env->cp15.hcr_el2 & mask) {
            return 2;
        }
    }

    /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
    if (cur_el < 3) {
        mask = (is_wfe) ? SCR_TWE : SCR_TWI;
        if (env->cp15.scr_el3 & mask) {
            return 3;
        }
    }

    return 0;
}

416
void HELPER(wfi)(CPUARMState *env, uint32_t insn_len)
P
pbrook 已提交
417
{
418
    CPUState *cs = CPU(arm_env_get_cpu(env));
419
    int target_el = check_wfx_trap(env, false);
420

421 422 423 424 425 426 427
    if (cpu_has_work(cs)) {
        /* Don't bother to go into our "low power state" if
         * we would just wake up immediately.
         */
        return;
    }

428
    if (target_el) {
429 430 431
        env->pc -= insn_len;
        raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0, insn_len == 2),
                        target_el);
432 433
    }

434
    cs->exception_index = EXCP_HLT;
435
    cs->halted = 1;
436
    cpu_loop_exit(cs);
P
pbrook 已提交
437 438
}

439 440
void HELPER(wfe)(CPUARMState *env)
{
441 442 443
    /* This is a hint instruction that is semantically different
     * from YIELD even though we currently implement it identically.
     * Don't actually halt the CPU, just yield back to top
444 445 446
     * level loop. This is not going into a "low power state"
     * (ie halting until some event occurs), so we never take
     * a configurable trap to a different exception level.
447
     */
448 449 450 451 452 453 454 455 456 457 458 459
    HELPER(yield)(env);
}

void HELPER(yield)(CPUARMState *env)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);

    /* This is a non-trappable hint instruction that generally indicates
     * that the guest is currently busy-looping. Yield control back to the
     * top level loop so that a more deserving VCPU has a chance to run.
     */
460
    cs->exception_index = EXCP_YIELD;
461
    cpu_loop_exit(cs);
462 463
}

464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
/* Raise an internal-to-QEMU exception. This is limited to only
 * those EXCP values which are special cases for QEMU to interrupt
 * execution and not to be used for exceptions which are passed to
 * the guest (those must all have syndrome information and thus should
 * use exception_with_syndrome).
 */
void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
{
    CPUState *cs = CPU(arm_env_get_cpu(env));

    assert(excp_is_internal(excp));
    cs->exception_index = excp;
    cpu_loop_exit(cs);
}

/* Raise an exception with the specified syndrome register value */
void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
481
                                     uint32_t syndrome, uint32_t target_el)
P
pbrook 已提交
482
{
483
    raise_exception(env, excp, syndrome, target_el);
P
pbrook 已提交
484 485
}

486 487 488 489 490
/* Raise an EXCP_BKPT with the specified syndrome register value,
 * targeting the correct exception level for debug exceptions.
 */
void HELPER(exception_bkpt_insn)(CPUARMState *env, uint32_t syndrome)
{
491 492
    /* FSR will only be used if the debug target EL is AArch32. */
    env->exception.fsr = arm_debug_exception_fsr(env);
493 494 495 496 497
    /* FAR is UNKNOWN: clear vaddress to avoid potentially exposing
     * values to the guest that it shouldn't be able to see at its
     * exception/security level.
     */
    env->exception.vaddress = 0;
498 499 500
    raise_exception(env, EXCP_BKPT, syndrome, arm_debug_target_el(env));
}

501
uint32_t HELPER(cpsr_read)(CPUARMState *env)
P
pbrook 已提交
502
{
503
    return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED);
P
pbrook 已提交
504 505
}

B
Blue Swirl 已提交
506
void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
P
pbrook 已提交
507
{
508
    cpsr_write(env, val, mask, CPSRWriteByInstr);
P
pbrook 已提交
509
}
P
pbrook 已提交
510

511 512 513
/* Write the CPSR for a 32-bit exception return */
void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val)
{
514 515 516 517
    qemu_mutex_lock_iothread();
    arm_call_pre_el_change_hook(arm_env_get_cpu(env));
    qemu_mutex_unlock_iothread();

518
    cpsr_write(env, val, CPSR_ERET_MASK, CPSRWriteExceptionReturn);
519

520 521 522 523 524 525 526
    /* Generated code has already stored the new PC value, but
     * without masking out its low bits, because which bits need
     * masking depends on whether we're returning to Thumb or ARM
     * state. Do the masking now.
     */
    env->regs[15] &= (env->thumb ? ~1 : ~3);

527
    qemu_mutex_lock_iothread();
528
    arm_call_el_change_hook(arm_env_get_cpu(env));
529
    qemu_mutex_unlock_iothread();
530 531
}

P
pbrook 已提交
532
/* Access to user mode registers from privileged modes.  */
533
uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
P
pbrook 已提交
534 535 536 537
{
    uint32_t val;

    if (regno == 13) {
538
        val = env->banked_r13[BANK_USRSYS];
P
pbrook 已提交
539
    } else if (regno == 14) {
540
        val = env->banked_r14[BANK_USRSYS];
P
pbrook 已提交
541 542 543 544 545 546 547 548 549
    } else if (regno >= 8
               && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
        val = env->usr_regs[regno - 8];
    } else {
        val = env->regs[regno];
    }
    return val;
}

B
Blue Swirl 已提交
550
void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
P
pbrook 已提交
551 552
{
    if (regno == 13) {
553
        env->banked_r13[BANK_USRSYS] = val;
P
pbrook 已提交
554
    } else if (regno == 14) {
555
        env->banked_r14[BANK_USRSYS] = val;
P
pbrook 已提交
556 557 558 559 560 561 562
    } else if (regno >= 8
               && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
        env->usr_regs[regno - 8] = val;
    } else {
        env->regs[regno] = val;
    }
}
563

564 565 566 567 568 569 570 571 572 573 574
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
{
    if ((env->uncached_cpsr & CPSR_M) == mode) {
        env->regs[13] = val;
    } else {
        env->banked_r13[bank_number(mode)] = val;
    }
}

uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
{
575 576 577 578 579 580 581 582
    if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) {
        /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
         * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
         */
        raise_exception(env, EXCP_UDEF, syn_uncategorized(),
                        exception_target_el(env));
    }

583 584 585 586 587 588 589
    if ((env->uncached_cpsr & CPSR_M) == mode) {
        return env->regs[13];
    } else {
        return env->banked_r13[bank_number(mode)];
    }
}

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode,
                                      uint32_t regno)
{
    /* Raise an exception if the requested access is one of the UNPREDICTABLE
     * cases; otherwise return. This broadly corresponds to the pseudocode
     * BankedRegisterAccessValid() and SPSRAccessValid(),
     * except that we have already handled some cases at translate time.
     */
    int curmode = env->uncached_cpsr & CPSR_M;

    if (curmode == tgtmode) {
        goto undef;
    }

    if (tgtmode == ARM_CPU_MODE_USR) {
        switch (regno) {
        case 8 ... 12:
            if (curmode != ARM_CPU_MODE_FIQ) {
                goto undef;
            }
            break;
        case 13:
            if (curmode == ARM_CPU_MODE_SYS) {
                goto undef;
            }
            break;
        case 14:
            if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) {
                goto undef;
            }
            break;
        default:
            break;
        }
    }

    if (tgtmode == ARM_CPU_MODE_HYP) {
        switch (regno) {
        case 17: /* ELR_Hyp */
            if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) {
                goto undef;
            }
            break;
        default:
            if (curmode != ARM_CPU_MODE_MON) {
                goto undef;
            }
            break;
        }
    }

    return;

undef:
    raise_exception(env, EXCP_UDEF, syn_uncategorized(),
                    exception_target_el(env));
}

void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode,
                        uint32_t regno)
{
    msr_mrs_banked_exc_checks(env, tgtmode, regno);

    switch (regno) {
    case 16: /* SPSRs */
        env->banked_spsr[bank_number(tgtmode)] = value;
        break;
    case 17: /* ELR_Hyp */
        env->elr_el[2] = value;
        break;
    case 13:
        env->banked_r13[bank_number(tgtmode)] = value;
        break;
    case 14:
        env->banked_r14[bank_number(tgtmode)] = value;
        break;
    case 8 ... 12:
        switch (tgtmode) {
        case ARM_CPU_MODE_USR:
            env->usr_regs[regno - 8] = value;
            break;
        case ARM_CPU_MODE_FIQ:
            env->fiq_regs[regno - 8] = value;
            break;
        default:
            g_assert_not_reached();
        }
        break;
    default:
        g_assert_not_reached();
    }
}

uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno)
{
    msr_mrs_banked_exc_checks(env, tgtmode, regno);

    switch (regno) {
    case 16: /* SPSRs */
        return env->banked_spsr[bank_number(tgtmode)];
    case 17: /* ELR_Hyp */
        return env->elr_el[2];
    case 13:
        return env->banked_r13[bank_number(tgtmode)];
    case 14:
        return env->banked_r14[bank_number(tgtmode)];
    case 8 ... 12:
        switch (tgtmode) {
        case ARM_CPU_MODE_USR:
            return env->usr_regs[regno - 8];
        case ARM_CPU_MODE_FIQ:
            return env->fiq_regs[regno - 8];
        default:
            g_assert_not_reached();
        }
    default:
        g_assert_not_reached();
    }
}

710 711
void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome,
                                 uint32_t isread)
712 713
{
    const ARMCPRegInfo *ri = rip;
714
    int target_el;
715 716 717

    if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
        && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
718
        raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
719 720 721 722 723 724
    }

    if (!ri->accessfn) {
        return;
    }

725
    switch (ri->accessfn(env, ri, isread)) {
726 727 728
    case CP_ACCESS_OK:
        return;
    case CP_ACCESS_TRAP:
729 730 731 732 733 734
        target_el = exception_target_el(env);
        break;
    case CP_ACCESS_TRAP_EL2:
        /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
         * a bug in the access function.
         */
735
        assert(!arm_is_secure(env) && arm_current_el(env) != 3);
736 737 738 739
        target_el = 2;
        break;
    case CP_ACCESS_TRAP_EL3:
        target_el = 3;
740
        break;
741
    case CP_ACCESS_TRAP_UNCATEGORIZED:
742
        target_el = exception_target_el(env);
743
        syndrome = syn_uncategorized();
744
        break;
745 746 747 748 749 750 751 752
    case CP_ACCESS_TRAP_UNCATEGORIZED_EL2:
        target_el = 2;
        syndrome = syn_uncategorized();
        break;
    case CP_ACCESS_TRAP_UNCATEGORIZED_EL3:
        target_el = 3;
        syndrome = syn_uncategorized();
        break;
753 754 755 756 757 758 759 760 761 762 763 764 765
    case CP_ACCESS_TRAP_FP_EL2:
        target_el = 2;
        /* Since we are an implementation that takes exceptions on a trapped
         * conditional insn only if the insn has passed its condition code
         * check, we take the IMPDEF choice to always report CV=1 COND=0xe
         * (which is also the required value for AArch64 traps).
         */
        syndrome = syn_fp_access_trap(1, 0xe, false);
        break;
    case CP_ACCESS_TRAP_FP_EL3:
        target_el = 3;
        syndrome = syn_fp_access_trap(1, 0xe, false);
        break;
766 767 768
    default:
        g_assert_not_reached();
    }
769

770
    raise_exception(env, EXCP_UDEF, syndrome, target_el);
771 772
}

773 774 775
void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
{
    const ARMCPRegInfo *ri = rip;
776

777 778 779 780 781 782 783
    if (ri->type & ARM_CP_IO) {
        qemu_mutex_lock_iothread();
        ri->writefn(env, ri, value);
        qemu_mutex_unlock_iothread();
    } else {
        ri->writefn(env, ri, value);
    }
784 785 786 787 788
}

uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
{
    const ARMCPRegInfo *ri = rip;
789
    uint32_t res;
790

791 792 793 794 795 796 797 798 799
    if (ri->type & ARM_CP_IO) {
        qemu_mutex_lock_iothread();
        res = ri->readfn(env, ri);
        qemu_mutex_unlock_iothread();
    } else {
        res = ri->readfn(env, ri);
    }

    return res;
800 801 802 803 804
}

void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
{
    const ARMCPRegInfo *ri = rip;
805

806 807 808 809 810 811 812
    if (ri->type & ARM_CP_IO) {
        qemu_mutex_lock_iothread();
        ri->writefn(env, ri, value);
        qemu_mutex_unlock_iothread();
    } else {
        ri->writefn(env, ri, value);
    }
813 814 815 816 817
}

uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
{
    const ARMCPRegInfo *ri = rip;
818 819 820 821 822 823 824 825 826
    uint64_t res;

    if (ri->type & ARM_CP_IO) {
        qemu_mutex_lock_iothread();
        res = ri->readfn(env, ri);
        qemu_mutex_unlock_iothread();
    } else {
        res = ri->readfn(env, ri);
    }
827

828
    return res;
829
}
P
pbrook 已提交
830

831 832 833 834 835 836
void HELPER(msr_i_pstate)(CPUARMState *env, uint32_t op, uint32_t imm)
{
    /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set.
     * Note that SPSel is never OK from EL0; we rely on handle_msr_i()
     * to catch that case at translate time.
     */
837
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
838 839 840 841
        uint32_t syndrome = syn_aa64_sysregtrap(0, extract32(op, 0, 3),
                                                extract32(op, 3, 3), 4,
                                                imm, 0x1f, 0);
        raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
842 843 844 845
    }

    switch (op) {
    case 0x05: /* SPSel */
846
        update_spsel(env, imm);
847 848 849 850 851 852 853 854 855 856 857 858
        break;
    case 0x1e: /* DAIFSet */
        env->daif |= (imm << 6) & PSTATE_DAIF;
        break;
    case 0x1f: /* DAIFClear */
        env->daif &= ~((imm << 6) & PSTATE_DAIF);
        break;
    default:
        g_assert_not_reached();
    }
}

859 860 861 862 863
void HELPER(clear_pstate_ss)(CPUARMState *env)
{
    env->pstate &= ~PSTATE_SS;
}

864 865
void HELPER(pre_hvc)(CPUARMState *env)
{
866
    ARMCPU *cpu = arm_env_get_cpu(env);
867
    int cur_el = arm_current_el(env);
868 869 870 871
    /* FIXME: Use actual secure state.  */
    bool secure = false;
    bool undef;

872 873 874 875 876 877 878
    if (arm_is_psci_call(cpu, EXCP_HVC)) {
        /* If PSCI is enabled and this looks like a valid PSCI call then
         * that overrides the architecturally mandated HVC behaviour.
         */
        return;
    }

879 880 881 882 883
    if (!arm_feature(env, ARM_FEATURE_EL2)) {
        /* If EL2 doesn't exist, HVC always UNDEFs */
        undef = true;
    } else if (arm_feature(env, ARM_FEATURE_EL3)) {
        /* EL3.HCE has priority over EL2.HCD. */
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
        undef = !(env->cp15.scr_el3 & SCR_HCE);
    } else {
        undef = env->cp15.hcr_el2 & HCR_HCD;
    }

    /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
     * For ARMv8/AArch64, HVC is allowed in EL3.
     * Note that we've already trapped HVC from EL0 at translation
     * time.
     */
    if (secure && (!is_a64(env) || cur_el == 1)) {
        undef = true;
    }

    if (undef) {
899 900
        raise_exception(env, EXCP_UDEF, syn_uncategorized(),
                        exception_target_el(env));
901 902 903
    }
}

904 905
void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
{
906
    ARMCPU *cpu = arm_env_get_cpu(env);
907
    int cur_el = arm_current_el(env);
908
    bool secure = arm_is_secure(env);
909
    bool smd = env->cp15.scr_el3 & SCR_SMD;
910 911 912 913 914 915
    /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
     * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
     *  extensions, SMD only applies to NS state.
     * On ARMv7 without the Virtualization extensions, the SMD bit
     * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
     * so we need not special case this here.
916
     */
917
    bool undef = arm_feature(env, ARM_FEATURE_AARCH64) ? smd : smd && !secure;
918

919 920 921 922 923 924 925 926
    if (!arm_feature(env, ARM_FEATURE_EL3) &&
        cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
        /* If we have no EL3 then SMC always UNDEFs and can't be
         * trapped to EL2. PSCI-via-SMC is a sort of ersatz EL3
         * firmware within QEMU, and we want an EL2 guest to be able
         * to forbid its EL1 from making PSCI calls into QEMU's
         * "firmware" via HCR.TSC, so for these purposes treat
         * PSCI-via-SMC as implying an EL3.
927
         */
928 929
        undef = true;
    } else if (!secure && cur_el == 1 && (env->cp15.hcr_el2 & HCR_TSC)) {
930 931 932 933
        /* In NS EL1, HCR controlled routing to EL2 has priority over SMD.
         * We also want an EL2 guest to be able to forbid its EL1 from
         * making PSCI calls into QEMU's "firmware" via HCR.TSC.
         */
934
        raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
935 936
    }

937 938 939 940 941
    /* If PSCI is enabled and this looks like a valid PSCI call then
     * suppress the UNDEF -- we'll catch the SMC exception and
     * implement the PSCI call behaviour there.
     */
    if (undef && !arm_is_psci_call(cpu, EXCP_SMC)) {
942 943
        raise_exception(env, EXCP_UDEF, syn_uncategorized(),
                        exception_target_el(env));
944 945 946
    }
}

947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
static int el_from_spsr(uint32_t spsr)
{
    /* Return the exception level that this SPSR is requesting a return to,
     * or -1 if it is invalid (an illegal return)
     */
    if (spsr & PSTATE_nRW) {
        switch (spsr & CPSR_M) {
        case ARM_CPU_MODE_USR:
            return 0;
        case ARM_CPU_MODE_HYP:
            return 2;
        case ARM_CPU_MODE_FIQ:
        case ARM_CPU_MODE_IRQ:
        case ARM_CPU_MODE_SVC:
        case ARM_CPU_MODE_ABT:
        case ARM_CPU_MODE_UND:
        case ARM_CPU_MODE_SYS:
            return 1;
        case ARM_CPU_MODE_MON:
            /* Returning to Mon from AArch64 is never possible,
             * so this is an illegal return.
             */
        default:
            return -1;
        }
    } else {
        if (extract32(spsr, 1, 1)) {
            /* Return with reserved M[1] bit set */
            return -1;
        }
        if (extract32(spsr, 0, 4) == 1) {
            /* return to EL0 with M[0] bit set */
            return -1;
        }
        return extract32(spsr, 2, 2);
    }
}

985 986
void HELPER(exception_return)(CPUARMState *env)
{
987
    int cur_el = arm_current_el(env);
988
    unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
989
    uint32_t spsr = env->banked_spsr[spsr_idx];
990
    int new_el;
991
    bool return_to_aa64 = (spsr & PSTATE_nRW) == 0;
992

993
    aarch64_save_sp(env, cur_el);
994

995
    arm_clear_exclusive(env);
996

997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
    /* We must squash the PSTATE.SS bit to zero unless both of the
     * following hold:
     *  1. debug exceptions are currently disabled
     *  2. singlestep will be active in the EL we return to
     * We check 1 here and 2 after we've done the pstate/cpsr write() to
     * transition to the EL we're going to.
     */
    if (arm_generate_debug_exceptions(env)) {
        spsr &= ~PSTATE_SS;
    }

1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
    new_el = el_from_spsr(spsr);
    if (new_el == -1) {
        goto illegal_return;
    }
    if (new_el > cur_el
        || (new_el == 2 && !arm_feature(env, ARM_FEATURE_EL2))) {
        /* Disallow return to an EL which is unimplemented or higher
         * than the current one.
         */
        goto illegal_return;
    }

    if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) {
        /* Return to an EL which is configured for a different register width */
        goto illegal_return;
    }

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
    if (new_el == 2 && arm_is_secure_below_el3(env)) {
        /* Return to the non-existent secure-EL2 */
        goto illegal_return;
    }

    if (new_el == 1 && (env->cp15.hcr_el2 & HCR_TGE)
        && !arm_is_secure_below_el3(env)) {
        goto illegal_return;
    }

1035 1036 1037 1038
    qemu_mutex_lock_iothread();
    arm_call_pre_el_change_hook(arm_env_get_cpu(env));
    qemu_mutex_unlock_iothread();

1039
    if (!return_to_aa64) {
1040
        env->aarch64 = 0;
1041 1042 1043 1044
        /* We do a raw CPSR write because aarch64_sync_64_to_32()
         * will sort the register banks out for us, and we've already
         * caught all the bad-mode cases in el_from_spsr().
         */
1045
        cpsr_write(env, spsr, ~0, CPSRWriteRaw);
1046 1047 1048
        if (!arm_singlestep_active(env)) {
            env->uncached_cpsr &= ~PSTATE_SS;
        }
1049
        aarch64_sync_64_to_32(env);
1050

1051 1052 1053 1054 1055
        if (spsr & CPSR_T) {
            env->regs[15] = env->elr_el[cur_el] & ~0x1;
        } else {
            env->regs[15] = env->elr_el[cur_el] & ~0x3;
        }
1056 1057 1058
        qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
                      "AArch32 EL%d PC 0x%" PRIx32 "\n",
                      cur_el, new_el, env->regs[15]);
1059 1060 1061
    } else {
        env->aarch64 = 1;
        pstate_write(env, spsr);
1062 1063 1064
        if (!arm_singlestep_active(env)) {
            env->pstate &= ~PSTATE_SS;
        }
1065
        aarch64_restore_sp(env, new_el);
1066
        env->pc = env->elr_el[cur_el];
1067 1068 1069
        qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
                      "AArch64 EL%d PC 0x%" PRIx64 "\n",
                      cur_el, new_el, env->pc);
1070 1071
    }

1072
    qemu_mutex_lock_iothread();
1073
    arm_call_el_change_hook(arm_env_get_cpu(env));
1074
    qemu_mutex_unlock_iothread();
1075

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
    return;

illegal_return:
    /* Illegal return events of various kinds have architecturally
     * mandated behaviour:
     * restore NZCV and DAIF from SPSR_ELx
     * set PSTATE.IL
     * restore PC from ELR_ELx
     * no change to exception level, execution state or stack pointer
     */
    env->pstate |= PSTATE_IL;
1087
    env->pc = env->elr_el[cur_el];
1088 1089 1090
    spsr &= PSTATE_NZCV | PSTATE_DAIF;
    spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
    pstate_write(env, spsr);
1091 1092 1093
    if (!arm_singlestep_active(env)) {
        env->pstate &= ~PSTATE_SS;
    }
1094 1095
    qemu_log_mask(LOG_GUEST_ERROR, "Illegal exception return at EL%d: "
                  "resuming execution at 0x%" PRIx64 "\n", cur_el, env->pc);
1096 1097
}

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
/* Return true if the linked breakpoint entry lbn passes its checks */
static bool linked_bp_matches(ARMCPU *cpu, int lbn)
{
    CPUARMState *env = &cpu->env;
    uint64_t bcr = env->cp15.dbgbcr[lbn];
    int brps = extract32(cpu->dbgdidr, 24, 4);
    int ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
    int bt;
    uint32_t contextidr;

    /* Links to unimplemented or non-context aware breakpoints are
     * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
     * as if linked to an UNKNOWN context-aware breakpoint (in which
     * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
     * We choose the former.
     */
    if (lbn > brps || lbn < (brps - ctx_cmps)) {
        return false;
    }

    bcr = env->cp15.dbgbcr[lbn];

    if (extract64(bcr, 0, 1) == 0) {
        /* Linked breakpoint disabled : generate no events */
        return false;
    }

    bt = extract64(bcr, 20, 4);

    /* We match the whole register even if this is AArch32 using the
     * short descriptor format (in which case it holds both PROCID and ASID),
     * since we don't implement the optional v7 context ID masking.
     */
1131
    contextidr = extract64(env->cp15.contextidr_el[1], 0, 32);
1132 1133 1134

    switch (bt) {
    case 3: /* linked context ID match */
1135
        if (arm_current_el(env) > 1) {
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
            /* Context matches never fire in EL2 or (AArch64) EL3 */
            return false;
        }
        return (contextidr == extract64(env->cp15.dbgbvr[lbn], 0, 32));
    case 5: /* linked address mismatch (reserved in AArch64) */
    case 9: /* linked VMID match (reserved if no EL2) */
    case 11: /* linked context ID and VMID match (reserved if no EL2) */
    default:
        /* Links to Unlinked context breakpoints must generate no
         * events; we choose to do the same for reserved values too.
         */
        return false;
    }

    return false;
}

1153
static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
1154 1155
{
    CPUARMState *env = &cpu->env;
1156
    uint64_t cr;
1157
    int pac, hmc, ssc, wt, lbn;
1158 1159 1160 1161
    /* Note that for watchpoints the check is against the CPU security
     * state, not the S/NS attribute on the offending data access.
     */
    bool is_secure = arm_is_secure(env);
1162
    int access_el = arm_current_el(env);
1163

1164
    if (is_wp) {
1165 1166 1167
        CPUWatchpoint *wp = env->cpu_watchpoint[n];

        if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
1168 1169 1170
            return false;
        }
        cr = env->cp15.dbgwcr[n];
1171 1172 1173 1174 1175 1176 1177
        if (wp->hitattrs.user) {
            /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should
             * match watchpoints as if they were accesses done at EL0, even if
             * the CPU is at EL1 or higher.
             */
            access_el = 0;
        }
1178 1179
    } else {
        uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
1180

1181 1182 1183 1184 1185
        if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
            return false;
        }
        cr = env->cp15.dbgbcr[n];
    }
1186
    /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
1187 1188 1189 1190 1191
     * enabled and that the address and access type match; for breakpoints
     * we know the address matched; check the remaining fields, including
     * linked breakpoints. We rely on WCR and BCR having the same layout
     * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
     * Note that some combinations of {PAC, HMC, SSC} are reserved and
1192 1193 1194 1195 1196 1197
     * must act either like some valid combination or as if the watchpoint
     * were disabled. We choose the former, and use this together with
     * the fact that EL3 must always be Secure and EL2 must always be
     * Non-Secure to simplify the code slightly compared to the full
     * table in the ARM ARM.
     */
1198 1199 1200
    pac = extract64(cr, 1, 2);
    hmc = extract64(cr, 13, 1);
    ssc = extract64(cr, 14, 2);
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217

    switch (ssc) {
    case 0:
        break;
    case 1:
    case 3:
        if (is_secure) {
            return false;
        }
        break;
    case 2:
        if (!is_secure) {
            return false;
        }
        break;
    }

1218
    switch (access_el) {
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
    case 3:
    case 2:
        if (!hmc) {
            return false;
        }
        break;
    case 1:
        if (extract32(pac, 0, 1) == 0) {
            return false;
        }
        break;
    case 0:
        if (extract32(pac, 1, 1) == 0) {
            return false;
        }
        break;
    default:
        g_assert_not_reached();
    }

1239 1240
    wt = extract64(cr, 20, 1);
    lbn = extract64(cr, 16, 4);
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262

    if (wt && !linked_bp_matches(cpu, lbn)) {
        return false;
    }

    return true;
}

static bool check_watchpoints(ARMCPU *cpu)
{
    CPUARMState *env = &cpu->env;
    int n;

    /* If watchpoints are disabled globally or we can't take debug
     * exceptions here then watchpoint firings are ignored.
     */
    if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
        || !arm_generate_debug_exceptions(env)) {
        return false;
    }

    for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
        if (bp_wp_matches(cpu, n, true)) {
            return true;
        }
    }
    return false;
}

static bool check_breakpoints(ARMCPU *cpu)
{
    CPUARMState *env = &cpu->env;
    int n;

    /* If breakpoints are disabled globally or we can't take debug
     * exceptions here then breakpoint firings are ignored.
     */
    if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
        || !arm_generate_debug_exceptions(env)) {
        return false;
    }

    for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
        if (bp_wp_matches(cpu, n, false)) {
1285 1286 1287 1288 1289 1290
            return true;
        }
    }
    return false;
}

1291 1292 1293 1294 1295 1296 1297 1298 1299
void HELPER(check_breakpoints)(CPUARMState *env)
{
    ARMCPU *cpu = arm_env_get_cpu(env);

    if (check_breakpoints(cpu)) {
        HELPER(exception_internal(env, EXCP_DEBUG));
    }
}

1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
{
    /* Called by core code when a CPU watchpoint fires; need to check if this
     * is also an architectural watchpoint match.
     */
    ARMCPU *cpu = ARM_CPU(cs);

    return check_watchpoints(cpu);
}

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;

    /* In BE32 system mode, target memory is stored byteswapped (on a
     * little-endian host system), and by the time we reach here (via an
     * opcode helper) the addresses of subword accesses have been adjusted
     * to account for that, which means that watchpoints will not match.
     * Undo the adjustment here.
     */
    if (arm_sctlr_b(env)) {
        if (len == 1) {
            addr ^= 3;
        } else if (len == 2) {
            addr ^= 2;
        }
    }

    return addr;
}

1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
void arm_debug_excp_handler(CPUState *cs)
{
    /* Called by core code when a watchpoint or breakpoint fires;
     * need to check which one and raise the appropriate exception.
     */
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    CPUWatchpoint *wp_hit = cs->watchpoint_hit;

    if (wp_hit) {
        if (wp_hit->flags & BP_CPU) {
1343 1344 1345
            bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
            bool same_el = arm_debug_target_el(env) == arm_current_el(env);

1346
            cs->watchpoint_hit = NULL;
1347

1348
            env->exception.fsr = arm_debug_exception_fsr(env);
1349 1350 1351 1352
            env->exception.vaddress = wp_hit->hitaddr;
            raise_exception(env, EXCP_DATA_ABORT,
                    syn_watchpoint(same_el, 0, wnr),
                    arm_debug_target_el(env));
1353
        }
1354
    } else {
1355
        uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
1356
        bool same_el = (arm_debug_target_el(env) == arm_current_el(env));
1357

1358 1359 1360 1361 1362 1363 1364
        /* (1) GDB breakpoints should be handled first.
         * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
         * since singlestep is also done by generating a debug internal
         * exception.
         */
        if (cpu_breakpoint_test(cs, pc, BP_GDB)
            || !cpu_breakpoint_test(cs, pc, BP_CPU)) {
1365 1366 1367
            return;
        }

1368
        env->exception.fsr = arm_debug_exception_fsr(env);
1369 1370 1371 1372 1373
        /* FAR is UNKNOWN: clear vaddress to avoid potentially exposing
         * values to the guest that it shouldn't be able to see at its
         * exception/security level.
         */
        env->exception.vaddress = 0;
1374 1375 1376
        raise_exception(env, EXCP_PREFETCH_ABORT,
                        syn_breakpoint(same_el),
                        arm_debug_target_el(env));
1377 1378 1379
    }
}

P
pbrook 已提交
1380 1381 1382 1383 1384 1385
/* ??? Flag setting arithmetic is awkward because we need to do comparisons.
   The only way to do that in TCG is a conditional branch, which clobbers
   all our temporaries.  For now implement these as helper functions.  */

/* Similarly for variable shift instructions.  */

1386
uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
P
pbrook 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
{
    int shift = i & 0xff;
    if (shift >= 32) {
        if (shift == 32)
            env->CF = x & 1;
        else
            env->CF = 0;
        return 0;
    } else if (shift != 0) {
        env->CF = (x >> (32 - shift)) & 1;
        return x << shift;
    }
    return x;
}

1402
uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
P
pbrook 已提交
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
{
    int shift = i & 0xff;
    if (shift >= 32) {
        if (shift == 32)
            env->CF = (x >> 31) & 1;
        else
            env->CF = 0;
        return 0;
    } else if (shift != 0) {
        env->CF = (x >> (shift - 1)) & 1;
        return x >> shift;
    }
    return x;
}

1418
uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
P
pbrook 已提交
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
{
    int shift = i & 0xff;
    if (shift >= 32) {
        env->CF = (x >> 31) & 1;
        return (int32_t)x >> 31;
    } else if (shift != 0) {
        env->CF = (x >> (shift - 1)) & 1;
        return (int32_t)x >> shift;
    }
    return x;
}

1431
uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
P
pbrook 已提交
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
{
    int shift1, shift;
    shift1 = i & 0xff;
    shift = shift1 & 0x1f;
    if (shift == 0) {
        if (shift1 != 0)
            env->CF = (x >> 31) & 1;
        return x;
    } else {
        env->CF = (x >> (shift - 1)) & 1;
        return ((uint32_t)x >> shift) | (x << (32 - shift));
    }
}