spapr_pci.c 24.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * QEMU sPAPR PCI host originated from Uninorth PCI host
 *
 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
 * Copyright (C) 2011 David Gibson, IBM Corporation.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include "hw.h"
#include "pci.h"
27 28
#include "msi.h"
#include "msix.h"
29 30 31 32 33
#include "pci_host.h"
#include "hw/spapr.h"
#include "hw/spapr_pci.h"
#include "exec-memory.h"
#include <libfdt.h>
34
#include "trace.h"
35 36 37

#include "hw/pci_internals.h"

38 39 40 41 42 43 44 45 46 47 48
/* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
#define RTAS_QUERY_FN           0
#define RTAS_CHANGE_FN          1
#define RTAS_RESET_FN           2
#define RTAS_CHANGE_MSI_FN      3
#define RTAS_CHANGE_MSIX_FN     4

/* Interrupt types to return on RTAS_CHANGE_* */
#define RTAS_TYPE_MSI           1
#define RTAS_TYPE_MSIX          2

49
static sPAPRPHBState *find_phb(sPAPREnvironment *spapr, uint64_t buid)
50 51 52 53 54 55 56
{
    sPAPRPHBState *phb;

    QLIST_FOREACH(phb, &spapr->phbs, list) {
        if (phb->buid != buid) {
            continue;
        }
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
        return phb;
    }

    return NULL;
}

static PCIDevice *find_dev(sPAPREnvironment *spapr, uint64_t buid,
                           uint32_t config_addr)
{
    sPAPRPHBState *phb = find_phb(spapr, buid);
    BusChild *kid;
    int devfn = (config_addr >> 8) & 0xFF;

    if (!phb) {
        return NULL;
    }
73

74 75 76 77
    QTAILQ_FOREACH(kid, &phb->host_state.bus->qbus.children, sibling) {
        PCIDevice *dev = (PCIDevice *)kid->child;
        if (dev->devfn == devfn) {
            return dev;
78 79 80 81 82 83
        }
    }

    return NULL;
}

84 85
static uint32_t rtas_pci_cfgaddr(uint32_t arg)
{
86
    /* This handles the encoding of extended config space addresses */
87 88 89
    return ((arg >> 20) & 0xf00) | (arg & 0xff);
}

90 91 92
static void finish_read_pci_config(sPAPREnvironment *spapr, uint64_t buid,
                                   uint32_t addr, uint32_t size,
                                   target_ulong rets)
93
{
94 95 96 97 98 99 100
    PCIDevice *pci_dev;
    uint32_t val;

    if ((size != 1) && (size != 2) && (size != 4)) {
        /* access must be 1, 2 or 4 bytes */
        rtas_st(rets, 0, -1);
        return;
101 102
    }

103 104 105 106 107 108 109 110
    pci_dev = find_dev(spapr, buid, addr);
    addr = rtas_pci_cfgaddr(addr);

    if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
        /* Access must be to a valid device, within bounds and
         * naturally aligned */
        rtas_st(rets, 0, -1);
        return;
111
    }
112 113 114 115 116 117

    val = pci_host_config_read_common(pci_dev, addr,
                                      pci_config_size(pci_dev), size);

    rtas_st(rets, 0, 0);
    rtas_st(rets, 1, val);
118 119
}

120 121 122 123 124
static void rtas_ibm_read_pci_config(sPAPREnvironment *spapr,
                                     uint32_t token, uint32_t nargs,
                                     target_ulong args,
                                     uint32_t nret, target_ulong rets)
{
125 126
    uint64_t buid;
    uint32_t size, addr;
127

128
    if ((nargs != 4) || (nret != 2)) {
129 130 131
        rtas_st(rets, 0, -1);
        return;
    }
132 133

    buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
134
    size = rtas_ld(args, 3);
135 136 137
    addr = rtas_ld(args, 0);

    finish_read_pci_config(spapr, buid, addr, size, rets);
138 139 140 141 142 143 144
}

static void rtas_read_pci_config(sPAPREnvironment *spapr,
                                 uint32_t token, uint32_t nargs,
                                 target_ulong args,
                                 uint32_t nret, target_ulong rets)
{
145
    uint32_t size, addr;
146

147
    if ((nargs != 2) || (nret != 2)) {
148 149 150
        rtas_st(rets, 0, -1);
        return;
    }
151

152
    size = rtas_ld(args, 1);
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
    addr = rtas_ld(args, 0);

    finish_read_pci_config(spapr, 0, addr, size, rets);
}

static void finish_write_pci_config(sPAPREnvironment *spapr, uint64_t buid,
                                    uint32_t addr, uint32_t size,
                                    uint32_t val, target_ulong rets)
{
    PCIDevice *pci_dev;

    if ((size != 1) && (size != 2) && (size != 4)) {
        /* access must be 1, 2 or 4 bytes */
        rtas_st(rets, 0, -1);
        return;
    }

    pci_dev = find_dev(spapr, buid, addr);
    addr = rtas_pci_cfgaddr(addr);

    if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
        /* Access must be to a valid device, within bounds and
         * naturally aligned */
        rtas_st(rets, 0, -1);
        return;
    }

    pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
                                 val, size);

183 184 185 186 187 188 189 190
    rtas_st(rets, 0, 0);
}

static void rtas_ibm_write_pci_config(sPAPREnvironment *spapr,
                                      uint32_t token, uint32_t nargs,
                                      target_ulong args,
                                      uint32_t nret, target_ulong rets)
{
191
    uint64_t buid;
192 193
    uint32_t val, size, addr;

194
    if ((nargs != 5) || (nret != 1)) {
195 196 197
        rtas_st(rets, 0, -1);
        return;
    }
198 199

    buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
200 201
    val = rtas_ld(args, 4);
    size = rtas_ld(args, 3);
202 203 204
    addr = rtas_ld(args, 0);

    finish_write_pci_config(spapr, buid, addr, size, val, rets);
205 206 207 208 209 210 211 212 213
}

static void rtas_write_pci_config(sPAPREnvironment *spapr,
                                  uint32_t token, uint32_t nargs,
                                  target_ulong args,
                                  uint32_t nret, target_ulong rets)
{
    uint32_t val, size, addr;

214
    if ((nargs != 3) || (nret != 1)) {
215 216 217
        rtas_st(rets, 0, -1);
        return;
    }
218 219


220 221
    val = rtas_ld(args, 2);
    size = rtas_ld(args, 1);
222 223 224
    addr = rtas_ld(args, 0);

    finish_write_pci_config(spapr, 0, addr, size, val, rets);
225 226
}

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
/*
 * Find an entry with config_addr or returns the empty one if not found AND
 * alloc_new is set.
 * At the moment the msi_table entries are never released so there is
 * no point to look till the end of the list if we need to find the free entry.
 */
static int spapr_msicfg_find(sPAPRPHBState *phb, uint32_t config_addr,
                             bool alloc_new)
{
    int i;

    for (i = 0; i < SPAPR_MSIX_MAX_DEVS; ++i) {
        if (!phb->msi_table[i].nvec) {
            break;
        }
        if (phb->msi_table[i].config_addr == config_addr) {
            return i;
        }
    }
    if ((i < SPAPR_MSIX_MAX_DEVS) && alloc_new) {
        trace_spapr_pci_msi("Allocating new MSI config", i, config_addr);
        return i;
    }

    return -1;
}

/*
 * Set MSI/MSIX message data.
 * This is required for msi_notify()/msix_notify() which
 * will write at the addresses via spapr_msi_write().
 */
static void spapr_msi_setmsg(PCIDevice *pdev, target_phys_addr_t addr,
                             bool msix, unsigned req_num)
{
    unsigned i;
    MSIMessage msg = { .address = addr, .data = 0 };

    if (!msix) {
        msi_set_message(pdev, msg);
        trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
        return;
    }

    for (i = 0; i < req_num; ++i) {
        msg.address = addr | (i << 2);
        msix_set_message(pdev, i, msg);
        trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
    }
}

static void rtas_ibm_change_msi(sPAPREnvironment *spapr,
                                uint32_t token, uint32_t nargs,
                                target_ulong args, uint32_t nret,
                                target_ulong rets)
{
    uint32_t config_addr = rtas_ld(args, 0);
    uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
    unsigned int func = rtas_ld(args, 3);
    unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
    unsigned int seq_num = rtas_ld(args, 5);
    unsigned int ret_intr_type;
    int ndev, irq;
    sPAPRPHBState *phb = NULL;
    PCIDevice *pdev = NULL;

    switch (func) {
    case RTAS_CHANGE_MSI_FN:
    case RTAS_CHANGE_FN:
        ret_intr_type = RTAS_TYPE_MSI;
        break;
    case RTAS_CHANGE_MSIX_FN:
        ret_intr_type = RTAS_TYPE_MSIX;
        break;
    default:
        fprintf(stderr, "rtas_ibm_change_msi(%u) is not implemented\n", func);
        rtas_st(rets, 0, -3); /* Parameter error */
        return;
    }

    /* Fins sPAPRPHBState */
    phb = find_phb(spapr, buid);
    if (phb) {
        pdev = find_dev(spapr, buid, config_addr);
    }
    if (!phb || !pdev) {
        rtas_st(rets, 0, -3); /* Parameter error */
        return;
    }

    /* Releasing MSIs */
    if (!req_num) {
        ndev = spapr_msicfg_find(phb, config_addr, false);
        if (ndev < 0) {
            trace_spapr_pci_msi("MSI has not been enabled", -1, config_addr);
            rtas_st(rets, 0, -1); /* Hardware error */
            return;
        }
        trace_spapr_pci_msi("Released MSIs", ndev, config_addr);
        rtas_st(rets, 0, 0);
        rtas_st(rets, 1, 0);
        return;
    }

    /* Enabling MSI */

    /* Find a device number in the map to add or reuse the existing one */
    ndev = spapr_msicfg_find(phb, config_addr, true);
    if (ndev >= SPAPR_MSIX_MAX_DEVS || ndev < 0) {
        fprintf(stderr, "No free entry for a new MSI device\n");
        rtas_st(rets, 0, -1); /* Hardware error */
        return;
    }
    trace_spapr_pci_msi("Configuring MSI", ndev, config_addr);

    /* Check if there is an old config and MSI number has not changed */
    if (phb->msi_table[ndev].nvec && (req_num != phb->msi_table[ndev].nvec)) {
        /* Unexpected behaviour */
        fprintf(stderr, "Cannot reuse MSI config for device#%d", ndev);
        rtas_st(rets, 0, -1); /* Hardware error */
        return;
    }

    /* There is no cached config, allocate MSIs */
    if (!phb->msi_table[ndev].nvec) {
        irq = spapr_allocate_irq_block(req_num, XICS_MSI);
        if (irq < 0) {
            fprintf(stderr, "Cannot allocate MSIs for device#%d", ndev);
            rtas_st(rets, 0, -1); /* Hardware error */
            return;
        }
        phb->msi_table[ndev].irq = irq;
        phb->msi_table[ndev].nvec = req_num;
        phb->msi_table[ndev].config_addr = config_addr;
    }

    /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
    spapr_msi_setmsg(pdev, phb->msi_win_addr | (ndev << 16),
                     ret_intr_type == RTAS_TYPE_MSIX, req_num);

    rtas_st(rets, 0, 0);
    rtas_st(rets, 1, req_num);
    rtas_st(rets, 2, ++seq_num);
    rtas_st(rets, 3, ret_intr_type);

    trace_spapr_pci_rtas_ibm_change_msi(func, req_num);
}

static void rtas_ibm_query_interrupt_source_number(sPAPREnvironment *spapr,
                                                   uint32_t token,
                                                   uint32_t nargs,
                                                   target_ulong args,
                                                   uint32_t nret,
                                                   target_ulong rets)
{
    uint32_t config_addr = rtas_ld(args, 0);
    uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
    unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
    int ndev;
    sPAPRPHBState *phb = NULL;

    /* Fins sPAPRPHBState */
    phb = find_phb(spapr, buid);
    if (!phb) {
        rtas_st(rets, 0, -3); /* Parameter error */
        return;
    }

    /* Find device descriptor and start IRQ */
    ndev = spapr_msicfg_find(phb, config_addr, false);
    if (ndev < 0) {
        trace_spapr_pci_msi("MSI has not been enabled", -1, config_addr);
        rtas_st(rets, 0, -1); /* Hardware error */
        return;
    }

    intr_src_num = phb->msi_table[ndev].irq + ioa_intr_num;
    trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
                                                           intr_src_num);

    rtas_st(rets, 0, 0);
    rtas_st(rets, 1, intr_src_num);
    rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
}

412 413 414 415 416
static int pci_spapr_swizzle(int slot, int pin)
{
    return (slot + pin) % PCI_NUM_PINS;
}

417 418 419 420
static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
{
    /*
     * Here we need to convert pci_dev + irq_num to some unique value
421 422 423
     * which is less than number of IRQs on the specific bus (4).  We
     * use standard PCI swizzling, that is (slot number + pin number)
     * % 4.
424
     */
425
    return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
426 427 428 429 430 431 432 433 434 435
}

static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
{
    /*
     * Here we use the number returned by pci_spapr_map_irq to find a
     * corresponding qemu_irq.
     */
    sPAPRPHBState *phb = opaque;

436
    trace_spapr_pci_lsi_set(phb->busname, irq_num, phb->lsi_table[irq_num].irq);
437
    qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
}

static uint64_t spapr_io_read(void *opaque, target_phys_addr_t addr,
                              unsigned size)
{
    switch (size) {
    case 1:
        return cpu_inb(addr);
    case 2:
        return cpu_inw(addr);
    case 4:
        return cpu_inl(addr);
    }
    assert(0);
}

static void spapr_io_write(void *opaque, target_phys_addr_t addr,
                           uint64_t data, unsigned size)
{
    switch (size) {
    case 1:
        cpu_outb(addr, data);
        return;
    case 2:
        cpu_outw(addr, data);
        return;
    case 4:
        cpu_outl(addr, data);
        return;
    }
    assert(0);
}

471
static const MemoryRegionOps spapr_io_ops = {
472 473 474 475 476
    .endianness = DEVICE_LITTLE_ENDIAN,
    .read = spapr_io_read,
    .write = spapr_io_write
};

477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
/*
 * MSI/MSIX memory region implementation.
 * The handler handles both MSI and MSIX.
 * For MSI-X, the vector number is encoded as a part of the address,
 * data is set to 0.
 * For MSI, the vector number is encoded in least bits in data.
 */
static void spapr_msi_write(void *opaque, target_phys_addr_t addr,
                            uint64_t data, unsigned size)
{
    sPAPRPHBState *phb = opaque;
    int ndev = addr >> 16;
    int vec = ((addr & 0xFFFF) >> 2) | data;
    uint32_t irq = phb->msi_table[ndev].irq + vec;

    trace_spapr_pci_msi_write(addr, data, irq);

    qemu_irq_pulse(xics_get_qirq(spapr->icp, irq));
}

static const MemoryRegionOps spapr_msi_ops = {
    /* There is no .read as the read result is undefined by PCI spec */
    .read = NULL,
    .write = spapr_msi_write,
    .endianness = DEVICE_LITTLE_ENDIAN
};

504 505 506
/*
 * PHB PCI device
 */
507 508 509 510 511 512 513 514
static DMAContext *spapr_pci_dma_context_fn(PCIBus *bus, void *opaque,
                                            int devfn)
{
    sPAPRPHBState *phb = opaque;

    return phb->dma;
}

515
static int spapr_phb_init(SysBusDevice *s)
516
{
517
    sPAPRPHBState *phb = DO_UPCAST(sPAPRPHBState, host_state.busdev, s);
518 519
    char *namebuf;
    int i;
520
    PCIBus *bus;
521
    uint32_t liobn;
522

523 524
    phb->dtbusname = g_strdup_printf("pci@%" PRIx64, phb->buid);
    namebuf = alloca(strlen(phb->dtbusname) + 32);
525

526 527
    /* Initialize memory regions */
    sprintf(namebuf, "%s.mmio", phb->dtbusname);
528 529
    memory_region_init(&phb->memspace, namebuf, INT64_MAX);

530
    sprintf(namebuf, "%s.mmio-alias", phb->dtbusname);
531
    memory_region_init_alias(&phb->memwindow, namebuf, &phb->memspace,
532 533
                             SPAPR_PCI_MEM_WIN_BUS_OFFSET, phb->mem_win_size);
    memory_region_add_subregion(get_system_memory(), phb->mem_win_addr,
534 535 536 537 538 539 540 541 542 543
                                &phb->memwindow);

    /* On ppc, we only have MMIO no specific IO space from the CPU
     * perspective.  In theory we ought to be able to embed the PCI IO
     * memory region direction in the system memory space.  However,
     * if any of the IO BAR subregions use the old_portio mechanism,
     * that won't be processed properly unless accessed from the
     * system io address space.  This hack to bounce things via
     * system_io works around the problem until all the users of
     * old_portion are updated */
544
    sprintf(namebuf, "%s.io", phb->dtbusname);
545 546 547 548
    memory_region_init(&phb->iospace, namebuf, SPAPR_PCI_IO_WIN_SIZE);
    /* FIXME: fix to support multiple PHBs */
    memory_region_add_subregion(get_system_io(), 0, &phb->iospace);

549
    sprintf(namebuf, "%s.io-alias", phb->dtbusname);
550 551
    memory_region_init_io(&phb->iowindow, &spapr_io_ops, phb,
                          namebuf, SPAPR_PCI_IO_WIN_SIZE);
552
    memory_region_add_subregion(get_system_memory(), phb->io_win_addr,
553 554
                                &phb->iowindow);

555 556 557 558 559 560 561 562 563 564 565
    /* As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
     * we need to allocate some memory to catch those writes coming
     * from msi_notify()/msix_notify() */
    if (msi_supported) {
        sprintf(namebuf, "%s.msi", phb->dtbusname);
        memory_region_init_io(&phb->msiwindow, &spapr_msi_ops, phb,
                              namebuf, SPAPR_MSIX_MAX_DEVS * 0x10000);
        memory_region_add_subregion(get_system_memory(), phb->msi_win_addr,
                                    &phb->msiwindow);
    }

566
    bus = pci_register_bus(&phb->host_state.busdev.qdev,
567 568 569
                           phb->busname ? phb->busname : phb->dtbusname,
                           pci_spapr_set_irq, pci_spapr_map_irq, phb,
                           &phb->memspace, &phb->iospace,
570
                           PCI_DEVFN(0, 0), PCI_NUM_PINS);
571 572
    phb->host_state.bus = bus;

573 574 575 576
    liobn = SPAPR_PCI_BASE_LIOBN | (pci_find_domain(bus) << 16);
    phb->dma = spapr_tce_new_dma_context(liobn, 0x40000000);
    pci_setup_iommu(bus, spapr_pci_dma_context_fn, phb);

577 578 579
    QLIST_INSERT_HEAD(&spapr->phbs, phb, list);

    /* Initialize the LSI table */
580
    for (i = 0; i < PCI_NUM_PINS; i++) {
581
        uint32_t irq;
582

583 584
        irq = spapr_allocate_lsi(0);
        if (!irq) {
585 586 587
            return -1;
        }

588
        phb->lsi_table[i].irq = irq;
589 590 591 592 593 594 595 596 597 598 599 600
    }

    return 0;
}

static Property spapr_phb_properties[] = {
    DEFINE_PROP_HEX64("buid", sPAPRPHBState, buid, 0),
    DEFINE_PROP_STRING("busname", sPAPRPHBState, busname),
    DEFINE_PROP_HEX64("mem_win_addr", sPAPRPHBState, mem_win_addr, 0),
    DEFINE_PROP_HEX64("mem_win_size", sPAPRPHBState, mem_win_size, 0x20000000),
    DEFINE_PROP_HEX64("io_win_addr", sPAPRPHBState, io_win_addr, 0),
    DEFINE_PROP_HEX64("io_win_size", sPAPRPHBState, io_win_size, 0x10000),
601
    DEFINE_PROP_HEX64("msi_win_addr", sPAPRPHBState, msi_win_addr, 0),
602 603 604 605 606 607 608 609 610 611 612
    DEFINE_PROP_END_OF_LIST(),
};

static void spapr_phb_class_init(ObjectClass *klass, void *data)
{
    SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
    DeviceClass *dc = DEVICE_CLASS(klass);

    sdc->init = spapr_phb_init;
    dc->props = spapr_phb_properties;
}
613

614 615 616 617 618 619 620 621 622 623
static TypeInfo spapr_phb_info = {
    .name          = "spapr-pci-host-bridge",
    .parent        = TYPE_SYS_BUS_DEVICE,
    .instance_size = sizeof(sPAPRPHBState),
    .class_init    = spapr_phb_class_init,
};

void spapr_create_phb(sPAPREnvironment *spapr,
                      const char *busname, uint64_t buid,
                      uint64_t mem_win_addr, uint64_t mem_win_size,
624
                      uint64_t io_win_addr, uint64_t msi_win_addr)
625 626 627 628
{
    DeviceState *dev;

    dev = qdev_create(NULL, spapr_phb_info.name);
629

630 631 632 633 634 635 636
    if (busname) {
        qdev_prop_set_string(dev, "busname", g_strdup(busname));
    }
    qdev_prop_set_uint64(dev, "buid", buid);
    qdev_prop_set_uint64(dev, "mem_win_addr", mem_win_addr);
    qdev_prop_set_uint64(dev, "mem_win_size", mem_win_size);
    qdev_prop_set_uint64(dev, "io_win_addr", io_win_addr);
637
    qdev_prop_set_uint64(dev, "msi_win_addr", msi_win_addr);
638 639

    qdev_init_nofail(dev);
640 641 642 643 644 645 646 647 648 649 650 651 652
}

/* Macros to operate with address in OF binding to PCI */
#define b_x(x, p, l)    (((x) & ((1<<(l))-1)) << (p))
#define b_n(x)          b_x((x), 31, 1) /* 0 if relocatable */
#define b_p(x)          b_x((x), 30, 1) /* 1 if prefetchable */
#define b_t(x)          b_x((x), 29, 1) /* 1 if the address is aliased */
#define b_ss(x)         b_x((x), 24, 2) /* the space code */
#define b_bbbbbbbb(x)   b_x((x), 16, 8) /* bus number */
#define b_ddddd(x)      b_x((x), 11, 5) /* device number */
#define b_fff(x)        b_x((x), 8, 3)  /* function number */
#define b_rrrrrrrr(x)   b_x((x), 0, 8)  /* register number */

653 654 655
int spapr_populate_pci_dt(sPAPRPHBState *phb,
                          uint32_t xics_phandle,
                          void *fdt)
656
{
657
    int bus_off, i, j;
658 659 660 661 662 663 664
    char nodename[256];
    uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
    struct {
        uint32_t hi;
        uint64_t child;
        uint64_t parent;
        uint64_t size;
665
    } QEMU_PACKED ranges[] = {
666 667 668 669 670 671 672 673 674 675 676 677 678
        {
            cpu_to_be32(b_ss(1)), cpu_to_be64(0),
            cpu_to_be64(phb->io_win_addr),
            cpu_to_be64(memory_region_size(&phb->iospace)),
        },
        {
            cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
            cpu_to_be64(phb->mem_win_addr),
            cpu_to_be64(memory_region_size(&phb->memwindow)),
        },
    };
    uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
    uint32_t interrupt_map_mask[] = {
679 680
        cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
    uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706

    /* Start populating the FDT */
    sprintf(nodename, "pci@%" PRIx64, phb->buid);
    bus_off = fdt_add_subnode(fdt, 0, nodename);
    if (bus_off < 0) {
        return bus_off;
    }

#define _FDT(exp) \
    do { \
        int ret = (exp);                                           \
        if (ret < 0) {                                             \
            return ret;                                            \
        }                                                          \
    } while (0)

    /* Write PHB properties */
    _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
    _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
    _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
    _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
    _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
    _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
    _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
    _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof(ranges)));
    _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
707
    _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
708

709 710 711 712 713
    /* Build the interrupt-map, this must matches what is done
     * in pci_spapr_map_irq
     */
    _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
                     &interrupt_map_mask, sizeof(interrupt_map_mask)));
714 715 716 717 718 719 720 721 722 723
    for (i = 0; i < PCI_SLOT_MAX; i++) {
        for (j = 0; j < PCI_NUM_PINS; j++) {
            uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
            int lsi_num = pci_spapr_swizzle(i, j);

            irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
            irqmap[1] = 0;
            irqmap[2] = 0;
            irqmap[3] = cpu_to_be32(j+1);
            irqmap[4] = cpu_to_be32(xics_phandle);
724
            irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq);
725 726
            irqmap[6] = cpu_to_be32(0x8);
        }
727 728 729
    }
    /* Write interrupt map */
    _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
730
                     sizeof(interrupt_map)));
731

732 733
    spapr_dma_dt(fdt, bus_off, "ibm,dma-window", phb->dma);

734 735
    return 0;
}
736

737 738 739 740 741 742
void spapr_pci_rtas_init(void)
{
    spapr_rtas_register("read-pci-config", rtas_read_pci_config);
    spapr_rtas_register("write-pci-config", rtas_write_pci_config);
    spapr_rtas_register("ibm,read-pci-config", rtas_ibm_read_pci_config);
    spapr_rtas_register("ibm,write-pci-config", rtas_ibm_write_pci_config);
743 744 745 746 747
    if (msi_supported) {
        spapr_rtas_register("ibm,query-interrupt-source-number",
                            rtas_ibm_query_interrupt_source_number);
        spapr_rtas_register("ibm,change-msi", rtas_ibm_change_msi);
    }
748 749
}

750 751 752 753 754
static void register_types(void)
{
    type_register_static(&spapr_phb_info);
}
type_init(register_types)