spapr_pci.c 16.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * QEMU sPAPR PCI host originated from Uninorth PCI host
 *
 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
 * Copyright (C) 2011 David Gibson, IBM Corporation.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include "hw.h"
#include "pci.h"
#include "pci_host.h"
#include "hw/spapr.h"
#include "hw/spapr_pci.h"
#include "exec-memory.h"
#include <libfdt.h>
32
#include "trace.h"
33 34 35

#include "hw/pci_internals.h"

36
static sPAPRPHBState *find_phb(sPAPREnvironment *spapr, uint64_t buid)
37 38 39 40 41 42 43
{
    sPAPRPHBState *phb;

    QLIST_FOREACH(phb, &spapr->phbs, list) {
        if (phb->buid != buid) {
            continue;
        }
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
        return phb;
    }

    return NULL;
}

static PCIDevice *find_dev(sPAPREnvironment *spapr, uint64_t buid,
                           uint32_t config_addr)
{
    sPAPRPHBState *phb = find_phb(spapr, buid);
    BusChild *kid;
    int devfn = (config_addr >> 8) & 0xFF;

    if (!phb) {
        return NULL;
    }
60

61 62 63 64
    QTAILQ_FOREACH(kid, &phb->host_state.bus->qbus.children, sibling) {
        PCIDevice *dev = (PCIDevice *)kid->child;
        if (dev->devfn == devfn) {
            return dev;
65 66 67 68 69 70
        }
    }

    return NULL;
}

71 72
static uint32_t rtas_pci_cfgaddr(uint32_t arg)
{
73
    /* This handles the encoding of extended config space addresses */
74 75 76
    return ((arg >> 20) & 0xf00) | (arg & 0xff);
}

77 78 79
static void finish_read_pci_config(sPAPREnvironment *spapr, uint64_t buid,
                                   uint32_t addr, uint32_t size,
                                   target_ulong rets)
80
{
81 82 83 84 85 86 87
    PCIDevice *pci_dev;
    uint32_t val;

    if ((size != 1) && (size != 2) && (size != 4)) {
        /* access must be 1, 2 or 4 bytes */
        rtas_st(rets, 0, -1);
        return;
88 89
    }

90 91 92 93 94 95 96 97
    pci_dev = find_dev(spapr, buid, addr);
    addr = rtas_pci_cfgaddr(addr);

    if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
        /* Access must be to a valid device, within bounds and
         * naturally aligned */
        rtas_st(rets, 0, -1);
        return;
98
    }
99 100 101 102 103 104

    val = pci_host_config_read_common(pci_dev, addr,
                                      pci_config_size(pci_dev), size);

    rtas_st(rets, 0, 0);
    rtas_st(rets, 1, val);
105 106
}

107 108 109 110 111
static void rtas_ibm_read_pci_config(sPAPREnvironment *spapr,
                                     uint32_t token, uint32_t nargs,
                                     target_ulong args,
                                     uint32_t nret, target_ulong rets)
{
112 113
    uint64_t buid;
    uint32_t size, addr;
114

115
    if ((nargs != 4) || (nret != 2)) {
116 117 118
        rtas_st(rets, 0, -1);
        return;
    }
119 120

    buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
121
    size = rtas_ld(args, 3);
122 123 124
    addr = rtas_ld(args, 0);

    finish_read_pci_config(spapr, buid, addr, size, rets);
125 126 127 128 129 130 131
}

static void rtas_read_pci_config(sPAPREnvironment *spapr,
                                 uint32_t token, uint32_t nargs,
                                 target_ulong args,
                                 uint32_t nret, target_ulong rets)
{
132
    uint32_t size, addr;
133

134
    if ((nargs != 2) || (nret != 2)) {
135 136 137
        rtas_st(rets, 0, -1);
        return;
    }
138

139
    size = rtas_ld(args, 1);
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    addr = rtas_ld(args, 0);

    finish_read_pci_config(spapr, 0, addr, size, rets);
}

static void finish_write_pci_config(sPAPREnvironment *spapr, uint64_t buid,
                                    uint32_t addr, uint32_t size,
                                    uint32_t val, target_ulong rets)
{
    PCIDevice *pci_dev;

    if ((size != 1) && (size != 2) && (size != 4)) {
        /* access must be 1, 2 or 4 bytes */
        rtas_st(rets, 0, -1);
        return;
    }

    pci_dev = find_dev(spapr, buid, addr);
    addr = rtas_pci_cfgaddr(addr);

    if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
        /* Access must be to a valid device, within bounds and
         * naturally aligned */
        rtas_st(rets, 0, -1);
        return;
    }

    pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
                                 val, size);

170 171 172 173 174 175 176 177
    rtas_st(rets, 0, 0);
}

static void rtas_ibm_write_pci_config(sPAPREnvironment *spapr,
                                      uint32_t token, uint32_t nargs,
                                      target_ulong args,
                                      uint32_t nret, target_ulong rets)
{
178
    uint64_t buid;
179 180
    uint32_t val, size, addr;

181
    if ((nargs != 5) || (nret != 1)) {
182 183 184
        rtas_st(rets, 0, -1);
        return;
    }
185 186

    buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
187 188
    val = rtas_ld(args, 4);
    size = rtas_ld(args, 3);
189 190 191
    addr = rtas_ld(args, 0);

    finish_write_pci_config(spapr, buid, addr, size, val, rets);
192 193 194 195 196 197 198 199 200
}

static void rtas_write_pci_config(sPAPREnvironment *spapr,
                                  uint32_t token, uint32_t nargs,
                                  target_ulong args,
                                  uint32_t nret, target_ulong rets)
{
    uint32_t val, size, addr;

201
    if ((nargs != 3) || (nret != 1)) {
202 203 204
        rtas_st(rets, 0, -1);
        return;
    }
205 206


207 208
    val = rtas_ld(args, 2);
    size = rtas_ld(args, 1);
209 210 211
    addr = rtas_ld(args, 0);

    finish_write_pci_config(spapr, 0, addr, size, val, rets);
212 213
}

214 215 216 217 218
static int pci_spapr_swizzle(int slot, int pin)
{
    return (slot + pin) % PCI_NUM_PINS;
}

219 220 221 222
static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
{
    /*
     * Here we need to convert pci_dev + irq_num to some unique value
223 224 225
     * which is less than number of IRQs on the specific bus (4).  We
     * use standard PCI swizzling, that is (slot number + pin number)
     * % 4.
226
     */
227
    return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
228 229 230 231 232 233 234 235 236 237
}

static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
{
    /*
     * Here we use the number returned by pci_spapr_map_irq to find a
     * corresponding qemu_irq.
     */
    sPAPRPHBState *phb = opaque;

238
    trace_spapr_pci_lsi_set(phb->busname, irq_num, phb->lsi_table[irq_num].irq);
239
    qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
}

static uint64_t spapr_io_read(void *opaque, target_phys_addr_t addr,
                              unsigned size)
{
    switch (size) {
    case 1:
        return cpu_inb(addr);
    case 2:
        return cpu_inw(addr);
    case 4:
        return cpu_inl(addr);
    }
    assert(0);
}

static void spapr_io_write(void *opaque, target_phys_addr_t addr,
                           uint64_t data, unsigned size)
{
    switch (size) {
    case 1:
        cpu_outb(addr, data);
        return;
    case 2:
        cpu_outw(addr, data);
        return;
    case 4:
        cpu_outl(addr, data);
        return;
    }
    assert(0);
}

273
static const MemoryRegionOps spapr_io_ops = {
274 275 276 277 278
    .endianness = DEVICE_LITTLE_ENDIAN,
    .read = spapr_io_read,
    .write = spapr_io_write
};

279 280 281
/*
 * PHB PCI device
 */
282 283 284 285 286 287 288 289
static DMAContext *spapr_pci_dma_context_fn(PCIBus *bus, void *opaque,
                                            int devfn)
{
    sPAPRPHBState *phb = opaque;

    return phb->dma;
}

290
static int spapr_phb_init(SysBusDevice *s)
291
{
292
    sPAPRPHBState *phb = DO_UPCAST(sPAPRPHBState, host_state.busdev, s);
293 294
    char *namebuf;
    int i;
295
    PCIBus *bus;
296
    uint32_t liobn;
297

298 299
    phb->dtbusname = g_strdup_printf("pci@%" PRIx64, phb->buid);
    namebuf = alloca(strlen(phb->dtbusname) + 32);
300

301 302
    /* Initialize memory regions */
    sprintf(namebuf, "%s.mmio", phb->dtbusname);
303 304
    memory_region_init(&phb->memspace, namebuf, INT64_MAX);

305
    sprintf(namebuf, "%s.mmio-alias", phb->dtbusname);
306
    memory_region_init_alias(&phb->memwindow, namebuf, &phb->memspace,
307 308
                             SPAPR_PCI_MEM_WIN_BUS_OFFSET, phb->mem_win_size);
    memory_region_add_subregion(get_system_memory(), phb->mem_win_addr,
309 310 311 312 313 314 315 316 317 318
                                &phb->memwindow);

    /* On ppc, we only have MMIO no specific IO space from the CPU
     * perspective.  In theory we ought to be able to embed the PCI IO
     * memory region direction in the system memory space.  However,
     * if any of the IO BAR subregions use the old_portio mechanism,
     * that won't be processed properly unless accessed from the
     * system io address space.  This hack to bounce things via
     * system_io works around the problem until all the users of
     * old_portion are updated */
319
    sprintf(namebuf, "%s.io", phb->dtbusname);
320 321 322 323
    memory_region_init(&phb->iospace, namebuf, SPAPR_PCI_IO_WIN_SIZE);
    /* FIXME: fix to support multiple PHBs */
    memory_region_add_subregion(get_system_io(), 0, &phb->iospace);

324
    sprintf(namebuf, "%s.io-alias", phb->dtbusname);
325 326
    memory_region_init_io(&phb->iowindow, &spapr_io_ops, phb,
                          namebuf, SPAPR_PCI_IO_WIN_SIZE);
327
    memory_region_add_subregion(get_system_memory(), phb->io_win_addr,
328 329
                                &phb->iowindow);

330
    bus = pci_register_bus(&phb->host_state.busdev.qdev,
331 332 333
                           phb->busname ? phb->busname : phb->dtbusname,
                           pci_spapr_set_irq, pci_spapr_map_irq, phb,
                           &phb->memspace, &phb->iospace,
334
                           PCI_DEVFN(0, 0), PCI_NUM_PINS);
335 336
    phb->host_state.bus = bus;

337 338 339 340
    liobn = SPAPR_PCI_BASE_LIOBN | (pci_find_domain(bus) << 16);
    phb->dma = spapr_tce_new_dma_context(liobn, 0x40000000);
    pci_setup_iommu(bus, spapr_pci_dma_context_fn, phb);

341 342 343
    QLIST_INSERT_HEAD(&spapr->phbs, phb, list);

    /* Initialize the LSI table */
344
    for (i = 0; i < PCI_NUM_PINS; i++) {
345
        uint32_t irq;
346

347 348
        irq = spapr_allocate_lsi(0);
        if (!irq) {
349 350 351
            return -1;
        }

352
        phb->lsi_table[i].irq = irq;
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
    }

    return 0;
}

static Property spapr_phb_properties[] = {
    DEFINE_PROP_HEX64("buid", sPAPRPHBState, buid, 0),
    DEFINE_PROP_STRING("busname", sPAPRPHBState, busname),
    DEFINE_PROP_HEX64("mem_win_addr", sPAPRPHBState, mem_win_addr, 0),
    DEFINE_PROP_HEX64("mem_win_size", sPAPRPHBState, mem_win_size, 0x20000000),
    DEFINE_PROP_HEX64("io_win_addr", sPAPRPHBState, io_win_addr, 0),
    DEFINE_PROP_HEX64("io_win_size", sPAPRPHBState, io_win_size, 0x10000),
    DEFINE_PROP_END_OF_LIST(),
};

static void spapr_phb_class_init(ObjectClass *klass, void *data)
{
    SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
    DeviceClass *dc = DEVICE_CLASS(klass);

    sdc->init = spapr_phb_init;
    dc->props = spapr_phb_properties;
}
376

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
static TypeInfo spapr_phb_info = {
    .name          = "spapr-pci-host-bridge",
    .parent        = TYPE_SYS_BUS_DEVICE,
    .instance_size = sizeof(sPAPRPHBState),
    .class_init    = spapr_phb_class_init,
};

void spapr_create_phb(sPAPREnvironment *spapr,
                      const char *busname, uint64_t buid,
                      uint64_t mem_win_addr, uint64_t mem_win_size,
                      uint64_t io_win_addr)
{
    DeviceState *dev;

    dev = qdev_create(NULL, spapr_phb_info.name);
392

393 394 395 396 397 398 399 400 401
    if (busname) {
        qdev_prop_set_string(dev, "busname", g_strdup(busname));
    }
    qdev_prop_set_uint64(dev, "buid", buid);
    qdev_prop_set_uint64(dev, "mem_win_addr", mem_win_addr);
    qdev_prop_set_uint64(dev, "mem_win_size", mem_win_size);
    qdev_prop_set_uint64(dev, "io_win_addr", io_win_addr);

    qdev_init_nofail(dev);
402 403 404 405 406 407 408 409 410 411 412 413 414
}

/* Macros to operate with address in OF binding to PCI */
#define b_x(x, p, l)    (((x) & ((1<<(l))-1)) << (p))
#define b_n(x)          b_x((x), 31, 1) /* 0 if relocatable */
#define b_p(x)          b_x((x), 30, 1) /* 1 if prefetchable */
#define b_t(x)          b_x((x), 29, 1) /* 1 if the address is aliased */
#define b_ss(x)         b_x((x), 24, 2) /* the space code */
#define b_bbbbbbbb(x)   b_x((x), 16, 8) /* bus number */
#define b_ddddd(x)      b_x((x), 11, 5) /* device number */
#define b_fff(x)        b_x((x), 8, 3)  /* function number */
#define b_rrrrrrrr(x)   b_x((x), 0, 8)  /* register number */

415 416 417
int spapr_populate_pci_dt(sPAPRPHBState *phb,
                          uint32_t xics_phandle,
                          void *fdt)
418
{
419
    int bus_off, i, j;
420 421 422 423 424 425 426
    char nodename[256];
    uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
    struct {
        uint32_t hi;
        uint64_t child;
        uint64_t parent;
        uint64_t size;
427
    } QEMU_PACKED ranges[] = {
428 429 430 431 432 433 434 435 436 437 438 439 440
        {
            cpu_to_be32(b_ss(1)), cpu_to_be64(0),
            cpu_to_be64(phb->io_win_addr),
            cpu_to_be64(memory_region_size(&phb->iospace)),
        },
        {
            cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
            cpu_to_be64(phb->mem_win_addr),
            cpu_to_be64(memory_region_size(&phb->memwindow)),
        },
    };
    uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
    uint32_t interrupt_map_mask[] = {
441 442
        cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
    uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468

    /* Start populating the FDT */
    sprintf(nodename, "pci@%" PRIx64, phb->buid);
    bus_off = fdt_add_subnode(fdt, 0, nodename);
    if (bus_off < 0) {
        return bus_off;
    }

#define _FDT(exp) \
    do { \
        int ret = (exp);                                           \
        if (ret < 0) {                                             \
            return ret;                                            \
        }                                                          \
    } while (0)

    /* Write PHB properties */
    _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
    _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
    _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
    _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
    _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
    _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
    _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
    _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof(ranges)));
    _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
469
    _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
470

471 472 473 474 475
    /* Build the interrupt-map, this must matches what is done
     * in pci_spapr_map_irq
     */
    _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
                     &interrupt_map_mask, sizeof(interrupt_map_mask)));
476 477 478 479 480 481 482 483 484 485
    for (i = 0; i < PCI_SLOT_MAX; i++) {
        for (j = 0; j < PCI_NUM_PINS; j++) {
            uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
            int lsi_num = pci_spapr_swizzle(i, j);

            irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
            irqmap[1] = 0;
            irqmap[2] = 0;
            irqmap[3] = cpu_to_be32(j+1);
            irqmap[4] = cpu_to_be32(xics_phandle);
486
            irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq);
487 488
            irqmap[6] = cpu_to_be32(0x8);
        }
489 490 491
    }
    /* Write interrupt map */
    _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
492
                     sizeof(interrupt_map)));
493

494 495
    spapr_dma_dt(fdt, bus_off, "ibm,dma-window", phb->dma);

496 497
    return 0;
}
498

499 500 501 502 503 504 505 506
void spapr_pci_rtas_init(void)
{
    spapr_rtas_register("read-pci-config", rtas_read_pci_config);
    spapr_rtas_register("write-pci-config", rtas_write_pci_config);
    spapr_rtas_register("ibm,read-pci-config", rtas_ibm_read_pci_config);
    spapr_rtas_register("ibm,write-pci-config", rtas_ibm_write_pci_config);
}

507 508 509 510 511
static void register_types(void)
{
    type_register_static(&spapr_phb_info);
}
type_init(register_types)