spapr_pci.c 15.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
/*
 * QEMU sPAPR PCI host originated from Uninorth PCI host
 *
 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
 * Copyright (C) 2011 David Gibson, IBM Corporation.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include "hw.h"
#include "pci.h"
#include "pci_host.h"
#include "hw/spapr.h"
#include "hw/spapr_pci.h"
#include "exec-memory.h"
#include <libfdt.h>

#include "hw/pci_internals.h"

static PCIDevice *find_dev(sPAPREnvironment *spapr,
                           uint64_t buid, uint32_t config_addr)
{
    int devfn = (config_addr >> 8) & 0xFF;
    sPAPRPHBState *phb;

    QLIST_FOREACH(phb, &spapr->phbs, list) {
A
Anthony Liguori 已提交
42 43
        BusChild *kid;

44 45 46 47
        if (phb->buid != buid) {
            continue;
        }

A
Anthony Liguori 已提交
48 49
        QTAILQ_FOREACH(kid, &phb->host_state.bus->qbus.children, sibling) {
            PCIDevice *dev = (PCIDevice *)kid->child;
50 51 52 53 54 55 56 57 58
            if (dev->devfn == devfn) {
                return dev;
            }
        }
    }

    return NULL;
}

59 60
static uint32_t rtas_pci_cfgaddr(uint32_t arg)
{
61
    /* This handles the encoding of extended config space addresses */
62 63 64
    return ((arg >> 20) & 0xf00) | (arg & 0xff);
}

65 66 67
static void finish_read_pci_config(sPAPREnvironment *spapr, uint64_t buid,
                                   uint32_t addr, uint32_t size,
                                   target_ulong rets)
68
{
69 70 71 72 73 74 75
    PCIDevice *pci_dev;
    uint32_t val;

    if ((size != 1) && (size != 2) && (size != 4)) {
        /* access must be 1, 2 or 4 bytes */
        rtas_st(rets, 0, -1);
        return;
76 77
    }

78 79 80 81 82 83 84 85
    pci_dev = find_dev(spapr, buid, addr);
    addr = rtas_pci_cfgaddr(addr);

    if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
        /* Access must be to a valid device, within bounds and
         * naturally aligned */
        rtas_st(rets, 0, -1);
        return;
86
    }
87 88 89 90 91 92

    val = pci_host_config_read_common(pci_dev, addr,
                                      pci_config_size(pci_dev), size);

    rtas_st(rets, 0, 0);
    rtas_st(rets, 1, val);
93 94
}

95 96 97 98 99
static void rtas_ibm_read_pci_config(sPAPREnvironment *spapr,
                                     uint32_t token, uint32_t nargs,
                                     target_ulong args,
                                     uint32_t nret, target_ulong rets)
{
100 101
    uint64_t buid;
    uint32_t size, addr;
102

103
    if ((nargs != 4) || (nret != 2)) {
104 105 106
        rtas_st(rets, 0, -1);
        return;
    }
107 108

    buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
109
    size = rtas_ld(args, 3);
110 111 112
    addr = rtas_ld(args, 0);

    finish_read_pci_config(spapr, buid, addr, size, rets);
113 114 115 116 117 118 119
}

static void rtas_read_pci_config(sPAPREnvironment *spapr,
                                 uint32_t token, uint32_t nargs,
                                 target_ulong args,
                                 uint32_t nret, target_ulong rets)
{
120
    uint32_t size, addr;
121

122
    if ((nargs != 2) || (nret != 2)) {
123 124 125
        rtas_st(rets, 0, -1);
        return;
    }
126

127
    size = rtas_ld(args, 1);
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    addr = rtas_ld(args, 0);

    finish_read_pci_config(spapr, 0, addr, size, rets);
}

static void finish_write_pci_config(sPAPREnvironment *spapr, uint64_t buid,
                                    uint32_t addr, uint32_t size,
                                    uint32_t val, target_ulong rets)
{
    PCIDevice *pci_dev;

    if ((size != 1) && (size != 2) && (size != 4)) {
        /* access must be 1, 2 or 4 bytes */
        rtas_st(rets, 0, -1);
        return;
    }

    pci_dev = find_dev(spapr, buid, addr);
    addr = rtas_pci_cfgaddr(addr);

    if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
        /* Access must be to a valid device, within bounds and
         * naturally aligned */
        rtas_st(rets, 0, -1);
        return;
    }

    pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
                                 val, size);

158 159 160 161 162 163 164 165
    rtas_st(rets, 0, 0);
}

static void rtas_ibm_write_pci_config(sPAPREnvironment *spapr,
                                      uint32_t token, uint32_t nargs,
                                      target_ulong args,
                                      uint32_t nret, target_ulong rets)
{
166
    uint64_t buid;
167 168
    uint32_t val, size, addr;

169
    if ((nargs != 5) || (nret != 1)) {
170 171 172
        rtas_st(rets, 0, -1);
        return;
    }
173 174

    buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
175 176
    val = rtas_ld(args, 4);
    size = rtas_ld(args, 3);
177 178 179
    addr = rtas_ld(args, 0);

    finish_write_pci_config(spapr, buid, addr, size, val, rets);
180 181 182 183 184 185 186 187 188
}

static void rtas_write_pci_config(sPAPREnvironment *spapr,
                                  uint32_t token, uint32_t nargs,
                                  target_ulong args,
                                  uint32_t nret, target_ulong rets)
{
    uint32_t val, size, addr;

189
    if ((nargs != 3) || (nret != 1)) {
190 191 192
        rtas_st(rets, 0, -1);
        return;
    }
193 194


195 196
    val = rtas_ld(args, 2);
    size = rtas_ld(args, 1);
197 198 199
    addr = rtas_ld(args, 0);

    finish_write_pci_config(spapr, 0, addr, size, val, rets);
200 201
}

202 203 204 205 206
static int pci_spapr_swizzle(int slot, int pin)
{
    return (slot + pin) % PCI_NUM_PINS;
}

207 208 209 210
static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
{
    /*
     * Here we need to convert pci_dev + irq_num to some unique value
211 212 213
     * which is less than number of IRQs on the specific bus (4).  We
     * use standard PCI swizzling, that is (slot number + pin number)
     * % 4.
214
     */
215
    return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
216 217 218 219 220 221 222 223 224 225
}

static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
{
    /*
     * Here we use the number returned by pci_spapr_map_irq to find a
     * corresponding qemu_irq.
     */
    sPAPRPHBState *phb = opaque;

226
    qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
}

static uint64_t spapr_io_read(void *opaque, target_phys_addr_t addr,
                              unsigned size)
{
    switch (size) {
    case 1:
        return cpu_inb(addr);
    case 2:
        return cpu_inw(addr);
    case 4:
        return cpu_inl(addr);
    }
    assert(0);
}

static void spapr_io_write(void *opaque, target_phys_addr_t addr,
                           uint64_t data, unsigned size)
{
    switch (size) {
    case 1:
        cpu_outb(addr, data);
        return;
    case 2:
        cpu_outw(addr, data);
        return;
    case 4:
        cpu_outl(addr, data);
        return;
    }
    assert(0);
}

260
static const MemoryRegionOps spapr_io_ops = {
261 262 263 264 265
    .endianness = DEVICE_LITTLE_ENDIAN,
    .read = spapr_io_read,
    .write = spapr_io_write
};

266 267 268
/*
 * PHB PCI device
 */
269 270 271 272 273 274 275 276
static DMAContext *spapr_pci_dma_context_fn(PCIBus *bus, void *opaque,
                                            int devfn)
{
    sPAPRPHBState *phb = opaque;

    return phb->dma;
}

277
static int spapr_phb_init(SysBusDevice *s)
278
{
279
    sPAPRPHBState *phb = DO_UPCAST(sPAPRPHBState, host_state.busdev, s);
280 281
    char *namebuf;
    int i;
282
    PCIBus *bus;
283
    uint32_t liobn;
284

285 286
    phb->dtbusname = g_strdup_printf("pci@%" PRIx64, phb->buid);
    namebuf = alloca(strlen(phb->dtbusname) + 32);
287

288 289
    /* Initialize memory regions */
    sprintf(namebuf, "%s.mmio", phb->dtbusname);
290 291
    memory_region_init(&phb->memspace, namebuf, INT64_MAX);

292
    sprintf(namebuf, "%s.mmio-alias", phb->dtbusname);
293
    memory_region_init_alias(&phb->memwindow, namebuf, &phb->memspace,
294 295
                             SPAPR_PCI_MEM_WIN_BUS_OFFSET, phb->mem_win_size);
    memory_region_add_subregion(get_system_memory(), phb->mem_win_addr,
296 297 298 299 300 301 302 303 304 305
                                &phb->memwindow);

    /* On ppc, we only have MMIO no specific IO space from the CPU
     * perspective.  In theory we ought to be able to embed the PCI IO
     * memory region direction in the system memory space.  However,
     * if any of the IO BAR subregions use the old_portio mechanism,
     * that won't be processed properly unless accessed from the
     * system io address space.  This hack to bounce things via
     * system_io works around the problem until all the users of
     * old_portion are updated */
306
    sprintf(namebuf, "%s.io", phb->dtbusname);
307 308 309 310
    memory_region_init(&phb->iospace, namebuf, SPAPR_PCI_IO_WIN_SIZE);
    /* FIXME: fix to support multiple PHBs */
    memory_region_add_subregion(get_system_io(), 0, &phb->iospace);

311
    sprintf(namebuf, "%s.io-alias", phb->dtbusname);
312 313
    memory_region_init_io(&phb->iowindow, &spapr_io_ops, phb,
                          namebuf, SPAPR_PCI_IO_WIN_SIZE);
314
    memory_region_add_subregion(get_system_memory(), phb->io_win_addr,
315 316
                                &phb->iowindow);

317
    bus = pci_register_bus(&phb->host_state.busdev.qdev,
318 319 320
                           phb->busname ? phb->busname : phb->dtbusname,
                           pci_spapr_set_irq, pci_spapr_map_irq, phb,
                           &phb->memspace, &phb->iospace,
321
                           PCI_DEVFN(0, 0), PCI_NUM_PINS);
322 323
    phb->host_state.bus = bus;

324 325 326 327
    liobn = SPAPR_PCI_BASE_LIOBN | (pci_find_domain(bus) << 16);
    phb->dma = spapr_tce_new_dma_context(liobn, 0x40000000);
    pci_setup_iommu(bus, spapr_pci_dma_context_fn, phb);

328 329 330
    QLIST_INSERT_HEAD(&spapr->phbs, phb, list);

    /* Initialize the LSI table */
331
    for (i = 0; i < PCI_NUM_PINS; i++) {
332
        uint32_t irq;
333

334 335
        irq = spapr_allocate_lsi(0);
        if (!irq) {
336 337 338
            return -1;
        }

339
        phb->lsi_table[i].irq = irq;
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
    }

    return 0;
}

static Property spapr_phb_properties[] = {
    DEFINE_PROP_HEX64("buid", sPAPRPHBState, buid, 0),
    DEFINE_PROP_STRING("busname", sPAPRPHBState, busname),
    DEFINE_PROP_HEX64("mem_win_addr", sPAPRPHBState, mem_win_addr, 0),
    DEFINE_PROP_HEX64("mem_win_size", sPAPRPHBState, mem_win_size, 0x20000000),
    DEFINE_PROP_HEX64("io_win_addr", sPAPRPHBState, io_win_addr, 0),
    DEFINE_PROP_HEX64("io_win_size", sPAPRPHBState, io_win_size, 0x10000),
    DEFINE_PROP_END_OF_LIST(),
};

static void spapr_phb_class_init(ObjectClass *klass, void *data)
{
    SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
    DeviceClass *dc = DEVICE_CLASS(klass);

    sdc->init = spapr_phb_init;
    dc->props = spapr_phb_properties;
}
363

364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
static TypeInfo spapr_phb_info = {
    .name          = "spapr-pci-host-bridge",
    .parent        = TYPE_SYS_BUS_DEVICE,
    .instance_size = sizeof(sPAPRPHBState),
    .class_init    = spapr_phb_class_init,
};

void spapr_create_phb(sPAPREnvironment *spapr,
                      const char *busname, uint64_t buid,
                      uint64_t mem_win_addr, uint64_t mem_win_size,
                      uint64_t io_win_addr)
{
    DeviceState *dev;

    dev = qdev_create(NULL, spapr_phb_info.name);
379

380 381 382 383 384 385 386 387 388
    if (busname) {
        qdev_prop_set_string(dev, "busname", g_strdup(busname));
    }
    qdev_prop_set_uint64(dev, "buid", buid);
    qdev_prop_set_uint64(dev, "mem_win_addr", mem_win_addr);
    qdev_prop_set_uint64(dev, "mem_win_size", mem_win_size);
    qdev_prop_set_uint64(dev, "io_win_addr", io_win_addr);

    qdev_init_nofail(dev);
389 390 391 392 393 394 395 396 397 398 399 400 401
}

/* Macros to operate with address in OF binding to PCI */
#define b_x(x, p, l)    (((x) & ((1<<(l))-1)) << (p))
#define b_n(x)          b_x((x), 31, 1) /* 0 if relocatable */
#define b_p(x)          b_x((x), 30, 1) /* 1 if prefetchable */
#define b_t(x)          b_x((x), 29, 1) /* 1 if the address is aliased */
#define b_ss(x)         b_x((x), 24, 2) /* the space code */
#define b_bbbbbbbb(x)   b_x((x), 16, 8) /* bus number */
#define b_ddddd(x)      b_x((x), 11, 5) /* device number */
#define b_fff(x)        b_x((x), 8, 3)  /* function number */
#define b_rrrrrrrr(x)   b_x((x), 0, 8)  /* register number */

402 403 404
int spapr_populate_pci_dt(sPAPRPHBState *phb,
                          uint32_t xics_phandle,
                          void *fdt)
405
{
406
    int bus_off, i, j;
407 408 409 410 411 412 413
    char nodename[256];
    uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
    struct {
        uint32_t hi;
        uint64_t child;
        uint64_t parent;
        uint64_t size;
414
    } QEMU_PACKED ranges[] = {
415 416 417 418 419 420 421 422 423 424 425 426 427
        {
            cpu_to_be32(b_ss(1)), cpu_to_be64(0),
            cpu_to_be64(phb->io_win_addr),
            cpu_to_be64(memory_region_size(&phb->iospace)),
        },
        {
            cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
            cpu_to_be64(phb->mem_win_addr),
            cpu_to_be64(memory_region_size(&phb->memwindow)),
        },
    };
    uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
    uint32_t interrupt_map_mask[] = {
428 429
        cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
    uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455

    /* Start populating the FDT */
    sprintf(nodename, "pci@%" PRIx64, phb->buid);
    bus_off = fdt_add_subnode(fdt, 0, nodename);
    if (bus_off < 0) {
        return bus_off;
    }

#define _FDT(exp) \
    do { \
        int ret = (exp);                                           \
        if (ret < 0) {                                             \
            return ret;                                            \
        }                                                          \
    } while (0)

    /* Write PHB properties */
    _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
    _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
    _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
    _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
    _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
    _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
    _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
    _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof(ranges)));
    _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
456
    _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
457

458 459 460 461 462
    /* Build the interrupt-map, this must matches what is done
     * in pci_spapr_map_irq
     */
    _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
                     &interrupt_map_mask, sizeof(interrupt_map_mask)));
463 464 465 466 467 468 469 470 471 472
    for (i = 0; i < PCI_SLOT_MAX; i++) {
        for (j = 0; j < PCI_NUM_PINS; j++) {
            uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
            int lsi_num = pci_spapr_swizzle(i, j);

            irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
            irqmap[1] = 0;
            irqmap[2] = 0;
            irqmap[3] = cpu_to_be32(j+1);
            irqmap[4] = cpu_to_be32(xics_phandle);
473
            irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq);
474 475
            irqmap[6] = cpu_to_be32(0x8);
        }
476 477 478
    }
    /* Write interrupt map */
    _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
479
                     sizeof(interrupt_map)));
480

481 482
    spapr_dma_dt(fdt, bus_off, "ibm,dma-window", phb->dma);

483 484
    return 0;
}
485

486 487 488 489 490 491 492 493
void spapr_pci_rtas_init(void)
{
    spapr_rtas_register("read-pci-config", rtas_read_pci_config);
    spapr_rtas_register("write-pci-config", rtas_write_pci_config);
    spapr_rtas_register("ibm,read-pci-config", rtas_ibm_read_pci_config);
    spapr_rtas_register("ibm,write-pci-config", rtas_ibm_write_pci_config);
}

494 495 496 497 498
static void register_types(void)
{
    type_register_static(&spapr_phb_info);
}
type_init(register_types)