translate-all.c 65.8 KB
Newer Older
B
bellard 已提交
1 2
/*
 *  Host code generation
3
 *
B
bellard 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
B
bellard 已提交
18
 */
19 20 21
#ifdef _WIN32
#include <windows.h>
#endif
P
Peter Maydell 已提交
22
#include "qemu/osdep.h"
B
bellard 已提交
23

B
bellard 已提交
24

25
#include "qemu-common.h"
B
bellard 已提交
26
#define NO_CPU_IO_DEFS
B
bellard 已提交
27
#include "cpu.h"
28
#include "trace.h"
29
#include "disas/disas.h"
30
#include "exec/exec-all.h"
B
bellard 已提交
31
#include "tcg.h"
32 33
#if defined(CONFIG_USER_ONLY)
#include "qemu.h"
34
#include "exec/exec-all.h"
35 36 37 38 39 40 41 42 43 44 45 46 47 48
#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
#include <sys/param.h>
#if __FreeBSD_version >= 700104
#define HAVE_KINFO_GETVMMAP
#define sigqueue sigqueue_freebsd  /* avoid redefinition */
#include <sys/proc.h>
#include <machine/profile.h>
#define _KERNEL
#include <sys/user.h>
#undef _KERNEL
#undef sigqueue
#include <libutil.h>
#endif
#endif
49 50
#else
#include "exec/address-spaces.h"
51 52
#endif

53
#include "exec/cputlb.h"
54
#include "exec/tb-hash.h"
55
#include "translate-all.h"
56
#include "qemu/bitmap.h"
57
#include "qemu/error-report.h"
58
#include "qemu/timer.h"
59
#include "qemu/main-loop.h"
60
#include "exec/log.h"
61
#include "sysemu/cpus.h"
62

63 64
/* #define DEBUG_TB_INVALIDATE */
/* #define DEBUG_TB_FLUSH */
65
/* make various TB consistency checks */
66
/* #define DEBUG_TB_CHECK */
67 68 69 70 71 72

#if !defined(CONFIG_USER_ONLY)
/* TB consistency checks only implemented for usermode emulation.  */
#undef DEBUG_TB_CHECK
#endif

73 74 75 76 77 78 79
/* Access to the various translations structures need to be serialised via locks
 * for consistency. This is automatic for SoftMMU based system
 * emulation due to its single threaded nature. In user-mode emulation
 * access to the memory related structures are protected with the
 * mmap_lock.
 */
#ifdef CONFIG_SOFTMMU
A
Alex Bennée 已提交
80
#define assert_memory_lock() tcg_debug_assert(have_tb_lock)
81
#else
82
#define assert_memory_lock() tcg_debug_assert(have_mmap_lock())
83 84
#endif

85 86 87 88 89
#define SMC_BITMAP_USE_THRESHOLD 10

typedef struct PageDesc {
    /* list of TBs intersecting this ram page */
    TranslationBlock *first_tb;
90
#ifdef CONFIG_SOFTMMU
91 92 93
    /* in order to optimize self modifying code, we count the number
       of lookups we do to a given page to use a bitmap */
    unsigned int code_write_count;
94
    unsigned long *code_bitmap;
95
#else
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    unsigned long flags;
#endif
} PageDesc;

/* In system mode we want L1_MAP to be based on ram offsets,
   while in user mode we want it to be based on virtual addresses.  */
#if !defined(CONFIG_USER_ONLY)
#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
# define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
#else
# define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
#endif
#else
# define L1_MAP_ADDR_SPACE_BITS  TARGET_VIRT_ADDR_SPACE_BITS
#endif

112 113 114 115
/* Size of the L2 (and L3, etc) page tables.  */
#define V_L2_BITS 10
#define V_L2_SIZE (1 << V_L2_BITS)

116 117 118 119 120
/* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */
QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS >
                  sizeof(((TranslationBlock *)0)->trace_vcpu_dstate)
                  * BITS_PER_BYTE);

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
/*
 * L1 Mapping properties
 */
static int v_l1_size;
static int v_l1_shift;
static int v_l2_levels;

/* The bottom level has pointers to PageDesc, and is indexed by
 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
 */
#define V_L1_MIN_BITS 4
#define V_L1_MAX_BITS (V_L2_BITS + 3)
#define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)

static void *l1_map[V_L1_MAX_SIZE];
136

B
bellard 已提交
137 138
/* code generation context */
TCGContext tcg_ctx;
R
Richard Henderson 已提交
139
bool parallel_cpus;
B
bellard 已提交
140

K
KONRAD Frederic 已提交
141 142 143
/* translation block context */
__thread int have_tb_lock;

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
static void page_table_config_init(void)
{
    uint32_t v_l1_bits;

    assert(TARGET_PAGE_BITS);
    /* The bits remaining after N lower levels of page tables.  */
    v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
    if (v_l1_bits < V_L1_MIN_BITS) {
        v_l1_bits += V_L2_BITS;
    }

    v_l1_size = 1 << v_l1_bits;
    v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
    v_l2_levels = v_l1_shift / V_L2_BITS - 1;

    assert(v_l1_bits <= V_L1_MAX_BITS);
    assert(v_l1_shift % V_L2_BITS == 0);
    assert(v_l2_levels >= 0);
}

164 165 166
#define assert_tb_locked() tcg_debug_assert(have_tb_lock)
#define assert_tb_unlocked() tcg_debug_assert(!have_tb_lock)

K
KONRAD Frederic 已提交
167 168
void tb_lock(void)
{
169
    assert_tb_unlocked();
K
KONRAD Frederic 已提交
170 171 172 173 174 175
    qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
    have_tb_lock++;
}

void tb_unlock(void)
{
176
    assert_tb_locked();
K
KONRAD Frederic 已提交
177 178 179 180 181 182 183 184 185 186 187 188
    have_tb_lock--;
    qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
}

void tb_lock_reset(void)
{
    if (have_tb_lock) {
        qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
        have_tb_lock = 0;
    }
}

B
Blue Swirl 已提交
189
static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
190

B
bellard 已提交
191 192 193 194 195
void cpu_gen_init(void)
{
    tcg_context_init(&tcg_ctx); 
}

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
/* Encode VAL as a signed leb128 sequence at P.
   Return P incremented past the encoded value.  */
static uint8_t *encode_sleb128(uint8_t *p, target_long val)
{
    int more, byte;

    do {
        byte = val & 0x7f;
        val >>= 7;
        more = !((val == 0 && (byte & 0x40) == 0)
                 || (val == -1 && (byte & 0x40) != 0));
        if (more) {
            byte |= 0x80;
        }
        *p++ = byte;
    } while (more);

    return p;
}

/* Decode a signed leb128 sequence at *PP; increment *PP past the
   decoded value.  Return the decoded value.  */
static target_long decode_sleb128(uint8_t **pp)
{
    uint8_t *p = *pp;
    target_long val = 0;
    int byte, shift = 0;

    do {
        byte = *p++;
        val |= (target_ulong)(byte & 0x7f) << shift;
        shift += 7;
    } while (byte & 0x80);
    if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
        val |= -(target_ulong)1 << shift;
    }

    *pp = p;
    return val;
}

/* Encode the data collected about the instructions while compiling TB.
   Place the data at BLOCK, and return the number of bytes consumed.

   The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
   which come from the target's insn_start data, followed by a uintptr_t
   which comes from the host pc of the end of the code implementing the insn.

   Each line of the table is encoded as sleb128 deltas from the previous
   line.  The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
   That is, the first column is seeded with the guest pc, the last column
   with the host pc, and the middle columns with zeros.  */

static int encode_search(TranslationBlock *tb, uint8_t *block)
{
251
    uint8_t *highwater = tcg_ctx.code_gen_highwater;
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
    uint8_t *p = block;
    int i, j, n;

    tb->tc_search = block;

    for (i = 0, n = tb->icount; i < n; ++i) {
        target_ulong prev;

        for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
            if (i == 0) {
                prev = (j == 0 ? tb->pc : 0);
            } else {
                prev = tcg_ctx.gen_insn_data[i - 1][j];
            }
            p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
        }
        prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
        p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
270 271 272 273 274 275 276 277

        /* Test for (pending) buffer overflow.  The assumption is that any
           one row beginning below the high water mark cannot overrun
           the buffer completely.  Thus we can test for overflow after
           encoding a row without having to check during encoding.  */
        if (unlikely(p > highwater)) {
            return -1;
        }
278 279 280 281 282
    }

    return p - block;
}

283 284 285
/* The cpu state corresponding to 'searched_pc' is restored.
 * Called with tb_lock held.
 */
286
static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
B
Blue Swirl 已提交
287
                                     uintptr_t searched_pc)
B
bellard 已提交
288
{
289 290
    target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
    uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
291
    CPUArchState *env = cpu->env_ptr;
292 293
    uint8_t *p = tb->tc_search;
    int i, j, num_insns = tb->icount;
B
bellard 已提交
294
#ifdef CONFIG_PROFILER
295
    int64_t ti = profile_getclock();
B
bellard 已提交
296 297
#endif

R
Richard Henderson 已提交
298 299
    searched_pc -= GETPC_ADJ;

300 301 302
    if (searched_pc < host_pc) {
        return -1;
    }
B
bellard 已提交
303

304 305 306 307 308 309 310 311 312 313 314 315
    /* Reconstruct the stored insn data while looking for the point at
       which the end of the insn exceeds the searched_pc.  */
    for (i = 0; i < num_insns; ++i) {
        for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
            data[j] += decode_sleb128(&p);
        }
        host_pc += decode_sleb128(&p);
        if (host_pc > searched_pc) {
            goto found;
        }
    }
    return -1;
316

317
 found:
318
    if (tb->cflags & CF_USE_ICOUNT) {
319
        assert(use_icount);
P
pbrook 已提交
320
        /* Reset the cycle counter to the start of the block.  */
321
        cpu->icount_decr.u16.low += num_insns;
P
pbrook 已提交
322
        /* Clear the IO flag.  */
323
        cpu->can_do_io = 0;
P
pbrook 已提交
324
    }
325 326
    cpu->icount_decr.u16.low -= i;
    restore_state_to_opc(env, tb, data);
B
bellard 已提交
327 328

#ifdef CONFIG_PROFILER
329 330
    tcg_ctx.restore_time += profile_getclock() - ti;
    tcg_ctx.restore_count++;
B
bellard 已提交
331
#endif
B
bellard 已提交
332 333
    return 0;
}
334

335
bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
B
Blue Swirl 已提交
336 337
{
    TranslationBlock *tb;
338
    bool r = false;
B
Blue Swirl 已提交
339

340 341 342 343 344 345 346 347 348 349 350 351 352
    /* A retaddr of zero is invalid so we really shouldn't have ended
     * up here. The target code has likely forgotten to check retaddr
     * != 0 before attempting to restore state. We return early to
     * avoid blowing up on a recursive tb_lock(). The target must have
     * previously survived a failed cpu_restore_state because
     * tb_find_pc(0) would have failed anyway. It still should be
     * fixed though.
     */

    if (!retaddr) {
        return r;
    }

353
    tb_lock();
B
Blue Swirl 已提交
354 355
    tb = tb_find_pc(retaddr);
    if (tb) {
356
        cpu_restore_state_from_tb(cpu, tb, retaddr);
357 358 359 360 361
        if (tb->cflags & CF_NOCACHE) {
            /* one-shot translation, invalidate it immediately */
            tb_phys_invalidate(tb, -1);
            tb_free(tb);
        }
362
        r = true;
B
Blue Swirl 已提交
363
    }
364 365 366
    tb_unlock();

    return r;
B
Blue Swirl 已提交
367 368
}

369 370 371
static void page_init(void)
{
    page_size_init();
372 373
    page_table_config_init();

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
    {
#ifdef HAVE_KINFO_GETVMMAP
        struct kinfo_vmentry *freep;
        int i, cnt;

        freep = kinfo_getvmmap(getpid(), &cnt);
        if (freep) {
            mmap_lock();
            for (i = 0; i < cnt; i++) {
                unsigned long startaddr, endaddr;

                startaddr = freep[i].kve_start;
                endaddr = freep[i].kve_end;
                if (h2g_valid(startaddr)) {
                    startaddr = h2g(startaddr) & TARGET_PAGE_MASK;

                    if (h2g_valid(endaddr)) {
                        endaddr = h2g(endaddr);
                        page_set_flags(startaddr, endaddr, PAGE_RESERVED);
                    } else {
#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
                        endaddr = ~0ul;
                        page_set_flags(startaddr, endaddr, PAGE_RESERVED);
#endif
                    }
                }
            }
            free(freep);
            mmap_unlock();
        }
#else
        FILE *f;

        last_brk = (unsigned long)sbrk(0);

        f = fopen("/compat/linux/proc/self/maps", "r");
        if (f) {
            mmap_lock();

            do {
                unsigned long startaddr, endaddr;
                int n;

                n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);

                if (n == 2 && h2g_valid(startaddr)) {
                    startaddr = h2g(startaddr) & TARGET_PAGE_MASK;

                    if (h2g_valid(endaddr)) {
                        endaddr = h2g(endaddr);
                    } else {
                        endaddr = ~0ul;
                    }
                    page_set_flags(startaddr, endaddr, PAGE_RESERVED);
                }
            } while (!feof(f));

            fclose(f);
            mmap_unlock();
        }
#endif
    }
#endif
}

440
/* If alloc=1:
441
 * Called with tb_lock held for system emulation.
442 443
 * Called with mmap_lock held for user-mode emulation.
 */
444 445 446 447 448 449
static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
{
    PageDesc *pd;
    void **lp;
    int i;

450 451 452 453
    if (alloc) {
        assert_memory_lock();
    }

454
    /* Level 1.  Always allocated.  */
455
    lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
456 457

    /* Level 2..N-1.  */
458
    for (i = v_l2_levels; i > 0; i--) {
459
        void **p = atomic_rcu_read(lp);
460 461 462 463 464

        if (p == NULL) {
            if (!alloc) {
                return NULL;
            }
465
            p = g_new0(void *, V_L2_SIZE);
466
            atomic_rcu_set(lp, p);
467 468
        }

469
        lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
470 471
    }

472
    pd = atomic_rcu_read(lp);
473 474 475 476
    if (pd == NULL) {
        if (!alloc) {
            return NULL;
        }
477
        pd = g_new0(PageDesc, V_L2_SIZE);
478
        atomic_rcu_set(lp, pd);
479 480
    }

481
    return pd + (index & (V_L2_SIZE - 1));
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
}

static inline PageDesc *page_find(tb_page_addr_t index)
{
    return page_find_alloc(index, 0);
}

#if defined(CONFIG_USER_ONLY)
/* Currently it is not recommended to allocate big chunks of data in
   user mode. It will change when a dedicated libc will be used.  */
/* ??? 64-bit hosts ought to have no problem mmaping data outside the
   region in which the guest needs to run.  Revisit this.  */
#define USE_STATIC_CODE_GEN_BUFFER
#endif

/* Minimum size of the code gen buffer.  This number is randomly chosen,
   but not so small that we can't have a fair number of TB's live.  */
#define MIN_CODE_GEN_BUFFER_SIZE     (1024u * 1024)

/* Maximum size of the code gen buffer we'd like to use.  Unless otherwise
   indicated, this is constrained by the range of direct branches on the
   host cpu, as used by the TCG implementation of goto_tb.  */
#if defined(__x86_64__)
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
#elif defined(__sparc__)
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
508 509
#elif defined(__powerpc64__)
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
510 511
#elif defined(__powerpc__)
# define MAX_CODE_GEN_BUFFER_SIZE  (32u * 1024 * 1024)
512
#elif defined(__aarch64__)
513
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
514 515 516
#elif defined(__s390x__)
  /* We have a +- 4GB range on the branches; leave some slop.  */
# define MAX_CODE_GEN_BUFFER_SIZE  (3ul * 1024 * 1024 * 1024)
517 518 519 520
#elif defined(__mips__)
  /* We have a 256MB branch region, but leave room to make sure the
     main executable is also within that region.  */
# define MAX_CODE_GEN_BUFFER_SIZE  (128ul * 1024 * 1024)
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
#else
# define MAX_CODE_GEN_BUFFER_SIZE  ((size_t)-1)
#endif

#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)

#define DEFAULT_CODE_GEN_BUFFER_SIZE \
  (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
   ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)

static inline size_t size_code_gen_buffer(size_t tb_size)
{
    /* Size the buffer.  */
    if (tb_size == 0) {
#ifdef USE_STATIC_CODE_GEN_BUFFER
        tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
#else
        /* ??? Needs adjustments.  */
        /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
           static buffer, we could size this on RESERVED_VA, on the text
           segment size of the executable, or continue to use the default.  */
        tb_size = (unsigned long)(ram_size / 4);
#endif
    }
    if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
        tb_size = MIN_CODE_GEN_BUFFER_SIZE;
    }
    if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
        tb_size = MAX_CODE_GEN_BUFFER_SIZE;
    }
    return tb_size;
}

554 555 556 557 558
#ifdef __mips__
/* In order to use J and JAL within the code_gen_buffer, we require
   that the buffer not cross a 256MB boundary.  */
static inline bool cross_256mb(void *addr, size_t size)
{
559
    return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
560 561 562 563 564 565 566
}

/* We weren't able to allocate a buffer without crossing that boundary,
   so make do with the larger portion of the buffer that doesn't cross.
   Returns the new base of the buffer, and adjusts code_gen_buffer_size.  */
static inline void *split_cross_256mb(void *buf1, size_t size1)
{
567
    void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
568 569 570 571 572 573 574 575 576 577 578 579 580
    size_t size2 = buf1 + size1 - buf2;

    size1 = buf2 - buf1;
    if (size1 < size2) {
        size1 = size2;
        buf1 = buf2;
    }

    tcg_ctx.code_gen_buffer_size = size1;
    return buf1;
}
#endif

581 582 583 584
#ifdef USE_STATIC_CODE_GEN_BUFFER
static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
    __attribute__((aligned(CODE_GEN_ALIGN)));

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
# ifdef _WIN32
static inline void do_protect(void *addr, long size, int prot)
{
    DWORD old_protect;
    VirtualProtect(addr, size, prot, &old_protect);
}

static inline void map_exec(void *addr, long size)
{
    do_protect(addr, size, PAGE_EXECUTE_READWRITE);
}

static inline void map_none(void *addr, long size)
{
    do_protect(addr, size, PAGE_NOACCESS);
}
# else
static inline void do_protect(void *addr, long size, int prot)
{
    uintptr_t start, end;

    start = (uintptr_t)addr;
    start &= qemu_real_host_page_mask;

    end = (uintptr_t)addr + size;
    end = ROUND_UP(end, qemu_real_host_page_size);

    mprotect((void *)start, end - start, prot);
}

static inline void map_exec(void *addr, long size)
{
    do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
}

static inline void map_none(void *addr, long size)
{
    do_protect(addr, size, PROT_NONE);
}
# endif /* WIN32 */

626 627
static inline void *alloc_code_gen_buffer(void)
{
628
    void *buf = static_code_gen_buffer;
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
    size_t full_size, size;

    /* The size of the buffer, rounded down to end on a page boundary.  */
    full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
                 & qemu_real_host_page_mask) - (uintptr_t)buf;

    /* Reserve a guard page.  */
    size = full_size - qemu_real_host_page_size;

    /* Honor a command-line option limiting the size of the buffer.  */
    if (size > tcg_ctx.code_gen_buffer_size) {
        size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
                & qemu_real_host_page_mask) - (uintptr_t)buf;
    }
    tcg_ctx.code_gen_buffer_size = size;

645
#ifdef __mips__
646 647 648
    if (cross_256mb(buf, size)) {
        buf = split_cross_256mb(buf, size);
        size = tcg_ctx.code_gen_buffer_size;
649 650
    }
#endif
651 652 653 654 655

    map_exec(buf, size);
    map_none(buf + size, qemu_real_host_page_size);
    qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);

656
    return buf;
657
}
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
#elif defined(_WIN32)
static inline void *alloc_code_gen_buffer(void)
{
    size_t size = tcg_ctx.code_gen_buffer_size;
    void *buf1, *buf2;

    /* Perform the allocation in two steps, so that the guard page
       is reserved but uncommitted.  */
    buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
                        MEM_RESERVE, PAGE_NOACCESS);
    if (buf1 != NULL) {
        buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
        assert(buf1 == buf2);
    }

    return buf1;
}
#else
676 677 678 679
static inline void *alloc_code_gen_buffer(void)
{
    int flags = MAP_PRIVATE | MAP_ANONYMOUS;
    uintptr_t start = 0;
680
    size_t size = tcg_ctx.code_gen_buffer_size;
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
    void *buf;

    /* Constrain the position of the buffer based on the host cpu.
       Note that these addresses are chosen in concert with the
       addresses assigned in the relevant linker script file.  */
# if defined(__PIE__) || defined(__PIC__)
    /* Don't bother setting a preferred location if we're building
       a position-independent executable.  We're more likely to get
       an address near the main executable if we let the kernel
       choose the address.  */
# elif defined(__x86_64__) && defined(MAP_32BIT)
    /* Force the memory down into low memory with the executable.
       Leave the choice of exact location with the kernel.  */
    flags |= MAP_32BIT;
    /* Cannot expect to map more than 800MB in low memory.  */
696 697
    if (size > 800u * 1024 * 1024) {
        tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
698 699 700 701 702
    }
# elif defined(__sparc__)
    start = 0x40000000ul;
# elif defined(__s390x__)
    start = 0x90000000ul;
703
# elif defined(__mips__)
704
#  if _MIPS_SIM == _ABI64
705 706 707 708
    start = 0x128000000ul;
#  else
    start = 0x08000000ul;
#  endif
709 710
# endif

711 712
    buf = mmap((void *)start, size + qemu_real_host_page_size,
               PROT_NONE, flags, -1, 0);
713 714 715 716 717
    if (buf == MAP_FAILED) {
        return NULL;
    }

#ifdef __mips__
718
    if (cross_256mb(buf, size)) {
S
Stefan Weil 已提交
719
        /* Try again, with the original still mapped, to avoid re-acquiring
720
           that 256mb crossing.  This time don't specify an address.  */
721 722 723
        size_t size2;
        void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
                          PROT_NONE, flags, -1, 0);
724
        switch ((int)(buf2 != MAP_FAILED)) {
725 726
        case 1:
            if (!cross_256mb(buf2, size)) {
727
                /* Success!  Use the new buffer.  */
728
                munmap(buf, size + qemu_real_host_page_size);
729
                break;
730 731
            }
            /* Failure.  Work with what we had.  */
732
            munmap(buf2, size + qemu_real_host_page_size);
733 734 735 736 737 738 739 740 741 742 743 744
            /* fallthru */
        default:
            /* Split the original buffer.  Free the smaller half.  */
            buf2 = split_cross_256mb(buf, size);
            size2 = tcg_ctx.code_gen_buffer_size;
            if (buf == buf2) {
                munmap(buf + size2 + qemu_real_host_page_size, size - size2);
            } else {
                munmap(buf, size - size2);
            }
            size = size2;
            break;
745
        }
746
        buf = buf2;
747 748 749
    }
#endif

750 751 752
    /* Make the final buffer accessible.  The guard page at the end
       will remain inaccessible with PROT_NONE.  */
    mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
753

754 755
    /* Request large pages for the buffer.  */
    qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
756

757 758
    return buf;
}
759
#endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
760 761 762

static inline void code_gen_alloc(size_t tb_size)
{
E
Evgeny Voevodin 已提交
763 764 765
    tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
    tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
    if (tcg_ctx.code_gen_buffer == NULL) {
766 767 768 769
        fprintf(stderr, "Could not allocate dynamic translator buffer\n");
        exit(1);
    }

770 771 772 773 774 775 776
    /* size this conservatively -- realloc later if needed */
    tcg_ctx.tb_ctx.tbs_size =
        tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE / 8;
    if (unlikely(!tcg_ctx.tb_ctx.tbs_size)) {
        tcg_ctx.tb_ctx.tbs_size = 64 * 1024;
    }
    tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock *, tcg_ctx.tb_ctx.tbs_size);
777

K
KONRAD Frederic 已提交
778
    qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
779 780
}

781 782 783 784 785 786 787
static void tb_htable_init(void)
{
    unsigned int mode = QHT_MODE_AUTO_RESIZE;

    qht_init(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE, mode);
}

788 789 790 791 792
/* Must be called before using the QEMU cpus. 'tb_size' is the size
   (in bytes) allocated to the translation buffer. Zero means default
   size. */
void tcg_exec_init(unsigned long tb_size)
{
Y
Yang Zhong 已提交
793
    tcg_allowed = true;
794 795
    cpu_gen_init();
    page_init();
796
    tb_htable_init();
797
    code_gen_alloc(tb_size);
798
#if defined(CONFIG_SOFTMMU)
799 800 801 802 803 804
    /* There's no guest base to take into account, so go ahead and
       initialize the prologue now.  */
    tcg_prologue_init(&tcg_ctx);
#endif
}

805 806 807 808 809 810
/*
 * Allocate a new translation block. Flush the translation buffer if
 * too many translation blocks or too much generated code.
 *
 * Called with tb_lock held.
 */
811 812 813
static TranslationBlock *tb_alloc(target_ulong pc)
{
    TranslationBlock *tb;
814
    TBContext *ctx;
815

816
    assert_tb_locked();
817

818 819
    tb = tcg_tb_alloc(&tcg_ctx);
    if (unlikely(tb == NULL)) {
820 821
        return NULL;
    }
822 823 824 825 826 827
    ctx = &tcg_ctx.tb_ctx;
    if (unlikely(ctx->nb_tbs == ctx->tbs_size)) {
        ctx->tbs_size *= 2;
        ctx->tbs = g_renew(TranslationBlock *, ctx->tbs, ctx->tbs_size);
    }
    ctx->tbs[ctx->nb_tbs++] = tb;
828 829 830
    return tb;
}

831
/* Called with tb_lock held.  */
832 833
void tb_free(TranslationBlock *tb)
{
834
    assert_tb_locked();
835

836 837 838
    /* In practice this is mostly used for single use temporary TB
       Ignore the hard cases and just back up if this TB happens to
       be the last one generated.  */
839
    if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
840 841 842 843
            tb == tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
        size_t struct_size = ROUND_UP(sizeof(*tb), qemu_icache_linesize);

        tcg_ctx.code_gen_ptr = tb->tc_ptr - struct_size;
844
        tcg_ctx.tb_ctx.nb_tbs--;
845 846 847 848 849
    }
}

static inline void invalidate_page_bitmap(PageDesc *p)
{
850
#ifdef CONFIG_SOFTMMU
851 852
    g_free(p->code_bitmap);
    p->code_bitmap = NULL;
853
    p->code_write_count = 0;
854
#endif
855 856 857 858 859 860 861 862 863 864 865 866 867
}

/* Set to NULL all the 'first_tb' fields in all PageDescs. */
static void page_flush_tb_1(int level, void **lp)
{
    int i;

    if (*lp == NULL) {
        return;
    }
    if (level == 0) {
        PageDesc *pd = *lp;

868
        for (i = 0; i < V_L2_SIZE; ++i) {
869 870 871 872 873 874
            pd[i].first_tb = NULL;
            invalidate_page_bitmap(pd + i);
        }
    } else {
        void **pp = *lp;

875
        for (i = 0; i < V_L2_SIZE; ++i) {
876 877 878 879 880 881 882
            page_flush_tb_1(level - 1, pp + i);
        }
    }
}

static void page_flush_tb(void)
{
883
    int i, l1_sz = v_l1_size;
884

885 886
    for (i = 0; i < l1_sz; i++) {
        page_flush_tb_1(v_l2_levels, l1_map + i);
887 888 889 890
    }
}

/* flush all the translation blocks */
891
static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
892
{
893 894
    tb_lock();

895
    /* If it is already been done on request of another CPU,
896 897
     * just retry.
     */
898
    if (tcg_ctx.tb_ctx.tb_flush_count != tb_flush_count.host_int) {
899
        goto done;
900
    }
901

902
#if defined(DEBUG_TB_FLUSH)
903
    printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
E
Evgeny Voevodin 已提交
904
           (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
905
           tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
E
Evgeny Voevodin 已提交
906
           ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
907
           tcg_ctx.tb_ctx.nb_tbs : 0);
908
#endif
E
Evgeny Voevodin 已提交
909 910
    if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
        > tcg_ctx.code_gen_buffer_size) {
911
        cpu_abort(cpu, "Internal error: code buffer overflow\n");
912 913
    }

A
Andreas Färber 已提交
914
    CPU_FOREACH(cpu) {
915
        cpu_tb_jmp_cache_clear(cpu);
916 917
    }

918
    tcg_ctx.tb_ctx.nb_tbs = 0;
919
    qht_reset_size(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
920 921
    page_flush_tb();

E
Evgeny Voevodin 已提交
922
    tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
923 924
    /* XXX: flush processor icache at this point if cache flush is
       expensive */
925 926 927 928 929 930 931 932 933 934
    atomic_mb_set(&tcg_ctx.tb_ctx.tb_flush_count,
                  tcg_ctx.tb_ctx.tb_flush_count + 1);

done:
    tb_unlock();
}

void tb_flush(CPUState *cpu)
{
    if (tcg_enabled()) {
935 936 937
        unsigned tb_flush_count = atomic_mb_read(&tcg_ctx.tb_ctx.tb_flush_count);
        async_safe_run_on_cpu(cpu, do_tb_flush,
                              RUN_ON_CPU_HOST_INT(tb_flush_count));
938
    }
939 940 941 942
}

#ifdef DEBUG_TB_CHECK

943 944
static void
do_tb_invalidate_check(struct qht *ht, void *p, uint32_t hash, void *userp)
945
{
946 947 948 949 950 951 952 953
    TranslationBlock *tb = p;
    target_ulong addr = *(target_ulong *)userp;

    if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
        printf("ERROR invalidate: address=" TARGET_FMT_lx
               " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
    }
}
954

955 956 957 958
/* verify that all the pages have correct rights for code
 *
 * Called with tb_lock held.
 */
959 960
static void tb_invalidate_check(target_ulong address)
{
961
    address &= TARGET_PAGE_MASK;
962 963 964 965 966 967 968 969 970 971 972 973 974 975
    qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_invalidate_check, &address);
}

static void
do_tb_page_check(struct qht *ht, void *p, uint32_t hash, void *userp)
{
    TranslationBlock *tb = p;
    int flags1, flags2;

    flags1 = page_get_flags(tb->pc);
    flags2 = page_get_flags(tb->pc + tb->size - 1);
    if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
        printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
               (long)tb->pc, tb->size, flags1, flags2);
976 977 978 979 980 981
    }
}

/* verify that all the pages have correct rights for code */
static void tb_page_check(void)
{
982
    qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_page_check, NULL);
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
}

#endif

static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
{
    TranslationBlock *tb1;
    unsigned int n1;

    for (;;) {
        tb1 = *ptb;
        n1 = (uintptr_t)tb1 & 3;
        tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
        if (tb1 == tb) {
            *ptb = tb1->page_next[n1];
            break;
        }
        ptb = &tb1->page_next[n1];
    }
}

1004 1005
/* remove the TB from a list of TBs jumping to the n-th jump target of the TB */
static inline void tb_remove_from_jmp_list(TranslationBlock *tb, int n)
1006
{
1007 1008
    TranslationBlock *tb1;
    uintptr_t *ptb, ntb;
1009 1010
    unsigned int n1;

1011
    ptb = &tb->jmp_list_next[n];
1012
    if (*ptb) {
1013 1014
        /* find tb(n) in circular list */
        for (;;) {
1015 1016 1017
            ntb = *ptb;
            n1 = ntb & 3;
            tb1 = (TranslationBlock *)(ntb & ~3);
1018 1019 1020 1021
            if (n1 == n && tb1 == tb) {
                break;
            }
            if (n1 == 2) {
1022
                ptb = &tb1->jmp_list_first;
1023
            } else {
1024
                ptb = &tb1->jmp_list_next[n1];
1025 1026 1027
            }
        }
        /* now we can suppress tb(n) from the list */
1028
        *ptb = tb->jmp_list_next[n];
1029

1030
        tb->jmp_list_next[n] = (uintptr_t)NULL;
1031 1032 1033 1034 1035 1036 1037
    }
}

/* reset the jump entry 'n' of a TB so that it is not chained to
   another TB */
static inline void tb_reset_jump(TranslationBlock *tb, int n)
{
1038 1039
    uintptr_t addr = (uintptr_t)(tb->tc_ptr + tb->jmp_reset_offset[n]);
    tb_set_jmp_target(tb, n, addr);
1040 1041
}

1042 1043 1044
/* remove any jumps to the TB */
static inline void tb_jmp_unlink(TranslationBlock *tb)
{
S
Sergey Fedorov 已提交
1045 1046
    TranslationBlock *tb1;
    uintptr_t *ptb, ntb;
1047 1048
    unsigned int n1;

S
Sergey Fedorov 已提交
1049
    ptb = &tb->jmp_list_first;
1050
    for (;;) {
S
Sergey Fedorov 已提交
1051 1052 1053
        ntb = *ptb;
        n1 = ntb & 3;
        tb1 = (TranslationBlock *)(ntb & ~3);
1054 1055 1056
        if (n1 == 2) {
            break;
        }
S
Sergey Fedorov 已提交
1057 1058 1059
        tb_reset_jump(tb1, n1);
        *ptb = tb1->jmp_list_next[n1];
        tb1->jmp_list_next[n1] = (uintptr_t)NULL;
1060 1061 1062
    }
}

1063 1064 1065 1066
/* invalidate one TB
 *
 * Called with tb_lock held.
 */
1067 1068
void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
{
1069
    CPUState *cpu;
1070
    PageDesc *p;
1071
    uint32_t h;
1072 1073
    tb_page_addr_t phys_pc;

1074
    assert_tb_locked();
1075

1076 1077
    atomic_set(&tb->invalid, true);

1078 1079
    /* remove the TB from the hash list */
    phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1080
    h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->trace_vcpu_dstate);
1081
    qht_remove(&tcg_ctx.tb_ctx.htable, tb, h);
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096

    /* remove the TB from the page list */
    if (tb->page_addr[0] != page_addr) {
        p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
        tb_page_remove(&p->first_tb, tb);
        invalidate_page_bitmap(p);
    }
    if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
        p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
        tb_page_remove(&p->first_tb, tb);
        invalidate_page_bitmap(p);
    }

    /* remove the TB from the hash list */
    h = tb_jmp_cache_hash_func(tb->pc);
A
Andreas Färber 已提交
1097
    CPU_FOREACH(cpu) {
1098 1099
        if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
            atomic_set(&cpu->tb_jmp_cache[h], NULL);
1100 1101 1102 1103
        }
    }

    /* suppress this TB from the two jump lists */
1104 1105
    tb_remove_from_jmp_list(tb, 0);
    tb_remove_from_jmp_list(tb, 1);
1106 1107

    /* suppress any remaining jumps to this TB */
1108
    tb_jmp_unlink(tb);
1109

1110
    tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
1111 1112
}

1113
#ifdef CONFIG_SOFTMMU
1114 1115 1116 1117 1118
static void build_page_bitmap(PageDesc *p)
{
    int n, tb_start, tb_end;
    TranslationBlock *tb;

1119
    p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

    tb = p->first_tb;
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
        /* NOTE: this is subtle as a TB may span two physical pages */
        if (n == 0) {
            /* NOTE: tb_end may be after the end of the page, but
               it is not a problem */
            tb_start = tb->pc & ~TARGET_PAGE_MASK;
            tb_end = tb_start + tb->size;
            if (tb_end > TARGET_PAGE_SIZE) {
                tb_end = TARGET_PAGE_SIZE;
1133
             }
1134 1135 1136 1137
        } else {
            tb_start = 0;
            tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
        }
1138
        bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1139 1140 1141
        tb = tb->page_next[n];
    }
}
1142
#endif
1143

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
/* add the tb in the target page and protect it if necessary
 *
 * Called with mmap_lock held for user-mode emulation.
 */
static inline void tb_alloc_page(TranslationBlock *tb,
                                 unsigned int n, tb_page_addr_t page_addr)
{
    PageDesc *p;
#ifndef CONFIG_USER_ONLY
    bool page_already_protected;
#endif

1156 1157
    assert_memory_lock();

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
    tb->page_addr[n] = page_addr;
    p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
    tb->page_next[n] = p->first_tb;
#ifndef CONFIG_USER_ONLY
    page_already_protected = p->first_tb != NULL;
#endif
    p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
    invalidate_page_bitmap(p);

#if defined(CONFIG_USER_ONLY)
    if (p->flags & PAGE_WRITE) {
        target_ulong addr;
        PageDesc *p2;
        int prot;

        /* force the host page as non writable (writes will have a
           page fault + mprotect overhead) */
        page_addr &= qemu_host_page_mask;
        prot = 0;
        for (addr = page_addr; addr < page_addr + qemu_host_page_size;
            addr += TARGET_PAGE_SIZE) {

            p2 = page_find(addr >> TARGET_PAGE_BITS);
            if (!p2) {
                continue;
            }
            prot |= p2->flags;
            p2->flags &= ~PAGE_WRITE;
          }
        mprotect(g2h(page_addr), qemu_host_page_size,
                 (prot & PAGE_BITS) & ~PAGE_WRITE);
#ifdef DEBUG_TB_INVALIDATE
        printf("protecting code page: 0x" TARGET_FMT_lx "\n",
               page_addr);
#endif
    }
#else
    /* if some code is already present, then the pages are already
       protected. So we handle the case where only the first TB is
       allocated in a physical page */
    if (!page_already_protected) {
        tlb_protect_code(page_addr);
    }
#endif
}

/* add a new TB and link it to the physical page tables. phys_page2 is
 * (-1) to indicate that only one page contains the TB.
 *
 * Called with mmap_lock held for user-mode emulation.
 */
static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
                         tb_page_addr_t phys_page2)
{
1212
    uint32_t h;
1213

1214 1215
    assert_memory_lock();

1216 1217 1218 1219 1220 1221 1222 1223
    /* add in the page list */
    tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
    if (phys_page2 != -1) {
        tb_alloc_page(tb, 1, phys_page2);
    } else {
        tb->page_addr[1] = -1;
    }

1224
    /* add in the hash table */
1225
    h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->trace_vcpu_dstate);
1226 1227
    qht_insert(&tcg_ctx.tb_ctx.htable, tb, h);

1228 1229 1230 1231 1232
#ifdef DEBUG_TB_CHECK
    tb_page_check();
#endif
}

1233
/* Called with mmap_lock held for user mode emulation.  */
1234
TranslationBlock *tb_gen_code(CPUState *cpu,
1235
                              target_ulong pc, target_ulong cs_base,
1236
                              uint32_t flags, int cflags)
1237
{
1238
    CPUArchState *env = cpu->env_ptr;
1239 1240 1241
    TranslationBlock *tb;
    tb_page_addr_t phys_pc, phys_page2;
    target_ulong virt_page2;
1242
    tcg_insn_unit *gen_code_buf;
1243
    int gen_code_size, search_size;
1244 1245 1246
#ifdef CONFIG_PROFILER
    int64_t ti;
#endif
1247
    assert_memory_lock();
1248 1249

    phys_pc = get_page_addr_code(env, pc);
1250
    if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
1251 1252
        cflags |= CF_USE_ICOUNT;
    }
1253

1254
    tb = tb_alloc(pc);
1255 1256
    if (unlikely(!tb)) {
 buffer_overflow:
1257
        /* flush must be done */
1258
        tb_flush(cpu);
1259
        mmap_unlock();
P
Pavel Dovgalyuk 已提交
1260 1261
        /* Make the execution loop process the flush as soon as possible.  */
        cpu->exception_index = EXCP_INTERRUPT;
1262
        cpu_loop_exit(cpu);
1263
    }
1264 1265 1266

    gen_code_buf = tcg_ctx.code_gen_ptr;
    tb->tc_ptr = gen_code_buf;
1267
    tb->pc = pc;
1268 1269 1270
    tb->cs_base = cs_base;
    tb->flags = flags;
    tb->cflags = cflags;
1271
    tb->trace_vcpu_dstate = *cpu->trace_dstate;
1272
    tb->invalid = false;
1273 1274 1275 1276 1277 1278 1279 1280 1281

#ifdef CONFIG_PROFILER
    tcg_ctx.tb_count1++; /* includes aborted translations because of
                       exceptions */
    ti = profile_getclock();
#endif

    tcg_func_start(&tcg_ctx);

1282
    tcg_ctx.cpu = ENV_GET_CPU(env);
1283
    gen_intermediate_code(cpu, tb);
1284
    tcg_ctx.cpu = NULL;
1285 1286 1287 1288

    trace_translate_block(tb, tb->pc, tb->tc_ptr);

    /* generate machine code */
1289 1290 1291
    tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
    tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
    tcg_ctx.tb_jmp_reset_offset = tb->jmp_reset_offset;
1292 1293 1294 1295 1296 1297 1298
    if (TCG_TARGET_HAS_direct_jump) {
        tcg_ctx.tb_jmp_insn_offset = tb->jmp_target_arg;
        tcg_ctx.tb_jmp_target_addr = NULL;
    } else {
        tcg_ctx.tb_jmp_insn_offset = NULL;
        tcg_ctx.tb_jmp_target_addr = tb->jmp_target_arg;
    }
1299 1300 1301 1302

#ifdef CONFIG_PROFILER
    tcg_ctx.tb_count++;
    tcg_ctx.interm_time += profile_getclock() - ti;
1303
    ti = profile_getclock();
1304 1305
#endif

1306 1307 1308 1309 1310
    /* ??? Overflow could be handled better here.  In particular, we
       don't need to re-do gen_intermediate_code, nor should we re-do
       the tcg optimization currently hidden inside tcg_gen_code.  All
       that should be required is to flush the TBs, allocate a new TB,
       re-initialize it per above, and re-do the actual code generation.  */
1311
    gen_code_size = tcg_gen_code(&tcg_ctx, tb);
1312 1313 1314
    if (unlikely(gen_code_size < 0)) {
        goto buffer_overflow;
    }
1315
    search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1316 1317 1318
    if (unlikely(search_size < 0)) {
        goto buffer_overflow;
    }
1319 1320

#ifdef CONFIG_PROFILER
1321
    tcg_ctx.code_time += profile_getclock() - ti;
1322 1323
    tcg_ctx.code_in_len += tb->size;
    tcg_ctx.code_out_len += gen_code_size;
1324
    tcg_ctx.search_out_len += search_size;
1325 1326 1327
#endif

#ifdef DEBUG_DISAS
1328 1329
    if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
        qemu_log_in_addr_range(tb->pc)) {
1330
        qemu_log_lock();
1331
        qemu_log("OUT: [size=%d]\n", gen_code_size);
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
        if (tcg_ctx.data_gen_ptr) {
            size_t code_size = tcg_ctx.data_gen_ptr - tb->tc_ptr;
            size_t data_size = gen_code_size - code_size;
            size_t i;

            log_disas(tb->tc_ptr, code_size);

            for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) {
                if (sizeof(tcg_target_ulong) == 8) {
                    qemu_log("0x%08" PRIxPTR ":  .quad  0x%016" PRIx64 "\n",
                             (uintptr_t)tcg_ctx.data_gen_ptr + i,
                             *(uint64_t *)(tcg_ctx.data_gen_ptr + i));
                } else {
                    qemu_log("0x%08" PRIxPTR ":  .long  0x%08x\n",
                             (uintptr_t)tcg_ctx.data_gen_ptr + i,
                             *(uint32_t *)(tcg_ctx.data_gen_ptr + i));
                }
            }
        } else {
            log_disas(tb->tc_ptr, gen_code_size);
        }
1353 1354
        qemu_log("\n");
        qemu_log_flush();
1355
        qemu_log_unlock();
1356 1357 1358
    }
#endif

1359 1360 1361
    tcg_ctx.code_gen_ptr = (void *)
        ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
                 CODE_GEN_ALIGN);
1362

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
    /* init jump list */
    assert(((uintptr_t)tb & 3) == 0);
    tb->jmp_list_first = (uintptr_t)tb | 2;
    tb->jmp_list_next[0] = (uintptr_t)NULL;
    tb->jmp_list_next[1] = (uintptr_t)NULL;

    /* init original jump addresses wich has been set during tcg_gen_code() */
    if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
        tb_reset_jump(tb, 0);
    }
    if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
        tb_reset_jump(tb, 1);
    }

1377 1378 1379 1380 1381 1382
    /* check next page if needed */
    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
    phys_page2 = -1;
    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
        phys_page2 = get_page_addr_code(env, virt_page2);
    }
1383 1384 1385 1386 1387
    /* As long as consistency of the TB stuff is provided by tb_lock in user
     * mode and is implicit in single-threaded softmmu emulation, no explicit
     * memory barrier is required before tb_link_page() makes the TB visible
     * through the physical hash table and physical page list.
     */
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
    tb_link_page(tb, phys_pc, phys_page2);
    return tb;
}

/*
 * Invalidate all TBs which intersect with the target physical address range
 * [start;end[. NOTE: start and end may refer to *different* physical pages.
 * 'is_cpu_write_access' should be true if called from a real cpu write
 * access: the virtual CPU will exit the current TB if code is modified inside
 * this TB.
1398
 *
1399 1400
 * Called with mmap_lock held for user-mode emulation, grabs tb_lock
 * Called with tb_lock held for system-mode emulation
1401
 */
1402
static void tb_invalidate_phys_range_1(tb_page_addr_t start, tb_page_addr_t end)
1403 1404
{
    while (start < end) {
1405
        tb_invalidate_phys_page_range(start, end, 0);
1406 1407 1408 1409 1410
        start &= TARGET_PAGE_MASK;
        start += TARGET_PAGE_SIZE;
    }
}

1411 1412 1413
#ifdef CONFIG_SOFTMMU
void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
{
1414
    assert_tb_locked();
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
    tb_invalidate_phys_range_1(start, end);
}
#else
void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
{
    assert_memory_lock();
    tb_lock();
    tb_invalidate_phys_range_1(start, end);
    tb_unlock();
}
#endif
1426 1427 1428 1429 1430 1431
/*
 * Invalidate all TBs which intersect with the target physical address range
 * [start;end[. NOTE: start and end must refer to the *same* physical page.
 * 'is_cpu_write_access' should be true if called from a real cpu write
 * access: the virtual CPU will exit the current TB if code is modified inside
 * this TB.
1432
 *
1433 1434
 * Called with tb_lock/mmap_lock held for user-mode emulation
 * Called with tb_lock held for system-mode emulation
1435 1436 1437 1438
 */
void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
                                   int is_cpu_write_access)
{
1439
    TranslationBlock *tb, *tb_next;
1440
#if defined(TARGET_HAS_PRECISE_SMC)
1441
    CPUState *cpu = current_cpu;
1442 1443
    CPUArchState *env = NULL;
#endif
1444 1445 1446 1447 1448 1449 1450 1451 1452
    tb_page_addr_t tb_start, tb_end;
    PageDesc *p;
    int n;
#ifdef TARGET_HAS_PRECISE_SMC
    int current_tb_not_found = is_cpu_write_access;
    TranslationBlock *current_tb = NULL;
    int current_tb_modified = 0;
    target_ulong current_pc = 0;
    target_ulong current_cs_base = 0;
1453
    uint32_t current_flags = 0;
1454 1455
#endif /* TARGET_HAS_PRECISE_SMC */

1456
    assert_memory_lock();
1457
    assert_tb_locked();
1458

1459 1460 1461 1462
    p = page_find(start >> TARGET_PAGE_BITS);
    if (!p) {
        return;
    }
1463
#if defined(TARGET_HAS_PRECISE_SMC)
1464 1465
    if (cpu != NULL) {
        env = cpu->env_ptr;
1466
    }
1467
#endif
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491

    /* we remove all the TBs in the range [start, end[ */
    /* XXX: see if in some cases it could be faster to invalidate all
       the code */
    tb = p->first_tb;
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
        tb_next = tb->page_next[n];
        /* NOTE: this is subtle as a TB may span two physical pages */
        if (n == 0) {
            /* NOTE: tb_end may be after the end of the page, but
               it is not a problem */
            tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
            tb_end = tb_start + tb->size;
        } else {
            tb_start = tb->page_addr[1];
            tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
        }
        if (!(tb_end <= start || tb_start >= end)) {
#ifdef TARGET_HAS_PRECISE_SMC
            if (current_tb_not_found) {
                current_tb_not_found = 0;
                current_tb = NULL;
1492
                if (cpu->mem_io_pc) {
1493
                    /* now we have a real cpu fault */
1494
                    current_tb = tb_find_pc(cpu->mem_io_pc);
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
                }
            }
            if (current_tb == tb &&
                (current_tb->cflags & CF_COUNT_MASK) != 1) {
                /* If we are modifying the current TB, we must stop
                its execution. We could be more precise by checking
                that the modification is after the current PC, but it
                would require a specialized function to partially
                restore the CPU state */

                current_tb_modified = 1;
1506
                cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
                cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
                                     &current_flags);
            }
#endif /* TARGET_HAS_PRECISE_SMC */
            tb_phys_invalidate(tb, -1);
        }
        tb = tb_next;
    }
#if !defined(CONFIG_USER_ONLY)
    /* if no code remaining, no need to continue to use slow writes */
    if (!p->first_tb) {
        invalidate_page_bitmap(p);
1519
        tlb_unprotect_code(start);
1520 1521 1522 1523 1524 1525 1526
    }
#endif
#ifdef TARGET_HAS_PRECISE_SMC
    if (current_tb_modified) {
        /* we generate a block containing just the instruction
           modifying the memory. It will ensure that it cannot modify
           itself */
1527
        tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1528
        cpu_loop_exit_noexc(cpu);
1529 1530 1531 1532
    }
#endif
}

1533
#ifdef CONFIG_SOFTMMU
1534 1535
/* len must be <= 8 and start must be a multiple of len.
 * Called via softmmu_template.h when code areas are written to with
1536
 * iothread mutex not held.
1537
 */
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
{
    PageDesc *p;

#if 0
    if (1) {
        qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
                  cpu_single_env->mem_io_vaddr, len,
                  cpu_single_env->eip,
                  cpu_single_env->eip +
                  (intptr_t)cpu_single_env->segs[R_CS].base);
    }
#endif
1551 1552
    assert_memory_lock();

1553 1554 1555 1556
    p = page_find(start >> TARGET_PAGE_BITS);
    if (!p) {
        return;
    }
1557 1558
    if (!p->code_bitmap &&
        ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1559 1560 1561
        /* build code bitmap.  FIXME: writes should be protected by
         * tb_lock, reads by tb_lock or RCU.
         */
1562 1563
        build_page_bitmap(p);
    }
1564
    if (p->code_bitmap) {
1565 1566 1567 1568 1569
        unsigned int nr;
        unsigned long b;

        nr = start & ~TARGET_PAGE_MASK;
        b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
1570 1571 1572 1573 1574 1575 1576 1577
        if (b & ((1 << len) - 1)) {
            goto do_invalidate;
        }
    } else {
    do_invalidate:
        tb_invalidate_phys_page_range(start, start + len, 1);
    }
}
1578
#else
1579 1580 1581 1582 1583 1584 1585
/* Called with mmap_lock held. If pc is not 0 then it indicates the
 * host PC of the faulting store instruction that caused this invalidate.
 * Returns true if the caller needs to abort execution of the current
 * TB (because it was modified by this store and the guest CPU has
 * precise-SMC semantics).
 */
static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
1586 1587 1588 1589 1590 1591
{
    TranslationBlock *tb;
    PageDesc *p;
    int n;
#ifdef TARGET_HAS_PRECISE_SMC
    TranslationBlock *current_tb = NULL;
1592 1593
    CPUState *cpu = current_cpu;
    CPUArchState *env = NULL;
1594 1595 1596
    int current_tb_modified = 0;
    target_ulong current_pc = 0;
    target_ulong current_cs_base = 0;
1597
    uint32_t current_flags = 0;
1598 1599
#endif

1600 1601
    assert_memory_lock();

1602 1603 1604
    addr &= TARGET_PAGE_MASK;
    p = page_find(addr >> TARGET_PAGE_BITS);
    if (!p) {
1605
        return false;
1606
    }
1607 1608

    tb_lock();
1609 1610 1611 1612 1613
    tb = p->first_tb;
#ifdef TARGET_HAS_PRECISE_SMC
    if (tb && pc != 0) {
        current_tb = tb_find_pc(pc);
    }
1614 1615
    if (cpu != NULL) {
        env = cpu->env_ptr;
1616
    }
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
#endif
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
#ifdef TARGET_HAS_PRECISE_SMC
        if (current_tb == tb &&
            (current_tb->cflags & CF_COUNT_MASK) != 1) {
                /* If we are modifying the current TB, we must stop
                   its execution. We could be more precise by checking
                   that the modification is after the current PC, but it
                   would require a specialized function to partially
                   restore the CPU state */

            current_tb_modified = 1;
1631
            cpu_restore_state_from_tb(cpu, current_tb, pc);
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
            cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
                                 &current_flags);
        }
#endif /* TARGET_HAS_PRECISE_SMC */
        tb_phys_invalidate(tb, addr);
        tb = tb->page_next[n];
    }
    p->first_tb = NULL;
#ifdef TARGET_HAS_PRECISE_SMC
    if (current_tb_modified) {
        /* we generate a block containing just the instruction
           modifying the memory. It will ensure that it cannot modify
           itself */
1645
        tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1646 1647
        /* tb_lock will be reset after cpu_loop_exit_noexc longjmps
         * back into the cpu_exec loop. */
1648
        return true;
1649 1650
    }
#endif
1651 1652
    tb_unlock();

1653
    return false;
1654 1655 1656 1657 1658
}
#endif

/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
   tb[1].tc_ptr. Return NULL if not found */
B
Blue Swirl 已提交
1659
static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1660 1661 1662 1663 1664
{
    int m_min, m_max, m;
    uintptr_t v;
    TranslationBlock *tb;

1665
    if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1666 1667
        return NULL;
    }
E
Evgeny Voevodin 已提交
1668 1669
    if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
        tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1670 1671 1672 1673
        return NULL;
    }
    /* binary search (cf Knuth) */
    m_min = 0;
1674
    m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1675 1676
    while (m_min <= m_max) {
        m = (m_min + m_max) >> 1;
1677
        tb = tcg_ctx.tb_ctx.tbs[m];
1678 1679 1680 1681 1682 1683 1684 1685 1686
        v = (uintptr_t)tb->tc_ptr;
        if (v == tc_ptr) {
            return tb;
        } else if (tc_ptr < v) {
            m_max = m - 1;
        } else {
            m_min = m + 1;
        }
    }
1687
    return tcg_ctx.tb_ctx.tbs[m_max];
1688 1689
}

1690
#if !defined(CONFIG_USER_ONLY)
1691
void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1692 1693
{
    ram_addr_t ram_addr;
1694
    MemoryRegion *mr;
1695
    hwaddr l = 1;
1696

1697
    rcu_read_lock();
1698
    mr = address_space_translate(as, addr, &addr, &l, false);
1699 1700
    if (!(memory_region_is_ram(mr)
          || memory_region_is_romd(mr))) {
1701
        rcu_read_unlock();
1702 1703
        return;
    }
1704
    ram_addr = memory_region_get_ram_addr(mr) + addr;
1705
    tb_lock();
1706
    tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1707
    tb_unlock();
1708
    rcu_read_unlock();
1709
}
1710
#endif /* !defined(CONFIG_USER_ONLY) */
1711

1712
/* Called with tb_lock held.  */
1713
void tb_check_watchpoint(CPUState *cpu)
1714 1715 1716
{
    TranslationBlock *tb;

1717
    tb = tb_find_pc(cpu->mem_io_pc);
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
    if (tb) {
        /* We can use retranslation to find the PC.  */
        cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
        tb_phys_invalidate(tb, -1);
    } else {
        /* The exception probably happened in a helper.  The CPU state should
           have been saved before calling it. Fetch the PC from there.  */
        CPUArchState *env = cpu->env_ptr;
        target_ulong pc, cs_base;
        tb_page_addr_t addr;
1728
        uint32_t flags;
1729 1730 1731 1732

        cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
        addr = get_page_addr_code(env, pc);
        tb_invalidate_phys_range(addr, addr + 1);
1733 1734 1735 1736 1737
    }
}

#ifndef CONFIG_USER_ONLY
/* in deterministic execution mode, instructions doing device I/Os
1738 1739 1740 1741
 * must be at the end of the TB.
 *
 * Called by softmmu_template.h, with iothread mutex not held.
 */
1742
void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1743
{
1744
#if defined(TARGET_MIPS) || defined(TARGET_SH4)
1745
    CPUArchState *env = cpu->env_ptr;
1746
#endif
1747 1748 1749
    TranslationBlock *tb;
    uint32_t n, cflags;
    target_ulong pc, cs_base;
1750
    uint32_t flags;
1751

1752
    tb_lock();
1753 1754
    tb = tb_find_pc(retaddr);
    if (!tb) {
1755
        cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1756 1757
                  (void *)retaddr);
    }
1758
    n = cpu->icount_decr.u16.low + tb->icount;
1759
    cpu_restore_state_from_tb(cpu, tb, retaddr);
1760 1761
    /* Calculate how many instructions had been executed before the fault
       occurred.  */
1762
    n = n - cpu->icount_decr.u16.low;
1763 1764 1765 1766 1767 1768 1769 1770
    /* Generate a new TB ending on the I/O insn.  */
    n++;
    /* On MIPS and SH, delay slot instructions can only be restarted if
       they were already the first instruction in the TB.  If this is not
       the first instruction in a TB then re-execute the preceding
       branch.  */
#if defined(TARGET_MIPS)
    if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1771
        env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1772
        cpu->icount_decr.u16.low++;
1773 1774 1775 1776 1777 1778
        env->hflags &= ~MIPS_HFLAG_BMASK;
    }
#elif defined(TARGET_SH4)
    if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
            && n > 1) {
        env->pc -= 2;
1779
        cpu->icount_decr.u16.low++;
1780 1781 1782 1783 1784
        env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
    }
#endif
    /* This should never happen.  */
    if (n > CF_COUNT_MASK) {
1785
        cpu_abort(cpu, "TB too big during recompile");
1786 1787 1788 1789 1790 1791 1792
    }

    cflags = n | CF_LAST_IO;
    pc = tb->pc;
    cs_base = tb->cs_base;
    flags = tb->flags;
    tb_phys_invalidate(tb, -1);
1793 1794 1795 1796 1797 1798 1799 1800
    if (tb->cflags & CF_NOCACHE) {
        if (tb->orig_tb) {
            /* Invalidate original TB if this TB was generated in
             * cpu_exec_nocache() */
            tb_phys_invalidate(tb->orig_tb, -1);
        }
        tb_free(tb);
    }
1801 1802
    /* FIXME: In theory this could raise an exception.  In practice
       we have already translated the block once so it's probably ok.  */
1803
    tb_gen_code(cpu, pc, cs_base, flags, cflags);
1804

1805
    /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1806 1807 1808 1809 1810 1811 1812 1813
     * the first in the TB) then we end up generating a whole new TB and
     *  repeating the fault, which is horribly inefficient.
     *  Better would be to execute just this insn uncached, or generate a
     *  second new TB.
     *
     * cpu_loop_exit_noexc will longjmp back to cpu_exec where the
     * tb_lock gets reset.
     */
1814
    cpu_loop_exit_noexc(cpu);
1815 1816
}

1817
static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
1818
{
1819
    unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr);
1820

1821 1822 1823 1824 1825 1826 1827
    for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
        atomic_set(&cpu->tb_jmp_cache[i0 + i], NULL);
    }
}

void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
{
1828 1829
    /* Discard jump cache entries for any tb which might potentially
       overlap the flushed page.  */
1830 1831
    tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
    tb_jmp_cache_clear_page(cpu, addr);
1832 1833
}

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
static void print_qht_statistics(FILE *f, fprintf_function cpu_fprintf,
                                 struct qht_stats hst)
{
    uint32_t hgram_opts;
    size_t hgram_bins;
    char *hgram;

    if (!hst.head_buckets) {
        return;
    }
    cpu_fprintf(f, "TB hash buckets     %zu/%zu (%0.2f%% head buckets used)\n",
                hst.used_head_buckets, hst.head_buckets,
                (double)hst.used_head_buckets / hst.head_buckets * 100);

    hgram_opts =  QDIST_PR_BORDER | QDIST_PR_LABELS;
    hgram_opts |= QDIST_PR_100X   | QDIST_PR_PERCENT;
    if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
        hgram_opts |= QDIST_PR_NODECIMAL;
    }
    hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
    cpu_fprintf(f, "TB hash occupancy   %0.2f%% avg chain occ. Histogram: %s\n",
                qdist_avg(&hst.occupancy) * 100, hgram);
    g_free(hgram);

    hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
    hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
    if (hgram_bins > 10) {
        hgram_bins = 10;
    } else {
        hgram_bins = 0;
        hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
    }
    hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
    cpu_fprintf(f, "TB hash avg chain   %0.3f buckets. Histogram: %s\n",
                qdist_avg(&hst.chain), hgram);
    g_free(hgram);
}

1872 1873 1874 1875 1876
void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
{
    int i, target_code_size, max_target_code_size;
    int direct_jmp_count, direct_jmp2_count, cross_page;
    TranslationBlock *tb;
1877
    struct qht_stats hst;
1878

1879 1880
    tb_lock();

1881 1882 1883 1884 1885
    target_code_size = 0;
    max_target_code_size = 0;
    cross_page = 0;
    direct_jmp_count = 0;
    direct_jmp2_count = 0;
1886
    for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1887
        tb = tcg_ctx.tb_ctx.tbs[i];
1888 1889 1890 1891 1892 1893 1894
        target_code_size += tb->size;
        if (tb->size > max_target_code_size) {
            max_target_code_size = tb->size;
        }
        if (tb->page_addr[1] != -1) {
            cross_page++;
        }
1895
        if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1896
            direct_jmp_count++;
1897
            if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1898 1899 1900 1901 1902 1903 1904
                direct_jmp2_count++;
            }
        }
    }
    /* XXX: avoid using doubles ? */
    cpu_fprintf(f, "Translation buffer state:\n");
    cpu_fprintf(f, "gen code size       %td/%zd\n",
E
Evgeny Voevodin 已提交
1905
                tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1906
                tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
1907
    cpu_fprintf(f, "TB count            %d\n", tcg_ctx.tb_ctx.nb_tbs);
1908
    cpu_fprintf(f, "TB avg target size  %d max=%d bytes\n",
1909 1910 1911
            tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
                    tcg_ctx.tb_ctx.nb_tbs : 0,
            max_target_code_size);
1912
    cpu_fprintf(f, "TB avg host size    %td bytes (expansion ratio: %0.1f)\n",
1913 1914 1915 1916 1917 1918 1919 1920 1921
            tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
                                     tcg_ctx.code_gen_buffer) /
                                     tcg_ctx.tb_ctx.nb_tbs : 0,
                target_code_size ? (double) (tcg_ctx.code_gen_ptr -
                                             tcg_ctx.code_gen_buffer) /
                                             target_code_size : 0);
    cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
            tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
                                    tcg_ctx.tb_ctx.nb_tbs : 0);
1922 1923
    cpu_fprintf(f, "direct jump count   %d (%d%%) (2 jumps=%d %d%%)\n",
                direct_jmp_count,
1924 1925
                tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
                        tcg_ctx.tb_ctx.nb_tbs : 0,
1926
                direct_jmp2_count,
1927 1928
                tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
                        tcg_ctx.tb_ctx.nb_tbs : 0);
1929 1930

    qht_statistics_init(&tcg_ctx.tb_ctx.htable, &hst);
1931
    print_qht_statistics(f, cpu_fprintf, hst);
1932 1933
    qht_statistics_destroy(&hst);

1934
    cpu_fprintf(f, "\nStatistics:\n");
1935 1936
    cpu_fprintf(f, "TB flush count      %u\n",
            atomic_read(&tcg_ctx.tb_ctx.tb_flush_count));
1937 1938
    cpu_fprintf(f, "TB invalidate count %d\n",
            tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1939
    cpu_fprintf(f, "TLB flush count     %zu\n", tlb_flush_count());
1940
    tcg_dump_info(f, cpu_fprintf);
1941 1942

    tb_unlock();
1943 1944
}

1945 1946 1947 1948 1949
void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
{
    tcg_dump_op_count(f, cpu_fprintf);
}

1950 1951
#else /* CONFIG_USER_ONLY */

1952
void cpu_interrupt(CPUState *cpu, int mask)
1953
{
1954
    g_assert(qemu_mutex_iothread_locked());
1955
    cpu->interrupt_request |= mask;
1956
    cpu->icount_decr.u16.high = -1;
1957 1958 1959 1960 1961 1962 1963 1964 1965
}

/*
 * Walks guest process memory "regions" one by one
 * and calls callback function 'fn' for each region.
 */
struct walk_memory_regions_data {
    walk_memory_regions_fn fn;
    void *priv;
1966
    target_ulong start;
1967 1968 1969 1970
    int prot;
};

static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1971
                                   target_ulong end, int new_prot)
1972
{
1973
    if (data->start != -1u) {
1974 1975 1976 1977 1978 1979
        int rc = data->fn(data->priv, data->start, end, data->prot);
        if (rc != 0) {
            return rc;
        }
    }

1980
    data->start = (new_prot ? end : -1u);
1981 1982 1983 1984 1985 1986
    data->prot = new_prot;

    return 0;
}

static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1987
                                 target_ulong base, int level, void **lp)
1988
{
1989
    target_ulong pa;
1990 1991 1992 1993 1994 1995 1996 1997 1998
    int i, rc;

    if (*lp == NULL) {
        return walk_memory_regions_end(data, base, 0);
    }

    if (level == 0) {
        PageDesc *pd = *lp;

1999
        for (i = 0; i < V_L2_SIZE; ++i) {
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
            int prot = pd[i].flags;

            pa = base | (i << TARGET_PAGE_BITS);
            if (prot != data->prot) {
                rc = walk_memory_regions_end(data, pa, prot);
                if (rc != 0) {
                    return rc;
                }
            }
        }
    } else {
        void **pp = *lp;

2013
        for (i = 0; i < V_L2_SIZE; ++i) {
2014
            pa = base | ((target_ulong)i <<
2015
                (TARGET_PAGE_BITS + V_L2_BITS * level));
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
            rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
            if (rc != 0) {
                return rc;
            }
        }
    }

    return 0;
}

int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
{
    struct walk_memory_regions_data data;
2029
    uintptr_t i, l1_sz = v_l1_size;
2030 2031 2032

    data.fn = fn;
    data.priv = priv;
2033
    data.start = -1u;
2034 2035
    data.prot = 0;

2036 2037 2038
    for (i = 0; i < l1_sz; i++) {
        target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
        int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
2039 2040 2041 2042 2043 2044 2045 2046
        if (rc != 0) {
            return rc;
        }
    }

    return walk_memory_regions_end(&data, 0, 0);
}

2047 2048
static int dump_region(void *priv, target_ulong start,
    target_ulong end, unsigned long prot)
2049 2050 2051
{
    FILE *f = (FILE *)priv;

2052 2053
    (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
        " "TARGET_FMT_lx" %c%c%c\n",
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
        start, end, end - start,
        ((prot & PAGE_READ) ? 'r' : '-'),
        ((prot & PAGE_WRITE) ? 'w' : '-'),
        ((prot & PAGE_EXEC) ? 'x' : '-'));

    return 0;
}

/* dump memory mappings */
void page_dump(FILE *f)
{
2065
    const int length = sizeof(target_ulong) * 2;
2066 2067
    (void) fprintf(f, "%-*s %-*s %-*s %s\n",
            length, "start", length, "end", length, "size", "prot");
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
    walk_memory_regions(f, dump_region);
}

int page_get_flags(target_ulong address)
{
    PageDesc *p;

    p = page_find(address >> TARGET_PAGE_BITS);
    if (!p) {
        return 0;
    }
    return p->flags;
}

/* Modify the flags of a page and invalidate the code if necessary.
   The flag PAGE_WRITE_ORG is positioned automatically depending
   on PAGE_WRITE.  The mmap_lock should already be held.  */
void page_set_flags(target_ulong start, target_ulong end, int flags)
{
    target_ulong addr, len;

    /* This function should never be called with addresses outside the
       guest address space.  If this assert fires, it probably indicates
       a missing call to h2g_valid.  */
#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2093
    assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2094 2095
#endif
    assert(start < end);
2096
    assert_memory_lock();
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114

    start = start & TARGET_PAGE_MASK;
    end = TARGET_PAGE_ALIGN(end);

    if (flags & PAGE_WRITE) {
        flags |= PAGE_WRITE_ORG;
    }

    for (addr = start, len = end - start;
         len != 0;
         len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
        PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);

        /* If the write protection bit is set, then we invalidate
           the code inside.  */
        if (!(p->flags & PAGE_WRITE) &&
            (flags & PAGE_WRITE) &&
            p->first_tb) {
2115
            tb_invalidate_phys_page(addr, 0);
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
        }
        p->flags = flags;
    }
}

int page_check_range(target_ulong start, target_ulong len, int flags)
{
    PageDesc *p;
    target_ulong end;
    target_ulong addr;

    /* This function should never be called with addresses outside the
       guest address space.  If this assert fires, it probably indicates
       a missing call to h2g_valid.  */
#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2131
    assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
#endif

    if (len == 0) {
        return 0;
    }
    if (start + len - 1 < start) {
        /* We've wrapped around.  */
        return -1;
    }

    /* must do before we loose bits in the next step */
    end = TARGET_PAGE_ALIGN(start + len);
    start = start & TARGET_PAGE_MASK;

    for (addr = start, len = end - start;
         len != 0;
         len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
        p = page_find(addr >> TARGET_PAGE_BITS);
        if (!p) {
            return -1;
        }
        if (!(p->flags & PAGE_VALID)) {
            return -1;
        }

        if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
            return -1;
        }
        if (flags & PAGE_WRITE) {
            if (!(p->flags & PAGE_WRITE_ORG)) {
                return -1;
            }
            /* unprotect the page if it was put read-only because it
               contains translated code */
            if (!(p->flags & PAGE_WRITE)) {
2167
                if (!page_unprotect(addr, 0)) {
2168 2169 2170 2171 2172 2173 2174 2175 2176
                    return -1;
                }
            }
        }
    }
    return 0;
}

/* called from signal handler: invalidate the code and unprotect the
2177 2178 2179 2180 2181 2182
 * page. Return 0 if the fault was not handled, 1 if it was handled,
 * and 2 if it was handled but the caller must cause the TB to be
 * immediately exited. (We can only return 2 if the 'pc' argument is
 * non-zero.)
 */
int page_unprotect(target_ulong address, uintptr_t pc)
2183 2184
{
    unsigned int prot;
2185
    bool current_tb_invalidated;
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
    PageDesc *p;
    target_ulong host_start, host_end, addr;

    /* Technically this isn't safe inside a signal handler.  However we
       know this only ever happens in a synchronous SEGV handler, so in
       practice it seems to be ok.  */
    mmap_lock();

    p = page_find(address >> TARGET_PAGE_BITS);
    if (!p) {
        mmap_unlock();
        return 0;
    }

    /* if the page was really writable, then we change its
       protection back to writable */
    if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
        host_start = address & qemu_host_page_mask;
        host_end = host_start + qemu_host_page_size;

        prot = 0;
2207
        current_tb_invalidated = false;
2208 2209 2210 2211 2212 2213 2214
        for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
            p = page_find(addr >> TARGET_PAGE_BITS);
            p->flags |= PAGE_WRITE;
            prot |= p->flags;

            /* and since the content will be modified, we must invalidate
               the corresponding translated code. */
2215
            current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2216 2217 2218 2219 2220 2221 2222 2223
#ifdef DEBUG_TB_CHECK
            tb_invalidate_check(addr);
#endif
        }
        mprotect((void *)g2h(host_start), qemu_host_page_size,
                 prot & PAGE_BITS);

        mmap_unlock();
2224 2225
        /* If current TB was invalidated return to main loop */
        return current_tb_invalidated ? 2 : 1;
2226 2227 2228 2229 2230
    }
    mmap_unlock();
    return 0;
}
#endif /* CONFIG_USER_ONLY */
2231 2232 2233 2234 2235 2236 2237 2238

/* This is a wrapper for common code that can not use CONFIG_SOFTMMU */
void tcg_flush_softmmu_tlb(CPUState *cs)
{
#ifdef CONFIG_SOFTMMU
    tlb_flush(cs);
#endif
}