translate-all.c 64.6 KB
Newer Older
B
bellard 已提交
1 2
/*
 *  Host code generation
3
 *
B
bellard 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
B
bellard 已提交
18
 */
19 20 21
#ifdef _WIN32
#include <windows.h>
#endif
P
Peter Maydell 已提交
22
#include "qemu/osdep.h"
B
bellard 已提交
23

B
bellard 已提交
24

25
#include "qemu-common.h"
B
bellard 已提交
26
#define NO_CPU_IO_DEFS
B
bellard 已提交
27
#include "cpu.h"
28
#include "trace.h"
29
#include "disas/disas.h"
30
#include "exec/exec-all.h"
B
bellard 已提交
31
#include "tcg.h"
32 33
#if defined(CONFIG_USER_ONLY)
#include "qemu.h"
34
#include "exec/exec-all.h"
35 36 37 38 39 40 41 42 43 44 45 46 47 48
#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
#include <sys/param.h>
#if __FreeBSD_version >= 700104
#define HAVE_KINFO_GETVMMAP
#define sigqueue sigqueue_freebsd  /* avoid redefinition */
#include <sys/proc.h>
#include <machine/profile.h>
#define _KERNEL
#include <sys/user.h>
#undef _KERNEL
#undef sigqueue
#include <libutil.h>
#endif
#endif
49 50
#else
#include "exec/address-spaces.h"
51 52
#endif

53
#include "exec/cputlb.h"
54
#include "exec/tb-hash.h"
55
#include "translate-all.h"
56
#include "qemu/bitmap.h"
57
#include "qemu/timer.h"
58
#include "qemu/main-loop.h"
59
#include "exec/log.h"
60
#include "sysemu/cpus.h"
61

62 63
/* #define DEBUG_TB_INVALIDATE */
/* #define DEBUG_TB_FLUSH */
64
/* make various TB consistency checks */
65
/* #define DEBUG_TB_CHECK */
66 67 68 69 70 71

#if !defined(CONFIG_USER_ONLY)
/* TB consistency checks only implemented for usermode emulation.  */
#undef DEBUG_TB_CHECK
#endif

72 73 74 75 76 77 78
/* Access to the various translations structures need to be serialised via locks
 * for consistency. This is automatic for SoftMMU based system
 * emulation due to its single threaded nature. In user-mode emulation
 * access to the memory related structures are protected with the
 * mmap_lock.
 */
#ifdef CONFIG_SOFTMMU
A
Alex Bennée 已提交
79
#define assert_memory_lock() tcg_debug_assert(have_tb_lock)
80
#else
81
#define assert_memory_lock() tcg_debug_assert(have_mmap_lock())
82 83
#endif

84 85 86 87 88
#define SMC_BITMAP_USE_THRESHOLD 10

typedef struct PageDesc {
    /* list of TBs intersecting this ram page */
    TranslationBlock *first_tb;
89
#ifdef CONFIG_SOFTMMU
90 91 92
    /* in order to optimize self modifying code, we count the number
       of lookups we do to a given page to use a bitmap */
    unsigned int code_write_count;
93
    unsigned long *code_bitmap;
94
#else
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
    unsigned long flags;
#endif
} PageDesc;

/* In system mode we want L1_MAP to be based on ram offsets,
   while in user mode we want it to be based on virtual addresses.  */
#if !defined(CONFIG_USER_ONLY)
#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
# define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
#else
# define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
#endif
#else
# define L1_MAP_ADDR_SPACE_BITS  TARGET_VIRT_ADDR_SPACE_BITS
#endif

111 112 113 114
/* Size of the L2 (and L3, etc) page tables.  */
#define V_L2_BITS 10
#define V_L2_SIZE (1 << V_L2_BITS)

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
/*
 * L1 Mapping properties
 */
static int v_l1_size;
static int v_l1_shift;
static int v_l2_levels;

/* The bottom level has pointers to PageDesc, and is indexed by
 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
 */
#define V_L1_MIN_BITS 4
#define V_L1_MAX_BITS (V_L2_BITS + 3)
#define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)

static void *l1_map[V_L1_MAX_SIZE];
130

B
bellard 已提交
131 132
/* code generation context */
TCGContext tcg_ctx;
R
Richard Henderson 已提交
133
bool parallel_cpus;
B
bellard 已提交
134

K
KONRAD Frederic 已提交
135 136 137
/* translation block context */
__thread int have_tb_lock;

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
static void page_table_config_init(void)
{
    uint32_t v_l1_bits;

    assert(TARGET_PAGE_BITS);
    /* The bits remaining after N lower levels of page tables.  */
    v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
    if (v_l1_bits < V_L1_MIN_BITS) {
        v_l1_bits += V_L2_BITS;
    }

    v_l1_size = 1 << v_l1_bits;
    v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
    v_l2_levels = v_l1_shift / V_L2_BITS - 1;

    assert(v_l1_bits <= V_L1_MAX_BITS);
    assert(v_l1_shift % V_L2_BITS == 0);
    assert(v_l2_levels >= 0);
}

158 159 160
#define assert_tb_locked() tcg_debug_assert(have_tb_lock)
#define assert_tb_unlocked() tcg_debug_assert(!have_tb_lock)

K
KONRAD Frederic 已提交
161 162
void tb_lock(void)
{
163
    assert_tb_unlocked();
K
KONRAD Frederic 已提交
164 165 166 167 168 169
    qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
    have_tb_lock++;
}

void tb_unlock(void)
{
170
    assert_tb_locked();
K
KONRAD Frederic 已提交
171 172 173 174 175 176 177 178 179 180 181 182
    have_tb_lock--;
    qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
}

void tb_lock_reset(void)
{
    if (have_tb_lock) {
        qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
        have_tb_lock = 0;
    }
}

B
Blue Swirl 已提交
183
static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
184

B
bellard 已提交
185 186 187 188 189
void cpu_gen_init(void)
{
    tcg_context_init(&tcg_ctx); 
}

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
/* Encode VAL as a signed leb128 sequence at P.
   Return P incremented past the encoded value.  */
static uint8_t *encode_sleb128(uint8_t *p, target_long val)
{
    int more, byte;

    do {
        byte = val & 0x7f;
        val >>= 7;
        more = !((val == 0 && (byte & 0x40) == 0)
                 || (val == -1 && (byte & 0x40) != 0));
        if (more) {
            byte |= 0x80;
        }
        *p++ = byte;
    } while (more);

    return p;
}

/* Decode a signed leb128 sequence at *PP; increment *PP past the
   decoded value.  Return the decoded value.  */
static target_long decode_sleb128(uint8_t **pp)
{
    uint8_t *p = *pp;
    target_long val = 0;
    int byte, shift = 0;

    do {
        byte = *p++;
        val |= (target_ulong)(byte & 0x7f) << shift;
        shift += 7;
    } while (byte & 0x80);
    if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
        val |= -(target_ulong)1 << shift;
    }

    *pp = p;
    return val;
}

/* Encode the data collected about the instructions while compiling TB.
   Place the data at BLOCK, and return the number of bytes consumed.

   The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
   which come from the target's insn_start data, followed by a uintptr_t
   which comes from the host pc of the end of the code implementing the insn.

   Each line of the table is encoded as sleb128 deltas from the previous
   line.  The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
   That is, the first column is seeded with the guest pc, the last column
   with the host pc, and the middle columns with zeros.  */

static int encode_search(TranslationBlock *tb, uint8_t *block)
{
245
    uint8_t *highwater = tcg_ctx.code_gen_highwater;
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
    uint8_t *p = block;
    int i, j, n;

    tb->tc_search = block;

    for (i = 0, n = tb->icount; i < n; ++i) {
        target_ulong prev;

        for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
            if (i == 0) {
                prev = (j == 0 ? tb->pc : 0);
            } else {
                prev = tcg_ctx.gen_insn_data[i - 1][j];
            }
            p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
        }
        prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
        p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
264 265 266 267 268 269 270 271

        /* Test for (pending) buffer overflow.  The assumption is that any
           one row beginning below the high water mark cannot overrun
           the buffer completely.  Thus we can test for overflow after
           encoding a row without having to check during encoding.  */
        if (unlikely(p > highwater)) {
            return -1;
        }
272 273 274 275 276
    }

    return p - block;
}

277 278 279
/* The cpu state corresponding to 'searched_pc' is restored.
 * Called with tb_lock held.
 */
280
static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
B
Blue Swirl 已提交
281
                                     uintptr_t searched_pc)
B
bellard 已提交
282
{
283 284
    target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
    uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
285
    CPUArchState *env = cpu->env_ptr;
286 287
    uint8_t *p = tb->tc_search;
    int i, j, num_insns = tb->icount;
B
bellard 已提交
288
#ifdef CONFIG_PROFILER
289
    int64_t ti = profile_getclock();
B
bellard 已提交
290 291
#endif

R
Richard Henderson 已提交
292 293
    searched_pc -= GETPC_ADJ;

294 295 296
    if (searched_pc < host_pc) {
        return -1;
    }
B
bellard 已提交
297

298 299 300 301 302 303 304 305 306 307 308 309
    /* Reconstruct the stored insn data while looking for the point at
       which the end of the insn exceeds the searched_pc.  */
    for (i = 0; i < num_insns; ++i) {
        for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
            data[j] += decode_sleb128(&p);
        }
        host_pc += decode_sleb128(&p);
        if (host_pc > searched_pc) {
            goto found;
        }
    }
    return -1;
310

311
 found:
312
    if (tb->cflags & CF_USE_ICOUNT) {
313
        assert(use_icount);
P
pbrook 已提交
314
        /* Reset the cycle counter to the start of the block.  */
315
        cpu->icount_decr.u16.low += num_insns;
P
pbrook 已提交
316
        /* Clear the IO flag.  */
317
        cpu->can_do_io = 0;
P
pbrook 已提交
318
    }
319 320
    cpu->icount_decr.u16.low -= i;
    restore_state_to_opc(env, tb, data);
B
bellard 已提交
321 322

#ifdef CONFIG_PROFILER
323 324
    tcg_ctx.restore_time += profile_getclock() - ti;
    tcg_ctx.restore_count++;
B
bellard 已提交
325
#endif
B
bellard 已提交
326 327
    return 0;
}
328

329
bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
B
Blue Swirl 已提交
330 331
{
    TranslationBlock *tb;
332
    bool r = false;
B
Blue Swirl 已提交
333

334 335 336 337 338 339 340 341 342 343 344 345 346
    /* A retaddr of zero is invalid so we really shouldn't have ended
     * up here. The target code has likely forgotten to check retaddr
     * != 0 before attempting to restore state. We return early to
     * avoid blowing up on a recursive tb_lock(). The target must have
     * previously survived a failed cpu_restore_state because
     * tb_find_pc(0) would have failed anyway. It still should be
     * fixed though.
     */

    if (!retaddr) {
        return r;
    }

347
    tb_lock();
B
Blue Swirl 已提交
348 349
    tb = tb_find_pc(retaddr);
    if (tb) {
350
        cpu_restore_state_from_tb(cpu, tb, retaddr);
351 352 353 354 355
        if (tb->cflags & CF_NOCACHE) {
            /* one-shot translation, invalidate it immediately */
            tb_phys_invalidate(tb, -1);
            tb_free(tb);
        }
356
        r = true;
B
Blue Swirl 已提交
357
    }
358 359 360
    tb_unlock();

    return r;
B
Blue Swirl 已提交
361 362
}

363 364 365
static void page_init(void)
{
    page_size_init();
366 367
    page_table_config_init();

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
    {
#ifdef HAVE_KINFO_GETVMMAP
        struct kinfo_vmentry *freep;
        int i, cnt;

        freep = kinfo_getvmmap(getpid(), &cnt);
        if (freep) {
            mmap_lock();
            for (i = 0; i < cnt; i++) {
                unsigned long startaddr, endaddr;

                startaddr = freep[i].kve_start;
                endaddr = freep[i].kve_end;
                if (h2g_valid(startaddr)) {
                    startaddr = h2g(startaddr) & TARGET_PAGE_MASK;

                    if (h2g_valid(endaddr)) {
                        endaddr = h2g(endaddr);
                        page_set_flags(startaddr, endaddr, PAGE_RESERVED);
                    } else {
#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
                        endaddr = ~0ul;
                        page_set_flags(startaddr, endaddr, PAGE_RESERVED);
#endif
                    }
                }
            }
            free(freep);
            mmap_unlock();
        }
#else
        FILE *f;

        last_brk = (unsigned long)sbrk(0);

        f = fopen("/compat/linux/proc/self/maps", "r");
        if (f) {
            mmap_lock();

            do {
                unsigned long startaddr, endaddr;
                int n;

                n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);

                if (n == 2 && h2g_valid(startaddr)) {
                    startaddr = h2g(startaddr) & TARGET_PAGE_MASK;

                    if (h2g_valid(endaddr)) {
                        endaddr = h2g(endaddr);
                    } else {
                        endaddr = ~0ul;
                    }
                    page_set_flags(startaddr, endaddr, PAGE_RESERVED);
                }
            } while (!feof(f));

            fclose(f);
            mmap_unlock();
        }
#endif
    }
#endif
}

434
/* If alloc=1:
435
 * Called with tb_lock held for system emulation.
436 437
 * Called with mmap_lock held for user-mode emulation.
 */
438 439 440 441 442 443
static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
{
    PageDesc *pd;
    void **lp;
    int i;

444 445 446 447
    if (alloc) {
        assert_memory_lock();
    }

448
    /* Level 1.  Always allocated.  */
449
    lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
450 451

    /* Level 2..N-1.  */
452
    for (i = v_l2_levels; i > 0; i--) {
453
        void **p = atomic_rcu_read(lp);
454 455 456 457 458

        if (p == NULL) {
            if (!alloc) {
                return NULL;
            }
459
            p = g_new0(void *, V_L2_SIZE);
460
            atomic_rcu_set(lp, p);
461 462
        }

463
        lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
464 465
    }

466
    pd = atomic_rcu_read(lp);
467 468 469 470
    if (pd == NULL) {
        if (!alloc) {
            return NULL;
        }
471
        pd = g_new0(PageDesc, V_L2_SIZE);
472
        atomic_rcu_set(lp, pd);
473 474
    }

475
    return pd + (index & (V_L2_SIZE - 1));
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
}

static inline PageDesc *page_find(tb_page_addr_t index)
{
    return page_find_alloc(index, 0);
}

#if defined(CONFIG_USER_ONLY)
/* Currently it is not recommended to allocate big chunks of data in
   user mode. It will change when a dedicated libc will be used.  */
/* ??? 64-bit hosts ought to have no problem mmaping data outside the
   region in which the guest needs to run.  Revisit this.  */
#define USE_STATIC_CODE_GEN_BUFFER
#endif

/* Minimum size of the code gen buffer.  This number is randomly chosen,
   but not so small that we can't have a fair number of TB's live.  */
#define MIN_CODE_GEN_BUFFER_SIZE     (1024u * 1024)

/* Maximum size of the code gen buffer we'd like to use.  Unless otherwise
   indicated, this is constrained by the range of direct branches on the
   host cpu, as used by the TCG implementation of goto_tb.  */
#if defined(__x86_64__)
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
#elif defined(__sparc__)
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
502 503
#elif defined(__powerpc64__)
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
504 505
#elif defined(__powerpc__)
# define MAX_CODE_GEN_BUFFER_SIZE  (32u * 1024 * 1024)
506
#elif defined(__aarch64__)
507
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
508 509 510
#elif defined(__s390x__)
  /* We have a +- 4GB range on the branches; leave some slop.  */
# define MAX_CODE_GEN_BUFFER_SIZE  (3ul * 1024 * 1024 * 1024)
511 512 513 514
#elif defined(__mips__)
  /* We have a 256MB branch region, but leave room to make sure the
     main executable is also within that region.  */
# define MAX_CODE_GEN_BUFFER_SIZE  (128ul * 1024 * 1024)
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
#else
# define MAX_CODE_GEN_BUFFER_SIZE  ((size_t)-1)
#endif

#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)

#define DEFAULT_CODE_GEN_BUFFER_SIZE \
  (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
   ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)

static inline size_t size_code_gen_buffer(size_t tb_size)
{
    /* Size the buffer.  */
    if (tb_size == 0) {
#ifdef USE_STATIC_CODE_GEN_BUFFER
        tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
#else
        /* ??? Needs adjustments.  */
        /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
           static buffer, we could size this on RESERVED_VA, on the text
           segment size of the executable, or continue to use the default.  */
        tb_size = (unsigned long)(ram_size / 4);
#endif
    }
    if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
        tb_size = MIN_CODE_GEN_BUFFER_SIZE;
    }
    if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
        tb_size = MAX_CODE_GEN_BUFFER_SIZE;
    }
    return tb_size;
}

548 549 550 551 552
#ifdef __mips__
/* In order to use J and JAL within the code_gen_buffer, we require
   that the buffer not cross a 256MB boundary.  */
static inline bool cross_256mb(void *addr, size_t size)
{
553
    return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
554 555 556 557 558 559 560
}

/* We weren't able to allocate a buffer without crossing that boundary,
   so make do with the larger portion of the buffer that doesn't cross.
   Returns the new base of the buffer, and adjusts code_gen_buffer_size.  */
static inline void *split_cross_256mb(void *buf1, size_t size1)
{
561
    void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
562 563 564 565 566 567 568 569 570 571 572 573 574
    size_t size2 = buf1 + size1 - buf2;

    size1 = buf2 - buf1;
    if (size1 < size2) {
        size1 = size2;
        buf1 = buf2;
    }

    tcg_ctx.code_gen_buffer_size = size1;
    return buf1;
}
#endif

575 576 577 578
#ifdef USE_STATIC_CODE_GEN_BUFFER
static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
    __attribute__((aligned(CODE_GEN_ALIGN)));

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
# ifdef _WIN32
static inline void do_protect(void *addr, long size, int prot)
{
    DWORD old_protect;
    VirtualProtect(addr, size, prot, &old_protect);
}

static inline void map_exec(void *addr, long size)
{
    do_protect(addr, size, PAGE_EXECUTE_READWRITE);
}

static inline void map_none(void *addr, long size)
{
    do_protect(addr, size, PAGE_NOACCESS);
}
# else
static inline void do_protect(void *addr, long size, int prot)
{
    uintptr_t start, end;

    start = (uintptr_t)addr;
    start &= qemu_real_host_page_mask;

    end = (uintptr_t)addr + size;
    end = ROUND_UP(end, qemu_real_host_page_size);

    mprotect((void *)start, end - start, prot);
}

static inline void map_exec(void *addr, long size)
{
    do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
}

static inline void map_none(void *addr, long size)
{
    do_protect(addr, size, PROT_NONE);
}
# endif /* WIN32 */

620 621
static inline void *alloc_code_gen_buffer(void)
{
622
    void *buf = static_code_gen_buffer;
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
    size_t full_size, size;

    /* The size of the buffer, rounded down to end on a page boundary.  */
    full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
                 & qemu_real_host_page_mask) - (uintptr_t)buf;

    /* Reserve a guard page.  */
    size = full_size - qemu_real_host_page_size;

    /* Honor a command-line option limiting the size of the buffer.  */
    if (size > tcg_ctx.code_gen_buffer_size) {
        size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
                & qemu_real_host_page_mask) - (uintptr_t)buf;
    }
    tcg_ctx.code_gen_buffer_size = size;

639
#ifdef __mips__
640 641 642
    if (cross_256mb(buf, size)) {
        buf = split_cross_256mb(buf, size);
        size = tcg_ctx.code_gen_buffer_size;
643 644
    }
#endif
645 646 647 648 649

    map_exec(buf, size);
    map_none(buf + size, qemu_real_host_page_size);
    qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);

650
    return buf;
651
}
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
#elif defined(_WIN32)
static inline void *alloc_code_gen_buffer(void)
{
    size_t size = tcg_ctx.code_gen_buffer_size;
    void *buf1, *buf2;

    /* Perform the allocation in two steps, so that the guard page
       is reserved but uncommitted.  */
    buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
                        MEM_RESERVE, PAGE_NOACCESS);
    if (buf1 != NULL) {
        buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
        assert(buf1 == buf2);
    }

    return buf1;
}
#else
670 671 672 673
static inline void *alloc_code_gen_buffer(void)
{
    int flags = MAP_PRIVATE | MAP_ANONYMOUS;
    uintptr_t start = 0;
674
    size_t size = tcg_ctx.code_gen_buffer_size;
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
    void *buf;

    /* Constrain the position of the buffer based on the host cpu.
       Note that these addresses are chosen in concert with the
       addresses assigned in the relevant linker script file.  */
# if defined(__PIE__) || defined(__PIC__)
    /* Don't bother setting a preferred location if we're building
       a position-independent executable.  We're more likely to get
       an address near the main executable if we let the kernel
       choose the address.  */
# elif defined(__x86_64__) && defined(MAP_32BIT)
    /* Force the memory down into low memory with the executable.
       Leave the choice of exact location with the kernel.  */
    flags |= MAP_32BIT;
    /* Cannot expect to map more than 800MB in low memory.  */
690 691
    if (size > 800u * 1024 * 1024) {
        tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
692 693 694 695 696
    }
# elif defined(__sparc__)
    start = 0x40000000ul;
# elif defined(__s390x__)
    start = 0x90000000ul;
697
# elif defined(__mips__)
698
#  if _MIPS_SIM == _ABI64
699 700 701 702
    start = 0x128000000ul;
#  else
    start = 0x08000000ul;
#  endif
703 704
# endif

705 706
    buf = mmap((void *)start, size + qemu_real_host_page_size,
               PROT_NONE, flags, -1, 0);
707 708 709 710 711
    if (buf == MAP_FAILED) {
        return NULL;
    }

#ifdef __mips__
712
    if (cross_256mb(buf, size)) {
S
Stefan Weil 已提交
713
        /* Try again, with the original still mapped, to avoid re-acquiring
714
           that 256mb crossing.  This time don't specify an address.  */
715 716 717
        size_t size2;
        void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
                          PROT_NONE, flags, -1, 0);
718
        switch ((int)(buf2 != MAP_FAILED)) {
719 720
        case 1:
            if (!cross_256mb(buf2, size)) {
721
                /* Success!  Use the new buffer.  */
722
                munmap(buf, size + qemu_real_host_page_size);
723
                break;
724 725
            }
            /* Failure.  Work with what we had.  */
726
            munmap(buf2, size + qemu_real_host_page_size);
727 728 729 730 731 732 733 734 735 736 737 738
            /* fallthru */
        default:
            /* Split the original buffer.  Free the smaller half.  */
            buf2 = split_cross_256mb(buf, size);
            size2 = tcg_ctx.code_gen_buffer_size;
            if (buf == buf2) {
                munmap(buf + size2 + qemu_real_host_page_size, size - size2);
            } else {
                munmap(buf, size - size2);
            }
            size = size2;
            break;
739
        }
740
        buf = buf2;
741 742 743
    }
#endif

744 745 746
    /* Make the final buffer accessible.  The guard page at the end
       will remain inaccessible with PROT_NONE.  */
    mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
747

748 749
    /* Request large pages for the buffer.  */
    qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
750

751 752
    return buf;
}
753
#endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
754 755 756

static inline void code_gen_alloc(size_t tb_size)
{
E
Evgeny Voevodin 已提交
757 758 759
    tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
    tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
    if (tcg_ctx.code_gen_buffer == NULL) {
760 761 762 763
        fprintf(stderr, "Could not allocate dynamic translator buffer\n");
        exit(1);
    }

764 765 766 767 768 769 770
    /* size this conservatively -- realloc later if needed */
    tcg_ctx.tb_ctx.tbs_size =
        tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE / 8;
    if (unlikely(!tcg_ctx.tb_ctx.tbs_size)) {
        tcg_ctx.tb_ctx.tbs_size = 64 * 1024;
    }
    tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock *, tcg_ctx.tb_ctx.tbs_size);
771

K
KONRAD Frederic 已提交
772
    qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
773 774
}

775 776 777 778 779 780 781
static void tb_htable_init(void)
{
    unsigned int mode = QHT_MODE_AUTO_RESIZE;

    qht_init(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE, mode);
}

782 783 784 785 786
/* Must be called before using the QEMU cpus. 'tb_size' is the size
   (in bytes) allocated to the translation buffer. Zero means default
   size. */
void tcg_exec_init(unsigned long tb_size)
{
Y
Yang Zhong 已提交
787
    tcg_allowed = true;
788 789
    cpu_gen_init();
    page_init();
790
    tb_htable_init();
791
    code_gen_alloc(tb_size);
792
#if defined(CONFIG_SOFTMMU)
793 794 795 796 797 798
    /* There's no guest base to take into account, so go ahead and
       initialize the prologue now.  */
    tcg_prologue_init(&tcg_ctx);
#endif
}

799 800 801 802 803 804
/*
 * Allocate a new translation block. Flush the translation buffer if
 * too many translation blocks or too much generated code.
 *
 * Called with tb_lock held.
 */
805 806 807
static TranslationBlock *tb_alloc(target_ulong pc)
{
    TranslationBlock *tb;
808
    TBContext *ctx;
809

810
    assert_tb_locked();
811

812 813
    tb = tcg_tb_alloc(&tcg_ctx);
    if (unlikely(tb == NULL)) {
814 815
        return NULL;
    }
816 817 818 819 820 821
    ctx = &tcg_ctx.tb_ctx;
    if (unlikely(ctx->nb_tbs == ctx->tbs_size)) {
        ctx->tbs_size *= 2;
        ctx->tbs = g_renew(TranslationBlock *, ctx->tbs, ctx->tbs_size);
    }
    ctx->tbs[ctx->nb_tbs++] = tb;
822 823 824
    return tb;
}

825
/* Called with tb_lock held.  */
826 827
void tb_free(TranslationBlock *tb)
{
828
    assert_tb_locked();
829

830 831 832
    /* In practice this is mostly used for single use temporary TB
       Ignore the hard cases and just back up if this TB happens to
       be the last one generated.  */
833
    if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
834 835 836 837
            tb == tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
        size_t struct_size = ROUND_UP(sizeof(*tb), qemu_icache_linesize);

        tcg_ctx.code_gen_ptr = tb->tc_ptr - struct_size;
838
        tcg_ctx.tb_ctx.nb_tbs--;
839 840 841 842 843
    }
}

static inline void invalidate_page_bitmap(PageDesc *p)
{
844
#ifdef CONFIG_SOFTMMU
845 846
    g_free(p->code_bitmap);
    p->code_bitmap = NULL;
847
    p->code_write_count = 0;
848
#endif
849 850 851 852 853 854 855 856 857 858 859 860 861
}

/* Set to NULL all the 'first_tb' fields in all PageDescs. */
static void page_flush_tb_1(int level, void **lp)
{
    int i;

    if (*lp == NULL) {
        return;
    }
    if (level == 0) {
        PageDesc *pd = *lp;

862
        for (i = 0; i < V_L2_SIZE; ++i) {
863 864 865 866 867 868
            pd[i].first_tb = NULL;
            invalidate_page_bitmap(pd + i);
        }
    } else {
        void **pp = *lp;

869
        for (i = 0; i < V_L2_SIZE; ++i) {
870 871 872 873 874 875 876
            page_flush_tb_1(level - 1, pp + i);
        }
    }
}

static void page_flush_tb(void)
{
877
    int i, l1_sz = v_l1_size;
878

879 880
    for (i = 0; i < l1_sz; i++) {
        page_flush_tb_1(v_l2_levels, l1_map + i);
881 882 883 884
    }
}

/* flush all the translation blocks */
885
static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
886
{
887 888
    tb_lock();

889
    /* If it is already been done on request of another CPU,
890 891
     * just retry.
     */
892
    if (tcg_ctx.tb_ctx.tb_flush_count != tb_flush_count.host_int) {
893
        goto done;
894
    }
895

896
#if defined(DEBUG_TB_FLUSH)
897
    printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
E
Evgeny Voevodin 已提交
898
           (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
899
           tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
E
Evgeny Voevodin 已提交
900
           ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
901
           tcg_ctx.tb_ctx.nb_tbs : 0);
902
#endif
E
Evgeny Voevodin 已提交
903 904
    if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
        > tcg_ctx.code_gen_buffer_size) {
905
        cpu_abort(cpu, "Internal error: code buffer overflow\n");
906 907
    }

A
Andreas Färber 已提交
908
    CPU_FOREACH(cpu) {
909
        cpu_tb_jmp_cache_clear(cpu);
910 911
    }

912
    tcg_ctx.tb_ctx.nb_tbs = 0;
913
    qht_reset_size(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
914 915
    page_flush_tb();

E
Evgeny Voevodin 已提交
916
    tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
917 918
    /* XXX: flush processor icache at this point if cache flush is
       expensive */
919 920 921 922 923 924 925 926 927 928
    atomic_mb_set(&tcg_ctx.tb_ctx.tb_flush_count,
                  tcg_ctx.tb_ctx.tb_flush_count + 1);

done:
    tb_unlock();
}

void tb_flush(CPUState *cpu)
{
    if (tcg_enabled()) {
929 930 931
        unsigned tb_flush_count = atomic_mb_read(&tcg_ctx.tb_ctx.tb_flush_count);
        async_safe_run_on_cpu(cpu, do_tb_flush,
                              RUN_ON_CPU_HOST_INT(tb_flush_count));
932
    }
933 934 935 936
}

#ifdef DEBUG_TB_CHECK

937 938
static void
do_tb_invalidate_check(struct qht *ht, void *p, uint32_t hash, void *userp)
939
{
940 941 942 943 944 945 946 947
    TranslationBlock *tb = p;
    target_ulong addr = *(target_ulong *)userp;

    if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
        printf("ERROR invalidate: address=" TARGET_FMT_lx
               " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
    }
}
948

949 950 951 952
/* verify that all the pages have correct rights for code
 *
 * Called with tb_lock held.
 */
953 954
static void tb_invalidate_check(target_ulong address)
{
955
    address &= TARGET_PAGE_MASK;
956 957 958 959 960 961 962 963 964 965 966 967 968 969
    qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_invalidate_check, &address);
}

static void
do_tb_page_check(struct qht *ht, void *p, uint32_t hash, void *userp)
{
    TranslationBlock *tb = p;
    int flags1, flags2;

    flags1 = page_get_flags(tb->pc);
    flags2 = page_get_flags(tb->pc + tb->size - 1);
    if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
        printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
               (long)tb->pc, tb->size, flags1, flags2);
970 971 972 973 974 975
    }
}

/* verify that all the pages have correct rights for code */
static void tb_page_check(void)
{
976
    qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_page_check, NULL);
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
}

#endif

static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
{
    TranslationBlock *tb1;
    unsigned int n1;

    for (;;) {
        tb1 = *ptb;
        n1 = (uintptr_t)tb1 & 3;
        tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
        if (tb1 == tb) {
            *ptb = tb1->page_next[n1];
            break;
        }
        ptb = &tb1->page_next[n1];
    }
}

998 999
/* remove the TB from a list of TBs jumping to the n-th jump target of the TB */
static inline void tb_remove_from_jmp_list(TranslationBlock *tb, int n)
1000
{
1001 1002
    TranslationBlock *tb1;
    uintptr_t *ptb, ntb;
1003 1004
    unsigned int n1;

1005
    ptb = &tb->jmp_list_next[n];
1006
    if (*ptb) {
1007 1008
        /* find tb(n) in circular list */
        for (;;) {
1009 1010 1011
            ntb = *ptb;
            n1 = ntb & 3;
            tb1 = (TranslationBlock *)(ntb & ~3);
1012 1013 1014 1015
            if (n1 == n && tb1 == tb) {
                break;
            }
            if (n1 == 2) {
1016
                ptb = &tb1->jmp_list_first;
1017
            } else {
1018
                ptb = &tb1->jmp_list_next[n1];
1019 1020 1021
            }
        }
        /* now we can suppress tb(n) from the list */
1022
        *ptb = tb->jmp_list_next[n];
1023

1024
        tb->jmp_list_next[n] = (uintptr_t)NULL;
1025 1026 1027 1028 1029 1030 1031
    }
}

/* reset the jump entry 'n' of a TB so that it is not chained to
   another TB */
static inline void tb_reset_jump(TranslationBlock *tb, int n)
{
1032 1033
    uintptr_t addr = (uintptr_t)(tb->tc_ptr + tb->jmp_reset_offset[n]);
    tb_set_jmp_target(tb, n, addr);
1034 1035
}

1036 1037 1038
/* remove any jumps to the TB */
static inline void tb_jmp_unlink(TranslationBlock *tb)
{
S
Sergey Fedorov 已提交
1039 1040
    TranslationBlock *tb1;
    uintptr_t *ptb, ntb;
1041 1042
    unsigned int n1;

S
Sergey Fedorov 已提交
1043
    ptb = &tb->jmp_list_first;
1044
    for (;;) {
S
Sergey Fedorov 已提交
1045 1046 1047
        ntb = *ptb;
        n1 = ntb & 3;
        tb1 = (TranslationBlock *)(ntb & ~3);
1048 1049 1050
        if (n1 == 2) {
            break;
        }
S
Sergey Fedorov 已提交
1051 1052 1053
        tb_reset_jump(tb1, n1);
        *ptb = tb1->jmp_list_next[n1];
        tb1->jmp_list_next[n1] = (uintptr_t)NULL;
1054 1055 1056
    }
}

1057 1058 1059 1060
/* invalidate one TB
 *
 * Called with tb_lock held.
 */
1061 1062
void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
{
1063
    CPUState *cpu;
1064
    PageDesc *p;
1065
    uint32_t h;
1066 1067
    tb_page_addr_t phys_pc;

1068
    assert_tb_locked();
1069

1070 1071
    atomic_set(&tb->invalid, true);

1072 1073
    /* remove the TB from the hash list */
    phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1074
    h = tb_hash_func(phys_pc, tb->pc, tb->flags);
1075
    qht_remove(&tcg_ctx.tb_ctx.htable, tb, h);
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090

    /* remove the TB from the page list */
    if (tb->page_addr[0] != page_addr) {
        p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
        tb_page_remove(&p->first_tb, tb);
        invalidate_page_bitmap(p);
    }
    if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
        p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
        tb_page_remove(&p->first_tb, tb);
        invalidate_page_bitmap(p);
    }

    /* remove the TB from the hash list */
    h = tb_jmp_cache_hash_func(tb->pc);
A
Andreas Färber 已提交
1091
    CPU_FOREACH(cpu) {
1092 1093
        if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
            atomic_set(&cpu->tb_jmp_cache[h], NULL);
1094 1095 1096 1097
        }
    }

    /* suppress this TB from the two jump lists */
1098 1099
    tb_remove_from_jmp_list(tb, 0);
    tb_remove_from_jmp_list(tb, 1);
1100 1101

    /* suppress any remaining jumps to this TB */
1102
    tb_jmp_unlink(tb);
1103

1104
    tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
1105 1106
}

1107
#ifdef CONFIG_SOFTMMU
1108 1109 1110 1111 1112
static void build_page_bitmap(PageDesc *p)
{
    int n, tb_start, tb_end;
    TranslationBlock *tb;

1113
    p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126

    tb = p->first_tb;
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
        /* NOTE: this is subtle as a TB may span two physical pages */
        if (n == 0) {
            /* NOTE: tb_end may be after the end of the page, but
               it is not a problem */
            tb_start = tb->pc & ~TARGET_PAGE_MASK;
            tb_end = tb_start + tb->size;
            if (tb_end > TARGET_PAGE_SIZE) {
                tb_end = TARGET_PAGE_SIZE;
1127
             }
1128 1129 1130 1131
        } else {
            tb_start = 0;
            tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
        }
1132
        bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1133 1134 1135
        tb = tb->page_next[n];
    }
}
1136
#endif
1137

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
/* add the tb in the target page and protect it if necessary
 *
 * Called with mmap_lock held for user-mode emulation.
 */
static inline void tb_alloc_page(TranslationBlock *tb,
                                 unsigned int n, tb_page_addr_t page_addr)
{
    PageDesc *p;
#ifndef CONFIG_USER_ONLY
    bool page_already_protected;
#endif

1150 1151
    assert_memory_lock();

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
    tb->page_addr[n] = page_addr;
    p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
    tb->page_next[n] = p->first_tb;
#ifndef CONFIG_USER_ONLY
    page_already_protected = p->first_tb != NULL;
#endif
    p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
    invalidate_page_bitmap(p);

#if defined(CONFIG_USER_ONLY)
    if (p->flags & PAGE_WRITE) {
        target_ulong addr;
        PageDesc *p2;
        int prot;

        /* force the host page as non writable (writes will have a
           page fault + mprotect overhead) */
        page_addr &= qemu_host_page_mask;
        prot = 0;
        for (addr = page_addr; addr < page_addr + qemu_host_page_size;
            addr += TARGET_PAGE_SIZE) {

            p2 = page_find(addr >> TARGET_PAGE_BITS);
            if (!p2) {
                continue;
            }
            prot |= p2->flags;
            p2->flags &= ~PAGE_WRITE;
          }
        mprotect(g2h(page_addr), qemu_host_page_size,
                 (prot & PAGE_BITS) & ~PAGE_WRITE);
#ifdef DEBUG_TB_INVALIDATE
        printf("protecting code page: 0x" TARGET_FMT_lx "\n",
               page_addr);
#endif
    }
#else
    /* if some code is already present, then the pages are already
       protected. So we handle the case where only the first TB is
       allocated in a physical page */
    if (!page_already_protected) {
        tlb_protect_code(page_addr);
    }
#endif
}

/* add a new TB and link it to the physical page tables. phys_page2 is
 * (-1) to indicate that only one page contains the TB.
 *
 * Called with mmap_lock held for user-mode emulation.
 */
static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
                         tb_page_addr_t phys_page2)
{
1206
    uint32_t h;
1207

1208 1209
    assert_memory_lock();

1210 1211 1212 1213 1214 1215 1216 1217
    /* add in the page list */
    tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
    if (phys_page2 != -1) {
        tb_alloc_page(tb, 1, phys_page2);
    } else {
        tb->page_addr[1] = -1;
    }

1218 1219 1220 1221
    /* add in the hash table */
    h = tb_hash_func(phys_pc, tb->pc, tb->flags);
    qht_insert(&tcg_ctx.tb_ctx.htable, tb, h);

1222 1223 1224 1225 1226
#ifdef DEBUG_TB_CHECK
    tb_page_check();
#endif
}

1227
/* Called with mmap_lock held for user mode emulation.  */
1228
TranslationBlock *tb_gen_code(CPUState *cpu,
1229
                              target_ulong pc, target_ulong cs_base,
1230
                              uint32_t flags, int cflags)
1231
{
1232
    CPUArchState *env = cpu->env_ptr;
1233 1234 1235
    TranslationBlock *tb;
    tb_page_addr_t phys_pc, phys_page2;
    target_ulong virt_page2;
1236
    tcg_insn_unit *gen_code_buf;
1237
    int gen_code_size, search_size;
1238 1239 1240
#ifdef CONFIG_PROFILER
    int64_t ti;
#endif
1241
    assert_memory_lock();
1242 1243

    phys_pc = get_page_addr_code(env, pc);
1244
    if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
1245 1246
        cflags |= CF_USE_ICOUNT;
    }
1247

1248
    tb = tb_alloc(pc);
1249 1250
    if (unlikely(!tb)) {
 buffer_overflow:
1251
        /* flush must be done */
1252
        tb_flush(cpu);
1253
        mmap_unlock();
P
Pavel Dovgalyuk 已提交
1254 1255
        /* Make the execution loop process the flush as soon as possible.  */
        cpu->exception_index = EXCP_INTERRUPT;
1256
        cpu_loop_exit(cpu);
1257
    }
1258 1259 1260

    gen_code_buf = tcg_ctx.code_gen_ptr;
    tb->tc_ptr = gen_code_buf;
1261
    tb->pc = pc;
1262 1263 1264
    tb->cs_base = cs_base;
    tb->flags = flags;
    tb->cflags = cflags;
1265
    tb->invalid = false;
1266 1267 1268 1269 1270 1271 1272 1273 1274

#ifdef CONFIG_PROFILER
    tcg_ctx.tb_count1++; /* includes aborted translations because of
                       exceptions */
    ti = profile_getclock();
#endif

    tcg_func_start(&tcg_ctx);

1275
    tcg_ctx.cpu = ENV_GET_CPU(env);
1276
    gen_intermediate_code(env, tb);
1277
    tcg_ctx.cpu = NULL;
1278 1279 1280 1281

    trace_translate_block(tb, tb->pc, tb->tc_ptr);

    /* generate machine code */
1282 1283 1284
    tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
    tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
    tcg_ctx.tb_jmp_reset_offset = tb->jmp_reset_offset;
1285
#ifdef USE_DIRECT_JUMP
1286 1287
    tcg_ctx.tb_jmp_insn_offset = tb->jmp_insn_offset;
    tcg_ctx.tb_jmp_target_addr = NULL;
1288
#else
1289 1290
    tcg_ctx.tb_jmp_insn_offset = NULL;
    tcg_ctx.tb_jmp_target_addr = tb->jmp_target_addr;
1291 1292 1293 1294 1295 1296 1297 1298
#endif

#ifdef CONFIG_PROFILER
    tcg_ctx.tb_count++;
    tcg_ctx.interm_time += profile_getclock() - ti;
    tcg_ctx.code_time -= profile_getclock();
#endif

1299 1300 1301 1302 1303
    /* ??? Overflow could be handled better here.  In particular, we
       don't need to re-do gen_intermediate_code, nor should we re-do
       the tcg optimization currently hidden inside tcg_gen_code.  All
       that should be required is to flush the TBs, allocate a new TB,
       re-initialize it per above, and re-do the actual code generation.  */
1304
    gen_code_size = tcg_gen_code(&tcg_ctx, tb);
1305 1306 1307
    if (unlikely(gen_code_size < 0)) {
        goto buffer_overflow;
    }
1308
    search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1309 1310 1311
    if (unlikely(search_size < 0)) {
        goto buffer_overflow;
    }
1312 1313 1314 1315 1316

#ifdef CONFIG_PROFILER
    tcg_ctx.code_time += profile_getclock();
    tcg_ctx.code_in_len += tb->size;
    tcg_ctx.code_out_len += gen_code_size;
1317
    tcg_ctx.search_out_len += search_size;
1318 1319 1320
#endif

#ifdef DEBUG_DISAS
1321 1322
    if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
        qemu_log_in_addr_range(tb->pc)) {
1323
        qemu_log_lock();
1324 1325 1326 1327
        qemu_log("OUT: [size=%d]\n", gen_code_size);
        log_disas(tb->tc_ptr, gen_code_size);
        qemu_log("\n");
        qemu_log_flush();
1328
        qemu_log_unlock();
1329 1330 1331
    }
#endif

1332 1333 1334
    tcg_ctx.code_gen_ptr = (void *)
        ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
                 CODE_GEN_ALIGN);
1335

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
    /* init jump list */
    assert(((uintptr_t)tb & 3) == 0);
    tb->jmp_list_first = (uintptr_t)tb | 2;
    tb->jmp_list_next[0] = (uintptr_t)NULL;
    tb->jmp_list_next[1] = (uintptr_t)NULL;

    /* init original jump addresses wich has been set during tcg_gen_code() */
    if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
        tb_reset_jump(tb, 0);
    }
    if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
        tb_reset_jump(tb, 1);
    }

1350 1351 1352 1353 1354 1355
    /* check next page if needed */
    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
    phys_page2 = -1;
    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
        phys_page2 = get_page_addr_code(env, virt_page2);
    }
1356 1357 1358 1359 1360
    /* As long as consistency of the TB stuff is provided by tb_lock in user
     * mode and is implicit in single-threaded softmmu emulation, no explicit
     * memory barrier is required before tb_link_page() makes the TB visible
     * through the physical hash table and physical page list.
     */
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
    tb_link_page(tb, phys_pc, phys_page2);
    return tb;
}

/*
 * Invalidate all TBs which intersect with the target physical address range
 * [start;end[. NOTE: start and end may refer to *different* physical pages.
 * 'is_cpu_write_access' should be true if called from a real cpu write
 * access: the virtual CPU will exit the current TB if code is modified inside
 * this TB.
1371
 *
1372 1373
 * Called with mmap_lock held for user-mode emulation, grabs tb_lock
 * Called with tb_lock held for system-mode emulation
1374
 */
1375
static void tb_invalidate_phys_range_1(tb_page_addr_t start, tb_page_addr_t end)
1376 1377
{
    while (start < end) {
1378
        tb_invalidate_phys_page_range(start, end, 0);
1379 1380 1381 1382 1383
        start &= TARGET_PAGE_MASK;
        start += TARGET_PAGE_SIZE;
    }
}

1384 1385 1386
#ifdef CONFIG_SOFTMMU
void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
{
1387
    assert_tb_locked();
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
    tb_invalidate_phys_range_1(start, end);
}
#else
void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
{
    assert_memory_lock();
    tb_lock();
    tb_invalidate_phys_range_1(start, end);
    tb_unlock();
}
#endif
1399 1400 1401 1402 1403 1404
/*
 * Invalidate all TBs which intersect with the target physical address range
 * [start;end[. NOTE: start and end must refer to the *same* physical page.
 * 'is_cpu_write_access' should be true if called from a real cpu write
 * access: the virtual CPU will exit the current TB if code is modified inside
 * this TB.
1405
 *
1406 1407
 * Called with tb_lock/mmap_lock held for user-mode emulation
 * Called with tb_lock held for system-mode emulation
1408 1409 1410 1411
 */
void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
                                   int is_cpu_write_access)
{
1412
    TranslationBlock *tb, *tb_next;
1413
#if defined(TARGET_HAS_PRECISE_SMC)
1414
    CPUState *cpu = current_cpu;
1415 1416
    CPUArchState *env = NULL;
#endif
1417 1418 1419 1420 1421 1422 1423 1424 1425
    tb_page_addr_t tb_start, tb_end;
    PageDesc *p;
    int n;
#ifdef TARGET_HAS_PRECISE_SMC
    int current_tb_not_found = is_cpu_write_access;
    TranslationBlock *current_tb = NULL;
    int current_tb_modified = 0;
    target_ulong current_pc = 0;
    target_ulong current_cs_base = 0;
1426
    uint32_t current_flags = 0;
1427 1428
#endif /* TARGET_HAS_PRECISE_SMC */

1429
    assert_memory_lock();
1430
    assert_tb_locked();
1431

1432 1433 1434 1435
    p = page_find(start >> TARGET_PAGE_BITS);
    if (!p) {
        return;
    }
1436
#if defined(TARGET_HAS_PRECISE_SMC)
1437 1438
    if (cpu != NULL) {
        env = cpu->env_ptr;
1439
    }
1440
#endif
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464

    /* we remove all the TBs in the range [start, end[ */
    /* XXX: see if in some cases it could be faster to invalidate all
       the code */
    tb = p->first_tb;
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
        tb_next = tb->page_next[n];
        /* NOTE: this is subtle as a TB may span two physical pages */
        if (n == 0) {
            /* NOTE: tb_end may be after the end of the page, but
               it is not a problem */
            tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
            tb_end = tb_start + tb->size;
        } else {
            tb_start = tb->page_addr[1];
            tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
        }
        if (!(tb_end <= start || tb_start >= end)) {
#ifdef TARGET_HAS_PRECISE_SMC
            if (current_tb_not_found) {
                current_tb_not_found = 0;
                current_tb = NULL;
1465
                if (cpu->mem_io_pc) {
1466
                    /* now we have a real cpu fault */
1467
                    current_tb = tb_find_pc(cpu->mem_io_pc);
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
                }
            }
            if (current_tb == tb &&
                (current_tb->cflags & CF_COUNT_MASK) != 1) {
                /* If we are modifying the current TB, we must stop
                its execution. We could be more precise by checking
                that the modification is after the current PC, but it
                would require a specialized function to partially
                restore the CPU state */

                current_tb_modified = 1;
1479
                cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
                cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
                                     &current_flags);
            }
#endif /* TARGET_HAS_PRECISE_SMC */
            tb_phys_invalidate(tb, -1);
        }
        tb = tb_next;
    }
#if !defined(CONFIG_USER_ONLY)
    /* if no code remaining, no need to continue to use slow writes */
    if (!p->first_tb) {
        invalidate_page_bitmap(p);
1492
        tlb_unprotect_code(start);
1493 1494 1495 1496 1497 1498 1499
    }
#endif
#ifdef TARGET_HAS_PRECISE_SMC
    if (current_tb_modified) {
        /* we generate a block containing just the instruction
           modifying the memory. It will ensure that it cannot modify
           itself */
1500
        tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1501
        cpu_loop_exit_noexc(cpu);
1502 1503 1504 1505
    }
#endif
}

1506
#ifdef CONFIG_SOFTMMU
1507 1508
/* len must be <= 8 and start must be a multiple of len.
 * Called via softmmu_template.h when code areas are written to with
1509
 * iothread mutex not held.
1510
 */
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
{
    PageDesc *p;

#if 0
    if (1) {
        qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
                  cpu_single_env->mem_io_vaddr, len,
                  cpu_single_env->eip,
                  cpu_single_env->eip +
                  (intptr_t)cpu_single_env->segs[R_CS].base);
    }
#endif
1524 1525
    assert_memory_lock();

1526 1527 1528 1529
    p = page_find(start >> TARGET_PAGE_BITS);
    if (!p) {
        return;
    }
1530 1531
    if (!p->code_bitmap &&
        ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1532 1533 1534
        /* build code bitmap.  FIXME: writes should be protected by
         * tb_lock, reads by tb_lock or RCU.
         */
1535 1536
        build_page_bitmap(p);
    }
1537
    if (p->code_bitmap) {
1538 1539 1540 1541 1542
        unsigned int nr;
        unsigned long b;

        nr = start & ~TARGET_PAGE_MASK;
        b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
1543 1544 1545 1546 1547 1548 1549 1550
        if (b & ((1 << len) - 1)) {
            goto do_invalidate;
        }
    } else {
    do_invalidate:
        tb_invalidate_phys_page_range(start, start + len, 1);
    }
}
1551
#else
1552 1553 1554 1555 1556 1557 1558
/* Called with mmap_lock held. If pc is not 0 then it indicates the
 * host PC of the faulting store instruction that caused this invalidate.
 * Returns true if the caller needs to abort execution of the current
 * TB (because it was modified by this store and the guest CPU has
 * precise-SMC semantics).
 */
static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
1559 1560 1561 1562 1563 1564
{
    TranslationBlock *tb;
    PageDesc *p;
    int n;
#ifdef TARGET_HAS_PRECISE_SMC
    TranslationBlock *current_tb = NULL;
1565 1566
    CPUState *cpu = current_cpu;
    CPUArchState *env = NULL;
1567 1568 1569
    int current_tb_modified = 0;
    target_ulong current_pc = 0;
    target_ulong current_cs_base = 0;
1570
    uint32_t current_flags = 0;
1571 1572
#endif

1573 1574
    assert_memory_lock();

1575 1576 1577
    addr &= TARGET_PAGE_MASK;
    p = page_find(addr >> TARGET_PAGE_BITS);
    if (!p) {
1578
        return false;
1579
    }
1580 1581

    tb_lock();
1582 1583 1584 1585 1586
    tb = p->first_tb;
#ifdef TARGET_HAS_PRECISE_SMC
    if (tb && pc != 0) {
        current_tb = tb_find_pc(pc);
    }
1587 1588
    if (cpu != NULL) {
        env = cpu->env_ptr;
1589
    }
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
#endif
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
#ifdef TARGET_HAS_PRECISE_SMC
        if (current_tb == tb &&
            (current_tb->cflags & CF_COUNT_MASK) != 1) {
                /* If we are modifying the current TB, we must stop
                   its execution. We could be more precise by checking
                   that the modification is after the current PC, but it
                   would require a specialized function to partially
                   restore the CPU state */

            current_tb_modified = 1;
1604
            cpu_restore_state_from_tb(cpu, current_tb, pc);
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
            cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
                                 &current_flags);
        }
#endif /* TARGET_HAS_PRECISE_SMC */
        tb_phys_invalidate(tb, addr);
        tb = tb->page_next[n];
    }
    p->first_tb = NULL;
#ifdef TARGET_HAS_PRECISE_SMC
    if (current_tb_modified) {
        /* we generate a block containing just the instruction
           modifying the memory. It will ensure that it cannot modify
           itself */
1618
        tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1619 1620
        /* tb_lock will be reset after cpu_loop_exit_noexc longjmps
         * back into the cpu_exec loop. */
1621
        return true;
1622 1623
    }
#endif
1624 1625
    tb_unlock();

1626
    return false;
1627 1628 1629 1630 1631
}
#endif

/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
   tb[1].tc_ptr. Return NULL if not found */
B
Blue Swirl 已提交
1632
static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1633 1634 1635 1636 1637
{
    int m_min, m_max, m;
    uintptr_t v;
    TranslationBlock *tb;

1638
    if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1639 1640
        return NULL;
    }
E
Evgeny Voevodin 已提交
1641 1642
    if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
        tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1643 1644 1645 1646
        return NULL;
    }
    /* binary search (cf Knuth) */
    m_min = 0;
1647
    m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1648 1649
    while (m_min <= m_max) {
        m = (m_min + m_max) >> 1;
1650
        tb = tcg_ctx.tb_ctx.tbs[m];
1651 1652 1653 1654 1655 1656 1657 1658 1659
        v = (uintptr_t)tb->tc_ptr;
        if (v == tc_ptr) {
            return tb;
        } else if (tc_ptr < v) {
            m_max = m - 1;
        } else {
            m_min = m + 1;
        }
    }
1660
    return tcg_ctx.tb_ctx.tbs[m_max];
1661 1662
}

1663
#if !defined(CONFIG_USER_ONLY)
1664
void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1665 1666
{
    ram_addr_t ram_addr;
1667
    MemoryRegion *mr;
1668
    hwaddr l = 1;
1669

1670
    rcu_read_lock();
1671
    mr = address_space_translate(as, addr, &addr, &l, false);
1672 1673
    if (!(memory_region_is_ram(mr)
          || memory_region_is_romd(mr))) {
1674
        rcu_read_unlock();
1675 1676
        return;
    }
1677
    ram_addr = memory_region_get_ram_addr(mr) + addr;
1678
    tb_lock();
1679
    tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1680
    tb_unlock();
1681
    rcu_read_unlock();
1682
}
1683
#endif /* !defined(CONFIG_USER_ONLY) */
1684

1685
/* Called with tb_lock held.  */
1686
void tb_check_watchpoint(CPUState *cpu)
1687 1688 1689
{
    TranslationBlock *tb;

1690
    tb = tb_find_pc(cpu->mem_io_pc);
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
    if (tb) {
        /* We can use retranslation to find the PC.  */
        cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
        tb_phys_invalidate(tb, -1);
    } else {
        /* The exception probably happened in a helper.  The CPU state should
           have been saved before calling it. Fetch the PC from there.  */
        CPUArchState *env = cpu->env_ptr;
        target_ulong pc, cs_base;
        tb_page_addr_t addr;
1701
        uint32_t flags;
1702 1703 1704 1705

        cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
        addr = get_page_addr_code(env, pc);
        tb_invalidate_phys_range(addr, addr + 1);
1706 1707 1708 1709 1710
    }
}

#ifndef CONFIG_USER_ONLY
/* in deterministic execution mode, instructions doing device I/Os
1711 1712 1713 1714
 * must be at the end of the TB.
 *
 * Called by softmmu_template.h, with iothread mutex not held.
 */
1715
void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1716
{
1717
#if defined(TARGET_MIPS) || defined(TARGET_SH4)
1718
    CPUArchState *env = cpu->env_ptr;
1719
#endif
1720 1721 1722
    TranslationBlock *tb;
    uint32_t n, cflags;
    target_ulong pc, cs_base;
1723
    uint32_t flags;
1724

1725
    tb_lock();
1726 1727
    tb = tb_find_pc(retaddr);
    if (!tb) {
1728
        cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1729 1730
                  (void *)retaddr);
    }
1731
    n = cpu->icount_decr.u16.low + tb->icount;
1732
    cpu_restore_state_from_tb(cpu, tb, retaddr);
1733 1734
    /* Calculate how many instructions had been executed before the fault
       occurred.  */
1735
    n = n - cpu->icount_decr.u16.low;
1736 1737 1738 1739 1740 1741 1742 1743
    /* Generate a new TB ending on the I/O insn.  */
    n++;
    /* On MIPS and SH, delay slot instructions can only be restarted if
       they were already the first instruction in the TB.  If this is not
       the first instruction in a TB then re-execute the preceding
       branch.  */
#if defined(TARGET_MIPS)
    if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1744
        env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1745
        cpu->icount_decr.u16.low++;
1746 1747 1748 1749 1750 1751
        env->hflags &= ~MIPS_HFLAG_BMASK;
    }
#elif defined(TARGET_SH4)
    if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
            && n > 1) {
        env->pc -= 2;
1752
        cpu->icount_decr.u16.low++;
1753 1754 1755 1756 1757
        env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
    }
#endif
    /* This should never happen.  */
    if (n > CF_COUNT_MASK) {
1758
        cpu_abort(cpu, "TB too big during recompile");
1759 1760 1761 1762 1763 1764 1765
    }

    cflags = n | CF_LAST_IO;
    pc = tb->pc;
    cs_base = tb->cs_base;
    flags = tb->flags;
    tb_phys_invalidate(tb, -1);
1766 1767 1768 1769 1770 1771 1772 1773
    if (tb->cflags & CF_NOCACHE) {
        if (tb->orig_tb) {
            /* Invalidate original TB if this TB was generated in
             * cpu_exec_nocache() */
            tb_phys_invalidate(tb->orig_tb, -1);
        }
        tb_free(tb);
    }
1774 1775
    /* FIXME: In theory this could raise an exception.  In practice
       we have already translated the block once so it's probably ok.  */
1776
    tb_gen_code(cpu, pc, cs_base, flags, cflags);
1777

1778
    /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1779 1780 1781 1782 1783 1784 1785 1786
     * the first in the TB) then we end up generating a whole new TB and
     *  repeating the fault, which is horribly inefficient.
     *  Better would be to execute just this insn uncached, or generate a
     *  second new TB.
     *
     * cpu_loop_exit_noexc will longjmp back to cpu_exec where the
     * tb_lock gets reset.
     */
1787
    cpu_loop_exit_noexc(cpu);
1788 1789
}

1790
static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
1791
{
1792
    unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr);
1793

1794 1795 1796 1797 1798 1799 1800
    for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
        atomic_set(&cpu->tb_jmp_cache[i0 + i], NULL);
    }
}

void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
{
1801 1802
    /* Discard jump cache entries for any tb which might potentially
       overlap the flushed page.  */
1803 1804
    tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
    tb_jmp_cache_clear_page(cpu, addr);
1805 1806
}

1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
static void print_qht_statistics(FILE *f, fprintf_function cpu_fprintf,
                                 struct qht_stats hst)
{
    uint32_t hgram_opts;
    size_t hgram_bins;
    char *hgram;

    if (!hst.head_buckets) {
        return;
    }
    cpu_fprintf(f, "TB hash buckets     %zu/%zu (%0.2f%% head buckets used)\n",
                hst.used_head_buckets, hst.head_buckets,
                (double)hst.used_head_buckets / hst.head_buckets * 100);

    hgram_opts =  QDIST_PR_BORDER | QDIST_PR_LABELS;
    hgram_opts |= QDIST_PR_100X   | QDIST_PR_PERCENT;
    if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
        hgram_opts |= QDIST_PR_NODECIMAL;
    }
    hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
    cpu_fprintf(f, "TB hash occupancy   %0.2f%% avg chain occ. Histogram: %s\n",
                qdist_avg(&hst.occupancy) * 100, hgram);
    g_free(hgram);

    hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
    hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
    if (hgram_bins > 10) {
        hgram_bins = 10;
    } else {
        hgram_bins = 0;
        hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
    }
    hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
    cpu_fprintf(f, "TB hash avg chain   %0.3f buckets. Histogram: %s\n",
                qdist_avg(&hst.chain), hgram);
    g_free(hgram);
}

1845 1846 1847 1848 1849
void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
{
    int i, target_code_size, max_target_code_size;
    int direct_jmp_count, direct_jmp2_count, cross_page;
    TranslationBlock *tb;
1850
    struct qht_stats hst;
1851

1852 1853
    tb_lock();

1854 1855 1856 1857 1858
    target_code_size = 0;
    max_target_code_size = 0;
    cross_page = 0;
    direct_jmp_count = 0;
    direct_jmp2_count = 0;
1859
    for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1860
        tb = tcg_ctx.tb_ctx.tbs[i];
1861 1862 1863 1864 1865 1866 1867
        target_code_size += tb->size;
        if (tb->size > max_target_code_size) {
            max_target_code_size = tb->size;
        }
        if (tb->page_addr[1] != -1) {
            cross_page++;
        }
1868
        if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1869
            direct_jmp_count++;
1870
            if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1871 1872 1873 1874 1875 1876 1877
                direct_jmp2_count++;
            }
        }
    }
    /* XXX: avoid using doubles ? */
    cpu_fprintf(f, "Translation buffer state:\n");
    cpu_fprintf(f, "gen code size       %td/%zd\n",
E
Evgeny Voevodin 已提交
1878
                tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1879
                tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
1880
    cpu_fprintf(f, "TB count            %d\n", tcg_ctx.tb_ctx.nb_tbs);
1881
    cpu_fprintf(f, "TB avg target size  %d max=%d bytes\n",
1882 1883 1884
            tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
                    tcg_ctx.tb_ctx.nb_tbs : 0,
            max_target_code_size);
1885
    cpu_fprintf(f, "TB avg host size    %td bytes (expansion ratio: %0.1f)\n",
1886 1887 1888 1889 1890 1891 1892 1893 1894
            tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
                                     tcg_ctx.code_gen_buffer) /
                                     tcg_ctx.tb_ctx.nb_tbs : 0,
                target_code_size ? (double) (tcg_ctx.code_gen_ptr -
                                             tcg_ctx.code_gen_buffer) /
                                             target_code_size : 0);
    cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
            tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
                                    tcg_ctx.tb_ctx.nb_tbs : 0);
1895 1896
    cpu_fprintf(f, "direct jump count   %d (%d%%) (2 jumps=%d %d%%)\n",
                direct_jmp_count,
1897 1898
                tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
                        tcg_ctx.tb_ctx.nb_tbs : 0,
1899
                direct_jmp2_count,
1900 1901
                tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
                        tcg_ctx.tb_ctx.nb_tbs : 0);
1902 1903

    qht_statistics_init(&tcg_ctx.tb_ctx.htable, &hst);
1904
    print_qht_statistics(f, cpu_fprintf, hst);
1905 1906
    qht_statistics_destroy(&hst);

1907
    cpu_fprintf(f, "\nStatistics:\n");
1908 1909
    cpu_fprintf(f, "TB flush count      %u\n",
            atomic_read(&tcg_ctx.tb_ctx.tb_flush_count));
1910 1911
    cpu_fprintf(f, "TB invalidate count %d\n",
            tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1912 1913
    cpu_fprintf(f, "TLB flush count     %d\n", tlb_flush_count);
    tcg_dump_info(f, cpu_fprintf);
1914 1915

    tb_unlock();
1916 1917
}

1918 1919 1920 1921 1922
void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
{
    tcg_dump_op_count(f, cpu_fprintf);
}

1923 1924
#else /* CONFIG_USER_ONLY */

1925
void cpu_interrupt(CPUState *cpu, int mask)
1926
{
1927
    g_assert(qemu_mutex_iothread_locked());
1928
    cpu->interrupt_request |= mask;
1929
    cpu->icount_decr.u16.high = -1;
1930 1931 1932 1933 1934 1935 1936 1937 1938
}

/*
 * Walks guest process memory "regions" one by one
 * and calls callback function 'fn' for each region.
 */
struct walk_memory_regions_data {
    walk_memory_regions_fn fn;
    void *priv;
1939
    target_ulong start;
1940 1941 1942 1943
    int prot;
};

static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1944
                                   target_ulong end, int new_prot)
1945
{
1946
    if (data->start != -1u) {
1947 1948 1949 1950 1951 1952
        int rc = data->fn(data->priv, data->start, end, data->prot);
        if (rc != 0) {
            return rc;
        }
    }

1953
    data->start = (new_prot ? end : -1u);
1954 1955 1956 1957 1958 1959
    data->prot = new_prot;

    return 0;
}

static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1960
                                 target_ulong base, int level, void **lp)
1961
{
1962
    target_ulong pa;
1963 1964 1965 1966 1967 1968 1969 1970 1971
    int i, rc;

    if (*lp == NULL) {
        return walk_memory_regions_end(data, base, 0);
    }

    if (level == 0) {
        PageDesc *pd = *lp;

1972
        for (i = 0; i < V_L2_SIZE; ++i) {
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
            int prot = pd[i].flags;

            pa = base | (i << TARGET_PAGE_BITS);
            if (prot != data->prot) {
                rc = walk_memory_regions_end(data, pa, prot);
                if (rc != 0) {
                    return rc;
                }
            }
        }
    } else {
        void **pp = *lp;

1986
        for (i = 0; i < V_L2_SIZE; ++i) {
1987
            pa = base | ((target_ulong)i <<
1988
                (TARGET_PAGE_BITS + V_L2_BITS * level));
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
            rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
            if (rc != 0) {
                return rc;
            }
        }
    }

    return 0;
}

int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
{
    struct walk_memory_regions_data data;
2002
    uintptr_t i, l1_sz = v_l1_size;
2003 2004 2005

    data.fn = fn;
    data.priv = priv;
2006
    data.start = -1u;
2007 2008
    data.prot = 0;

2009 2010 2011
    for (i = 0; i < l1_sz; i++) {
        target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
        int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
2012 2013 2014 2015 2016 2017 2018 2019
        if (rc != 0) {
            return rc;
        }
    }

    return walk_memory_regions_end(&data, 0, 0);
}

2020 2021
static int dump_region(void *priv, target_ulong start,
    target_ulong end, unsigned long prot)
2022 2023 2024
{
    FILE *f = (FILE *)priv;

2025 2026
    (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
        " "TARGET_FMT_lx" %c%c%c\n",
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
        start, end, end - start,
        ((prot & PAGE_READ) ? 'r' : '-'),
        ((prot & PAGE_WRITE) ? 'w' : '-'),
        ((prot & PAGE_EXEC) ? 'x' : '-'));

    return 0;
}

/* dump memory mappings */
void page_dump(FILE *f)
{
2038
    const int length = sizeof(target_ulong) * 2;
2039 2040
    (void) fprintf(f, "%-*s %-*s %-*s %s\n",
            length, "start", length, "end", length, "size", "prot");
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
    walk_memory_regions(f, dump_region);
}

int page_get_flags(target_ulong address)
{
    PageDesc *p;

    p = page_find(address >> TARGET_PAGE_BITS);
    if (!p) {
        return 0;
    }
    return p->flags;
}

/* Modify the flags of a page and invalidate the code if necessary.
   The flag PAGE_WRITE_ORG is positioned automatically depending
   on PAGE_WRITE.  The mmap_lock should already be held.  */
void page_set_flags(target_ulong start, target_ulong end, int flags)
{
    target_ulong addr, len;

    /* This function should never be called with addresses outside the
       guest address space.  If this assert fires, it probably indicates
       a missing call to h2g_valid.  */
#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2066
    assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2067 2068
#endif
    assert(start < end);
2069
    assert_memory_lock();
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087

    start = start & TARGET_PAGE_MASK;
    end = TARGET_PAGE_ALIGN(end);

    if (flags & PAGE_WRITE) {
        flags |= PAGE_WRITE_ORG;
    }

    for (addr = start, len = end - start;
         len != 0;
         len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
        PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);

        /* If the write protection bit is set, then we invalidate
           the code inside.  */
        if (!(p->flags & PAGE_WRITE) &&
            (flags & PAGE_WRITE) &&
            p->first_tb) {
2088
            tb_invalidate_phys_page(addr, 0);
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
        }
        p->flags = flags;
    }
}

int page_check_range(target_ulong start, target_ulong len, int flags)
{
    PageDesc *p;
    target_ulong end;
    target_ulong addr;

    /* This function should never be called with addresses outside the
       guest address space.  If this assert fires, it probably indicates
       a missing call to h2g_valid.  */
#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2104
    assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
#endif

    if (len == 0) {
        return 0;
    }
    if (start + len - 1 < start) {
        /* We've wrapped around.  */
        return -1;
    }

    /* must do before we loose bits in the next step */
    end = TARGET_PAGE_ALIGN(start + len);
    start = start & TARGET_PAGE_MASK;

    for (addr = start, len = end - start;
         len != 0;
         len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
        p = page_find(addr >> TARGET_PAGE_BITS);
        if (!p) {
            return -1;
        }
        if (!(p->flags & PAGE_VALID)) {
            return -1;
        }

        if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
            return -1;
        }
        if (flags & PAGE_WRITE) {
            if (!(p->flags & PAGE_WRITE_ORG)) {
                return -1;
            }
            /* unprotect the page if it was put read-only because it
               contains translated code */
            if (!(p->flags & PAGE_WRITE)) {
2140
                if (!page_unprotect(addr, 0)) {
2141 2142 2143 2144 2145 2146 2147 2148 2149
                    return -1;
                }
            }
        }
    }
    return 0;
}

/* called from signal handler: invalidate the code and unprotect the
2150 2151 2152 2153 2154 2155
 * page. Return 0 if the fault was not handled, 1 if it was handled,
 * and 2 if it was handled but the caller must cause the TB to be
 * immediately exited. (We can only return 2 if the 'pc' argument is
 * non-zero.)
 */
int page_unprotect(target_ulong address, uintptr_t pc)
2156 2157
{
    unsigned int prot;
2158
    bool current_tb_invalidated;
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
    PageDesc *p;
    target_ulong host_start, host_end, addr;

    /* Technically this isn't safe inside a signal handler.  However we
       know this only ever happens in a synchronous SEGV handler, so in
       practice it seems to be ok.  */
    mmap_lock();

    p = page_find(address >> TARGET_PAGE_BITS);
    if (!p) {
        mmap_unlock();
        return 0;
    }

    /* if the page was really writable, then we change its
       protection back to writable */
    if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
        host_start = address & qemu_host_page_mask;
        host_end = host_start + qemu_host_page_size;

        prot = 0;
2180
        current_tb_invalidated = false;
2181 2182 2183 2184 2185 2186 2187
        for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
            p = page_find(addr >> TARGET_PAGE_BITS);
            p->flags |= PAGE_WRITE;
            prot |= p->flags;

            /* and since the content will be modified, we must invalidate
               the corresponding translated code. */
2188
            current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2189 2190 2191 2192 2193 2194 2195 2196
#ifdef DEBUG_TB_CHECK
            tb_invalidate_check(addr);
#endif
        }
        mprotect((void *)g2h(host_start), qemu_host_page_size,
                 prot & PAGE_BITS);

        mmap_unlock();
2197 2198
        /* If current TB was invalidated return to main loop */
        return current_tb_invalidated ? 2 : 1;
2199 2200 2201 2202 2203
    }
    mmap_unlock();
    return 0;
}
#endif /* CONFIG_USER_ONLY */
2204 2205 2206 2207 2208 2209 2210 2211

/* This is a wrapper for common code that can not use CONFIG_SOFTMMU */
void tcg_flush_softmmu_tlb(CPUState *cs)
{
#ifdef CONFIG_SOFTMMU
    tlb_flush(cs);
#endif
}