i915_gem.c 110.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28 29
#include <drm/drmP.h>
#include <drm/i915_drm.h>
30
#include "i915_drv.h"
C
Chris Wilson 已提交
31
#include "i915_trace.h"
32
#include "intel_drv.h"
33
#include <linux/shmem_fs.h>
34
#include <linux/slab.h>
35
#include <linux/swap.h>
J
Jesse Barnes 已提交
36
#include <linux/pci.h>
37
#include <linux/dma-buf.h>
38

39 40
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 42
static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
						    unsigned alignment,
43 44
						    bool map_and_fenceable,
						    bool nonblocking);
45 46
static int i915_gem_phys_pwrite(struct drm_device *dev,
				struct drm_i915_gem_object *obj,
47
				struct drm_i915_gem_pwrite *args,
48
				struct drm_file *file);
49

50 51 52 53 54 55
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

56
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57
				    struct shrink_control *sc);
C
Chris Wilson 已提交
58 59
static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60
static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61

62 63 64 65 66 67 68 69
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
70
	obj->fence_dirty = false;
71 72 73
	obj->fence_reg = I915_FENCE_REG_NONE;
}

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

89 90
static int
i915_gem_wait_for_error(struct drm_device *dev)
91 92 93 94 95 96 97 98 99
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

100 101 102 103 104 105 106 107 108 109
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
	ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
110
		return ret;
111
	}
112

113 114 115 116 117 118 119 120 121 122 123
	if (atomic_read(&dev_priv->mm.wedged)) {
		/* GPU is hung, bump the completion count to account for
		 * the token we just consumed so that we never hit zero and
		 * end up waiting upon a subsequent completion event that
		 * will never happen.
		 */
		spin_lock_irqsave(&x->wait.lock, flags);
		x->done++;
		spin_unlock_irqrestore(&x->wait.lock, flags);
	}
	return 0;
124 125
}

126
int i915_mutex_lock_interruptible(struct drm_device *dev)
127 128 129
{
	int ret;

130
	ret = i915_gem_wait_for_error(dev);
131 132 133 134 135 136 137
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

138
	WARN_ON(i915_verify_lists(dev));
139 140
	return 0;
}
141

142
static inline bool
143
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
144
{
C
Chris Wilson 已提交
145
	return obj->gtt_space && !obj->active;
146 147
}

J
Jesse Barnes 已提交
148 149
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
150
		    struct drm_file *file)
J
Jesse Barnes 已提交
151 152
{
	struct drm_i915_gem_init *args = data;
153

154 155 156
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return -ENODEV;

157 158 159
	if (args->gtt_start >= args->gtt_end ||
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
		return -EINVAL;
J
Jesse Barnes 已提交
160

161 162 163 164
	/* GEM with user mode setting was never supported on ilk and later. */
	if (INTEL_INFO(dev)->gen >= 5)
		return -ENODEV;

J
Jesse Barnes 已提交
165
	mutex_lock(&dev->struct_mutex);
166 167
	i915_gem_init_global_gtt(dev, args->gtt_start,
				 args->gtt_end, args->gtt_end);
168 169
	mutex_unlock(&dev->struct_mutex);

170
	return 0;
171 172
}

173 174
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
175
			    struct drm_file *file)
176
{
177
	struct drm_i915_private *dev_priv = dev->dev_private;
178
	struct drm_i915_gem_get_aperture *args = data;
179 180
	struct drm_i915_gem_object *obj;
	size_t pinned;
181

182
	pinned = 0;
183
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
184
	list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
185 186
		if (obj->pin_count)
			pinned += obj->gtt_space->size;
187
	mutex_unlock(&dev->struct_mutex);
188

189
	args->aper_size = dev_priv->mm.gtt_total;
190
	args->aper_available_size = args->aper_size - pinned;
191

192 193 194
	return 0;
}

195 196 197 198 199 200 201 202 203 204 205 206
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	kmem_cache_free(dev_priv->slab, obj);
}

207 208 209 210 211
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
212
{
213
	struct drm_i915_gem_object *obj;
214 215
	int ret;
	u32 handle;
216

217
	size = roundup(size, PAGE_SIZE);
218 219
	if (size == 0)
		return -EINVAL;
220 221

	/* Allocate the new object */
222
	obj = i915_gem_alloc_object(dev, size);
223 224 225
	if (obj == NULL)
		return -ENOMEM;

226
	ret = drm_gem_handle_create(file, &obj->base, &handle);
227
	if (ret) {
228 229
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
230
		i915_gem_object_free(obj);
231
		return ret;
232
	}
233

234
	/* drop reference from allocate - handle holds it now */
235
	drm_gem_object_unreference(&obj->base);
236 237
	trace_i915_gem_object_create(obj);

238
	*handle_p = handle;
239 240 241
	return 0;
}

242 243 244 245 246 247
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
248
	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

int i915_gem_dumb_destroy(struct drm_file *file,
			  struct drm_device *dev,
			  uint32_t handle)
{
	return drm_gem_handle_delete(file, handle);
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
269

270 271 272 273
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

300
static inline int
301 302
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

326 327 328
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
329
static int
330 331 332 333 334 335 336
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

337
	if (unlikely(page_do_bit17_swizzling))
338 339 340 341 342 343 344 345 346 347 348
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

349
	return ret ? -EFAULT : 0;
350 351
}

352 353 354 355
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
356
	if (unlikely(swizzled)) {
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

374 375 376 377 378 379 380 381 382 383 384 385
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
386 387 388
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
389 390 391 392 393 394 395 396 397 398 399

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

400
	return ret ? - EFAULT : 0;
401 402
}

403
static int
404 405 406 407
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
408
{
409
	char __user *user_data;
410
	ssize_t remain;
411
	loff_t offset;
412
	int shmem_page_offset, page_length, ret = 0;
413
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
414
	int prefaulted = 0;
415
	int needs_clflush = 0;
416 417
	struct scatterlist *sg;
	int i;
418

419
	user_data = (char __user *) (uintptr_t) args->data_ptr;
420 421
	remain = args->size;

422
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
423

424 425 426 427 428 429 430
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		if (obj->cache_level == I915_CACHE_NONE)
			needs_clflush = 1;
C
Chris Wilson 已提交
431 432 433 434 435
		if (obj->gtt_space) {
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
			if (ret)
				return ret;
		}
436
	}
437

438 439 440 441 442 443
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

444
	offset = args->offset;
445

446
	for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
447 448
		struct page *page;

449 450 451 452 453 454
		if (i < offset >> PAGE_SHIFT)
			continue;

		if (remain <= 0)
			break;

455 456 457 458 459
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
460
		shmem_page_offset = offset_in_page(offset);
461 462 463 464
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

465
		page = sg_page(sg);
466 467 468
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

469 470 471 472 473
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
474 475 476

		mutex_unlock(&dev->struct_mutex);

477
		if (!prefaulted) {
478
			ret = fault_in_multipages_writeable(user_data, remain);
479 480 481 482 483 484 485
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
486

487 488 489
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
490

491
		mutex_lock(&dev->struct_mutex);
492

493
next_page:
494 495
		mark_page_accessed(page);

496
		if (ret)
497 498
			goto out;

499
		remain -= page_length;
500
		user_data += page_length;
501 502 503
		offset += page_length;
	}

504
out:
505 506
	i915_gem_object_unpin_pages(obj);

507 508 509
	return ret;
}

510 511 512 513 514 515 516
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
517
		     struct drm_file *file)
518 519
{
	struct drm_i915_gem_pread *args = data;
520
	struct drm_i915_gem_object *obj;
521
	int ret = 0;
522

523 524 525 526 527 528 529 530
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

531
	ret = i915_mutex_lock_interruptible(dev);
532
	if (ret)
533
		return ret;
534

535
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
536
	if (&obj->base == NULL) {
537 538
		ret = -ENOENT;
		goto unlock;
539
	}
540

541
	/* Bounds check source.  */
542 543
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
544
		ret = -EINVAL;
545
		goto out;
C
Chris Wilson 已提交
546 547
	}

548 549 550 551 552 553 554 555
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
556 557
	trace_i915_gem_object_pread(obj, args->offset, args->size);

558
	ret = i915_gem_shmem_pread(dev, obj, args, file);
559

560
out:
561
	drm_gem_object_unreference(&obj->base);
562
unlock:
563
	mutex_unlock(&dev->struct_mutex);
564
	return ret;
565 566
}

567 568
/* This is the fast write path which cannot handle
 * page faults in the source data
569
 */
570 571 572 573 574 575

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
576
{
577 578
	void __iomem *vaddr_atomic;
	void *vaddr;
579
	unsigned long unwritten;
580

P
Peter Zijlstra 已提交
581
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
582 583 584
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
585
						      user_data, length);
P
Peter Zijlstra 已提交
586
	io_mapping_unmap_atomic(vaddr_atomic);
587
	return unwritten;
588 589
}

590 591 592 593
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
594
static int
595 596
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
597
			 struct drm_i915_gem_pwrite *args,
598
			 struct drm_file *file)
599
{
600
	drm_i915_private_t *dev_priv = dev->dev_private;
601
	ssize_t remain;
602
	loff_t offset, page_base;
603
	char __user *user_data;
D
Daniel Vetter 已提交
604 605
	int page_offset, page_length, ret;

606
	ret = i915_gem_object_pin(obj, 0, true, true);
D
Daniel Vetter 已提交
607 608 609 610 611 612 613 614 615 616
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
617 618 619 620

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

621
	offset = obj->gtt_offset + args->offset;
622 623 624 625

	while (remain > 0) {
		/* Operation in this page
		 *
626 627 628
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
629
		 */
630 631
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
632 633 634 635 636
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
637 638
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
639
		 */
640
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
D
Daniel Vetter 已提交
641 642 643 644
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
			goto out_unpin;
		}
645

646 647 648
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
649 650
	}

D
Daniel Vetter 已提交
651 652 653
out_unpin:
	i915_gem_object_unpin(obj);
out:
654
	return ret;
655 656
}

657 658 659 660
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
661
static int
662 663 664 665 666
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
667
{
668
	char *vaddr;
669
	int ret;
670

671
	if (unlikely(page_do_bit17_swizzling))
672
		return -EINVAL;
673

674 675 676 677 678 679 680 681 682 683 684
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
						user_data,
						page_length);
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
685

686
	return ret ? -EFAULT : 0;
687 688
}

689 690
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
691
static int
692 693 694 695 696
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
697
{
698 699
	char *vaddr;
	int ret;
700

701
	vaddr = kmap(page);
702
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
703 704 705
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
706 707
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
708 709
						user_data,
						page_length);
710 711 712 713 714
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
715 716 717
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
718
	kunmap(page);
719

720
	return ret ? -EFAULT : 0;
721 722 723
}

static int
724 725 726 727
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
728 729
{
	ssize_t remain;
730 731
	loff_t offset;
	char __user *user_data;
732
	int shmem_page_offset, page_length, ret = 0;
733
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
734
	int hit_slowpath = 0;
735 736
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
737 738
	int i;
	struct scatterlist *sg;
739

740
	user_data = (char __user *) (uintptr_t) args->data_ptr;
741 742
	remain = args->size;

743
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
744

745 746 747 748 749 750 751
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
		if (obj->cache_level == I915_CACHE_NONE)
			needs_clflush_after = 1;
C
Chris Wilson 已提交
752 753 754 755 756
		if (obj->gtt_space) {
			ret = i915_gem_object_set_to_gtt_domain(obj, true);
			if (ret)
				return ret;
		}
757 758 759 760 761 762 763
	}
	/* Same trick applies for invalidate partially written cachelines before
	 * writing.  */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
	    && obj->cache_level == I915_CACHE_NONE)
		needs_clflush_before = 1;

764 765 766 767 768 769
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

770
	offset = args->offset;
771
	obj->dirty = 1;
772

773
	for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
774
		struct page *page;
775
		int partial_cacheline_write;
776

777 778 779 780 781 782
		if (i < offset >> PAGE_SHIFT)
			continue;

		if (remain <= 0)
			break;

783 784 785 786 787
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
788
		shmem_page_offset = offset_in_page(offset);
789 790 791 792 793

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

794 795 796 797 798 799 800
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

801
		page = sg_page(sg);
802 803 804
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

805 806 807 808 809 810
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
811 812 813

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
814 815 816 817
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
818

819
		mutex_lock(&dev->struct_mutex);
820

821
next_page:
822 823 824
		set_page_dirty(page);
		mark_page_accessed(page);

825
		if (ret)
826 827
			goto out;

828
		remain -= page_length;
829
		user_data += page_length;
830
		offset += page_length;
831 832
	}

833
out:
834 835
	i915_gem_object_unpin_pages(obj);

836
	if (hit_slowpath) {
837 838 839 840 841 842 843
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
844
			i915_gem_clflush_object(obj);
845
			i915_gem_chipset_flush(dev);
846
		}
847
	}
848

849
	if (needs_clflush_after)
850
		i915_gem_chipset_flush(dev);
851

852
	return ret;
853 854 855 856 857 858 859 860 861
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
862
		      struct drm_file *file)
863 864
{
	struct drm_i915_gem_pwrite *args = data;
865
	struct drm_i915_gem_object *obj;
866 867 868 869 870 871 872 873 874 875
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

876 877
	ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
					   args->size);
878 879
	if (ret)
		return -EFAULT;
880

881
	ret = i915_mutex_lock_interruptible(dev);
882
	if (ret)
883
		return ret;
884

885
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
886
	if (&obj->base == NULL) {
887 888
		ret = -ENOENT;
		goto unlock;
889
	}
890

891
	/* Bounds check destination. */
892 893
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
894
		ret = -EINVAL;
895
		goto out;
C
Chris Wilson 已提交
896 897
	}

898 899 900 901 902 903 904 905
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
906 907
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
908
	ret = -EFAULT;
909 910 911 912 913 914
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
915
	if (obj->phys_obj) {
916
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
917 918 919
		goto out;
	}

920
	if (obj->cache_level == I915_CACHE_NONE &&
921
	    obj->tiling_mode == I915_TILING_NONE &&
922
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
923
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
924 925 926
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
927
	}
928

929
	if (ret == -EFAULT || ret == -ENOSPC)
D
Daniel Vetter 已提交
930
		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
931

932
out:
933
	drm_gem_object_unreference(&obj->base);
934
unlock:
935
	mutex_unlock(&dev->struct_mutex);
936 937 938
	return ret;
}

939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
int
i915_gem_check_wedge(struct drm_i915_private *dev_priv,
		     bool interruptible)
{
	if (atomic_read(&dev_priv->mm.wedged)) {
		struct completion *x = &dev_priv->error_completion;
		bool recovery_complete;
		unsigned long flags;

		/* Give the error handler a chance to run. */
		spin_lock_irqsave(&x->wait.lock, flags);
		recovery_complete = x->done > 0;
		spin_unlock_irqrestore(&x->wait.lock, flags);

		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

		/* Recovery complete, but still wedged means reset failure. */
		if (recovery_complete)
			return -EIO;

		return -EAGAIN;
	}

	return 0;
}

/*
 * Compare seqno against outstanding lazy request. Emit a request if they are
 * equal.
 */
static int
i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
{
	int ret;

	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));

	ret = 0;
	if (seqno == ring->outstanding_lazy_request)
		ret = i915_add_request(ring, NULL, NULL);

	return ret;
}

/**
 * __wait_seqno - wait until execution of seqno has finished
 * @ring: the ring expected to report seqno
 * @seqno: duh!
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
 * Returns 0 if the seqno was found within the alloted time. Else returns the
 * errno with remaining time filled in timeout argument.
 */
static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
			bool interruptible, struct timespec *timeout)
{
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
	struct timespec before, now, wait_time={1,0};
	unsigned long timeout_jiffies;
	long end;
	bool wait_forever = true;
	int ret;

	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
		return 0;

	trace_i915_gem_request_wait_begin(ring, seqno);

	if (timeout != NULL) {
		wait_time = *timeout;
		wait_forever = false;
	}

	timeout_jiffies = timespec_to_jiffies(&wait_time);

	if (WARN_ON(!ring->irq_get(ring)))
		return -ENODEV;

	/* Record current time in case interrupted by signal, or wedged * */
	getrawmonotonic(&before);

#define EXIT_COND \
	(i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
	atomic_read(&dev_priv->mm.wedged))
	do {
		if (interruptible)
			end = wait_event_interruptible_timeout(ring->irq_queue,
							       EXIT_COND,
							       timeout_jiffies);
		else
			end = wait_event_timeout(ring->irq_queue, EXIT_COND,
						 timeout_jiffies);

		ret = i915_gem_check_wedge(dev_priv, interruptible);
		if (ret)
			end = ret;
	} while (end == 0 && wait_forever);

	getrawmonotonic(&now);

	ring->irq_put(ring);
	trace_i915_gem_request_wait_end(ring, seqno);
#undef EXIT_COND

	if (timeout) {
		struct timespec sleep_time = timespec_sub(now, before);
		*timeout = timespec_sub(*timeout, sleep_time);
	}

	switch (end) {
	case -EIO:
	case -EAGAIN: /* Wedged */
	case -ERESTARTSYS: /* Signal */
		return (int)end;
	case 0: /* Timeout */
		if (timeout)
			set_normalized_timespec(timeout, 0, 0);
		return -ETIME;
	default: /* Completed */
		WARN_ON(end < 0); /* We're not aware of other errors */
		return 0;
	}
}

/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
int
i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool interruptible = dev_priv->mm.interruptible;
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(seqno == 0);

	ret = i915_gem_check_wedge(dev_priv, interruptible);
	if (ret)
		return ret;

	ret = i915_gem_check_olr(ring, seqno);
	if (ret)
		return ret;

	return __wait_seqno(ring, seqno, interruptible, NULL);
}

/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static __must_check int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
	struct intel_ring_buffer *ring = obj->ring;
	u32 seqno;
	int ret;

	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
	if (seqno == 0)
		return 0;

	ret = i915_wait_seqno(ring, seqno);
	if (ret)
		return ret;

	i915_gem_retire_requests_ring(ring);

	/* Manually manage the write flush as we may have not yet
	 * retired the buffer.
	 */
	if (obj->last_write_seqno &&
	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
		obj->last_write_seqno = 0;
		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
	}

	return 0;
}

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_ring_buffer *ring = obj->ring;
	u32 seqno;
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
	if (seqno == 0)
		return 0;

	ret = i915_gem_check_wedge(dev_priv, true);
	if (ret)
		return ret;

	ret = i915_gem_check_olr(ring, seqno);
	if (ret)
		return ret;

	mutex_unlock(&dev->struct_mutex);
	ret = __wait_seqno(ring, seqno, true, NULL);
	mutex_lock(&dev->struct_mutex);

	i915_gem_retire_requests_ring(ring);

	/* Manually manage the write flush as we may have not yet
	 * retired the buffer.
	 */
	if (obj->last_write_seqno &&
	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
		obj->last_write_seqno = 0;
		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
	}

	return ret;
}

1173
/**
1174 1175
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1176 1177 1178
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1179
			  struct drm_file *file)
1180 1181
{
	struct drm_i915_gem_set_domain *args = data;
1182
	struct drm_i915_gem_object *obj;
1183 1184
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1185 1186
	int ret;

1187
	/* Only handle setting domains to types used by the CPU. */
1188
	if (write_domain & I915_GEM_GPU_DOMAINS)
1189 1190
		return -EINVAL;

1191
	if (read_domains & I915_GEM_GPU_DOMAINS)
1192 1193 1194 1195 1196 1197 1198 1199
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1200
	ret = i915_mutex_lock_interruptible(dev);
1201
	if (ret)
1202
		return ret;
1203

1204
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1205
	if (&obj->base == NULL) {
1206 1207
		ret = -ENOENT;
		goto unlock;
1208
	}
1209

1210 1211 1212 1213 1214 1215 1216 1217
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
	if (ret)
		goto unref;

1218 1219
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1220 1221 1222 1223 1224 1225 1226

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1227
	} else {
1228
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1229 1230
	}

1231
unref:
1232
	drm_gem_object_unreference(&obj->base);
1233
unlock:
1234 1235 1236 1237 1238 1239 1240 1241 1242
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1243
			 struct drm_file *file)
1244 1245
{
	struct drm_i915_gem_sw_finish *args = data;
1246
	struct drm_i915_gem_object *obj;
1247 1248
	int ret = 0;

1249
	ret = i915_mutex_lock_interruptible(dev);
1250
	if (ret)
1251
		return ret;
1252

1253
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1254
	if (&obj->base == NULL) {
1255 1256
		ret = -ENOENT;
		goto unlock;
1257 1258 1259
	}

	/* Pinned buffers may be scanout, so flush the cache */
1260
	if (obj->pin_count)
1261 1262
		i915_gem_object_flush_cpu_write_domain(obj);

1263
	drm_gem_object_unreference(&obj->base);
1264
unlock:
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1278
		    struct drm_file *file)
1279 1280 1281 1282 1283
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1284
	obj = drm_gem_object_lookup(dev, file, args->handle);
1285
	if (obj == NULL)
1286
		return -ENOENT;
1287

1288 1289 1290 1291 1292 1293 1294 1295
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1296
	addr = vm_mmap(obj->filp, 0, args->size,
1297 1298
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1299
	drm_gem_object_unreference_unlocked(obj);
1300 1301 1302 1303 1304 1305 1306 1307
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1326 1327
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1328
	drm_i915_private_t *dev_priv = dev->dev_private;
1329 1330 1331
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1332
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1333 1334 1335 1336 1337

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1338 1339 1340
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1341

C
Chris Wilson 已提交
1342 1343
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1344 1345 1346 1347 1348 1349
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
		ret = -EINVAL;
		goto unlock;
	}

1350
	/* Now bind it into the GTT if needed */
1351 1352 1353
	ret = i915_gem_object_pin(obj, 0, true, false);
	if (ret)
		goto unlock;
1354

1355 1356 1357
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1358

1359
	ret = i915_gem_object_get_fence(obj);
1360
	if (ret)
1361
		goto unpin;
1362

1363 1364
	obj->fault_mappable = true;

1365
	pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1366 1367 1368 1369
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1370 1371
unpin:
	i915_gem_object_unpin(obj);
1372
unlock:
1373
	mutex_unlock(&dev->struct_mutex);
1374
out:
1375
	switch (ret) {
1376
	case -EIO:
1377 1378 1379 1380 1381
		/* If this -EIO is due to a gpu hang, give the reset code a
		 * chance to clean up the mess. Otherwise return the proper
		 * SIGBUS. */
		if (!atomic_read(&dev_priv->mm.wedged))
			return VM_FAULT_SIGBUS;
1382
	case -EAGAIN:
1383 1384 1385 1386 1387 1388 1389
		/* Give the error handler a chance to run and move the
		 * objects off the GPU active list. Next time we service the
		 * fault, we should be able to transition the page into the
		 * GTT without touching the GPU (and so avoid further
		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
		 * with coherency, just lost writes.
		 */
1390
		set_need_resched();
1391 1392
	case 0:
	case -ERESTARTSYS:
1393
	case -EINTR:
1394 1395 1396 1397 1398
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1399
		return VM_FAULT_NOPAGE;
1400 1401
	case -ENOMEM:
		return VM_FAULT_OOM;
1402 1403
	case -ENOSPC:
		return VM_FAULT_SIGBUS;
1404
	default:
1405
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1406
		return VM_FAULT_SIGBUS;
1407 1408 1409
	}
}

1410 1411 1412 1413
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1414
 * Preserve the reservation of the mmapping with the DRM core code, but
1415 1416 1417 1418 1419 1420 1421 1422 1423
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1424
void
1425
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1426
{
1427 1428
	if (!obj->fault_mappable)
		return;
1429

1430 1431 1432 1433
	if (obj->base.dev->dev_mapping)
		unmap_mapping_range(obj->base.dev->dev_mapping,
				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
				    obj->base.size, 1);
1434

1435
	obj->fault_mappable = false;
1436 1437
}

1438
static uint32_t
1439
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1440
{
1441
	uint32_t gtt_size;
1442 1443

	if (INTEL_INFO(dev)->gen >= 4 ||
1444 1445
	    tiling_mode == I915_TILING_NONE)
		return size;
1446 1447 1448

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1449
		gtt_size = 1024*1024;
1450
	else
1451
		gtt_size = 512*1024;
1452

1453 1454
	while (gtt_size < size)
		gtt_size <<= 1;
1455

1456
	return gtt_size;
1457 1458
}

1459 1460 1461 1462 1463
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1464
 * potential fence register mapping.
1465 1466
 */
static uint32_t
1467 1468 1469
i915_gem_get_gtt_alignment(struct drm_device *dev,
			   uint32_t size,
			   int tiling_mode)
1470 1471 1472 1473 1474
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1475
	if (INTEL_INFO(dev)->gen >= 4 ||
1476
	    tiling_mode == I915_TILING_NONE)
1477 1478
		return 4096;

1479 1480 1481 1482
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1483
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1484 1485
}

1486 1487 1488
/**
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
 *					 unfenced object
1489 1490 1491
 * @dev: the device
 * @size: size of the object
 * @tiling_mode: tiling mode of the object
1492 1493 1494 1495
 *
 * Return the required GTT alignment for an object, only taking into account
 * unfenced tiled surface requirements.
 */
1496
uint32_t
1497 1498 1499
i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
				    uint32_t size,
				    int tiling_mode)
1500 1501 1502 1503 1504
{
	/*
	 * Minimum alignment is 4k (GTT page size) for sane hw.
	 */
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1505
	    tiling_mode == I915_TILING_NONE)
1506 1507
		return 4096;

1508 1509 1510
	/* Previous hardware however needs to be aligned to a power-of-two
	 * tile height. The simplest method for determining this is to reuse
	 * the power-of-tile object size.
1511
	 */
1512
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1513 1514
}

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

	if (obj->base.map_list.map)
		return 0;

	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
		return ret;

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
	i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
		return ret;

	i915_gem_shrink_all(dev_priv);
	return drm_gem_create_mmap_offset(&obj->base);
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	if (!obj->base.map_list.map)
		return;

	drm_gem_free_mmap_offset(&obj->base);
}

1551
int
1552 1553 1554 1555
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
		  uint32_t handle,
		  uint64_t *offset)
1556
{
1557
	struct drm_i915_private *dev_priv = dev->dev_private;
1558
	struct drm_i915_gem_object *obj;
1559 1560
	int ret;

1561
	ret = i915_mutex_lock_interruptible(dev);
1562
	if (ret)
1563
		return ret;
1564

1565
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1566
	if (&obj->base == NULL) {
1567 1568 1569
		ret = -ENOENT;
		goto unlock;
	}
1570

1571
	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1572
		ret = -E2BIG;
1573
		goto out;
1574 1575
	}

1576
	if (obj->madv != I915_MADV_WILLNEED) {
1577
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1578 1579
		ret = -EINVAL;
		goto out;
1580 1581
	}

1582 1583 1584
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1585

1586
	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1587

1588
out:
1589
	drm_gem_object_unreference(&obj->base);
1590
unlock:
1591
	mutex_unlock(&dev->struct_mutex);
1592
	return ret;
1593 1594
}

1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
}

D
Daniel Vetter 已提交
1619 1620 1621
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1622 1623 1624
{
	struct inode *inode;

1625
	i915_gem_object_free_mmap_offset(obj);
1626

1627 1628
	if (obj->base.filp == NULL)
		return;
1629

D
Daniel Vetter 已提交
1630 1631 1632 1633 1634
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
1635
	inode = obj->base.filp->f_path.dentry->d_inode;
D
Daniel Vetter 已提交
1636
	shmem_truncate_range(inode, 0, (loff_t)-1);
1637

D
Daniel Vetter 已提交
1638 1639
	obj->madv = __I915_MADV_PURGED;
}
1640

D
Daniel Vetter 已提交
1641 1642 1643 1644
static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
{
	return obj->madv == I915_MADV_DONTNEED;
1645 1646
}

1647
static void
1648
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1649
{
1650
	int page_count = obj->base.size / PAGE_SIZE;
1651
	struct scatterlist *sg;
C
Chris Wilson 已提交
1652
	int ret, i;
1653

1654
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1655

C
Chris Wilson 已提交
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		i915_gem_clflush_object(obj);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

1666
	if (i915_gem_object_needs_bit17_swizzle(obj))
1667 1668
		i915_gem_object_save_bit_17_swizzle(obj);

1669 1670
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1671

1672 1673 1674
	for_each_sg(obj->pages->sgl, sg, page_count, i) {
		struct page *page = sg_page(sg);

1675
		if (obj->dirty)
1676
			set_page_dirty(page);
1677

1678
		if (obj->madv == I915_MADV_WILLNEED)
1679
			mark_page_accessed(page);
1680

1681
		page_cache_release(page);
1682
	}
1683
	obj->dirty = 0;
1684

1685 1686
	sg_free_table(obj->pages);
	kfree(obj->pages);
1687
}
C
Chris Wilson 已提交
1688

1689 1690 1691 1692 1693
static int
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

1694
	if (obj->pages == NULL)
1695 1696 1697
		return 0;

	BUG_ON(obj->gtt_space);
C
Chris Wilson 已提交
1698

1699 1700 1701
	if (obj->pages_pin_count)
		return -EBUSY;

1702
	ops->put_pages(obj);
1703
	obj->pages = NULL;
1704 1705

	list_del(&obj->gtt_list);
C
Chris Wilson 已提交
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
	if (i915_gem_object_is_purgeable(obj))
		i915_gem_object_truncate(obj);

	return 0;
}

static long
i915_gem_purge(struct drm_i915_private *dev_priv, long target)
{
	struct drm_i915_gem_object *obj, *next;
	long count = 0;

	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.unbound_list,
				 gtt_list) {
		if (i915_gem_object_is_purgeable(obj) &&
1722
		    i915_gem_object_put_pages(obj) == 0) {
C
Chris Wilson 已提交
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
			count += obj->base.size >> PAGE_SHIFT;
			if (count >= target)
				return count;
		}
	}

	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (i915_gem_object_is_purgeable(obj) &&
		    i915_gem_object_unbind(obj) == 0 &&
1734
		    i915_gem_object_put_pages(obj) == 0) {
C
Chris Wilson 已提交
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
			count += obj->base.size >> PAGE_SHIFT;
			if (count >= target)
				return count;
		}
	}

	return count;
}

static void
i915_gem_shrink_all(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj, *next;

	i915_gem_evict_everything(dev_priv->dev);

	list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1752
		i915_gem_object_put_pages(obj);
D
Daniel Vetter 已提交
1753 1754
}

1755
static int
C
Chris Wilson 已提交
1756
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1757
{
C
Chris Wilson 已提交
1758
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1759 1760
	int page_count, i;
	struct address_space *mapping;
1761 1762
	struct sg_table *st;
	struct scatterlist *sg;
1763
	struct page *page;
C
Chris Wilson 已提交
1764
	gfp_t gfp;
1765

C
Chris Wilson 已提交
1766 1767 1768 1769 1770 1771 1772
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

1773 1774 1775 1776
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

1777
	page_count = obj->base.size / PAGE_SIZE;
1778 1779 1780
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		sg_free_table(st);
		kfree(st);
1781
		return -ENOMEM;
1782
	}
1783

1784 1785 1786 1787 1788
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
C
Chris Wilson 已提交
1789 1790
	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
	gfp = mapping_gfp_mask(mapping);
S
Sedat Dilek 已提交
1791
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
C
Chris Wilson 已提交
1792
	gfp &= ~(__GFP_IO | __GFP_WAIT);
1793
	for_each_sg(st->sgl, sg, page_count, i) {
C
Chris Wilson 已提交
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
			i915_gem_purge(dev_priv, page_count);
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
S
Sedat Dilek 已提交
1804
			gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
C
Chris Wilson 已提交
1805 1806 1807 1808 1809 1810 1811
			gfp |= __GFP_IO | __GFP_WAIT;

			i915_gem_shrink_all(dev_priv);
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
			if (IS_ERR(page))
				goto err_pages;

S
Sedat Dilek 已提交
1812
			gfp |= __GFP_NORETRY | __GFP_NOWARN;
C
Chris Wilson 已提交
1813 1814
			gfp &= ~(__GFP_IO | __GFP_WAIT);
		}
1815

1816
		sg_set_page(sg, page, PAGE_SIZE, 0);
1817 1818
	}

1819 1820
	obj->pages = st;

1821
	if (i915_gem_object_needs_bit17_swizzle(obj))
1822 1823 1824 1825 1826
		i915_gem_object_do_bit_17_swizzle(obj);

	return 0;

err_pages:
1827 1828 1829 1830
	for_each_sg(st->sgl, sg, i, page_count)
		page_cache_release(sg_page(sg));
	sg_free_table(st);
	kfree(st);
1831
	return PTR_ERR(page);
1832 1833
}

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

1848
	if (obj->pages)
1849 1850
		return 0;

1851 1852
	BUG_ON(obj->pages_pin_count);

1853 1854 1855 1856 1857 1858
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

	list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
	return 0;
1859 1860
}

1861
void
1862
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1863
			       struct intel_ring_buffer *ring)
1864
{
1865
	struct drm_device *dev = obj->base.dev;
1866
	struct drm_i915_private *dev_priv = dev->dev_private;
1867
	u32 seqno = intel_ring_get_seqno(ring);
1868

1869
	BUG_ON(ring == NULL);
1870
	obj->ring = ring;
1871 1872

	/* Add a reference if we're newly entering the active list. */
1873 1874 1875
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
1876
	}
1877

1878
	/* Move from whatever list we were on to the tail of execution. */
1879 1880
	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
	list_move_tail(&obj->ring_list, &ring->active_list);
1881

1882
	obj->last_read_seqno = seqno;
1883

1884
	if (obj->fenced_gpu_access) {
1885 1886
		obj->last_fenced_seqno = seqno;

1887 1888 1889 1890 1891 1892 1893 1894
		/* Bump MRU to take account of the delayed flush */
		if (obj->fence_reg != I915_FENCE_REG_NONE) {
			struct drm_i915_fence_reg *reg;

			reg = &dev_priv->fence_regs[obj->fence_reg];
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
		}
1895 1896 1897 1898 1899
	}
}

static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1900
{
1901
	struct drm_device *dev = obj->base.dev;
1902
	struct drm_i915_private *dev_priv = dev->dev_private;
1903

1904
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1905
	BUG_ON(!obj->active);
1906

1907 1908
	if (obj->pin_count) /* are we a framebuffer? */
		intel_mark_fb_idle(obj);
1909

1910
	list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1911

1912
	list_del_init(&obj->ring_list);
1913 1914
	obj->ring = NULL;

1915 1916 1917 1918 1919
	obj->last_read_seqno = 0;
	obj->last_write_seqno = 0;
	obj->base.write_domain = 0;

	obj->last_fenced_seqno = 0;
1920 1921 1922 1923 1924 1925
	obj->fenced_gpu_access = false;

	obj->active = 0;
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
1926
}
1927

1928
static int
1929
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1930
{
1931 1932 1933
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_ring_buffer *ring;
	int ret, i, j;
1934

1935 1936 1937 1938 1939 1940
	/* Carefully retire all requests without writing to the rings */
	for_each_ring(ring, dev_priv, i) {
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
	}
1941
	i915_gem_retire_requests(dev);
1942 1943

	/* Finally reset hw state */
1944
	for_each_ring(ring, dev_priv, i) {
1945
		intel_ring_init_seqno(ring, seqno);
1946

1947 1948 1949
		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
			ring->sync_seqno[j] = 0;
	}
1950

1951
	return 0;
1952 1953
}

1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

1980 1981
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1982
{
1983 1984 1985 1986
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
1987
		int ret = i915_gem_init_seqno(dev, 0);
1988 1989 1990 1991 1992
		if (ret)
			return ret;

		dev_priv->next_seqno = 1;
	}
1993

1994
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
1995
	return 0;
1996 1997
}

1998
int
C
Chris Wilson 已提交
1999
i915_add_request(struct intel_ring_buffer *ring,
2000
		 struct drm_file *file,
2001
		 u32 *out_seqno)
2002
{
C
Chris Wilson 已提交
2003
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
2004
	struct drm_i915_gem_request *request;
2005
	u32 request_ring_position;
2006
	int was_empty;
2007 2008
	int ret;

2009 2010 2011 2012 2013 2014 2015
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2016 2017 2018
	ret = intel_ring_flush_all_caches(ring);
	if (ret)
		return ret;
2019

2020 2021 2022
	request = kmalloc(sizeof(*request), GFP_KERNEL);
	if (request == NULL)
		return -ENOMEM;
2023

2024

2025 2026 2027 2028 2029 2030 2031
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
	request_ring_position = intel_ring_get_tail(ring);

2032
	ret = ring->add_request(ring);
2033 2034 2035 2036
	if (ret) {
		kfree(request);
		return ret;
	}
2037

2038
	request->seqno = intel_ring_get_seqno(ring);
2039
	request->ring = ring;
2040
	request->tail = request_ring_position;
2041
	request->emitted_jiffies = jiffies;
2042 2043
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);
2044
	request->file_priv = NULL;
2045

C
Chris Wilson 已提交
2046 2047 2048
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

2049
		spin_lock(&file_priv->mm.lock);
2050
		request->file_priv = file_priv;
2051
		list_add_tail(&request->client_list,
2052
			      &file_priv->mm.request_list);
2053
		spin_unlock(&file_priv->mm.lock);
2054
	}
2055

2056
	trace_i915_gem_request_add(ring, request->seqno);
2057
	ring->outstanding_lazy_request = 0;
C
Chris Wilson 已提交
2058

B
Ben Gamari 已提交
2059
	if (!dev_priv->mm.suspended) {
2060 2061
		if (i915_enable_hangcheck) {
			mod_timer(&dev_priv->hangcheck_timer,
2062
				  round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2063
		}
2064
		if (was_empty) {
2065
			queue_delayed_work(dev_priv->wq,
2066 2067
					   &dev_priv->mm.retire_work,
					   round_jiffies_up_relative(HZ));
2068 2069
			intel_mark_busy(dev_priv->dev);
		}
B
Ben Gamari 已提交
2070
	}
2071

2072
	if (out_seqno)
2073
		*out_seqno = request->seqno;
2074
	return 0;
2075 2076
}

2077 2078
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2079
{
2080
	struct drm_i915_file_private *file_priv = request->file_priv;
2081

2082 2083
	if (!file_priv)
		return;
C
Chris Wilson 已提交
2084

2085
	spin_lock(&file_priv->mm.lock);
2086 2087 2088 2089
	if (request->file_priv) {
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
2090
	spin_unlock(&file_priv->mm.lock);
2091 2092
}

2093 2094
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
2095
{
2096 2097
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
2098

2099 2100 2101
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);
2102

2103
		list_del(&request->list);
2104
		i915_gem_request_remove_from_client(request);
2105 2106
		kfree(request);
	}
2107

2108
	while (!list_empty(&ring->active_list)) {
2109
		struct drm_i915_gem_object *obj;
2110

2111 2112 2113
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
2114

2115
		i915_gem_object_move_to_inactive(obj);
2116 2117 2118
	}
}

2119 2120 2121 2122 2123
static void i915_gem_reset_fences(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

2124
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2125
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2126

2127
		i915_gem_write_fence(dev, i, NULL);
2128

2129 2130
		if (reg->obj)
			i915_gem_object_fence_lost(reg->obj);
2131

2132 2133 2134
		reg->pin_count = 0;
		reg->obj = NULL;
		INIT_LIST_HEAD(&reg->lru_list);
2135
	}
2136 2137

	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2138 2139
}

2140
void i915_gem_reset(struct drm_device *dev)
2141
{
2142
	struct drm_i915_private *dev_priv = dev->dev_private;
2143
	struct drm_i915_gem_object *obj;
2144
	struct intel_ring_buffer *ring;
2145
	int i;
2146

2147 2148
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_lists(dev_priv, ring);
2149 2150 2151 2152

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
2153
	list_for_each_entry(obj,
2154
			    &dev_priv->mm.inactive_list,
2155
			    mm_list)
2156
	{
2157
		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2158
	}
2159 2160

	/* The fence registers are invalidated so clear them out */
2161
	i915_gem_reset_fences(dev);
2162 2163 2164 2165 2166
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2167
void
C
Chris Wilson 已提交
2168
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2169 2170 2171
{
	uint32_t seqno;

C
Chris Wilson 已提交
2172
	if (list_empty(&ring->request_list))
2173 2174
		return;

C
Chris Wilson 已提交
2175
	WARN_ON(i915_verify_lists(ring->dev));
2176

2177
	seqno = ring->get_seqno(ring, true);
2178

2179
	while (!list_empty(&ring->request_list)) {
2180 2181
		struct drm_i915_gem_request *request;

2182
		request = list_first_entry(&ring->request_list,
2183 2184 2185
					   struct drm_i915_gem_request,
					   list);

2186
		if (!i915_seqno_passed(seqno, request->seqno))
2187 2188
			break;

C
Chris Wilson 已提交
2189
		trace_i915_gem_request_retire(ring, request->seqno);
2190 2191 2192 2193 2194 2195
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
		ring->last_retired_head = request->tail;
2196 2197

		list_del(&request->list);
2198
		i915_gem_request_remove_from_client(request);
2199 2200
		kfree(request);
	}
2201

2202 2203 2204 2205
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
2206
		struct drm_i915_gem_object *obj;
2207

2208
		obj = list_first_entry(&ring->active_list,
2209 2210
				      struct drm_i915_gem_object,
				      ring_list);
2211

2212
		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2213
			break;
2214

2215
		i915_gem_object_move_to_inactive(obj);
2216
	}
2217

C
Chris Wilson 已提交
2218 2219
	if (unlikely(ring->trace_irq_seqno &&
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2220
		ring->irq_put(ring);
C
Chris Wilson 已提交
2221
		ring->trace_irq_seqno = 0;
2222
	}
2223

C
Chris Wilson 已提交
2224
	WARN_ON(i915_verify_lists(ring->dev));
2225 2226
}

2227 2228 2229 2230
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2231
	struct intel_ring_buffer *ring;
2232
	int i;
2233

2234 2235
	for_each_ring(ring, dev_priv, i)
		i915_gem_retire_requests_ring(ring);
2236 2237
}

2238
static void
2239 2240 2241 2242
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;
2243
	struct intel_ring_buffer *ring;
2244 2245
	bool idle;
	int i;
2246 2247 2248 2249 2250

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

2251 2252
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
2253 2254
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2255 2256
		return;
	}
2257

2258
	i915_gem_retire_requests(dev);
2259

2260 2261
	/* Send a periodic flush down the ring so we don't hold onto GEM
	 * objects indefinitely.
2262
	 */
2263
	idle = true;
2264
	for_each_ring(ring, dev_priv, i) {
2265 2266
		if (ring->gpu_caches_dirty)
			i915_add_request(ring, NULL, NULL);
2267 2268

		idle &= list_empty(&ring->request_list);
2269 2270
	}

2271
	if (!dev_priv->mm.suspended && !idle)
2272 2273
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2274 2275
	if (idle)
		intel_mark_idle(dev);
2276

2277 2278 2279
	mutex_unlock(&dev->struct_mutex);
}

2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
	int ret;

	if (obj->active) {
2291
		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2292 2293 2294 2295 2296 2297 2298 2299 2300
		if (ret)
			return ret;

		i915_gem_retire_requests_ring(obj->ring);
	}

	return 0;
}

2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
	struct intel_ring_buffer *ring = NULL;
2329
	struct timespec timeout_stack, *timeout = NULL;
2330 2331 2332
	u32 seqno = 0;
	int ret = 0;

2333 2334 2335 2336
	if (args->timeout_ns >= 0) {
		timeout_stack = ns_to_timespec(args->timeout_ns);
		timeout = &timeout_stack;
	}
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2348 2349
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2350 2351 2352 2353
	if (ret)
		goto out;

	if (obj->active) {
2354
		seqno = obj->last_read_seqno;
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
		ring = obj->ring;
	}

	if (seqno == 0)
		 goto out;

	/* Do this after OLR check to make sure we make forward progress polling
	 * on this IOCTL with a 0 timeout (like busy ioctl)
	 */
	if (!args->timeout_ns) {
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);

2372 2373 2374 2375 2376
	ret = __wait_seqno(ring, seqno, true, timeout);
	if (timeout) {
		WARN_ON(!timespec_valid(timeout));
		args->timeout_ns = timespec_to_ns(timeout);
	}
2377 2378 2379 2380 2381 2382 2383 2384
	return ret;

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
		     struct intel_ring_buffer *to)
{
	struct intel_ring_buffer *from = obj->ring;
	u32 seqno;
	int ret, idx;

	if (from == NULL || to == from)
		return 0;

2408
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2409
		return i915_gem_object_wait_rendering(obj, false);
2410 2411 2412

	idx = intel_ring_sync_index(from, to);

2413
	seqno = obj->last_read_seqno;
2414 2415 2416
	if (seqno <= from->sync_seqno[idx])
		return 0;

2417 2418 2419
	ret = i915_gem_check_olr(obj->ring, seqno);
	if (ret)
		return ret;
2420

2421
	ret = to->sync_to(to, from, seqno);
2422
	if (!ret)
2423 2424 2425 2426 2427
		/* We use last_read_seqno because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->sync_seqno[idx] = obj->last_read_seqno;
2428

2429
	return ret;
2430 2431
}

2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Act a barrier for all accesses through the GTT */
	mb();

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2442 2443 2444
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2456 2457 2458
/**
 * Unbinds an object from the GTT aperture.
 */
2459
int
2460
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2461
{
2462
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2463 2464
	int ret = 0;

2465
	if (obj->gtt_space == NULL)
2466 2467
		return 0;

2468 2469
	if (obj->pin_count)
		return -EBUSY;
2470

2471 2472
	BUG_ON(obj->pages == NULL);

2473
	ret = i915_gem_object_finish_gpu(obj);
2474
	if (ret)
2475 2476 2477 2478 2479 2480
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

2481
	i915_gem_object_finish_gtt(obj);
2482

2483
	/* release the fence reg _after_ flushing */
2484
	ret = i915_gem_object_put_fence(obj);
2485
	if (ret)
2486
		return ret;
2487

C
Chris Wilson 已提交
2488 2489
	trace_i915_gem_object_unbind(obj);

2490 2491
	if (obj->has_global_gtt_mapping)
		i915_gem_gtt_unbind_object(obj);
2492 2493 2494 2495
	if (obj->has_aliasing_ppgtt_mapping) {
		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
		obj->has_aliasing_ppgtt_mapping = 0;
	}
2496
	i915_gem_gtt_finish_object(obj);
2497

C
Chris Wilson 已提交
2498 2499
	list_del(&obj->mm_list);
	list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2500
	/* Avoid an unnecessary call to unbind on rebind. */
2501
	obj->map_and_fenceable = true;
2502

2503 2504 2505
	drm_mm_put_block(obj->gtt_space);
	obj->gtt_space = NULL;
	obj->gtt_offset = 0;
2506

2507
	return 0;
2508 2509
}

2510
int i915_gpu_idle(struct drm_device *dev)
2511 2512
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2513
	struct intel_ring_buffer *ring;
2514
	int ret, i;
2515 2516

	/* Flush everything onto the inactive list. */
2517
	for_each_ring(ring, dev_priv, i) {
2518 2519 2520 2521
		ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
		if (ret)
			return ret;

2522
		ret = intel_ring_idle(ring);
2523 2524 2525
		if (ret)
			return ret;
	}
2526

2527
	return 0;
2528 2529
}

2530 2531
static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
					struct drm_i915_gem_object *obj)
2532 2533 2534 2535
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint64_t val;

2536 2537
	if (obj) {
		u32 size = obj->gtt_space->size;
2538

2539 2540 2541 2542 2543
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
				 0xfffff000) << 32;
		val |= obj->gtt_offset & 0xfffff000;
		val |= (uint64_t)((obj->stride / 128) - 1) <<
			SANDYBRIDGE_FENCE_PITCH_SHIFT;
2544

2545 2546 2547 2548 2549
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
	} else
		val = 0;
2550

2551 2552
	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
	POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2553 2554
}

2555 2556
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
2557 2558 2559 2560
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint64_t val;

2561 2562
	if (obj) {
		u32 size = obj->gtt_space->size;
2563

2564 2565 2566 2567 2568 2569 2570 2571 2572
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
				 0xfffff000) << 32;
		val |= obj->gtt_offset & 0xfffff000;
		val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
	} else
		val = 0;
2573

2574 2575
	I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
	POSTING_READ(FENCE_REG_965_0 + reg * 8);
2576 2577
}

2578 2579
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
2580 2581
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2582
	u32 val;
2583

2584 2585 2586 2587
	if (obj) {
		u32 size = obj->gtt_space->size;
		int pitch_val;
		int tile_width;
2588

2589 2590 2591 2592 2593
		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
		     (size & -size) != size ||
		     (obj->gtt_offset & (size - 1)),
		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     obj->gtt_offset, obj->map_and_fenceable, size);
2594

2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

		val = obj->gtt_offset;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
2620 2621
}

2622 2623
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
2624 2625 2626 2627
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t val;

2628 2629 2630
	if (obj) {
		u32 size = obj->gtt_space->size;
		uint32_t pitch_val;
2631

2632 2633 2634 2635 2636
		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
		     (size & -size) != size ||
		     (obj->gtt_offset & (size - 1)),
		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
		     obj->gtt_offset, size);
2637

2638 2639
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
2640

2641 2642 2643 2644 2645 2646 2647 2648
		val = obj->gtt_offset;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
2649

2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
	switch (INTEL_INFO(dev)->gen) {
	case 7:
	case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
	case 5:
	case 4: i965_write_fence_reg(dev, reg, obj); break;
	case 3: i915_write_fence_reg(dev, reg, obj); break;
	case 2: i830_write_fence_reg(dev, reg, obj); break;
2664
	default: BUG();
2665
	}
2666 2667
}

2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);

	if (enable) {
		obj->fence_reg = reg;
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
}

2694
static int
C
Chris Wilson 已提交
2695
i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2696
{
2697
	if (obj->last_fenced_seqno) {
2698
		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2699 2700
		if (ret)
			return ret;
2701 2702 2703 2704

		obj->last_fenced_seqno = 0;
	}

2705 2706 2707 2708 2709 2710
	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
		mb();

2711
	obj->fenced_gpu_access = false;
2712 2713 2714 2715 2716 2717
	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
2718
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2719 2720
	int ret;

C
Chris Wilson 已提交
2721
	ret = i915_gem_object_flush_fence(obj);
2722 2723 2724
	if (ret)
		return ret;

2725 2726
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
2727

2728 2729 2730 2731
	i915_gem_object_update_fence(obj,
				     &dev_priv->fence_regs[obj->fence_reg],
				     false);
	i915_gem_object_fence_lost(obj);
2732 2733 2734 2735 2736

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
2737
i915_find_fence_reg(struct drm_device *dev)
2738 2739
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
2740
	struct drm_i915_fence_reg *reg, *avail;
2741
	int i;
2742 2743

	/* First try to find a free reg */
2744
	avail = NULL;
2745 2746 2747
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
2748
			return reg;
2749

2750
		if (!reg->pin_count)
2751
			avail = reg;
2752 2753
	}

2754 2755
	if (avail == NULL)
		return NULL;
2756 2757

	/* None available, try to steal one or wait for a user to finish */
2758
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2759
		if (reg->pin_count)
2760 2761
			continue;

C
Chris Wilson 已提交
2762
		return reg;
2763 2764
	}

C
Chris Wilson 已提交
2765
	return NULL;
2766 2767
}

2768
/**
2769
 * i915_gem_object_get_fence - set up fencing for an object
2770 2771 2772 2773 2774 2775 2776 2777 2778
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
2779 2780
 *
 * For an untiled surface, this removes any existing fence.
2781
 */
2782
int
2783
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2784
{
2785
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
2786
	struct drm_i915_private *dev_priv = dev->dev_private;
2787
	bool enable = obj->tiling_mode != I915_TILING_NONE;
2788
	struct drm_i915_fence_reg *reg;
2789
	int ret;
2790

2791 2792 2793
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
2794
	if (obj->fence_dirty) {
2795 2796 2797 2798
		ret = i915_gem_object_flush_fence(obj);
		if (ret)
			return ret;
	}
2799

2800
	/* Just update our place in the LRU if our fence is getting reused. */
2801 2802
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
2803
		if (!obj->fence_dirty) {
2804 2805 2806 2807 2808 2809 2810 2811
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
		reg = i915_find_fence_reg(dev);
		if (reg == NULL)
			return -EDEADLK;
2812

2813 2814 2815 2816
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

			ret = i915_gem_object_flush_fence(old);
2817 2818 2819
			if (ret)
				return ret;

2820
			i915_gem_object_fence_lost(old);
2821
		}
2822
	} else
2823 2824
		return 0;

2825
	i915_gem_object_update_fence(obj, reg, enable);
2826
	obj->fence_dirty = false;
2827

2828
	return 0;
2829 2830
}

2831 2832 2833 2834 2835 2836 2837 2838
static bool i915_gem_valid_gtt_space(struct drm_device *dev,
				     struct drm_mm_node *gtt_space,
				     unsigned long cache_level)
{
	struct drm_mm_node *other;

	/* On non-LLC machines we have to be careful when putting differing
	 * types of snoopable memory together to avoid the prefetcher
2839
	 * crossing memory domains and dying.
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
	 */
	if (HAS_LLC(dev))
		return true;

	if (gtt_space == NULL)
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

static void i915_gem_verify_gtt(struct drm_device *dev)
{
#if WATCH_GTT
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj;
	int err = 0;

	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
		if (obj->gtt_space == NULL) {
			printk(KERN_ERR "object found on GTT list with no space reserved\n");
			err++;
			continue;
		}

		if (obj->cache_level != obj->gtt_space->color) {
			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
			       obj->gtt_space->start,
			       obj->gtt_space->start + obj->gtt_space->size,
			       obj->cache_level,
			       obj->gtt_space->color);
			err++;
			continue;
		}

		if (!i915_gem_valid_gtt_space(dev,
					      obj->gtt_space,
					      obj->cache_level)) {
			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
			       obj->gtt_space->start,
			       obj->gtt_space->start + obj->gtt_space->size,
			       obj->cache_level);
			err++;
			continue;
		}
	}

	WARN_ON(err);
#endif
}

2901 2902 2903 2904
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
2905
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2906
			    unsigned alignment,
2907 2908
			    bool map_and_fenceable,
			    bool nonblocking)
2909
{
2910
	struct drm_device *dev = obj->base.dev;
2911 2912
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_mm_node *free_space;
2913
	u32 size, fence_size, fence_alignment, unfenced_alignment;
2914
	bool mappable, fenceable;
2915
	int ret;
2916

2917
	if (obj->madv != I915_MADV_WILLNEED) {
2918 2919 2920 2921
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
						     obj->tiling_mode);
	unfenced_alignment =
		i915_gem_get_unfenced_gtt_alignment(dev,
						    obj->base.size,
						    obj->tiling_mode);
2932

2933
	if (alignment == 0)
2934 2935
		alignment = map_and_fenceable ? fence_alignment :
						unfenced_alignment;
2936
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2937 2938 2939 2940
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2941
	size = map_and_fenceable ? fence_size : obj->base.size;
2942

2943 2944 2945
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2946
	if (obj->base.size >
2947
	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2948 2949 2950 2951
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2952
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
2953 2954 2955
	if (ret)
		return ret;

2956 2957
	i915_gem_object_pin_pages(obj);

2958
 search_free:
2959
	if (map_and_fenceable)
2960 2961 2962 2963
		free_space = drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
							       size, alignment, obj->cache_level,
							       0, dev_priv->mm.gtt_mappable_end,
							       false);
2964
	else
2965 2966 2967
		free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
						      size, alignment, obj->cache_level,
						      false);
2968 2969

	if (free_space != NULL) {
2970
		if (map_and_fenceable)
2971
			free_space =
2972
				drm_mm_get_block_range_generic(free_space,
2973
							       size, alignment, obj->cache_level,
2974
							       0, dev_priv->mm.gtt_mappable_end,
2975
							       false);
2976
		else
2977
			free_space =
2978 2979 2980
				drm_mm_get_block_generic(free_space,
							 size, alignment, obj->cache_level,
							 false);
2981
	}
2982
	if (free_space == NULL) {
2983
		ret = i915_gem_evict_something(dev, size, alignment,
2984
					       obj->cache_level,
2985 2986
					       map_and_fenceable,
					       nonblocking);
2987 2988
		if (ret) {
			i915_gem_object_unpin_pages(obj);
2989
			return ret;
2990
		}
2991

2992 2993
		goto search_free;
	}
2994
	if (WARN_ON(!i915_gem_valid_gtt_space(dev,
2995
					      free_space,
2996
					      obj->cache_level))) {
2997
		i915_gem_object_unpin_pages(obj);
2998
		drm_mm_put_block(free_space);
2999
		return -EINVAL;
3000 3001
	}

3002
	ret = i915_gem_gtt_prepare_object(obj);
3003
	if (ret) {
3004
		i915_gem_object_unpin_pages(obj);
3005
		drm_mm_put_block(free_space);
C
Chris Wilson 已提交
3006
		return ret;
3007 3008
	}

C
Chris Wilson 已提交
3009
	list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
3010
	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3011

3012 3013
	obj->gtt_space = free_space;
	obj->gtt_offset = free_space->start;
C
Chris Wilson 已提交
3014

3015
	fenceable =
3016 3017
		free_space->size == fence_size &&
		(free_space->start & (fence_alignment - 1)) == 0;
3018

3019
	mappable =
3020
		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
3021

3022
	obj->map_and_fenceable = mappable && fenceable;
3023

3024
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
3025
	trace_i915_gem_object_bind(obj, map_and_fenceable);
3026
	i915_gem_verify_gtt(dev);
3027 3028 3029 3030
	return 0;
}

void
3031
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3032 3033 3034 3035 3036
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3037
	if (obj->pages == NULL)
3038 3039
		return;

3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
	if (obj->cache_level != I915_CACHE_NONE)
		return;

C
Chris Wilson 已提交
3051
	trace_i915_gem_object_clflush(obj);
3052

3053
	drm_clflush_sg(obj->pages);
3054 3055 3056 3057
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3058
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3059
{
C
Chris Wilson 已提交
3060 3061
	uint32_t old_write_domain;

3062
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3063 3064
		return;

3065
	/* No actual flushing is required for the GTT write domain.  Writes
3066 3067
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3068 3069 3070 3071
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3072
	 */
3073 3074
	wmb();

3075 3076
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3077 3078

	trace_i915_gem_object_change_domain(obj,
3079
					    obj->base.read_domains,
C
Chris Wilson 已提交
3080
					    old_write_domain);
3081 3082 3083 3084
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3085
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3086
{
C
Chris Wilson 已提交
3087
	uint32_t old_write_domain;
3088

3089
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3090 3091 3092
		return;

	i915_gem_clflush_object(obj);
3093
	i915_gem_chipset_flush(obj->base.dev);
3094 3095
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3096 3097

	trace_i915_gem_object_change_domain(obj,
3098
					    obj->base.read_domains,
C
Chris Wilson 已提交
3099
					    old_write_domain);
3100 3101
}

3102 3103 3104 3105 3106 3107
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3108
int
3109
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3110
{
3111
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
C
Chris Wilson 已提交
3112
	uint32_t old_write_domain, old_read_domains;
3113
	int ret;
3114

3115
	/* Not valid to be called on unbound objects. */
3116
	if (obj->gtt_space == NULL)
3117 3118
		return -EINVAL;

3119 3120 3121
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3122
	ret = i915_gem_object_wait_rendering(obj, !write);
3123 3124 3125
	if (ret)
		return ret;

3126
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3127

3128 3129
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3130

3131 3132 3133
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3134 3135
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3136
	if (write) {
3137 3138 3139
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3140 3141
	}

C
Chris Wilson 已提交
3142 3143 3144 3145
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3146 3147 3148 3149
	/* And bump the LRU for this access */
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);

3150 3151 3152
	return 0;
}

3153 3154 3155
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3156 3157
	struct drm_device *dev = obj->base.dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

	if (obj->pin_count) {
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

3168 3169 3170 3171 3172 3173
	if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			return ret;
	}

3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
	if (obj->gtt_space) {
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
3185
		if (INTEL_INFO(dev)->gen < 6) {
3186 3187 3188 3189 3190
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

3191 3192
		if (obj->has_global_gtt_mapping)
			i915_gem_gtt_bind_object(obj, cache_level);
3193 3194 3195
		if (obj->has_aliasing_ppgtt_mapping)
			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
					       obj, cache_level);
3196 3197

		obj->gtt_space->color = cache_level;
3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
	}

	if (cache_level == I915_CACHE_NONE) {
		u32 old_read_domains, old_write_domain;

		/* If we're coming from LLC cached, then we haven't
		 * actually been tracking whether the data is in the
		 * CPU cache or not, since we only allow one bit set
		 * in obj->write_domain and have been skipping the clflushes.
		 * Just set it to the CPU cache for now.
		 */
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);

		old_read_domains = obj->base.read_domains;
		old_write_domain = obj->base.write_domain;

		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;

		trace_i915_gem_object_change_domain(obj,
						    old_read_domains,
						    old_write_domain);
	}

	obj->cache_level = cache_level;
3224
	i915_gem_verify_gtt(dev);
3225 3226 3227
	return 0;
}

B
Ben Widawsky 已提交
3228 3229
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3230
{
B
Ben Widawsky 已提交
3231
	struct drm_i915_gem_caching *args = data;
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
	struct drm_i915_gem_object *obj;
	int ret;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

B
Ben Widawsky 已提交
3245
	args->caching = obj->cache_level != I915_CACHE_NONE;
3246 3247 3248 3249 3250 3251 3252

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

B
Ben Widawsky 已提交
3253 3254
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3255
{
B
Ben Widawsky 已提交
3256
	struct drm_i915_gem_caching *args = data;
3257 3258 3259 3260
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3261 3262
	switch (args->caching) {
	case I915_CACHING_NONE:
3263 3264
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3265
	case I915_CACHING_CACHED:
3266 3267 3268 3269 3270 3271
		level = I915_CACHE_LLC;
		break;
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3272 3273 3274 3275
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3290
/*
3291 3292 3293
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3294 3295
 */
int
3296 3297
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3298
				     struct intel_ring_buffer *pipelined)
3299
{
3300
	u32 old_read_domains, old_write_domain;
3301 3302
	int ret;

3303
	if (pipelined != obj->ring) {
3304 3305
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
3306 3307 3308
			return ret;
	}

3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
	if (ret)
		return ret;

3322 3323 3324 3325
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3326
	ret = i915_gem_object_pin(obj, alignment, true, false);
3327 3328 3329
	if (ret)
		return ret;

3330 3331
	i915_gem_object_flush_cpu_write_domain(obj);

3332
	old_write_domain = obj->base.write_domain;
3333
	old_read_domains = obj->base.read_domains;
3334 3335 3336 3337

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3338
	obj->base.write_domain = 0;
3339
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3340 3341 3342

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3343
					    old_write_domain);
3344 3345 3346 3347

	return 0;
}

3348
int
3349
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3350
{
3351 3352
	int ret;

3353
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3354 3355
		return 0;

3356
	ret = i915_gem_object_wait_rendering(obj, false);
3357 3358 3359
	if (ret)
		return ret;

3360 3361
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3362
	return 0;
3363 3364
}

3365 3366 3367 3368 3369 3370
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3371
int
3372
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3373
{
C
Chris Wilson 已提交
3374
	uint32_t old_write_domain, old_read_domains;
3375 3376
	int ret;

3377 3378 3379
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3380
	ret = i915_gem_object_wait_rendering(obj, !write);
3381 3382 3383
	if (ret)
		return ret;

3384
	i915_gem_object_flush_gtt_write_domain(obj);
3385

3386 3387
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3388

3389
	/* Flush the CPU cache if it's still invalid. */
3390
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3391 3392
		i915_gem_clflush_object(obj);

3393
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3394 3395 3396 3397 3398
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3399
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3400 3401 3402 3403 3404

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3405 3406
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3407
	}
3408

C
Chris Wilson 已提交
3409 3410 3411 3412
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3413 3414 3415
	return 0;
}

3416 3417 3418
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3419 3420 3421 3422
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3423 3424 3425
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3426
static int
3427
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3428
{
3429 3430
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3431
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3432 3433 3434 3435
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3436

3437 3438 3439
	if (atomic_read(&dev_priv->mm.wedged))
		return -EIO;

3440
	spin_lock(&file_priv->mm.lock);
3441
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3442 3443
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3444

3445 3446
		ring = request->ring;
		seqno = request->seqno;
3447
	}
3448
	spin_unlock(&file_priv->mm.lock);
3449

3450 3451
	if (seqno == 0)
		return 0;
3452

3453
	ret = __wait_seqno(ring, seqno, true, NULL);
3454 3455
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3456 3457 3458 3459

	return ret;
}

3460
int
3461 3462
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    uint32_t alignment,
3463 3464
		    bool map_and_fenceable,
		    bool nonblocking)
3465 3466 3467
{
	int ret;

3468 3469
	if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
		return -EBUSY;
3470

3471 3472 3473 3474
	if (obj->gtt_space != NULL) {
		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
		    (map_and_fenceable && !obj->map_and_fenceable)) {
			WARN(obj->pin_count,
3475
			     "bo is already pinned with incorrect alignment:"
3476 3477
			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
			     " obj->map_and_fenceable=%d\n",
3478
			     obj->gtt_offset, alignment,
3479
			     map_and_fenceable,
3480
			     obj->map_and_fenceable);
3481 3482 3483 3484 3485 3486
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

3487
	if (obj->gtt_space == NULL) {
3488 3489
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;

3490
		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3491 3492
						  map_and_fenceable,
						  nonblocking);
3493
		if (ret)
3494
			return ret;
3495 3496 3497

		if (!dev_priv->mm.aliasing_ppgtt)
			i915_gem_gtt_bind_object(obj, obj->cache_level);
3498
	}
J
Jesse Barnes 已提交
3499

3500 3501 3502
	if (!obj->has_global_gtt_mapping && map_and_fenceable)
		i915_gem_gtt_bind_object(obj, obj->cache_level);

3503
	obj->pin_count++;
3504
	obj->pin_mappable |= map_and_fenceable;
3505 3506 3507 3508 3509

	return 0;
}

void
3510
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3511
{
3512 3513
	BUG_ON(obj->pin_count == 0);
	BUG_ON(obj->gtt_space == NULL);
3514

3515
	if (--obj->pin_count == 0)
3516
		obj->pin_mappable = false;
3517 3518 3519 3520
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3521
		   struct drm_file *file)
3522 3523
{
	struct drm_i915_gem_pin *args = data;
3524
	struct drm_i915_gem_object *obj;
3525 3526
	int ret;

3527 3528 3529
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3530

3531
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3532
	if (&obj->base == NULL) {
3533 3534
		ret = -ENOENT;
		goto unlock;
3535 3536
	}

3537
	if (obj->madv != I915_MADV_WILLNEED) {
C
Chris Wilson 已提交
3538
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3539 3540
		ret = -EINVAL;
		goto out;
3541 3542
	}

3543
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
J
Jesse Barnes 已提交
3544 3545
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3546 3547
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3548 3549
	}

3550 3551 3552
	obj->user_pin_count++;
	obj->pin_filp = file;
	if (obj->user_pin_count == 1) {
3553
		ret = i915_gem_object_pin(obj, args->alignment, true, false);
3554 3555
		if (ret)
			goto out;
3556 3557 3558 3559 3560
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
3561
	i915_gem_object_flush_cpu_write_domain(obj);
3562
	args->offset = obj->gtt_offset;
3563
out:
3564
	drm_gem_object_unreference(&obj->base);
3565
unlock:
3566
	mutex_unlock(&dev->struct_mutex);
3567
	return ret;
3568 3569 3570 3571
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3572
		     struct drm_file *file)
3573 3574
{
	struct drm_i915_gem_pin *args = data;
3575
	struct drm_i915_gem_object *obj;
3576
	int ret;
3577

3578 3579 3580
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3581

3582
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3583
	if (&obj->base == NULL) {
3584 3585
		ret = -ENOENT;
		goto unlock;
3586
	}
3587

3588
	if (obj->pin_filp != file) {
J
Jesse Barnes 已提交
3589 3590
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3591 3592
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3593
	}
3594 3595 3596
	obj->user_pin_count--;
	if (obj->user_pin_count == 0) {
		obj->pin_filp = NULL;
J
Jesse Barnes 已提交
3597 3598
		i915_gem_object_unpin(obj);
	}
3599

3600
out:
3601
	drm_gem_object_unreference(&obj->base);
3602
unlock:
3603
	mutex_unlock(&dev->struct_mutex);
3604
	return ret;
3605 3606 3607 3608
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3609
		    struct drm_file *file)
3610 3611
{
	struct drm_i915_gem_busy *args = data;
3612
	struct drm_i915_gem_object *obj;
3613 3614
	int ret;

3615
	ret = i915_mutex_lock_interruptible(dev);
3616
	if (ret)
3617
		return ret;
3618

3619
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3620
	if (&obj->base == NULL) {
3621 3622
		ret = -ENOENT;
		goto unlock;
3623
	}
3624

3625 3626 3627 3628
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
3629
	 */
3630
	ret = i915_gem_object_flush_active(obj);
3631

3632
	args->busy = obj->active;
3633 3634 3635 3636
	if (obj->ring) {
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
		args->busy |= intel_ring_flag(obj->ring) << 16;
	}
3637

3638
	drm_gem_object_unreference(&obj->base);
3639
unlock:
3640
	mutex_unlock(&dev->struct_mutex);
3641
	return ret;
3642 3643 3644 3645 3646 3647
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3648
	return i915_gem_ring_throttle(dev, file_priv);
3649 3650
}

3651 3652 3653 3654 3655
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
3656
	struct drm_i915_gem_object *obj;
3657
	int ret;
3658 3659 3660 3661 3662 3663 3664 3665 3666

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3667 3668 3669 3670
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3671
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3672
	if (&obj->base == NULL) {
3673 3674
		ret = -ENOENT;
		goto unlock;
3675 3676
	}

3677
	if (obj->pin_count) {
3678 3679
		ret = -EINVAL;
		goto out;
3680 3681
	}

3682 3683
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3684

C
Chris Wilson 已提交
3685 3686
	/* if the object is no longer attached, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3687 3688
		i915_gem_object_truncate(obj);

3689
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3690

3691
out:
3692
	drm_gem_object_unreference(&obj->base);
3693
unlock:
3694
	mutex_unlock(&dev->struct_mutex);
3695
	return ret;
3696 3697
}

3698 3699
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
3700 3701 3702 3703 3704 3705
{
	INIT_LIST_HEAD(&obj->mm_list);
	INIT_LIST_HEAD(&obj->gtt_list);
	INIT_LIST_HEAD(&obj->ring_list);
	INIT_LIST_HEAD(&obj->exec_list);

3706 3707
	obj->ops = ops;

3708 3709 3710 3711 3712 3713 3714 3715
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;
	/* Avoid an unnecessary call to unbind on the first bind. */
	obj->map_and_fenceable = true;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

3716 3717 3718 3719 3720
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

3721 3722
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
3723
{
3724
	struct drm_i915_gem_object *obj;
3725
	struct address_space *mapping;
D
Daniel Vetter 已提交
3726
	gfp_t mask;
3727

3728
	obj = i915_gem_object_alloc(dev);
3729 3730
	if (obj == NULL)
		return NULL;
3731

3732
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3733
		i915_gem_object_free(obj);
3734 3735
		return NULL;
	}
3736

3737 3738 3739 3740 3741 3742 3743
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

3744
	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3745
	mapping_set_gfp_mask(mapping, mask);
3746

3747
	i915_gem_object_init(obj, &i915_gem_object_ops);
3748

3749 3750
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3751

3752 3753
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

3769
	return obj;
3770 3771 3772 3773 3774
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
3775

3776 3777 3778
	return 0;
}

3779
void i915_gem_free_object(struct drm_gem_object *gem_obj)
3780
{
3781
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3782
	struct drm_device *dev = obj->base.dev;
3783
	drm_i915_private_t *dev_priv = dev->dev_private;
3784

3785 3786
	trace_i915_gem_object_destroy(obj);

3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801
	if (obj->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

	obj->pin_count = 0;
	if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
		bool was_interruptible;

		was_interruptible = dev_priv->mm.interruptible;
		dev_priv->mm.interruptible = false;

		WARN_ON(i915_gem_object_unbind(obj));

		dev_priv->mm.interruptible = was_interruptible;
	}

3802
	obj->pages_pin_count = 0;
3803
	i915_gem_object_put_pages(obj);
3804
	i915_gem_object_free_mmap_offset(obj);
3805
	i915_gem_object_release_stolen(obj);
3806

3807 3808
	BUG_ON(obj->pages);

3809 3810
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
3811

3812 3813
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3814

3815
	kfree(obj->bit_17);
3816
	i915_gem_object_free(obj);
3817 3818
}

3819 3820 3821 3822 3823
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3824

3825
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
3826

3827
	if (dev_priv->mm.suspended) {
3828 3829
		mutex_unlock(&dev->struct_mutex);
		return 0;
3830 3831
	}

3832
	ret = i915_gpu_idle(dev);
3833 3834
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
3835
		return ret;
3836
	}
3837
	i915_gem_retire_requests(dev);
3838

3839
	/* Under UMS, be paranoid and evict. */
3840
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
C
Chris Wilson 已提交
3841
		i915_gem_evict_everything(dev);
3842

3843 3844
	i915_gem_reset_fences(dev);

3845 3846 3847 3848 3849
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
3850
	del_timer_sync(&dev_priv->hangcheck_timer);
3851 3852

	i915_kernel_lost_context(dev);
3853
	i915_gem_cleanup_ringbuffer(dev);
3854

3855 3856
	mutex_unlock(&dev->struct_mutex);

3857 3858 3859
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

3860 3861 3862
	return 0;
}

B
Ben Widawsky 已提交
3863 3864 3865 3866 3867 3868 3869 3870 3871
void i915_gem_l3_remap(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 misccpctl;
	int i;

	if (!IS_IVYBRIDGE(dev))
		return;

3872
	if (!dev_priv->l3_parity.remap_info)
B
Ben Widawsky 已提交
3873 3874 3875 3876 3877 3878 3879 3880
		return;

	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	POSTING_READ(GEN7_MISCCPCTL);

	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
		u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3881
		if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
B
Ben Widawsky 已提交
3882 3883
			DRM_DEBUG("0x%x was already programmed to %x\n",
				  GEN7_L3LOG_BASE + i, remap);
3884
		if (remap && !dev_priv->l3_parity.remap_info[i/4])
B
Ben Widawsky 已提交
3885
			DRM_DEBUG_DRIVER("Clearing remapped register\n");
3886
		I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
B
Ben Widawsky 已提交
3887 3888 3889 3890 3891 3892 3893 3894
	}

	/* Make sure all the writes land before disabling dop clock gating */
	POSTING_READ(GEN7_L3LOG_BASE);

	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

3895 3896 3897 3898
void i915_gem_init_swizzling(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

3899
	if (INTEL_INFO(dev)->gen < 5 ||
3900 3901 3902 3903 3904 3905
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

3906 3907 3908
	if (IS_GEN5(dev))
		return;

3909 3910
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
3911
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3912
	else if (IS_GEN7(dev))
3913
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3914 3915
	else
		BUG();
3916
}
D
Daniel Vetter 已提交
3917

3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

3934
int
3935
i915_gem_init_hw(struct drm_device *dev)
3936 3937 3938
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3939

3940
	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
D
Daniel Vetter 已提交
3941 3942
		return -EIO;

R
Rodrigo Vivi 已提交
3943 3944 3945
	if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
		I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);

B
Ben Widawsky 已提交
3946 3947
	i915_gem_l3_remap(dev);

3948 3949
	i915_gem_init_swizzling(dev);

3950 3951
	dev_priv->next_seqno = dev_priv->last_seqno = (u32)~0 - 0x1000;

3952
	ret = intel_init_render_ring_buffer(dev);
3953
	if (ret)
3954
		return ret;
3955 3956

	if (HAS_BSD(dev)) {
3957
		ret = intel_init_bsd_ring_buffer(dev);
3958 3959
		if (ret)
			goto cleanup_render_ring;
3960
	}
3961

3962
	if (intel_enable_blt(dev)) {
3963 3964 3965 3966 3967
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

3968 3969 3970 3971 3972
	/*
	 * XXX: There was some w/a described somewhere suggesting loading
	 * contexts before PPGTT.
	 */
	i915_gem_context_init(dev);
D
Daniel Vetter 已提交
3973 3974
	i915_gem_init_ppgtt(dev);

3975 3976
	return 0;

3977
cleanup_bsd_ring:
3978
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3979
cleanup_render_ring:
3980
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3981 3982 3983
	return ret;
}

3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
static bool
intel_enable_ppgtt(struct drm_device *dev)
{
	if (i915_enable_ppgtt >= 0)
		return i915_enable_ppgtt;

#ifdef CONFIG_INTEL_IOMMU
	/* Disable ppgtt on SNB if VT-d is on. */
	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long gtt_size, mappable_size;
	int ret;

	gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
	mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;

	mutex_lock(&dev->struct_mutex);
	if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
		/* PPGTT pdes are stolen from global gtt ptes, so shrink the
		 * aperture accordingly when using aliasing ppgtt. */
		gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;

		i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);

		ret = i915_gem_init_aliasing_ppgtt(dev);
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	} else {
		/* Let GEM Manage all of the aperture.
		 *
		 * However, leave one page at the end still bound to the scratch
		 * page.  There are a number of places where the hardware
		 * apparently prefetches past the end of the object, and we've
		 * seen multiple hangs with the GPU head pointer stuck in a
		 * batchbuffer bound at the last page of the aperture.  One page
		 * should be enough to keep any prefetching inside of the
		 * aperture.
		 */
		i915_gem_init_global_gtt(dev, 0, mappable_size,
					 gtt_size);
	}

	ret = i915_gem_init_hw(dev);
	mutex_unlock(&dev->struct_mutex);
	if (ret) {
		i915_gem_cleanup_aliasing_ppgtt(dev);
		return ret;
	}

4043 4044 4045
	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->dri1.allow_batchbuffer = 1;
4046 4047 4048
	return 0;
}

4049 4050 4051 4052
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
4053
	struct intel_ring_buffer *ring;
4054
	int i;
4055

4056 4057
	for_each_ring(ring, dev_priv, i)
		intel_cleanup_ring_buffer(ring);
4058 4059
}

4060 4061 4062 4063 4064
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
4065
	int ret;
4066

J
Jesse Barnes 已提交
4067 4068 4069
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4070
	if (atomic_read(&dev_priv->mm.wedged)) {
4071
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4072
		atomic_set(&dev_priv->mm.wedged, 0);
4073 4074 4075
	}

	mutex_lock(&dev->struct_mutex);
4076 4077
	dev_priv->mm.suspended = 0;

4078
	ret = i915_gem_init_hw(dev);
4079 4080
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4081
		return ret;
4082
	}
4083

4084
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
4085
	mutex_unlock(&dev->struct_mutex);
4086

4087 4088 4089
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
4090

4091
	return 0;
4092 4093 4094 4095 4096 4097 4098 4099

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
4100 4101 4102 4103 4104 4105
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
4106 4107 4108
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4109
	drm_irq_uninstall(dev);
4110
	return i915_gem_idle(dev);
4111 4112 4113 4114 4115 4116 4117
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4118 4119 4120
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4121 4122 4123
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4124 4125
}

4126 4127 4128 4129 4130 4131 4132
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

4133 4134 4135 4136
void
i915_gem_load(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
4137 4138 4139 4140 4141 4142 4143
	int i;

	dev_priv->slab =
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4144

4145
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
4146
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
C
Chris Wilson 已提交
4147 4148
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4149
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4150 4151
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
4152
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4153
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4154 4155
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4156
	init_completion(&dev_priv->error_completion);
4157

4158 4159
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
4160 4161
		I915_WRITE(MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4162 4163
	}

4164 4165
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4166
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4167 4168
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4169

4170
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4171 4172 4173 4174
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4175
	/* Initialize fence registers to zero */
4176
	i915_gem_reset_fences(dev);
4177

4178
	i915_gem_detect_bit_6_swizzle(dev);
4179
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4180

4181 4182
	dev_priv->mm.interruptible = true;

4183 4184 4185
	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.inactive_shrinker);
4186
}
4187 4188 4189 4190 4191

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
4192 4193
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
4194 4195 4196 4197 4198 4199 4200 4201
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4202
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4203 4204 4205 4206 4207
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

4208
	phys_obj->handle = drm_pci_alloc(dev, size, align);
4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
4221
	kfree(phys_obj);
4222 4223 4224
	return ret;
}

4225
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4250
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4251 4252 4253 4254
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
4255
				 struct drm_i915_gem_object *obj)
4256
{
4257
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4258
	char *vaddr;
4259 4260 4261
	int i;
	int page_count;

4262
	if (!obj->phys_obj)
4263
		return;
4264
	vaddr = obj->phys_obj->handle->vaddr;
4265

4266
	page_count = obj->base.size / PAGE_SIZE;
4267
	for (i = 0; i < page_count; i++) {
4268
		struct page *page = shmem_read_mapping_page(mapping, i);
4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279
		if (!IS_ERR(page)) {
			char *dst = kmap_atomic(page);
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
			kunmap_atomic(dst);

			drm_clflush_pages(&page, 1);

			set_page_dirty(page);
			mark_page_accessed(page);
			page_cache_release(page);
		}
4280
	}
4281
	i915_gem_chipset_flush(dev);
4282

4283 4284
	obj->phys_obj->cur_obj = NULL;
	obj->phys_obj = NULL;
4285 4286 4287 4288
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
4289
			    struct drm_i915_gem_object *obj,
4290 4291
			    int id,
			    int align)
4292
{
4293
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4294 4295 4296 4297 4298 4299 4300 4301
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4302 4303
	if (obj->phys_obj) {
		if (obj->phys_obj->id == id)
4304 4305 4306 4307 4308 4309 4310
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
4311
						obj->base.size, align);
4312
		if (ret) {
4313 4314
			DRM_ERROR("failed to init phys object %d size: %zu\n",
				  id, obj->base.size);
4315
			return ret;
4316 4317 4318 4319
		}
	}

	/* bind to the object */
4320 4321
	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj->phys_obj->cur_obj = obj;
4322

4323
	page_count = obj->base.size / PAGE_SIZE;
4324 4325

	for (i = 0; i < page_count; i++) {
4326 4327 4328
		struct page *page;
		char *dst, *src;

4329
		page = shmem_read_mapping_page(mapping, i);
4330 4331
		if (IS_ERR(page))
			return PTR_ERR(page);
4332

4333
		src = kmap_atomic(page);
4334
		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4335
		memcpy(dst, src, PAGE_SIZE);
P
Peter Zijlstra 已提交
4336
		kunmap_atomic(src);
4337

4338 4339 4340
		mark_page_accessed(page);
		page_cache_release(page);
	}
4341

4342 4343 4344 4345
	return 0;
}

static int
4346 4347
i915_gem_phys_pwrite(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
4348 4349 4350
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4351
	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4352
	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4353

4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}
4367

4368
	i915_gem_chipset_flush(dev);
4369 4370
	return 0;
}
4371

4372
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4373
{
4374
	struct drm_i915_file_private *file_priv = file->driver_priv;
4375 4376 4377 4378 4379

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4380
	spin_lock(&file_priv->mm.lock);
4381 4382 4383 4384 4385 4386 4387 4388 4389
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4390
	spin_unlock(&file_priv->mm.lock);
4391
}
4392

4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405
static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
{
	if (!mutex_is_locked(mutex))
		return false;

#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
	return mutex->owner == task;
#else
	/* Since UP may be pre-empted, we cannot assume that we own the lock */
	return false;
#endif
}

4406
static int
4407
i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4408
{
4409 4410 4411 4412 4413
	struct drm_i915_private *dev_priv =
		container_of(shrinker,
			     struct drm_i915_private,
			     mm.inactive_shrinker);
	struct drm_device *dev = dev_priv->dev;
C
Chris Wilson 已提交
4414
	struct drm_i915_gem_object *obj;
4415
	int nr_to_scan = sc->nr_to_scan;
4416
	bool unlock = true;
4417 4418
	int cnt;

4419 4420 4421 4422 4423 4424
	if (!mutex_trylock(&dev->struct_mutex)) {
		if (!mutex_is_locked_by(&dev->struct_mutex, current))
			return 0;

		unlock = false;
	}
4425

C
Chris Wilson 已提交
4426 4427 4428 4429
	if (nr_to_scan) {
		nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
		if (nr_to_scan > 0)
			i915_gem_shrink_all(dev_priv);
4430 4431
	}

4432
	cnt = 0;
C
Chris Wilson 已提交
4433
	list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4434 4435
		if (obj->pages_pin_count == 0)
			cnt += obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
4436
	list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
4437
		if (obj->pin_count == 0 && obj->pages_pin_count == 0)
C
Chris Wilson 已提交
4438
			cnt += obj->base.size >> PAGE_SHIFT;
4439

4440 4441
	if (unlock)
		mutex_unlock(&dev->struct_mutex);
C
Chris Wilson 已提交
4442
	return cnt;
4443
}