i915_gem.c 108.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/shmem_fs.h>
35
#include <linux/slab.h>
36
#include <linux/swap.h>
J
Jesse Barnes 已提交
37
#include <linux/pci.h>
38
#include <linux/dma-buf.h>
39

40 41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 43
static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
						    unsigned alignment,
44 45
						    bool map_and_fenceable,
						    bool nonblocking);
46 47
static int i915_gem_phys_pwrite(struct drm_device *dev,
				struct drm_i915_gem_object *obj,
48
				struct drm_i915_gem_pwrite *args,
49
				struct drm_file *file);
50

51 52 53 54 55 56
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

57
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
58
				    struct shrink_control *sc);
C
Chris Wilson 已提交
59 60
static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
61
static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
62

63 64 65 66 67 68 69 70
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
71
	obj->fence_dirty = false;
72 73 74
	obj->fence_reg = I915_FENCE_REG_NONE;
}

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

90 91
static int
i915_gem_wait_for_error(struct drm_device *dev)
92 93 94 95 96 97 98 99 100
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

101 102 103 104 105 106 107 108 109 110
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
	ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
111
		return ret;
112
	}
113

114 115 116 117 118 119 120 121 122 123 124
	if (atomic_read(&dev_priv->mm.wedged)) {
		/* GPU is hung, bump the completion count to account for
		 * the token we just consumed so that we never hit zero and
		 * end up waiting upon a subsequent completion event that
		 * will never happen.
		 */
		spin_lock_irqsave(&x->wait.lock, flags);
		x->done++;
		spin_unlock_irqrestore(&x->wait.lock, flags);
	}
	return 0;
125 126
}

127
int i915_mutex_lock_interruptible(struct drm_device *dev)
128 129 130
{
	int ret;

131
	ret = i915_gem_wait_for_error(dev);
132 133 134 135 136 137 138
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

139
	WARN_ON(i915_verify_lists(dev));
140 141
	return 0;
}
142

143
static inline bool
144
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
145
{
C
Chris Wilson 已提交
146
	return obj->gtt_space && !obj->active;
147 148
}

J
Jesse Barnes 已提交
149 150
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
151
		    struct drm_file *file)
J
Jesse Barnes 已提交
152 153
{
	struct drm_i915_gem_init *args = data;
154

155 156 157
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return -ENODEV;

158 159 160
	if (args->gtt_start >= args->gtt_end ||
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
		return -EINVAL;
J
Jesse Barnes 已提交
161

162 163 164 165
	/* GEM with user mode setting was never supported on ilk and later. */
	if (INTEL_INFO(dev)->gen >= 5)
		return -ENODEV;

J
Jesse Barnes 已提交
166
	mutex_lock(&dev->struct_mutex);
167 168
	i915_gem_init_global_gtt(dev, args->gtt_start,
				 args->gtt_end, args->gtt_end);
169 170
	mutex_unlock(&dev->struct_mutex);

171
	return 0;
172 173
}

174 175
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
176
			    struct drm_file *file)
177
{
178
	struct drm_i915_private *dev_priv = dev->dev_private;
179
	struct drm_i915_gem_get_aperture *args = data;
180 181
	struct drm_i915_gem_object *obj;
	size_t pinned;
182

183
	pinned = 0;
184
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
185
	list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
186 187
		if (obj->pin_count)
			pinned += obj->gtt_space->size;
188
	mutex_unlock(&dev->struct_mutex);
189

190
	args->aper_size = dev_priv->mm.gtt_total;
191
	args->aper_available_size = args->aper_size - pinned;
192

193 194 195
	return 0;
}

196 197 198 199 200
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
201
{
202
	struct drm_i915_gem_object *obj;
203 204
	int ret;
	u32 handle;
205

206
	size = roundup(size, PAGE_SIZE);
207 208
	if (size == 0)
		return -EINVAL;
209 210

	/* Allocate the new object */
211
	obj = i915_gem_alloc_object(dev, size);
212 213 214
	if (obj == NULL)
		return -ENOMEM;

215
	ret = drm_gem_handle_create(file, &obj->base, &handle);
216
	if (ret) {
217 218
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
219
		kfree(obj);
220
		return ret;
221
	}
222

223
	/* drop reference from allocate - handle holds it now */
224
	drm_gem_object_unreference(&obj->base);
225 226
	trace_i915_gem_object_create(obj);

227
	*handle_p = handle;
228 229 230
	return 0;
}

231 232 233 234 235 236
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
237
	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

int i915_gem_dumb_destroy(struct drm_file *file,
			  struct drm_device *dev,
			  uint32_t handle)
{
	return drm_gem_handle_delete(file, handle);
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
258

259 260 261 262
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

263
static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
264
{
265
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
266 267

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
268
		obj->tiling_mode != I915_TILING_NONE;
269 270
}

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

297
static inline int
298 299
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

323 324 325
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
326
static int
327 328 329 330 331 332 333
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

334
	if (unlikely(page_do_bit17_swizzling))
335 336 337 338 339 340 341 342 343 344 345 346 347 348
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

	return ret;
}

349 350 351 352
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
353
	if (unlikely(swizzled)) {
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

371 372 373 374 375 376 377 378 379 380 381 382
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
383 384 385
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
386 387 388 389 390 391 392 393 394 395 396 397 398 399

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

	return ret;
}

400
static int
401 402 403 404
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
405
{
406
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
407
	char __user *user_data;
408
	ssize_t remain;
409
	loff_t offset;
410
	int shmem_page_offset, page_length, ret = 0;
411
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
412
	int hit_slowpath = 0;
413
	int prefaulted = 0;
414
	int needs_clflush = 0;
415
	int release_page;
416

417
	user_data = (char __user *) (uintptr_t) args->data_ptr;
418 419
	remain = args->size;

420
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
421

422 423 424 425 426 427 428
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		if (obj->cache_level == I915_CACHE_NONE)
			needs_clflush = 1;
C
Chris Wilson 已提交
429 430 431 432 433
		if (obj->gtt_space) {
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
			if (ret)
				return ret;
		}
434
	}
435

436
	offset = args->offset;
437 438

	while (remain > 0) {
439 440
		struct page *page;

441 442 443 444 445
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
446
		shmem_page_offset = offset_in_page(offset);
447 448 449 450
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

451 452 453 454 455 456 457 458 459 460
		if (obj->pages) {
			page = obj->pages[offset >> PAGE_SHIFT];
			release_page = 0;
		} else {
			page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
				goto out;
			}
			release_page = 1;
461
		}
462

463 464 465
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

466 467 468 469 470
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
471 472

		hit_slowpath = 1;
473
		page_cache_get(page);
474 475
		mutex_unlock(&dev->struct_mutex);

476
		if (!prefaulted) {
477
			ret = fault_in_multipages_writeable(user_data, remain);
478 479 480 481 482 483 484
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
485

486 487 488
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
489

490
		mutex_lock(&dev->struct_mutex);
491
		page_cache_release(page);
492
next_page:
493
		mark_page_accessed(page);
494 495
		if (release_page)
			page_cache_release(page);
496

497 498 499 500 501
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

502
		remain -= page_length;
503
		user_data += page_length;
504 505 506
		offset += page_length;
	}

507
out:
508 509 510 511 512
	if (hit_slowpath) {
		/* Fixup: Kill any reinstated backing storage pages */
		if (obj->madv == __I915_MADV_PURGED)
			i915_gem_object_truncate(obj);
	}
513 514 515 516

	return ret;
}

517 518 519 520 521 522 523
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
524
		     struct drm_file *file)
525 526
{
	struct drm_i915_gem_pread *args = data;
527
	struct drm_i915_gem_object *obj;
528
	int ret = 0;
529

530 531 532 533 534 535 536 537
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

538
	ret = i915_mutex_lock_interruptible(dev);
539
	if (ret)
540
		return ret;
541

542
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
543
	if (&obj->base == NULL) {
544 545
		ret = -ENOENT;
		goto unlock;
546
	}
547

548
	/* Bounds check source.  */
549 550
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
551
		ret = -EINVAL;
552
		goto out;
C
Chris Wilson 已提交
553 554
	}

555 556 557 558 559 560 561 562
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
563 564
	trace_i915_gem_object_pread(obj, args->offset, args->size);

565
	ret = i915_gem_shmem_pread(dev, obj, args, file);
566

567
out:
568
	drm_gem_object_unreference(&obj->base);
569
unlock:
570
	mutex_unlock(&dev->struct_mutex);
571
	return ret;
572 573
}

574 575
/* This is the fast write path which cannot handle
 * page faults in the source data
576
 */
577 578 579 580 581 582

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
583
{
584 585
	void __iomem *vaddr_atomic;
	void *vaddr;
586
	unsigned long unwritten;
587

P
Peter Zijlstra 已提交
588
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
589 590 591
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
592
						      user_data, length);
P
Peter Zijlstra 已提交
593
	io_mapping_unmap_atomic(vaddr_atomic);
594
	return unwritten;
595 596
}

597 598 599 600
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
601
static int
602 603
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
604
			 struct drm_i915_gem_pwrite *args,
605
			 struct drm_file *file)
606
{
607
	drm_i915_private_t *dev_priv = dev->dev_private;
608
	ssize_t remain;
609
	loff_t offset, page_base;
610
	char __user *user_data;
D
Daniel Vetter 已提交
611 612
	int page_offset, page_length, ret;

613
	ret = i915_gem_object_pin(obj, 0, true, true);
D
Daniel Vetter 已提交
614 615 616 617 618 619 620 621 622 623
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
624 625 626 627

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

628
	offset = obj->gtt_offset + args->offset;
629 630 631 632

	while (remain > 0) {
		/* Operation in this page
		 *
633 634 635
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
636
		 */
637 638
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
639 640 641 642 643
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
644 645
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
646
		 */
647
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
D
Daniel Vetter 已提交
648 649 650 651
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
			goto out_unpin;
		}
652

653 654 655
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
656 657
	}

D
Daniel Vetter 已提交
658 659 660
out_unpin:
	i915_gem_object_unpin(obj);
out:
661
	return ret;
662 663
}

664 665 666 667
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
668
static int
669 670 671 672 673
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
674
{
675
	char *vaddr;
676
	int ret;
677

678
	if (unlikely(page_do_bit17_swizzling))
679
		return -EINVAL;
680

681 682 683 684 685 686 687 688 689 690 691
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
						user_data,
						page_length);
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
692 693 694 695

	return ret;
}

696 697
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
698
static int
699 700 701 702 703
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
704
{
705 706
	char *vaddr;
	int ret;
707

708
	vaddr = kmap(page);
709
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
710 711 712
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
713 714
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
715 716
						user_data,
						page_length);
717 718 719 720 721
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
722 723 724
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
725
	kunmap(page);
726

727
	return ret;
728 729 730
}

static int
731 732 733 734
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
735
{
736
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
737
	ssize_t remain;
738 739
	loff_t offset;
	char __user *user_data;
740
	int shmem_page_offset, page_length, ret = 0;
741
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
742
	int hit_slowpath = 0;
743 744
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
745
	int release_page;
746

747
	user_data = (char __user *) (uintptr_t) args->data_ptr;
748 749
	remain = args->size;

750
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
751

752 753 754 755 756 757 758
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
		if (obj->cache_level == I915_CACHE_NONE)
			needs_clflush_after = 1;
C
Chris Wilson 已提交
759 760 761 762 763
		if (obj->gtt_space) {
			ret = i915_gem_object_set_to_gtt_domain(obj, true);
			if (ret)
				return ret;
		}
764 765 766 767 768 769 770
	}
	/* Same trick applies for invalidate partially written cachelines before
	 * writing.  */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
	    && obj->cache_level == I915_CACHE_NONE)
		needs_clflush_before = 1;

771
	offset = args->offset;
772
	obj->dirty = 1;
773

774
	while (remain > 0) {
775
		struct page *page;
776
		int partial_cacheline_write;
777

778 779 780 781 782
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
783
		shmem_page_offset = offset_in_page(offset);
784 785 786 787 788

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

789 790 791 792 793 794 795
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

796 797 798 799 800 801 802 803 804 805
		if (obj->pages) {
			page = obj->pages[offset >> PAGE_SHIFT];
			release_page = 0;
		} else {
			page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
				goto out;
			}
			release_page = 1;
806 807
		}

808 809 810
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

811 812 813 814 815 816
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
817 818

		hit_slowpath = 1;
819
		page_cache_get(page);
820 821
		mutex_unlock(&dev->struct_mutex);

822 823 824 825
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
826

827
		mutex_lock(&dev->struct_mutex);
828
		page_cache_release(page);
829
next_page:
830 831
		set_page_dirty(page);
		mark_page_accessed(page);
832 833
		if (release_page)
			page_cache_release(page);
834

835 836 837 838 839
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

840
		remain -= page_length;
841
		user_data += page_length;
842
		offset += page_length;
843 844
	}

845
out:
846 847 848 849 850 851 852 853 854 855
	if (hit_slowpath) {
		/* Fixup: Kill any reinstated backing storage pages */
		if (obj->madv == __I915_MADV_PURGED)
			i915_gem_object_truncate(obj);
		/* and flush dirty cachelines in case the object isn't in the cpu write
		 * domain anymore. */
		if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
			i915_gem_clflush_object(obj);
			intel_gtt_chipset_flush();
		}
856
	}
857

858 859 860
	if (needs_clflush_after)
		intel_gtt_chipset_flush();

861
	return ret;
862 863 864 865 866 867 868 869 870
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
871
		      struct drm_file *file)
872 873
{
	struct drm_i915_gem_pwrite *args = data;
874
	struct drm_i915_gem_object *obj;
875 876 877 878 879 880 881 882 883 884
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

885 886
	ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
					   args->size);
887 888
	if (ret)
		return -EFAULT;
889

890
	ret = i915_mutex_lock_interruptible(dev);
891
	if (ret)
892
		return ret;
893

894
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
895
	if (&obj->base == NULL) {
896 897
		ret = -ENOENT;
		goto unlock;
898
	}
899

900
	/* Bounds check destination. */
901 902
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
903
		ret = -EINVAL;
904
		goto out;
C
Chris Wilson 已提交
905 906
	}

907 908 909 910 911 912 913 914
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
915 916
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
917
	ret = -EFAULT;
918 919 920 921 922 923
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
924
	if (obj->phys_obj) {
925
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
926 927 928
		goto out;
	}

929
	if (obj->cache_level == I915_CACHE_NONE &&
930
	    obj->tiling_mode == I915_TILING_NONE &&
931
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
932
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
933 934 935
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
936
	}
937

938
	if (ret == -EFAULT || ret == -ENOSPC)
D
Daniel Vetter 已提交
939
		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
940

941
out:
942
	drm_gem_object_unreference(&obj->base);
943
unlock:
944
	mutex_unlock(&dev->struct_mutex);
945 946 947
	return ret;
}

948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
int
i915_gem_check_wedge(struct drm_i915_private *dev_priv,
		     bool interruptible)
{
	if (atomic_read(&dev_priv->mm.wedged)) {
		struct completion *x = &dev_priv->error_completion;
		bool recovery_complete;
		unsigned long flags;

		/* Give the error handler a chance to run. */
		spin_lock_irqsave(&x->wait.lock, flags);
		recovery_complete = x->done > 0;
		spin_unlock_irqrestore(&x->wait.lock, flags);

		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

		/* Recovery complete, but still wedged means reset failure. */
		if (recovery_complete)
			return -EIO;

		return -EAGAIN;
	}

	return 0;
}

/*
 * Compare seqno against outstanding lazy request. Emit a request if they are
 * equal.
 */
static int
i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
{
	int ret;

	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));

	ret = 0;
	if (seqno == ring->outstanding_lazy_request)
		ret = i915_add_request(ring, NULL, NULL);

	return ret;
}

/**
 * __wait_seqno - wait until execution of seqno has finished
 * @ring: the ring expected to report seqno
 * @seqno: duh!
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
 * Returns 0 if the seqno was found within the alloted time. Else returns the
 * errno with remaining time filled in timeout argument.
 */
static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
			bool interruptible, struct timespec *timeout)
{
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
	struct timespec before, now, wait_time={1,0};
	unsigned long timeout_jiffies;
	long end;
	bool wait_forever = true;
	int ret;

	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
		return 0;

	trace_i915_gem_request_wait_begin(ring, seqno);

	if (timeout != NULL) {
		wait_time = *timeout;
		wait_forever = false;
	}

	timeout_jiffies = timespec_to_jiffies(&wait_time);

	if (WARN_ON(!ring->irq_get(ring)))
		return -ENODEV;

	/* Record current time in case interrupted by signal, or wedged * */
	getrawmonotonic(&before);

#define EXIT_COND \
	(i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
	atomic_read(&dev_priv->mm.wedged))
	do {
		if (interruptible)
			end = wait_event_interruptible_timeout(ring->irq_queue,
							       EXIT_COND,
							       timeout_jiffies);
		else
			end = wait_event_timeout(ring->irq_queue, EXIT_COND,
						 timeout_jiffies);

		ret = i915_gem_check_wedge(dev_priv, interruptible);
		if (ret)
			end = ret;
	} while (end == 0 && wait_forever);

	getrawmonotonic(&now);

	ring->irq_put(ring);
	trace_i915_gem_request_wait_end(ring, seqno);
#undef EXIT_COND

	if (timeout) {
		struct timespec sleep_time = timespec_sub(now, before);
		*timeout = timespec_sub(*timeout, sleep_time);
	}

	switch (end) {
	case -EIO:
	case -EAGAIN: /* Wedged */
	case -ERESTARTSYS: /* Signal */
		return (int)end;
	case 0: /* Timeout */
		if (timeout)
			set_normalized_timespec(timeout, 0, 0);
		return -ETIME;
	default: /* Completed */
		WARN_ON(end < 0); /* We're not aware of other errors */
		return 0;
	}
}

/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
int
i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool interruptible = dev_priv->mm.interruptible;
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(seqno == 0);

	ret = i915_gem_check_wedge(dev_priv, interruptible);
	if (ret)
		return ret;

	ret = i915_gem_check_olr(ring, seqno);
	if (ret)
		return ret;

	return __wait_seqno(ring, seqno, interruptible, NULL);
}

/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static __must_check int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
	struct intel_ring_buffer *ring = obj->ring;
	u32 seqno;
	int ret;

	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
	if (seqno == 0)
		return 0;

	ret = i915_wait_seqno(ring, seqno);
	if (ret)
		return ret;

	i915_gem_retire_requests_ring(ring);

	/* Manually manage the write flush as we may have not yet
	 * retired the buffer.
	 */
	if (obj->last_write_seqno &&
	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
		obj->last_write_seqno = 0;
		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
	}

	return 0;
}

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_ring_buffer *ring = obj->ring;
	u32 seqno;
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
	if (seqno == 0)
		return 0;

	ret = i915_gem_check_wedge(dev_priv, true);
	if (ret)
		return ret;

	ret = i915_gem_check_olr(ring, seqno);
	if (ret)
		return ret;

	mutex_unlock(&dev->struct_mutex);
	ret = __wait_seqno(ring, seqno, true, NULL);
	mutex_lock(&dev->struct_mutex);

	i915_gem_retire_requests_ring(ring);

	/* Manually manage the write flush as we may have not yet
	 * retired the buffer.
	 */
	if (obj->last_write_seqno &&
	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
		obj->last_write_seqno = 0;
		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
	}

	return ret;
}

1182
/**
1183 1184
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1185 1186 1187
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1188
			  struct drm_file *file)
1189 1190
{
	struct drm_i915_gem_set_domain *args = data;
1191
	struct drm_i915_gem_object *obj;
1192 1193
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1194 1195
	int ret;

1196
	/* Only handle setting domains to types used by the CPU. */
1197
	if (write_domain & I915_GEM_GPU_DOMAINS)
1198 1199
		return -EINVAL;

1200
	if (read_domains & I915_GEM_GPU_DOMAINS)
1201 1202 1203 1204 1205 1206 1207 1208
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1209
	ret = i915_mutex_lock_interruptible(dev);
1210
	if (ret)
1211
		return ret;
1212

1213
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1214
	if (&obj->base == NULL) {
1215 1216
		ret = -ENOENT;
		goto unlock;
1217
	}
1218

1219 1220 1221 1222 1223 1224 1225 1226
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
	if (ret)
		goto unref;

1227 1228
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1229 1230 1231 1232 1233 1234 1235

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1236
	} else {
1237
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1238 1239
	}

1240
unref:
1241
	drm_gem_object_unreference(&obj->base);
1242
unlock:
1243 1244 1245 1246 1247 1248 1249 1250 1251
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1252
			 struct drm_file *file)
1253 1254
{
	struct drm_i915_gem_sw_finish *args = data;
1255
	struct drm_i915_gem_object *obj;
1256 1257
	int ret = 0;

1258
	ret = i915_mutex_lock_interruptible(dev);
1259
	if (ret)
1260
		return ret;
1261

1262
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1263
	if (&obj->base == NULL) {
1264 1265
		ret = -ENOENT;
		goto unlock;
1266 1267 1268
	}

	/* Pinned buffers may be scanout, so flush the cache */
1269
	if (obj->pin_count)
1270 1271
		i915_gem_object_flush_cpu_write_domain(obj);

1272
	drm_gem_object_unreference(&obj->base);
1273
unlock:
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1287
		    struct drm_file *file)
1288 1289 1290 1291 1292
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1293
	obj = drm_gem_object_lookup(dev, file, args->handle);
1294
	if (obj == NULL)
1295
		return -ENOENT;
1296

1297 1298 1299 1300 1301 1302 1303 1304
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1305
	addr = vm_mmap(obj->filp, 0, args->size,
1306 1307
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1308
	drm_gem_object_unreference_unlocked(obj);
1309 1310 1311 1312 1313 1314 1315 1316
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1335 1336
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1337
	drm_i915_private_t *dev_priv = dev->dev_private;
1338 1339 1340
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1341
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1342 1343 1344 1345 1346

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1347 1348 1349
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1350

C
Chris Wilson 已提交
1351 1352
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1353
	/* Now bind it into the GTT if needed */
1354 1355 1356 1357
	if (!obj->map_and_fenceable) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			goto unlock;
1358
	}
1359
	if (!obj->gtt_space) {
1360
		ret = i915_gem_object_bind_to_gtt(obj, 0, true, false);
1361 1362
		if (ret)
			goto unlock;
1363

1364 1365 1366 1367
		ret = i915_gem_object_set_to_gtt_domain(obj, write);
		if (ret)
			goto unlock;
	}
1368

1369 1370 1371
	if (!obj->has_global_gtt_mapping)
		i915_gem_gtt_bind_object(obj, obj->cache_level);

1372
	ret = i915_gem_object_get_fence(obj);
1373 1374
	if (ret)
		goto unlock;
1375

1376 1377
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1378

1379 1380
	obj->fault_mappable = true;

1381
	pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1382 1383 1384 1385
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1386
unlock:
1387
	mutex_unlock(&dev->struct_mutex);
1388
out:
1389
	switch (ret) {
1390
	case -EIO:
1391 1392 1393 1394 1395
		/* If this -EIO is due to a gpu hang, give the reset code a
		 * chance to clean up the mess. Otherwise return the proper
		 * SIGBUS. */
		if (!atomic_read(&dev_priv->mm.wedged))
			return VM_FAULT_SIGBUS;
1396
	case -EAGAIN:
1397 1398 1399 1400 1401 1402 1403
		/* Give the error handler a chance to run and move the
		 * objects off the GPU active list. Next time we service the
		 * fault, we should be able to transition the page into the
		 * GTT without touching the GPU (and so avoid further
		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
		 * with coherency, just lost writes.
		 */
1404
		set_need_resched();
1405 1406
	case 0:
	case -ERESTARTSYS:
1407
	case -EINTR:
1408
		return VM_FAULT_NOPAGE;
1409 1410 1411
	case -ENOMEM:
		return VM_FAULT_OOM;
	default:
1412
		return VM_FAULT_SIGBUS;
1413 1414 1415
	}
}

1416 1417 1418 1419
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1420
 * Preserve the reservation of the mmapping with the DRM core code, but
1421 1422 1423 1424 1425 1426 1427 1428 1429
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1430
void
1431
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1432
{
1433 1434
	if (!obj->fault_mappable)
		return;
1435

1436 1437 1438 1439
	if (obj->base.dev->dev_mapping)
		unmap_mapping_range(obj->base.dev->dev_mapping,
				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
				    obj->base.size, 1);
1440

1441
	obj->fault_mappable = false;
1442 1443
}

1444
static uint32_t
1445
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1446
{
1447
	uint32_t gtt_size;
1448 1449

	if (INTEL_INFO(dev)->gen >= 4 ||
1450 1451
	    tiling_mode == I915_TILING_NONE)
		return size;
1452 1453 1454

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1455
		gtt_size = 1024*1024;
1456
	else
1457
		gtt_size = 512*1024;
1458

1459 1460
	while (gtt_size < size)
		gtt_size <<= 1;
1461

1462
	return gtt_size;
1463 1464
}

1465 1466 1467 1468 1469
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1470
 * potential fence register mapping.
1471 1472
 */
static uint32_t
1473 1474 1475
i915_gem_get_gtt_alignment(struct drm_device *dev,
			   uint32_t size,
			   int tiling_mode)
1476 1477 1478 1479 1480
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1481
	if (INTEL_INFO(dev)->gen >= 4 ||
1482
	    tiling_mode == I915_TILING_NONE)
1483 1484
		return 4096;

1485 1486 1487 1488
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1489
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1490 1491
}

1492 1493 1494
/**
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
 *					 unfenced object
1495 1496 1497
 * @dev: the device
 * @size: size of the object
 * @tiling_mode: tiling mode of the object
1498 1499 1500 1501
 *
 * Return the required GTT alignment for an object, only taking into account
 * unfenced tiled surface requirements.
 */
1502
uint32_t
1503 1504 1505
i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
				    uint32_t size,
				    int tiling_mode)
1506 1507 1508 1509 1510
{
	/*
	 * Minimum alignment is 4k (GTT page size) for sane hw.
	 */
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1511
	    tiling_mode == I915_TILING_NONE)
1512 1513
		return 4096;

1514 1515 1516
	/* Previous hardware however needs to be aligned to a power-of-two
	 * tile height. The simplest method for determining this is to reuse
	 * the power-of-tile object size.
1517
	 */
1518
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1519 1520
}

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

	if (obj->base.map_list.map)
		return 0;

	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
		return ret;

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
	i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
		return ret;

	i915_gem_shrink_all(dev_priv);
	return drm_gem_create_mmap_offset(&obj->base);
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	if (!obj->base.map_list.map)
		return;

	drm_gem_free_mmap_offset(&obj->base);
}

1557
int
1558 1559 1560 1561
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
		  uint32_t handle,
		  uint64_t *offset)
1562
{
1563
	struct drm_i915_private *dev_priv = dev->dev_private;
1564
	struct drm_i915_gem_object *obj;
1565 1566
	int ret;

1567
	ret = i915_mutex_lock_interruptible(dev);
1568
	if (ret)
1569
		return ret;
1570

1571
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1572
	if (&obj->base == NULL) {
1573 1574 1575
		ret = -ENOENT;
		goto unlock;
	}
1576

1577
	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1578
		ret = -E2BIG;
1579
		goto out;
1580 1581
	}

1582
	if (obj->madv != I915_MADV_WILLNEED) {
1583
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1584 1585
		ret = -EINVAL;
		goto out;
1586 1587
	}

1588 1589 1590
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1591

1592
	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1593

1594
out:
1595
	drm_gem_object_unreference(&obj->base);
1596
unlock:
1597
	mutex_unlock(&dev->struct_mutex);
1598
	return ret;
1599 1600
}

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
}

D
Daniel Vetter 已提交
1625 1626 1627 1628 1629 1630
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
{
	struct inode *inode;

1631 1632 1633 1634 1635
	i915_gem_object_free_mmap_offset(obj);

	if (obj->base.filp == NULL)
		return;

D
Daniel Vetter 已提交
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
	inode = obj->base.filp->f_path.dentry->d_inode;
	shmem_truncate_range(inode, 0, (loff_t)-1);

	obj->madv = __I915_MADV_PURGED;
}

static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
{
	return obj->madv == I915_MADV_DONTNEED;
}

C
Chris Wilson 已提交
1653
static int
D
Daniel Vetter 已提交
1654 1655 1656
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
{
	int page_count = obj->base.size / PAGE_SIZE;
C
Chris Wilson 已提交
1657
	int ret, i;
D
Daniel Vetter 已提交
1658

1659 1660
	BUG_ON(obj->gtt_space);

C
Chris Wilson 已提交
1661 1662
	if (obj->pages == NULL)
		return 0;
D
Daniel Vetter 已提交
1663

C
Chris Wilson 已提交
1664
	BUG_ON(obj->gtt_space);
D
Daniel Vetter 已提交
1665 1666
	BUG_ON(obj->madv == __I915_MADV_PURGED);

C
Chris Wilson 已提交
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		i915_gem_clflush_object(obj);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

D
Daniel Vetter 已提交
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
	if (i915_gem_object_needs_bit17_swizzle(obj))
		i915_gem_object_save_bit_17_swizzle(obj);

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	for (i = 0; i < page_count; i++) {
		if (obj->dirty)
			set_page_dirty(obj->pages[i]);

		if (obj->madv == I915_MADV_WILLNEED)
			mark_page_accessed(obj->pages[i]);

		page_cache_release(obj->pages[i]);
	}
	obj->dirty = 0;

	drm_free_large(obj->pages);
	obj->pages = NULL;
C
Chris Wilson 已提交
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745

	list_del(&obj->gtt_list);

	if (i915_gem_object_is_purgeable(obj))
		i915_gem_object_truncate(obj);

	return 0;
}

static long
i915_gem_purge(struct drm_i915_private *dev_priv, long target)
{
	struct drm_i915_gem_object *obj, *next;
	long count = 0;

	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.unbound_list,
				 gtt_list) {
		if (i915_gem_object_is_purgeable(obj) &&
		    i915_gem_object_put_pages_gtt(obj) == 0) {
			count += obj->base.size >> PAGE_SHIFT;
			if (count >= target)
				return count;
		}
	}

	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (i915_gem_object_is_purgeable(obj) &&
		    i915_gem_object_unbind(obj) == 0 &&
		    i915_gem_object_put_pages_gtt(obj) == 0) {
			count += obj->base.size >> PAGE_SHIFT;
			if (count >= target)
				return count;
		}
	}

	return count;
}

static void
i915_gem_shrink_all(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj, *next;

	i915_gem_evict_everything(dev_priv->dev);

	list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
		i915_gem_object_put_pages_gtt(obj);
D
Daniel Vetter 已提交
1746 1747
}

1748
int
C
Chris Wilson 已提交
1749
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1750
{
C
Chris Wilson 已提交
1751
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1752 1753 1754
	int page_count, i;
	struct address_space *mapping;
	struct page *page;
C
Chris Wilson 已提交
1755
	gfp_t gfp;
1756

1757 1758 1759
	if (obj->pages || obj->sg_table)
		return 0;

C
Chris Wilson 已提交
1760 1761 1762 1763 1764 1765 1766
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

1767 1768 1769
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
1770 1771 1772
	page_count = obj->base.size / PAGE_SIZE;
	obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
	if (obj->pages == NULL)
1773 1774
		return -ENOMEM;

C
Chris Wilson 已提交
1775 1776 1777 1778 1779
	/* Fail silently without starting the shrinker */
	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
	gfp = mapping_gfp_mask(mapping);
	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
	gfp &= ~(__GFP_IO | __GFP_WAIT);
1780
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
			i915_gem_purge(dev_priv, page_count);
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
			gfp |= __GFP_IO | __GFP_WAIT;

			i915_gem_shrink_all(dev_priv);
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
			if (IS_ERR(page))
				goto err_pages;

			gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
			gfp &= ~(__GFP_IO | __GFP_WAIT);
		}
1802

1803
		obj->pages[i] = page;
1804 1805
	}

1806
	if (i915_gem_object_needs_bit17_swizzle(obj))
1807 1808
		i915_gem_object_do_bit_17_swizzle(obj);

C
Chris Wilson 已提交
1809
	list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1810 1811 1812 1813
	return 0;

err_pages:
	while (i--)
1814
		page_cache_release(obj->pages[i]);
1815

1816 1817
	drm_free_large(obj->pages);
	obj->pages = NULL;
1818 1819 1820
	return PTR_ERR(page);
}

1821
void
1822
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1823 1824
			       struct intel_ring_buffer *ring,
			       u32 seqno)
1825
{
1826
	struct drm_device *dev = obj->base.dev;
1827
	struct drm_i915_private *dev_priv = dev->dev_private;
1828

1829
	BUG_ON(ring == NULL);
1830
	obj->ring = ring;
1831 1832

	/* Add a reference if we're newly entering the active list. */
1833 1834 1835
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
1836
	}
1837

1838
	/* Move from whatever list we were on to the tail of execution. */
1839 1840
	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
	list_move_tail(&obj->ring_list, &ring->active_list);
1841

1842
	obj->last_read_seqno = seqno;
1843

1844
	if (obj->fenced_gpu_access) {
1845 1846
		obj->last_fenced_seqno = seqno;

1847 1848 1849 1850 1851 1852 1853 1854
		/* Bump MRU to take account of the delayed flush */
		if (obj->fence_reg != I915_FENCE_REG_NONE) {
			struct drm_i915_fence_reg *reg;

			reg = &dev_priv->fence_regs[obj->fence_reg];
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
		}
1855 1856 1857 1858 1859 1860 1861 1862 1863
	}
}

static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

1864
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1865
	BUG_ON(!obj->active);
1866

1867 1868 1869 1870 1871
	if (obj->pin_count) /* are we a framebuffer? */
		intel_mark_fb_idle(obj);

	list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);

1872
	list_del_init(&obj->ring_list);
1873 1874
	obj->ring = NULL;

1875 1876 1877 1878 1879
	obj->last_read_seqno = 0;
	obj->last_write_seqno = 0;
	obj->base.write_domain = 0;

	obj->last_fenced_seqno = 0;
1880 1881 1882 1883 1884 1885
	obj->fenced_gpu_access = false;

	obj->active = 0;
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
1886
}
1887

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
static u32
i915_gem_get_seqno(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 seqno = dev_priv->next_seqno;

	/* reserve 0 for non-seqno */
	if (++dev_priv->next_seqno == 0)
		dev_priv->next_seqno = 1;

	return seqno;
}

u32
i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
{
	if (ring->outstanding_lazy_request == 0)
		ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);

	return ring->outstanding_lazy_request;
}

1910
int
C
Chris Wilson 已提交
1911
i915_add_request(struct intel_ring_buffer *ring,
1912
		 struct drm_file *file,
C
Chris Wilson 已提交
1913
		 struct drm_i915_gem_request *request)
1914
{
C
Chris Wilson 已提交
1915
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1916
	uint32_t seqno;
1917
	u32 request_ring_position;
1918
	int was_empty;
1919 1920
	int ret;

1921 1922 1923 1924 1925 1926 1927
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
1928 1929 1930
	ret = intel_ring_flush_all_caches(ring);
	if (ret)
		return ret;
1931

1932 1933 1934 1935 1936 1937
	if (request == NULL) {
		request = kmalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return -ENOMEM;
	}

1938
	seqno = i915_gem_next_request_seqno(ring);
1939

1940 1941 1942 1943 1944 1945 1946
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
	request_ring_position = intel_ring_get_tail(ring);

1947
	ret = ring->add_request(ring, &seqno);
1948 1949 1950 1951
	if (ret) {
		kfree(request);
		return ret;
	}
1952

C
Chris Wilson 已提交
1953
	trace_i915_gem_request_add(ring, seqno);
1954 1955

	request->seqno = seqno;
1956
	request->ring = ring;
1957
	request->tail = request_ring_position;
1958
	request->emitted_jiffies = jiffies;
1959 1960
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);
1961
	request->file_priv = NULL;
1962

C
Chris Wilson 已提交
1963 1964 1965
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

1966
		spin_lock(&file_priv->mm.lock);
1967
		request->file_priv = file_priv;
1968
		list_add_tail(&request->client_list,
1969
			      &file_priv->mm.request_list);
1970
		spin_unlock(&file_priv->mm.lock);
1971
	}
1972

1973
	ring->outstanding_lazy_request = 0;
C
Chris Wilson 已提交
1974

B
Ben Gamari 已提交
1975
	if (!dev_priv->mm.suspended) {
1976 1977 1978 1979 1980
		if (i915_enable_hangcheck) {
			mod_timer(&dev_priv->hangcheck_timer,
				  jiffies +
				  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
		}
1981
		if (was_empty) {
1982 1983
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
1984 1985
			intel_mark_busy(dev_priv->dev);
		}
B
Ben Gamari 已提交
1986
	}
1987

1988
	return 0;
1989 1990
}

1991 1992
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1993
{
1994
	struct drm_i915_file_private *file_priv = request->file_priv;
1995

1996 1997
	if (!file_priv)
		return;
C
Chris Wilson 已提交
1998

1999
	spin_lock(&file_priv->mm.lock);
2000 2001 2002 2003
	if (request->file_priv) {
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
2004
	spin_unlock(&file_priv->mm.lock);
2005 2006
}

2007 2008
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
2009
{
2010 2011
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
2012

2013 2014 2015
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);
2016

2017
		list_del(&request->list);
2018
		i915_gem_request_remove_from_client(request);
2019 2020
		kfree(request);
	}
2021

2022
	while (!list_empty(&ring->active_list)) {
2023
		struct drm_i915_gem_object *obj;
2024

2025 2026 2027
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
2028

2029
		i915_gem_object_move_to_inactive(obj);
2030 2031 2032
	}
}

2033 2034 2035 2036 2037
static void i915_gem_reset_fences(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

2038
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2039
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2040

2041
		i915_gem_write_fence(dev, i, NULL);
2042

2043 2044
		if (reg->obj)
			i915_gem_object_fence_lost(reg->obj);
2045

2046 2047 2048
		reg->pin_count = 0;
		reg->obj = NULL;
		INIT_LIST_HEAD(&reg->lru_list);
2049
	}
2050 2051

	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2052 2053
}

2054
void i915_gem_reset(struct drm_device *dev)
2055
{
2056
	struct drm_i915_private *dev_priv = dev->dev_private;
2057
	struct drm_i915_gem_object *obj;
2058
	struct intel_ring_buffer *ring;
2059
	int i;
2060

2061 2062
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_lists(dev_priv, ring);
2063 2064 2065 2066

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
2067
	list_for_each_entry(obj,
2068
			    &dev_priv->mm.inactive_list,
2069
			    mm_list)
2070
	{
2071
		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2072
	}
2073

C
Chris Wilson 已提交
2074

2075
	/* The fence registers are invalidated so clear them out */
2076
	i915_gem_reset_fences(dev);
2077 2078 2079 2080 2081
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2082
void
C
Chris Wilson 已提交
2083
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2084 2085
{
	uint32_t seqno;
2086
	int i;
2087

C
Chris Wilson 已提交
2088
	if (list_empty(&ring->request_list))
2089 2090
		return;

C
Chris Wilson 已提交
2091
	WARN_ON(i915_verify_lists(ring->dev));
2092

2093
	seqno = ring->get_seqno(ring, true);
2094

2095
	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
2096 2097 2098
		if (seqno >= ring->sync_seqno[i])
			ring->sync_seqno[i] = 0;

2099
	while (!list_empty(&ring->request_list)) {
2100 2101
		struct drm_i915_gem_request *request;

2102
		request = list_first_entry(&ring->request_list,
2103 2104 2105
					   struct drm_i915_gem_request,
					   list);

2106
		if (!i915_seqno_passed(seqno, request->seqno))
2107 2108
			break;

C
Chris Wilson 已提交
2109
		trace_i915_gem_request_retire(ring, request->seqno);
2110 2111 2112 2113 2114 2115
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
		ring->last_retired_head = request->tail;
2116 2117

		list_del(&request->list);
2118
		i915_gem_request_remove_from_client(request);
2119 2120
		kfree(request);
	}
2121

2122 2123 2124 2125
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
2126
		struct drm_i915_gem_object *obj;
2127

2128
		obj = list_first_entry(&ring->active_list,
2129 2130
				      struct drm_i915_gem_object,
				      ring_list);
2131

2132
		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2133
			break;
2134

2135
		i915_gem_object_move_to_inactive(obj);
2136
	}
2137

C
Chris Wilson 已提交
2138 2139
	if (unlikely(ring->trace_irq_seqno &&
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2140
		ring->irq_put(ring);
C
Chris Wilson 已提交
2141
		ring->trace_irq_seqno = 0;
2142
	}
2143

C
Chris Wilson 已提交
2144
	WARN_ON(i915_verify_lists(ring->dev));
2145 2146
}

2147 2148 2149 2150
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2151
	struct intel_ring_buffer *ring;
2152
	int i;
2153

2154 2155
	for_each_ring(ring, dev_priv, i)
		i915_gem_retire_requests_ring(ring);
2156 2157
}

2158
static void
2159 2160 2161 2162
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;
2163
	struct intel_ring_buffer *ring;
2164 2165
	bool idle;
	int i;
2166 2167 2168 2169 2170

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

2171 2172 2173 2174 2175 2176
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

2177
	i915_gem_retire_requests(dev);
2178

2179 2180 2181 2182
	/* Send a periodic flush down the ring so we don't hold onto GEM
	 * objects indefinitely.
	 */
	idle = true;
2183
	for_each_ring(ring, dev_priv, i) {
2184 2185
		if (ring->gpu_caches_dirty)
			i915_add_request(ring, NULL, NULL);
2186 2187 2188 2189 2190

		idle &= list_empty(&ring->request_list);
	}

	if (!dev_priv->mm.suspended && !idle)
2191
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2192 2193
	if (idle)
		intel_mark_idle(dev);
2194

2195 2196 2197
	mutex_unlock(&dev->struct_mutex);
}

2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
	int ret;

	if (obj->active) {
2209
		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2210 2211
		if (ret)
			return ret;
2212

2213 2214 2215 2216 2217 2218
		i915_gem_retire_requests_ring(obj->ring);
	}

	return 0;
}

2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
	struct intel_ring_buffer *ring = NULL;
2247
	struct timespec timeout_stack, *timeout = NULL;
2248 2249 2250
	u32 seqno = 0;
	int ret = 0;

2251 2252 2253 2254
	if (args->timeout_ns >= 0) {
		timeout_stack = ns_to_timespec(args->timeout_ns);
		timeout = &timeout_stack;
	}
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2266 2267
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2268 2269 2270 2271
	if (ret)
		goto out;

	if (obj->active) {
2272
		seqno = obj->last_read_seqno;
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
		ring = obj->ring;
	}

	if (seqno == 0)
		 goto out;

	/* Do this after OLR check to make sure we make forward progress polling
	 * on this IOCTL with a 0 timeout (like busy ioctl)
	 */
	if (!args->timeout_ns) {
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);

2290 2291 2292 2293 2294
	ret = __wait_seqno(ring, seqno, true, timeout);
	if (timeout) {
		WARN_ON(!timespec_valid(timeout));
		args->timeout_ns = timespec_to_ns(timeout);
	}
2295 2296 2297 2298 2299 2300 2301 2302
	return ret;

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
		     struct intel_ring_buffer *to)
{
	struct intel_ring_buffer *from = obj->ring;
	u32 seqno;
	int ret, idx;

	if (from == NULL || to == from)
		return 0;

2326
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2327
		return i915_gem_object_wait_rendering(obj, false);
2328 2329 2330

	idx = intel_ring_sync_index(from, to);

2331
	seqno = obj->last_read_seqno;
2332 2333 2334
	if (seqno <= from->sync_seqno[idx])
		return 0;

2335 2336 2337
	ret = i915_gem_check_olr(obj->ring, seqno);
	if (ret)
		return ret;
2338

2339
	ret = to->sync_to(to, from, seqno);
2340 2341
	if (!ret)
		from->sync_seqno[idx] = seqno;
2342

2343
	return ret;
2344 2345
}

2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Act a barrier for all accesses through the GTT */
	mb();

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2356 2357 2358
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2370 2371 2372
/**
 * Unbinds an object from the GTT aperture.
 */
2373
int
2374
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2375
{
2376
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2377 2378
	int ret = 0;

2379
	if (obj->gtt_space == NULL)
2380 2381
		return 0;

2382 2383
	if (obj->pin_count)
		return -EBUSY;
2384

2385 2386
	BUG_ON(obj->pages == NULL);

2387
	ret = i915_gem_object_finish_gpu(obj);
2388
	if (ret)
2389 2390 2391 2392 2393 2394
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

2395
	i915_gem_object_finish_gtt(obj);
2396

2397
	/* release the fence reg _after_ flushing */
2398
	ret = i915_gem_object_put_fence(obj);
2399
	if (ret)
2400
		return ret;
2401

C
Chris Wilson 已提交
2402 2403
	trace_i915_gem_object_unbind(obj);

2404 2405
	if (obj->has_global_gtt_mapping)
		i915_gem_gtt_unbind_object(obj);
2406 2407 2408 2409
	if (obj->has_aliasing_ppgtt_mapping) {
		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
		obj->has_aliasing_ppgtt_mapping = 0;
	}
2410
	i915_gem_gtt_finish_object(obj);
2411

C
Chris Wilson 已提交
2412 2413
	list_del(&obj->mm_list);
	list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2414
	/* Avoid an unnecessary call to unbind on rebind. */
2415
	obj->map_and_fenceable = true;
2416

2417 2418 2419
	drm_mm_put_block(obj->gtt_space);
	obj->gtt_space = NULL;
	obj->gtt_offset = 0;
2420

C
Chris Wilson 已提交
2421
	return 0;
2422 2423
}

2424
static int i915_ring_idle(struct intel_ring_buffer *ring)
2425
{
2426
	if (list_empty(&ring->active_list))
2427 2428
		return 0;

2429
	return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
2430 2431
}

2432
int i915_gpu_idle(struct drm_device *dev)
2433 2434
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2435
	struct intel_ring_buffer *ring;
2436
	int ret, i;
2437 2438

	/* Flush everything onto the inactive list. */
2439 2440
	for_each_ring(ring, dev_priv, i) {
		ret = i915_ring_idle(ring);
2441 2442
		if (ret)
			return ret;
2443

2444 2445 2446
		ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
		if (ret)
			return ret;
2447
	}
2448

2449
	return 0;
2450 2451
}

2452 2453
static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
					struct drm_i915_gem_object *obj)
2454 2455 2456 2457
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint64_t val;

2458 2459
	if (obj) {
		u32 size = obj->gtt_space->size;
2460

2461 2462 2463 2464 2465
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
				 0xfffff000) << 32;
		val |= obj->gtt_offset & 0xfffff000;
		val |= (uint64_t)((obj->stride / 128) - 1) <<
			SANDYBRIDGE_FENCE_PITCH_SHIFT;
2466

2467 2468 2469 2470 2471
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
	} else
		val = 0;
2472

2473 2474
	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
	POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2475 2476
}

2477 2478
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
2479 2480 2481 2482
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint64_t val;

2483 2484
	if (obj) {
		u32 size = obj->gtt_space->size;
2485

2486 2487 2488 2489 2490 2491 2492 2493 2494
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
				 0xfffff000) << 32;
		val |= obj->gtt_offset & 0xfffff000;
		val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
	} else
		val = 0;
2495

2496 2497
	I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
	POSTING_READ(FENCE_REG_965_0 + reg * 8);
2498 2499
}

2500 2501
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
2502 2503
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2504
	u32 val;
2505

2506 2507 2508 2509
	if (obj) {
		u32 size = obj->gtt_space->size;
		int pitch_val;
		int tile_width;
2510

2511 2512 2513 2514 2515
		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
		     (size & -size) != size ||
		     (obj->gtt_offset & (size - 1)),
		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     obj->gtt_offset, obj->map_and_fenceable, size);
2516

2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

		val = obj->gtt_offset;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
2542 2543
}

2544 2545
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
2546 2547 2548 2549
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t val;

2550 2551 2552
	if (obj) {
		u32 size = obj->gtt_space->size;
		uint32_t pitch_val;
2553

2554 2555 2556 2557 2558
		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
		     (size & -size) != size ||
		     (obj->gtt_offset & (size - 1)),
		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
		     obj->gtt_offset, size);
2559

2560 2561
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
2562

2563 2564 2565 2566 2567 2568 2569 2570
		val = obj->gtt_offset;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
2571

2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
	switch (INTEL_INFO(dev)->gen) {
	case 7:
	case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
	case 5:
	case 4: i965_write_fence_reg(dev, reg, obj); break;
	case 3: i915_write_fence_reg(dev, reg, obj); break;
	case 2: i830_write_fence_reg(dev, reg, obj); break;
	default: break;
	}
2588 2589
}

2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);

	if (enable) {
		obj->fence_reg = reg;
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
}

2616
static int
C
Chris Wilson 已提交
2617
i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2618
{
2619
	if (obj->last_fenced_seqno) {
2620
		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2621 2622
		if (ret)
			return ret;
2623 2624 2625 2626

		obj->last_fenced_seqno = 0;
	}

2627 2628 2629 2630 2631 2632
	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
		mb();

2633
	obj->fenced_gpu_access = false;
2634 2635 2636 2637 2638 2639
	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
2640
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2641 2642
	int ret;

C
Chris Wilson 已提交
2643
	ret = i915_gem_object_flush_fence(obj);
2644 2645 2646
	if (ret)
		return ret;

2647 2648
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
2649

2650 2651 2652 2653
	i915_gem_object_update_fence(obj,
				     &dev_priv->fence_regs[obj->fence_reg],
				     false);
	i915_gem_object_fence_lost(obj);
2654 2655 2656 2657 2658

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
2659
i915_find_fence_reg(struct drm_device *dev)
2660 2661
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
2662
	struct drm_i915_fence_reg *reg, *avail;
2663
	int i;
2664 2665

	/* First try to find a free reg */
2666
	avail = NULL;
2667 2668 2669
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
2670
			return reg;
2671

2672
		if (!reg->pin_count)
2673
			avail = reg;
2674 2675
	}

2676 2677
	if (avail == NULL)
		return NULL;
2678 2679

	/* None available, try to steal one or wait for a user to finish */
2680
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2681
		if (reg->pin_count)
2682 2683
			continue;

C
Chris Wilson 已提交
2684
		return reg;
2685 2686
	}

C
Chris Wilson 已提交
2687
	return NULL;
2688 2689
}

2690
/**
2691
 * i915_gem_object_get_fence - set up fencing for an object
2692 2693 2694 2695 2696 2697 2698 2699 2700
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
2701 2702
 *
 * For an untiled surface, this removes any existing fence.
2703
 */
2704
int
2705
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2706
{
2707
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
2708
	struct drm_i915_private *dev_priv = dev->dev_private;
2709
	bool enable = obj->tiling_mode != I915_TILING_NONE;
2710
	struct drm_i915_fence_reg *reg;
2711
	int ret;
2712

2713 2714 2715
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
2716
	if (obj->fence_dirty) {
2717 2718 2719 2720
		ret = i915_gem_object_flush_fence(obj);
		if (ret)
			return ret;
	}
2721

2722
	/* Just update our place in the LRU if our fence is getting reused. */
2723 2724
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
2725
		if (!obj->fence_dirty) {
2726 2727 2728 2729 2730 2731 2732 2733
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
		reg = i915_find_fence_reg(dev);
		if (reg == NULL)
			return -EDEADLK;
2734

2735 2736 2737 2738
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

			ret = i915_gem_object_flush_fence(old);
2739 2740 2741
			if (ret)
				return ret;

2742
			i915_gem_object_fence_lost(old);
2743
		}
2744
	} else
2745 2746
		return 0;

2747
	i915_gem_object_update_fence(obj, reg, enable);
2748
	obj->fence_dirty = false;
2749

2750
	return 0;
2751 2752
}

2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
static bool i915_gem_valid_gtt_space(struct drm_device *dev,
				     struct drm_mm_node *gtt_space,
				     unsigned long cache_level)
{
	struct drm_mm_node *other;

	/* On non-LLC machines we have to be careful when putting differing
	 * types of snoopable memory together to avoid the prefetcher
	 * crossing memory domains and dieing.
	 */
	if (HAS_LLC(dev))
		return true;

	if (gtt_space == NULL)
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

static void i915_gem_verify_gtt(struct drm_device *dev)
{
#if WATCH_GTT
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj;
	int err = 0;

	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
		if (obj->gtt_space == NULL) {
			printk(KERN_ERR "object found on GTT list with no space reserved\n");
			err++;
			continue;
		}

		if (obj->cache_level != obj->gtt_space->color) {
			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
			       obj->gtt_space->start,
			       obj->gtt_space->start + obj->gtt_space->size,
			       obj->cache_level,
			       obj->gtt_space->color);
			err++;
			continue;
		}

		if (!i915_gem_valid_gtt_space(dev,
					      obj->gtt_space,
					      obj->cache_level)) {
			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
			       obj->gtt_space->start,
			       obj->gtt_space->start + obj->gtt_space->size,
			       obj->cache_level);
			err++;
			continue;
		}
	}

	WARN_ON(err);
#endif
}

2823 2824 2825 2826
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
2827
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2828
			    unsigned alignment,
2829 2830
			    bool map_and_fenceable,
			    bool nonblocking)
2831
{
2832
	struct drm_device *dev = obj->base.dev;
2833 2834
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_mm_node *free_space;
2835
	u32 size, fence_size, fence_alignment, unfenced_alignment;
2836
	bool mappable, fenceable;
2837
	int ret;
2838

2839
	if (obj->madv != I915_MADV_WILLNEED) {
2840 2841 2842 2843
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
						     obj->tiling_mode);
	unfenced_alignment =
		i915_gem_get_unfenced_gtt_alignment(dev,
						    obj->base.size,
						    obj->tiling_mode);
2854

2855
	if (alignment == 0)
2856 2857
		alignment = map_and_fenceable ? fence_alignment :
						unfenced_alignment;
2858
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2859 2860 2861 2862
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2863
	size = map_and_fenceable ? fence_size : obj->base.size;
2864

2865 2866 2867
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2868
	if (obj->base.size >
2869
	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2870 2871 2872 2873
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

C
Chris Wilson 已提交
2874 2875 2876 2877
	ret = i915_gem_object_get_pages_gtt(obj);
	if (ret)
		return ret;

2878
 search_free:
2879
	if (map_and_fenceable)
2880
		free_space =
2881 2882 2883 2884
			drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
							  size, alignment, obj->cache_level,
							  0, dev_priv->mm.gtt_mappable_end,
							  false);
2885
	else
2886 2887 2888
		free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
						      size, alignment, obj->cache_level,
						      false);
2889 2890

	if (free_space != NULL) {
2891
		if (map_and_fenceable)
2892
			obj->gtt_space =
2893
				drm_mm_get_block_range_generic(free_space,
2894
							       size, alignment, obj->cache_level,
2895
							       0, dev_priv->mm.gtt_mappable_end,
2896
							       false);
2897
		else
2898
			obj->gtt_space =
2899 2900 2901
				drm_mm_get_block_generic(free_space,
							 size, alignment, obj->cache_level,
							 false);
2902
	}
2903
	if (obj->gtt_space == NULL) {
2904
		ret = i915_gem_evict_something(dev, size, alignment,
2905
					       obj->cache_level,
2906 2907
					       map_and_fenceable,
					       nonblocking);
2908
		if (ret)
2909
			return ret;
2910

2911 2912
		goto search_free;
	}
2913 2914 2915 2916 2917 2918 2919
	if (WARN_ON(!i915_gem_valid_gtt_space(dev,
					      obj->gtt_space,
					      obj->cache_level))) {
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
		return -EINVAL;
	}
2920 2921


2922
	ret = i915_gem_gtt_prepare_object(obj);
2923
	if (ret) {
2924 2925
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
C
Chris Wilson 已提交
2926
		return ret;
2927 2928
	}

2929 2930
	if (!dev_priv->mm.aliasing_ppgtt)
		i915_gem_gtt_bind_object(obj, obj->cache_level);
2931

C
Chris Wilson 已提交
2932
	list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2933
	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2934

2935
	obj->gtt_offset = obj->gtt_space->start;
C
Chris Wilson 已提交
2936

2937
	fenceable =
2938
		obj->gtt_space->size == fence_size &&
2939
		(obj->gtt_space->start & (fence_alignment - 1)) == 0;
2940

2941
	mappable =
2942
		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2943

2944
	obj->map_and_fenceable = mappable && fenceable;
2945

C
Chris Wilson 已提交
2946
	trace_i915_gem_object_bind(obj, map_and_fenceable);
2947
	i915_gem_verify_gtt(dev);
2948 2949 2950 2951
	return 0;
}

void
2952
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2953 2954 2955 2956 2957
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2958
	if (obj->pages == NULL)
2959 2960
		return;

2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
	if (obj->cache_level != I915_CACHE_NONE)
		return;

C
Chris Wilson 已提交
2972
	trace_i915_gem_object_clflush(obj);
2973

2974
	drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2975 2976
}

2977 2978
/** Flushes the GTT write domain for the object if it's dirty. */
static void
2979
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2980
{
C
Chris Wilson 已提交
2981 2982
	uint32_t old_write_domain;

2983
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2984 2985
		return;

2986
	/* No actual flushing is required for the GTT write domain.  Writes
2987 2988
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
2989 2990 2991 2992
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
2993
	 */
2994 2995
	wmb();

2996 2997
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2998 2999

	trace_i915_gem_object_change_domain(obj,
3000
					    obj->base.read_domains,
C
Chris Wilson 已提交
3001
					    old_write_domain);
3002 3003 3004 3005
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3006
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3007
{
C
Chris Wilson 已提交
3008
	uint32_t old_write_domain;
3009

3010
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3011 3012 3013
		return;

	i915_gem_clflush_object(obj);
3014
	intel_gtt_chipset_flush();
3015 3016
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3017 3018

	trace_i915_gem_object_change_domain(obj,
3019
					    obj->base.read_domains,
C
Chris Wilson 已提交
3020
					    old_write_domain);
3021 3022
}

3023 3024 3025 3026 3027 3028
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3029
int
3030
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3031
{
3032
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
C
Chris Wilson 已提交
3033
	uint32_t old_write_domain, old_read_domains;
3034
	int ret;
3035

3036
	/* Not valid to be called on unbound objects. */
3037
	if (obj->gtt_space == NULL)
3038 3039
		return -EINVAL;

3040 3041 3042
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3043 3044 3045
	ret = i915_gem_object_wait_rendering(obj, !write);
	if (ret)
		return ret;
3046

3047
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3048

3049 3050
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3051

3052 3053 3054
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3055 3056
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3057
	if (write) {
3058 3059 3060
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3061 3062
	}

C
Chris Wilson 已提交
3063 3064 3065 3066
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3067 3068 3069 3070
	/* And bump the LRU for this access */
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);

3071 3072 3073
	return 0;
}

3074 3075 3076
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3077 3078
	struct drm_device *dev = obj->base.dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

	if (obj->pin_count) {
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

3089 3090 3091 3092 3093 3094
	if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			return ret;
	}

3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
	if (obj->gtt_space) {
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
3106
		if (INTEL_INFO(dev)->gen < 6) {
3107 3108 3109 3110 3111
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

3112 3113
		if (obj->has_global_gtt_mapping)
			i915_gem_gtt_bind_object(obj, cache_level);
3114 3115 3116
		if (obj->has_aliasing_ppgtt_mapping)
			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
					       obj, cache_level);
3117 3118

		obj->gtt_space->color = cache_level;
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
	}

	if (cache_level == I915_CACHE_NONE) {
		u32 old_read_domains, old_write_domain;

		/* If we're coming from LLC cached, then we haven't
		 * actually been tracking whether the data is in the
		 * CPU cache or not, since we only allow one bit set
		 * in obj->write_domain and have been skipping the clflushes.
		 * Just set it to the CPU cache for now.
		 */
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);

		old_read_domains = obj->base.read_domains;
		old_write_domain = obj->base.write_domain;

		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;

		trace_i915_gem_object_change_domain(obj,
						    old_read_domains,
						    old_write_domain);
	}

	obj->cache_level = cache_level;
3145
	i915_gem_verify_gtt(dev);
3146 3147 3148
	return 0;
}

3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
int i915_gem_get_cacheing_ioctl(struct drm_device *dev, void *data,
				struct drm_file *file)
{
	struct drm_i915_gem_cacheing *args = data;
	struct drm_i915_gem_object *obj;
	int ret;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	args->cacheing = obj->cache_level != I915_CACHE_NONE;

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

int i915_gem_set_cacheing_ioctl(struct drm_device *dev, void *data,
				struct drm_file *file)
{
	struct drm_i915_gem_cacheing *args = data;
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	switch (args->cacheing) {
	case I915_CACHEING_NONE:
		level = I915_CACHE_NONE;
		break;
	case I915_CACHEING_CACHED:
		level = I915_CACHE_LLC;
		break;
	default:
		return -EINVAL;
	}

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3211
/*
3212 3213 3214
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3215 3216
 */
int
3217 3218
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3219
				     struct intel_ring_buffer *pipelined)
3220
{
3221
	u32 old_read_domains, old_write_domain;
3222 3223
	int ret;

3224
	if (pipelined != obj->ring) {
3225 3226
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
3227 3228 3229
			return ret;
	}

3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
	if (ret)
		return ret;

3243 3244 3245 3246
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3247
	ret = i915_gem_object_pin(obj, alignment, true, false);
3248 3249 3250
	if (ret)
		return ret;

3251 3252
	i915_gem_object_flush_cpu_write_domain(obj);

3253
	old_write_domain = obj->base.write_domain;
3254
	old_read_domains = obj->base.read_domains;
3255 3256 3257 3258

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3259
	obj->base.write_domain = 0;
3260
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3261 3262 3263

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3264
					    old_write_domain);
3265 3266 3267 3268

	return 0;
}

3269
int
3270
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3271
{
3272 3273
	int ret;

3274
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3275 3276
		return 0;

3277
	ret = i915_gem_object_wait_rendering(obj, false);
3278 3279 3280
	if (ret)
		return ret;

3281 3282
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3283
	return 0;
3284 3285
}

3286 3287 3288 3289 3290 3291
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3292
int
3293
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3294
{
C
Chris Wilson 已提交
3295
	uint32_t old_write_domain, old_read_domains;
3296 3297
	int ret;

3298 3299 3300
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3301 3302 3303
	ret = i915_gem_object_wait_rendering(obj, !write);
	if (ret)
		return ret;
3304

3305
	i915_gem_object_flush_gtt_write_domain(obj);
3306

3307 3308
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3309

3310
	/* Flush the CPU cache if it's still invalid. */
3311
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3312 3313
		i915_gem_clflush_object(obj);

3314
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3315 3316 3317 3318 3319
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3320
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3321 3322 3323 3324 3325

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3326 3327
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3328
	}
3329

C
Chris Wilson 已提交
3330 3331 3332 3333
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3334 3335 3336
	return 0;
}

3337 3338 3339
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3340 3341 3342 3343
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3344 3345 3346
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3347
static int
3348
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3349
{
3350 3351
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3352
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3353 3354 3355 3356
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3357

3358 3359 3360
	if (atomic_read(&dev_priv->mm.wedged))
		return -EIO;

3361
	spin_lock(&file_priv->mm.lock);
3362
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3363 3364
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3365

3366 3367
		ring = request->ring;
		seqno = request->seqno;
3368
	}
3369
	spin_unlock(&file_priv->mm.lock);
3370

3371 3372
	if (seqno == 0)
		return 0;
3373

3374
	ret = __wait_seqno(ring, seqno, true, NULL);
3375 3376
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3377 3378 3379 3380

	return ret;
}

3381
int
3382 3383
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    uint32_t alignment,
3384 3385
		    bool map_and_fenceable,
		    bool nonblocking)
3386 3387 3388
{
	int ret;

3389
	BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3390

3391 3392 3393 3394
	if (obj->gtt_space != NULL) {
		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
		    (map_and_fenceable && !obj->map_and_fenceable)) {
			WARN(obj->pin_count,
3395
			     "bo is already pinned with incorrect alignment:"
3396 3397
			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
			     " obj->map_and_fenceable=%d\n",
3398
			     obj->gtt_offset, alignment,
3399
			     map_and_fenceable,
3400
			     obj->map_and_fenceable);
3401 3402 3403 3404 3405 3406
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

3407
	if (obj->gtt_space == NULL) {
3408
		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3409 3410
						  map_and_fenceable,
						  nonblocking);
3411
		if (ret)
3412
			return ret;
3413
	}
J
Jesse Barnes 已提交
3414

3415 3416 3417
	if (!obj->has_global_gtt_mapping && map_and_fenceable)
		i915_gem_gtt_bind_object(obj, obj->cache_level);

3418
	obj->pin_count++;
3419
	obj->pin_mappable |= map_and_fenceable;
3420 3421 3422 3423 3424

	return 0;
}

void
3425
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3426
{
3427 3428
	BUG_ON(obj->pin_count == 0);
	BUG_ON(obj->gtt_space == NULL);
3429

3430
	if (--obj->pin_count == 0)
3431
		obj->pin_mappable = false;
3432 3433 3434 3435
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3436
		   struct drm_file *file)
3437 3438
{
	struct drm_i915_gem_pin *args = data;
3439
	struct drm_i915_gem_object *obj;
3440 3441
	int ret;

3442 3443 3444
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3445

3446
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3447
	if (&obj->base == NULL) {
3448 3449
		ret = -ENOENT;
		goto unlock;
3450 3451
	}

3452
	if (obj->madv != I915_MADV_WILLNEED) {
C
Chris Wilson 已提交
3453
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3454 3455
		ret = -EINVAL;
		goto out;
3456 3457
	}

3458
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
J
Jesse Barnes 已提交
3459 3460
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3461 3462
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3463 3464
	}

3465 3466 3467
	obj->user_pin_count++;
	obj->pin_filp = file;
	if (obj->user_pin_count == 1) {
3468
		ret = i915_gem_object_pin(obj, args->alignment, true, false);
3469 3470
		if (ret)
			goto out;
3471 3472 3473 3474 3475
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
3476
	i915_gem_object_flush_cpu_write_domain(obj);
3477
	args->offset = obj->gtt_offset;
3478
out:
3479
	drm_gem_object_unreference(&obj->base);
3480
unlock:
3481
	mutex_unlock(&dev->struct_mutex);
3482
	return ret;
3483 3484 3485 3486
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3487
		     struct drm_file *file)
3488 3489
{
	struct drm_i915_gem_pin *args = data;
3490
	struct drm_i915_gem_object *obj;
3491
	int ret;
3492

3493 3494 3495
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3496

3497
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3498
	if (&obj->base == NULL) {
3499 3500
		ret = -ENOENT;
		goto unlock;
3501
	}
3502

3503
	if (obj->pin_filp != file) {
J
Jesse Barnes 已提交
3504 3505
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3506 3507
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3508
	}
3509 3510 3511
	obj->user_pin_count--;
	if (obj->user_pin_count == 0) {
		obj->pin_filp = NULL;
J
Jesse Barnes 已提交
3512 3513
		i915_gem_object_unpin(obj);
	}
3514

3515
out:
3516
	drm_gem_object_unreference(&obj->base);
3517
unlock:
3518
	mutex_unlock(&dev->struct_mutex);
3519
	return ret;
3520 3521 3522 3523
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3524
		    struct drm_file *file)
3525 3526
{
	struct drm_i915_gem_busy *args = data;
3527
	struct drm_i915_gem_object *obj;
3528 3529
	int ret;

3530
	ret = i915_mutex_lock_interruptible(dev);
3531
	if (ret)
3532
		return ret;
3533

3534
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3535
	if (&obj->base == NULL) {
3536 3537
		ret = -ENOENT;
		goto unlock;
3538
	}
3539

3540 3541 3542 3543
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
3544
	 */
3545
	ret = i915_gem_object_flush_active(obj);
3546

3547
	args->busy = obj->active;
3548 3549 3550 3551
	if (obj->ring) {
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
		args->busy |= intel_ring_flag(obj->ring) << 16;
	}
3552

3553
	drm_gem_object_unreference(&obj->base);
3554
unlock:
3555
	mutex_unlock(&dev->struct_mutex);
3556
	return ret;
3557 3558 3559 3560 3561 3562
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3563
	return i915_gem_ring_throttle(dev, file_priv);
3564 3565
}

3566 3567 3568 3569 3570
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
3571
	struct drm_i915_gem_object *obj;
3572
	int ret;
3573 3574 3575 3576 3577 3578 3579 3580 3581

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3582 3583 3584 3585
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3586
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3587
	if (&obj->base == NULL) {
3588 3589
		ret = -ENOENT;
		goto unlock;
3590 3591
	}

3592
	if (obj->pin_count) {
3593 3594
		ret = -EINVAL;
		goto out;
3595 3596
	}

3597 3598
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3599

C
Chris Wilson 已提交
3600 3601
	/* if the object is no longer attached, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3602 3603
		i915_gem_object_truncate(obj);

3604
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3605

3606
out:
3607
	drm_gem_object_unreference(&obj->base);
3608
unlock:
3609
	mutex_unlock(&dev->struct_mutex);
3610
	return ret;
3611 3612
}

3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
void i915_gem_object_init(struct drm_i915_gem_object *obj)
{
	obj->base.driver_private = NULL;

	INIT_LIST_HEAD(&obj->mm_list);
	INIT_LIST_HEAD(&obj->gtt_list);
	INIT_LIST_HEAD(&obj->ring_list);
	INIT_LIST_HEAD(&obj->exec_list);

	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;
	/* Avoid an unnecessary call to unbind on the first bind. */
	obj->map_and_fenceable = true;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

3630 3631
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
3632
{
3633
	struct drm_i915_gem_object *obj;
3634
	struct address_space *mapping;
3635
	u32 mask;
3636

3637 3638 3639
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
3640

3641 3642 3643 3644
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
3645

3646 3647 3648 3649 3650 3651 3652
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

3653
	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3654
	mapping_set_gfp_mask(mapping, mask);
3655

3656
	i915_gem_object_init(obj);
3657

3658 3659
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3660

3661 3662
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

3678
	return obj;
3679 3680 3681 3682 3683
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
3684

3685 3686 3687
	return 0;
}

3688
void i915_gem_free_object(struct drm_gem_object *gem_obj)
3689
{
3690
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3691
	struct drm_device *dev = obj->base.dev;
3692
	drm_i915_private_t *dev_priv = dev->dev_private;
3693

3694 3695
	trace_i915_gem_object_destroy(obj);

3696 3697 3698
	if (gem_obj->import_attach)
		drm_prime_gem_destroy(gem_obj, obj->sg_table);

3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
	if (obj->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

	obj->pin_count = 0;
	if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
		bool was_interruptible;

		was_interruptible = dev_priv->mm.interruptible;
		dev_priv->mm.interruptible = false;

		WARN_ON(i915_gem_object_unbind(obj));

		dev_priv->mm.interruptible = was_interruptible;
	}

C
Chris Wilson 已提交
3714
	i915_gem_object_put_pages_gtt(obj);
3715
	i915_gem_object_free_mmap_offset(obj);
3716

3717 3718
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3719

3720 3721
	kfree(obj->bit_17);
	kfree(obj);
3722 3723
}

3724 3725 3726 3727 3728
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3729

3730
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
3731

3732
	if (dev_priv->mm.suspended) {
3733 3734
		mutex_unlock(&dev->struct_mutex);
		return 0;
3735 3736
	}

3737
	ret = i915_gpu_idle(dev);
3738 3739
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
3740
		return ret;
3741
	}
3742
	i915_gem_retire_requests(dev);
3743

3744
	/* Under UMS, be paranoid and evict. */
3745
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
C
Chris Wilson 已提交
3746
		i915_gem_evict_everything(dev);
3747

3748 3749
	i915_gem_reset_fences(dev);

3750 3751 3752 3753 3754
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
3755
	del_timer_sync(&dev_priv->hangcheck_timer);
3756 3757

	i915_kernel_lost_context(dev);
3758
	i915_gem_cleanup_ringbuffer(dev);
3759

3760 3761
	mutex_unlock(&dev->struct_mutex);

3762 3763 3764
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

3765 3766 3767
	return 0;
}

B
Ben Widawsky 已提交
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
void i915_gem_l3_remap(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 misccpctl;
	int i;

	if (!IS_IVYBRIDGE(dev))
		return;

	if (!dev_priv->mm.l3_remap_info)
		return;

	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	POSTING_READ(GEN7_MISCCPCTL);

	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
		u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
		if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
			DRM_DEBUG("0x%x was already programmed to %x\n",
				  GEN7_L3LOG_BASE + i, remap);
		if (remap && !dev_priv->mm.l3_remap_info[i/4])
			DRM_DEBUG_DRIVER("Clearing remapped register\n");
		I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
	}

	/* Make sure all the writes land before disabling dop clock gating */
	POSTING_READ(GEN7_L3LOG_BASE);

	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

3800 3801 3802 3803
void i915_gem_init_swizzling(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

3804
	if (INTEL_INFO(dev)->gen < 5 ||
3805 3806 3807 3808 3809 3810
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

3811 3812 3813
	if (IS_GEN5(dev))
		return;

3814 3815
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
3816
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3817
	else
3818
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3819
}
D
Daniel Vetter 已提交
3820 3821 3822 3823 3824 3825

void i915_gem_init_ppgtt(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t pd_offset;
	struct intel_ring_buffer *ring;
3826 3827 3828
	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
	uint32_t __iomem *pd_addr;
	uint32_t pd_entry;
D
Daniel Vetter 已提交
3829 3830 3831 3832 3833
	int i;

	if (!dev_priv->mm.aliasing_ppgtt)
		return;

3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851

	pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
	for (i = 0; i < ppgtt->num_pd_entries; i++) {
		dma_addr_t pt_addr;

		if (dev_priv->mm.gtt->needs_dmar)
			pt_addr = ppgtt->pt_dma_addr[i];
		else
			pt_addr = page_to_phys(ppgtt->pt_pages[i]);

		pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
		pd_entry |= GEN6_PDE_VALID;

		writel(pd_entry, pd_addr + i);
	}
	readl(pd_addr);

	pd_offset = ppgtt->pd_offset;
D
Daniel Vetter 已提交
3852 3853 3854 3855
	pd_offset /= 64; /* in cachelines, */
	pd_offset <<= 16;

	if (INTEL_INFO(dev)->gen == 6) {
3856 3857 3858 3859
		uint32_t ecochk, gab_ctl, ecobits;

		ecobits = I915_READ(GAC_ECO_BITS); 
		I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3860 3861 3862 3863 3864

		gab_ctl = I915_READ(GAB_CTL);
		I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

		ecochk = I915_READ(GAM_ECOCHK);
D
Daniel Vetter 已提交
3865 3866
		I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
				       ECOCHK_PPGTT_CACHE64B);
3867
		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
D
Daniel Vetter 已提交
3868 3869 3870 3871 3872
	} else if (INTEL_INFO(dev)->gen >= 7) {
		I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
		/* GFX_MODE is per-ring on gen7+ */
	}

3873
	for_each_ring(ring, dev_priv, i) {
D
Daniel Vetter 已提交
3874 3875
		if (INTEL_INFO(dev)->gen >= 7)
			I915_WRITE(RING_MODE_GEN7(ring),
3876
				   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
D
Daniel Vetter 已提交
3877 3878 3879 3880 3881 3882

		I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
		I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
	}
}

3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

3899
int
3900
i915_gem_init_hw(struct drm_device *dev)
3901 3902 3903
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3904

D
Daniel Vetter 已提交
3905 3906 3907
	if (!intel_enable_gtt())
		return -EIO;

B
Ben Widawsky 已提交
3908 3909
	i915_gem_l3_remap(dev);

3910 3911
	i915_gem_init_swizzling(dev);

3912
	ret = intel_init_render_ring_buffer(dev);
3913
	if (ret)
3914
		return ret;
3915 3916

	if (HAS_BSD(dev)) {
3917
		ret = intel_init_bsd_ring_buffer(dev);
3918 3919
		if (ret)
			goto cleanup_render_ring;
3920
	}
3921

3922
	if (intel_enable_blt(dev)) {
3923 3924 3925 3926 3927
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

3928 3929
	dev_priv->next_seqno = 1;

3930 3931 3932 3933 3934
	/*
	 * XXX: There was some w/a described somewhere suggesting loading
	 * contexts before PPGTT.
	 */
	i915_gem_context_init(dev);
D
Daniel Vetter 已提交
3935 3936
	i915_gem_init_ppgtt(dev);

3937 3938
	return 0;

3939
cleanup_bsd_ring:
3940
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3941
cleanup_render_ring:
3942
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3943 3944 3945
	return ret;
}

3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
static bool
intel_enable_ppgtt(struct drm_device *dev)
{
	if (i915_enable_ppgtt >= 0)
		return i915_enable_ppgtt;

#ifdef CONFIG_INTEL_IOMMU
	/* Disable ppgtt on SNB if VT-d is on. */
	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long gtt_size, mappable_size;
	int ret;

	gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
	mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;

	mutex_lock(&dev->struct_mutex);
	if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
		/* PPGTT pdes are stolen from global gtt ptes, so shrink the
		 * aperture accordingly when using aliasing ppgtt. */
		gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;

		i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);

		ret = i915_gem_init_aliasing_ppgtt(dev);
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	} else {
		/* Let GEM Manage all of the aperture.
		 *
		 * However, leave one page at the end still bound to the scratch
		 * page.  There are a number of places where the hardware
		 * apparently prefetches past the end of the object, and we've
		 * seen multiple hangs with the GPU head pointer stuck in a
		 * batchbuffer bound at the last page of the aperture.  One page
		 * should be enough to keep any prefetching inside of the
		 * aperture.
		 */
		i915_gem_init_global_gtt(dev, 0, mappable_size,
					 gtt_size);
	}

	ret = i915_gem_init_hw(dev);
	mutex_unlock(&dev->struct_mutex);
	if (ret) {
		i915_gem_cleanup_aliasing_ppgtt(dev);
		return ret;
	}

4005 4006 4007
	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->dri1.allow_batchbuffer = 1;
4008 4009 4010
	return 0;
}

4011 4012 4013 4014
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
4015
	struct intel_ring_buffer *ring;
4016
	int i;
4017

4018 4019
	for_each_ring(ring, dev_priv, i)
		intel_cleanup_ring_buffer(ring);
4020 4021
}

4022 4023 4024 4025 4026
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
4027
	int ret;
4028

J
Jesse Barnes 已提交
4029 4030 4031
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4032
	if (atomic_read(&dev_priv->mm.wedged)) {
4033
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4034
		atomic_set(&dev_priv->mm.wedged, 0);
4035 4036 4037
	}

	mutex_lock(&dev->struct_mutex);
4038 4039
	dev_priv->mm.suspended = 0;

4040
	ret = i915_gem_init_hw(dev);
4041 4042
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4043
		return ret;
4044
	}
4045

4046
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
4047 4048
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
	mutex_unlock(&dev->struct_mutex);
4049

4050 4051 4052
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
4053

4054
	return 0;
4055 4056 4057 4058 4059 4060 4061 4062

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
4063 4064 4065 4066 4067 4068
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
4069 4070 4071
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4072
	drm_irq_uninstall(dev);
4073
	return i915_gem_idle(dev);
4074 4075 4076 4077 4078 4079 4080
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4081 4082 4083
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4084 4085 4086
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4087 4088
}

4089 4090 4091 4092 4093 4094 4095
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

4096 4097 4098
void
i915_gem_load(struct drm_device *dev)
{
4099
	int i;
4100 4101
	drm_i915_private_t *dev_priv = dev->dev_private;

4102
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
4103
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
C
Chris Wilson 已提交
4104 4105
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4106
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4107 4108
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
4109
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4110
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4111 4112
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4113
	init_completion(&dev_priv->error_completion);
4114

4115 4116
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
4117 4118
		I915_WRITE(MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4119 4120
	}

4121 4122
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4123
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4124 4125
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4126

4127
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4128 4129 4130 4131
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4132
	/* Initialize fence registers to zero */
4133
	i915_gem_reset_fences(dev);
4134

4135
	i915_gem_detect_bit_6_swizzle(dev);
4136
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4137

4138 4139
	dev_priv->mm.interruptible = true;

4140 4141 4142
	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.inactive_shrinker);
4143
}
4144 4145 4146 4147 4148

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
4149 4150
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
4151 4152 4153 4154 4155 4156 4157 4158
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4159
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4160 4161 4162 4163 4164
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

4165
	phys_obj->handle = drm_pci_alloc(dev, size, align);
4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
4178
	kfree(phys_obj);
4179 4180 4181
	return ret;
}

4182
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4207
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4208 4209 4210 4211
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
4212
				 struct drm_i915_gem_object *obj)
4213
{
4214
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4215
	char *vaddr;
4216 4217 4218
	int i;
	int page_count;

4219
	if (!obj->phys_obj)
4220
		return;
4221
	vaddr = obj->phys_obj->handle->vaddr;
4222

4223
	page_count = obj->base.size / PAGE_SIZE;
4224
	for (i = 0; i < page_count; i++) {
4225
		struct page *page = shmem_read_mapping_page(mapping, i);
4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236
		if (!IS_ERR(page)) {
			char *dst = kmap_atomic(page);
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
			kunmap_atomic(dst);

			drm_clflush_pages(&page, 1);

			set_page_dirty(page);
			mark_page_accessed(page);
			page_cache_release(page);
		}
4237
	}
4238
	intel_gtt_chipset_flush();
4239

4240 4241
	obj->phys_obj->cur_obj = NULL;
	obj->phys_obj = NULL;
4242 4243 4244 4245
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
4246
			    struct drm_i915_gem_object *obj,
4247 4248
			    int id,
			    int align)
4249
{
4250
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4251 4252 4253 4254 4255 4256 4257 4258
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4259 4260
	if (obj->phys_obj) {
		if (obj->phys_obj->id == id)
4261 4262 4263 4264 4265 4266 4267
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
4268
						obj->base.size, align);
4269
		if (ret) {
4270 4271
			DRM_ERROR("failed to init phys object %d size: %zu\n",
				  id, obj->base.size);
4272
			return ret;
4273 4274 4275 4276
		}
	}

	/* bind to the object */
4277 4278
	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj->phys_obj->cur_obj = obj;
4279

4280
	page_count = obj->base.size / PAGE_SIZE;
4281 4282

	for (i = 0; i < page_count; i++) {
4283 4284 4285
		struct page *page;
		char *dst, *src;

4286
		page = shmem_read_mapping_page(mapping, i);
4287 4288
		if (IS_ERR(page))
			return PTR_ERR(page);
4289

4290
		src = kmap_atomic(page);
4291
		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4292
		memcpy(dst, src, PAGE_SIZE);
P
Peter Zijlstra 已提交
4293
		kunmap_atomic(src);
4294

4295 4296 4297
		mark_page_accessed(page);
		page_cache_release(page);
	}
4298

4299 4300 4301 4302
	return 0;
}

static int
4303 4304
i915_gem_phys_pwrite(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
4305 4306 4307
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4308
	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4309
	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4310

4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}
4324

4325
	intel_gtt_chipset_flush();
4326 4327
	return 0;
}
4328

4329
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4330
{
4331
	struct drm_i915_file_private *file_priv = file->driver_priv;
4332 4333 4334 4335 4336

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4337
	spin_lock(&file_priv->mm.lock);
4338 4339 4340 4341 4342 4343 4344 4345 4346
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4347
	spin_unlock(&file_priv->mm.lock);
4348
}
4349 4350

static int
4351
i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4352
{
4353 4354 4355 4356 4357
	struct drm_i915_private *dev_priv =
		container_of(shrinker,
			     struct drm_i915_private,
			     mm.inactive_shrinker);
	struct drm_device *dev = dev_priv->dev;
C
Chris Wilson 已提交
4358
	struct drm_i915_gem_object *obj;
4359
	int nr_to_scan = sc->nr_to_scan;
4360 4361 4362
	int cnt;

	if (!mutex_trylock(&dev->struct_mutex))
4363
		return 0;
4364

C
Chris Wilson 已提交
4365 4366 4367 4368
	if (nr_to_scan) {
		nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
		if (nr_to_scan > 0)
			i915_gem_shrink_all(dev_priv);
4369 4370
	}

4371
	cnt = 0;
C
Chris Wilson 已提交
4372 4373 4374 4375 4376
	list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
		cnt += obj->base.size >> PAGE_SHIFT;
	list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
		if (obj->pin_count == 0)
			cnt += obj->base.size >> PAGE_SHIFT;
4377 4378

	mutex_unlock(&dev->struct_mutex);
C
Chris Wilson 已提交
4379
	return cnt;
4380
}