i915_gem.c 104.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/shmem_fs.h>
35
#include <linux/slab.h>
36
#include <linux/swap.h>
J
Jesse Barnes 已提交
37
#include <linux/pci.h>
38
#include <linux/dma-buf.h>
39

40
static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
41 42
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43 44 45
static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
						    unsigned alignment,
						    bool map_and_fenceable);
46 47
static int i915_gem_phys_pwrite(struct drm_device *dev,
				struct drm_i915_gem_object *obj,
48
				struct drm_i915_gem_pwrite *args,
49
				struct drm_file *file);
50

51 52 53 54 55 56
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

57
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
58
				    struct shrink_control *sc);
59
static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
60

61 62 63 64 65 66 67 68
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
69
	obj->fence_dirty = false;
70 71 72
	obj->fence_reg = I915_FENCE_REG_NONE;
}

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

88 89
static int
i915_gem_wait_for_error(struct drm_device *dev)
90 91 92 93 94 95 96 97 98 99 100 101 102
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	ret = wait_for_completion_interruptible(x);
	if (ret)
		return ret;

103 104 105 106 107 108 109 110 111 112 113
	if (atomic_read(&dev_priv->mm.wedged)) {
		/* GPU is hung, bump the completion count to account for
		 * the token we just consumed so that we never hit zero and
		 * end up waiting upon a subsequent completion event that
		 * will never happen.
		 */
		spin_lock_irqsave(&x->wait.lock, flags);
		x->done++;
		spin_unlock_irqrestore(&x->wait.lock, flags);
	}
	return 0;
114 115
}

116
int i915_mutex_lock_interruptible(struct drm_device *dev)
117 118 119
{
	int ret;

120
	ret = i915_gem_wait_for_error(dev);
121 122 123 124 125 126 127
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

128
	WARN_ON(i915_verify_lists(dev));
129 130
	return 0;
}
131

132
static inline bool
133
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
134
{
135
	return !obj->active;
136 137
}

J
Jesse Barnes 已提交
138 139
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
140
		    struct drm_file *file)
J
Jesse Barnes 已提交
141 142
{
	struct drm_i915_gem_init *args = data;
143

144 145 146
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return -ENODEV;

147 148 149
	if (args->gtt_start >= args->gtt_end ||
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
		return -EINVAL;
J
Jesse Barnes 已提交
150

151 152 153 154
	/* GEM with user mode setting was never supported on ilk and later. */
	if (INTEL_INFO(dev)->gen >= 5)
		return -ENODEV;

J
Jesse Barnes 已提交
155
	mutex_lock(&dev->struct_mutex);
156 157
	i915_gem_init_global_gtt(dev, args->gtt_start,
				 args->gtt_end, args->gtt_end);
158 159
	mutex_unlock(&dev->struct_mutex);

160
	return 0;
161 162
}

163 164
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
165
			    struct drm_file *file)
166
{
167
	struct drm_i915_private *dev_priv = dev->dev_private;
168
	struct drm_i915_gem_get_aperture *args = data;
169 170
	struct drm_i915_gem_object *obj;
	size_t pinned;
171

172
	pinned = 0;
173
	mutex_lock(&dev->struct_mutex);
174 175 176
	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
		if (obj->pin_count)
			pinned += obj->gtt_space->size;
177
	mutex_unlock(&dev->struct_mutex);
178

179
	args->aper_size = dev_priv->mm.gtt_total;
180
	args->aper_available_size = args->aper_size - pinned;
181

182 183 184
	return 0;
}

185 186 187 188 189
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
190
{
191
	struct drm_i915_gem_object *obj;
192 193
	int ret;
	u32 handle;
194

195
	size = roundup(size, PAGE_SIZE);
196 197
	if (size == 0)
		return -EINVAL;
198 199

	/* Allocate the new object */
200
	obj = i915_gem_alloc_object(dev, size);
201 202 203
	if (obj == NULL)
		return -ENOMEM;

204
	ret = drm_gem_handle_create(file, &obj->base, &handle);
205
	if (ret) {
206 207
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
208
		kfree(obj);
209
		return ret;
210
	}
211

212
	/* drop reference from allocate - handle holds it now */
213
	drm_gem_object_unreference(&obj->base);
214 215
	trace_i915_gem_object_create(obj);

216
	*handle_p = handle;
217 218 219
	return 0;
}

220 221 222 223 224 225
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
226
	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

int i915_gem_dumb_destroy(struct drm_file *file,
			  struct drm_device *dev,
			  uint32_t handle)
{
	return drm_gem_handle_delete(file, handle);
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
247

248 249 250 251
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

252
static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
253
{
254
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
255 256

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
257
		obj->tiling_mode != I915_TILING_NONE;
258 259
}

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

286
static inline int
287 288
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

312 313 314
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
315
static int
316 317 318 319 320 321 322
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

323
	if (unlikely(page_do_bit17_swizzling))
324 325 326 327 328 329 330 331 332 333 334 335 336 337
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

	return ret;
}

338 339 340 341
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
342
	if (unlikely(swizzled)) {
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

360 361 362 363 364 365 366 367 368 369 370 371
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
372 373 374
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
375 376 377 378 379 380 381 382 383 384 385 386 387 388

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

	return ret;
}

389
static int
390 391 392 393
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
394
{
395
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
396
	char __user *user_data;
397
	ssize_t remain;
398
	loff_t offset;
399
	int shmem_page_offset, page_length, ret = 0;
400
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
401
	int hit_slowpath = 0;
402
	int prefaulted = 0;
403
	int needs_clflush = 0;
404
	int release_page;
405

406
	user_data = (char __user *) (uintptr_t) args->data_ptr;
407 408
	remain = args->size;

409
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
410

411 412 413 414 415 416 417 418 419 420 421
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		if (obj->cache_level == I915_CACHE_NONE)
			needs_clflush = 1;
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
		if (ret)
			return ret;
	}
422

423
	offset = args->offset;
424 425

	while (remain > 0) {
426 427
		struct page *page;

428 429 430 431 432
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
433
		shmem_page_offset = offset_in_page(offset);
434 435 436 437
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

438 439 440 441 442 443 444 445 446 447
		if (obj->pages) {
			page = obj->pages[offset >> PAGE_SHIFT];
			release_page = 0;
		} else {
			page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
				goto out;
			}
			release_page = 1;
448
		}
449

450 451 452
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

453 454 455 456 457
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
458 459

		hit_slowpath = 1;
460
		page_cache_get(page);
461 462
		mutex_unlock(&dev->struct_mutex);

463
		if (!prefaulted) {
464
			ret = fault_in_multipages_writeable(user_data, remain);
465 466 467 468 469 470 471
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
472

473 474 475
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
476

477
		mutex_lock(&dev->struct_mutex);
478
		page_cache_release(page);
479
next_page:
480
		mark_page_accessed(page);
481 482
		if (release_page)
			page_cache_release(page);
483

484 485 486 487 488
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

489
		remain -= page_length;
490
		user_data += page_length;
491 492 493
		offset += page_length;
	}

494
out:
495 496 497 498 499
	if (hit_slowpath) {
		/* Fixup: Kill any reinstated backing storage pages */
		if (obj->madv == __I915_MADV_PURGED)
			i915_gem_object_truncate(obj);
	}
500 501 502 503

	return ret;
}

504 505 506 507 508 509 510
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
511
		     struct drm_file *file)
512 513
{
	struct drm_i915_gem_pread *args = data;
514
	struct drm_i915_gem_object *obj;
515
	int ret = 0;
516

517 518 519 520 521 522 523 524
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

525
	ret = i915_mutex_lock_interruptible(dev);
526
	if (ret)
527
		return ret;
528

529
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
530
	if (&obj->base == NULL) {
531 532
		ret = -ENOENT;
		goto unlock;
533
	}
534

535
	/* Bounds check source.  */
536 537
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
538
		ret = -EINVAL;
539
		goto out;
C
Chris Wilson 已提交
540 541
	}

542 543 544 545 546 547 548 549
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
550 551
	trace_i915_gem_object_pread(obj, args->offset, args->size);

552
	ret = i915_gem_shmem_pread(dev, obj, args, file);
553

554
out:
555
	drm_gem_object_unreference(&obj->base);
556
unlock:
557
	mutex_unlock(&dev->struct_mutex);
558
	return ret;
559 560
}

561 562
/* This is the fast write path which cannot handle
 * page faults in the source data
563
 */
564 565 566 567 568 569

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
570
{
571 572
	void __iomem *vaddr_atomic;
	void *vaddr;
573
	unsigned long unwritten;
574

P
Peter Zijlstra 已提交
575
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
576 577 578
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
579
						      user_data, length);
P
Peter Zijlstra 已提交
580
	io_mapping_unmap_atomic(vaddr_atomic);
581
	return unwritten;
582 583
}

584 585 586 587
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
588
static int
589 590
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
591
			 struct drm_i915_gem_pwrite *args,
592
			 struct drm_file *file)
593
{
594
	drm_i915_private_t *dev_priv = dev->dev_private;
595
	ssize_t remain;
596
	loff_t offset, page_base;
597
	char __user *user_data;
D
Daniel Vetter 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610
	int page_offset, page_length, ret;

	ret = i915_gem_object_pin(obj, 0, true);
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
611 612 613 614

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

615
	offset = obj->gtt_offset + args->offset;
616 617 618 619

	while (remain > 0) {
		/* Operation in this page
		 *
620 621 622
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
623
		 */
624 625
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
626 627 628 629 630
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
631 632
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
633
		 */
634
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
D
Daniel Vetter 已提交
635 636 637 638
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
			goto out_unpin;
		}
639

640 641 642
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
643 644
	}

D
Daniel Vetter 已提交
645 646 647
out_unpin:
	i915_gem_object_unpin(obj);
out:
648
	return ret;
649 650
}

651 652 653 654
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
655
static int
656 657 658 659 660
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
661
{
662
	char *vaddr;
663
	int ret;
664

665
	if (unlikely(page_do_bit17_swizzling))
666
		return -EINVAL;
667

668 669 670 671 672 673 674 675 676 677 678
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
						user_data,
						page_length);
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
679 680 681 682

	return ret;
}

683 684
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
685
static int
686 687 688 689 690
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
691
{
692 693
	char *vaddr;
	int ret;
694

695
	vaddr = kmap(page);
696
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
697 698 699
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
700 701
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
702 703
						user_data,
						page_length);
704 705 706 707 708
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
709 710 711
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
712
	kunmap(page);
713

714
	return ret;
715 716 717
}

static int
718 719 720 721
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
722
{
723
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
724
	ssize_t remain;
725 726
	loff_t offset;
	char __user *user_data;
727
	int shmem_page_offset, page_length, ret = 0;
728
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
729
	int hit_slowpath = 0;
730 731
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
732
	int release_page;
733

734
	user_data = (char __user *) (uintptr_t) args->data_ptr;
735 736
	remain = args->size;

737
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
738

739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
		if (obj->cache_level == I915_CACHE_NONE)
			needs_clflush_after = 1;
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
		if (ret)
			return ret;
	}
	/* Same trick applies for invalidate partially written cachelines before
	 * writing.  */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
	    && obj->cache_level == I915_CACHE_NONE)
		needs_clflush_before = 1;

756
	offset = args->offset;
757
	obj->dirty = 1;
758

759
	while (remain > 0) {
760
		struct page *page;
761
		int partial_cacheline_write;
762

763 764 765 766 767
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
768
		shmem_page_offset = offset_in_page(offset);
769 770 771 772 773

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

774 775 776 777 778 779 780
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

781 782 783 784 785 786 787 788 789 790
		if (obj->pages) {
			page = obj->pages[offset >> PAGE_SHIFT];
			release_page = 0;
		} else {
			page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
				goto out;
			}
			release_page = 1;
791 792
		}

793 794 795
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

796 797 798 799 800 801
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
802 803

		hit_slowpath = 1;
804
		page_cache_get(page);
805 806
		mutex_unlock(&dev->struct_mutex);

807 808 809 810
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
811

812
		mutex_lock(&dev->struct_mutex);
813
		page_cache_release(page);
814
next_page:
815 816
		set_page_dirty(page);
		mark_page_accessed(page);
817 818
		if (release_page)
			page_cache_release(page);
819

820 821 822 823 824
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

825
		remain -= page_length;
826
		user_data += page_length;
827
		offset += page_length;
828 829
	}

830
out:
831 832 833 834 835 836 837 838 839 840
	if (hit_slowpath) {
		/* Fixup: Kill any reinstated backing storage pages */
		if (obj->madv == __I915_MADV_PURGED)
			i915_gem_object_truncate(obj);
		/* and flush dirty cachelines in case the object isn't in the cpu write
		 * domain anymore. */
		if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
			i915_gem_clflush_object(obj);
			intel_gtt_chipset_flush();
		}
841
	}
842

843 844 845
	if (needs_clflush_after)
		intel_gtt_chipset_flush();

846
	return ret;
847 848 849 850 851 852 853 854 855
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
856
		      struct drm_file *file)
857 858
{
	struct drm_i915_gem_pwrite *args = data;
859
	struct drm_i915_gem_object *obj;
860 861 862 863 864 865 866 867 868 869
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

870 871
	ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
					   args->size);
872 873
	if (ret)
		return -EFAULT;
874

875
	ret = i915_mutex_lock_interruptible(dev);
876
	if (ret)
877
		return ret;
878

879
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
880
	if (&obj->base == NULL) {
881 882
		ret = -ENOENT;
		goto unlock;
883
	}
884

885
	/* Bounds check destination. */
886 887
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
888
		ret = -EINVAL;
889
		goto out;
C
Chris Wilson 已提交
890 891
	}

892 893 894 895 896 897 898 899
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
900 901
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
902
	ret = -EFAULT;
903 904 905 906 907 908
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
909
	if (obj->phys_obj) {
910
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
911 912 913 914
		goto out;
	}

	if (obj->gtt_space &&
915
	    obj->cache_level == I915_CACHE_NONE &&
916
	    obj->tiling_mode == I915_TILING_NONE &&
917
	    obj->map_and_fenceable &&
918
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
919
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
920 921 922
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
923
	}
924

925
	if (ret == -EFAULT)
D
Daniel Vetter 已提交
926
		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
927

928
out:
929
	drm_gem_object_unreference(&obj->base);
930
unlock:
931
	mutex_unlock(&dev->struct_mutex);
932 933 934 935
	return ret;
}

/**
936 937
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
938 939 940
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
941
			  struct drm_file *file)
942 943
{
	struct drm_i915_gem_set_domain *args = data;
944
	struct drm_i915_gem_object *obj;
945 946
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
947 948
	int ret;

949
	/* Only handle setting domains to types used by the CPU. */
950
	if (write_domain & I915_GEM_GPU_DOMAINS)
951 952
		return -EINVAL;

953
	if (read_domains & I915_GEM_GPU_DOMAINS)
954 955 956 957 958 959 960 961
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

962
	ret = i915_mutex_lock_interruptible(dev);
963
	if (ret)
964
		return ret;
965

966
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
967
	if (&obj->base == NULL) {
968 969
		ret = -ENOENT;
		goto unlock;
970
	}
971

972 973
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
974 975 976 977 978 979 980

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
981
	} else {
982
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
983 984
	}

985
	drm_gem_object_unreference(&obj->base);
986
unlock:
987 988 989 990 991 992 993 994 995
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
996
			 struct drm_file *file)
997 998
{
	struct drm_i915_gem_sw_finish *args = data;
999
	struct drm_i915_gem_object *obj;
1000 1001
	int ret = 0;

1002
	ret = i915_mutex_lock_interruptible(dev);
1003
	if (ret)
1004
		return ret;
1005

1006
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1007
	if (&obj->base == NULL) {
1008 1009
		ret = -ENOENT;
		goto unlock;
1010 1011 1012
	}

	/* Pinned buffers may be scanout, so flush the cache */
1013
	if (obj->pin_count)
1014 1015
		i915_gem_object_flush_cpu_write_domain(obj);

1016
	drm_gem_object_unreference(&obj->base);
1017
unlock:
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1031
		    struct drm_file *file)
1032 1033 1034 1035 1036
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1037
	obj = drm_gem_object_lookup(dev, file, args->handle);
1038
	if (obj == NULL)
1039
		return -ENOENT;
1040

1041 1042 1043 1044 1045 1046 1047 1048
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1049
	addr = vm_mmap(obj->filp, 0, args->size,
1050 1051
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1052
	drm_gem_object_unreference_unlocked(obj);
1053 1054 1055 1056 1057 1058 1059 1060
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1079 1080
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1081
	drm_i915_private_t *dev_priv = dev->dev_private;
1082 1083 1084
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1085
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1086 1087 1088 1089 1090

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1091 1092 1093
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1094

C
Chris Wilson 已提交
1095 1096
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1097
	/* Now bind it into the GTT if needed */
1098 1099 1100 1101
	if (!obj->map_and_fenceable) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			goto unlock;
1102
	}
1103
	if (!obj->gtt_space) {
1104
		ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1105 1106
		if (ret)
			goto unlock;
1107

1108 1109 1110 1111
		ret = i915_gem_object_set_to_gtt_domain(obj, write);
		if (ret)
			goto unlock;
	}
1112

1113 1114 1115
	if (!obj->has_global_gtt_mapping)
		i915_gem_gtt_bind_object(obj, obj->cache_level);

1116
	ret = i915_gem_object_get_fence(obj);
1117 1118
	if (ret)
		goto unlock;
1119

1120 1121
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1122

1123 1124
	obj->fault_mappable = true;

1125
	pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1126 1127 1128 1129
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1130
unlock:
1131
	mutex_unlock(&dev->struct_mutex);
1132
out:
1133
	switch (ret) {
1134
	case -EIO:
1135
	case -EAGAIN:
1136 1137 1138 1139 1140 1141 1142
		/* Give the error handler a chance to run and move the
		 * objects off the GPU active list. Next time we service the
		 * fault, we should be able to transition the page into the
		 * GTT without touching the GPU (and so avoid further
		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
		 * with coherency, just lost writes.
		 */
1143
		set_need_resched();
1144 1145
	case 0:
	case -ERESTARTSYS:
1146
	case -EINTR:
1147
		return VM_FAULT_NOPAGE;
1148 1149 1150
	case -ENOMEM:
		return VM_FAULT_OOM;
	default:
1151
		return VM_FAULT_SIGBUS;
1152 1153 1154
	}
}

1155 1156 1157 1158
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1159
 * Preserve the reservation of the mmapping with the DRM core code, but
1160 1161 1162 1163 1164 1165 1166 1167 1168
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1169
void
1170
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1171
{
1172 1173
	if (!obj->fault_mappable)
		return;
1174

1175 1176 1177 1178
	if (obj->base.dev->dev_mapping)
		unmap_mapping_range(obj->base.dev->dev_mapping,
				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
				    obj->base.size, 1);
1179

1180
	obj->fault_mappable = false;
1181 1182
}

1183
static uint32_t
1184
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1185
{
1186
	uint32_t gtt_size;
1187 1188

	if (INTEL_INFO(dev)->gen >= 4 ||
1189 1190
	    tiling_mode == I915_TILING_NONE)
		return size;
1191 1192 1193

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1194
		gtt_size = 1024*1024;
1195
	else
1196
		gtt_size = 512*1024;
1197

1198 1199
	while (gtt_size < size)
		gtt_size <<= 1;
1200

1201
	return gtt_size;
1202 1203
}

1204 1205 1206 1207 1208
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1209
 * potential fence register mapping.
1210 1211
 */
static uint32_t
1212 1213 1214
i915_gem_get_gtt_alignment(struct drm_device *dev,
			   uint32_t size,
			   int tiling_mode)
1215 1216 1217 1218 1219
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1220
	if (INTEL_INFO(dev)->gen >= 4 ||
1221
	    tiling_mode == I915_TILING_NONE)
1222 1223
		return 4096;

1224 1225 1226 1227
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1228
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1229 1230
}

1231 1232 1233
/**
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
 *					 unfenced object
1234 1235 1236
 * @dev: the device
 * @size: size of the object
 * @tiling_mode: tiling mode of the object
1237 1238 1239 1240
 *
 * Return the required GTT alignment for an object, only taking into account
 * unfenced tiled surface requirements.
 */
1241
uint32_t
1242 1243 1244
i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
				    uint32_t size,
				    int tiling_mode)
1245 1246 1247 1248 1249
{
	/*
	 * Minimum alignment is 4k (GTT page size) for sane hw.
	 */
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1250
	    tiling_mode == I915_TILING_NONE)
1251 1252
		return 4096;

1253 1254 1255
	/* Previous hardware however needs to be aligned to a power-of-two
	 * tile height. The simplest method for determining this is to reuse
	 * the power-of-tile object size.
1256
	 */
1257
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1258 1259
}

1260
int
1261 1262 1263 1264
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
		  uint32_t handle,
		  uint64_t *offset)
1265
{
1266
	struct drm_i915_private *dev_priv = dev->dev_private;
1267
	struct drm_i915_gem_object *obj;
1268 1269
	int ret;

1270
	ret = i915_mutex_lock_interruptible(dev);
1271
	if (ret)
1272
		return ret;
1273

1274
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1275
	if (&obj->base == NULL) {
1276 1277 1278
		ret = -ENOENT;
		goto unlock;
	}
1279

1280
	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1281
		ret = -E2BIG;
1282
		goto out;
1283 1284
	}

1285
	if (obj->madv != I915_MADV_WILLNEED) {
1286
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1287 1288
		ret = -EINVAL;
		goto out;
1289 1290
	}

1291
	if (!obj->base.map_list.map) {
1292
		ret = drm_gem_create_mmap_offset(&obj->base);
1293 1294
		if (ret)
			goto out;
1295 1296
	}

1297
	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1298

1299
out:
1300
	drm_gem_object_unreference(&obj->base);
1301
unlock:
1302
	mutex_unlock(&dev->struct_mutex);
1303
	return ret;
1304 1305
}

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
}

1330
int
1331
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1332 1333 1334 1335 1336 1337 1338
			      gfp_t gfpmask)
{
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

1339 1340 1341
	if (obj->pages || obj->sg_table)
		return 0;

1342 1343 1344
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
1345 1346 1347 1348
	page_count = obj->base.size / PAGE_SIZE;
	BUG_ON(obj->pages != NULL);
	obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
	if (obj->pages == NULL)
1349 1350
		return -ENOMEM;

1351
	inode = obj->base.filp->f_path.dentry->d_inode;
1352
	mapping = inode->i_mapping;
1353 1354
	gfpmask |= mapping_gfp_mask(mapping);

1355
	for (i = 0; i < page_count; i++) {
1356
		page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1357 1358 1359
		if (IS_ERR(page))
			goto err_pages;

1360
		obj->pages[i] = page;
1361 1362
	}

1363
	if (i915_gem_object_needs_bit17_swizzle(obj))
1364 1365 1366 1367 1368 1369
		i915_gem_object_do_bit_17_swizzle(obj);

	return 0;

err_pages:
	while (i--)
1370
		page_cache_release(obj->pages[i]);
1371

1372 1373
	drm_free_large(obj->pages);
	obj->pages = NULL;
1374 1375 1376
	return PTR_ERR(page);
}

1377
static void
1378
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1379
{
1380
	int page_count = obj->base.size / PAGE_SIZE;
1381 1382
	int i;

1383 1384 1385
	if (!obj->pages)
		return;

1386
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1387

1388
	if (i915_gem_object_needs_bit17_swizzle(obj))
1389 1390
		i915_gem_object_save_bit_17_swizzle(obj);

1391 1392
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1393 1394

	for (i = 0; i < page_count; i++) {
1395 1396
		if (obj->dirty)
			set_page_dirty(obj->pages[i]);
1397

1398 1399
		if (obj->madv == I915_MADV_WILLNEED)
			mark_page_accessed(obj->pages[i]);
1400

1401
		page_cache_release(obj->pages[i]);
1402
	}
1403
	obj->dirty = 0;
1404

1405 1406
	drm_free_large(obj->pages);
	obj->pages = NULL;
1407 1408
}

1409
void
1410
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1411 1412
			       struct intel_ring_buffer *ring,
			       u32 seqno)
1413
{
1414
	struct drm_device *dev = obj->base.dev;
1415
	struct drm_i915_private *dev_priv = dev->dev_private;
1416

1417
	BUG_ON(ring == NULL);
1418
	obj->ring = ring;
1419 1420

	/* Add a reference if we're newly entering the active list. */
1421 1422 1423
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
1424
	}
1425

1426
	/* Move from whatever list we were on to the tail of execution. */
1427 1428
	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
	list_move_tail(&obj->ring_list, &ring->active_list);
1429

1430
	obj->last_rendering_seqno = seqno;
1431

1432
	if (obj->fenced_gpu_access) {
1433 1434
		obj->last_fenced_seqno = seqno;

1435 1436 1437 1438 1439 1440 1441 1442
		/* Bump MRU to take account of the delayed flush */
		if (obj->fence_reg != I915_FENCE_REG_NONE) {
			struct drm_i915_fence_reg *reg;

			reg = &dev_priv->fence_regs[obj->fence_reg];
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
		}
1443 1444 1445 1446 1447 1448 1449 1450
	}
}

static void
i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
{
	list_del_init(&obj->ring_list);
	obj->last_rendering_seqno = 0;
1451
	obj->last_fenced_seqno = 0;
1452 1453
}

1454
static void
1455
i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1456
{
1457
	struct drm_device *dev = obj->base.dev;
1458 1459
	drm_i915_private_t *dev_priv = dev->dev_private;

1460 1461
	BUG_ON(!obj->active);
	list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

	i915_gem_object_move_off_active(obj);
}

static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

1472
	list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1473 1474 1475 1476 1477 1478 1479 1480 1481

	BUG_ON(!list_empty(&obj->gpu_write_list));
	BUG_ON(!obj->active);
	obj->ring = NULL;

	i915_gem_object_move_off_active(obj);
	obj->fenced_gpu_access = false;

	obj->active = 0;
1482
	obj->pending_gpu_write = false;
1483 1484 1485
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
1486
}
1487

1488 1489
/* Immediately discard the backing storage */
static void
1490
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1491
{
C
Chris Wilson 已提交
1492
	struct inode *inode;
1493

1494 1495 1496
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
1497
	 * backing pages, *now*.
1498
	 */
1499
	inode = obj->base.filp->f_path.dentry->d_inode;
1500
	shmem_truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1501

1502 1503 1504
	if (obj->base.map_list.map)
		drm_gem_free_mmap_offset(&obj->base);

1505
	obj->madv = __I915_MADV_PURGED;
1506 1507 1508
}

static inline int
1509
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1510
{
1511
	return obj->madv == I915_MADV_DONTNEED;
1512 1513
}

1514
static void
C
Chris Wilson 已提交
1515 1516
i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
			       uint32_t flush_domains)
1517
{
1518
	struct drm_i915_gem_object *obj, *next;
1519

1520
	list_for_each_entry_safe(obj, next,
1521
				 &ring->gpu_write_list,
1522
				 gpu_write_list) {
1523 1524
		if (obj->base.write_domain & flush_domains) {
			uint32_t old_write_domain = obj->base.write_domain;
1525

1526 1527
			obj->base.write_domain = 0;
			list_del_init(&obj->gpu_write_list);
1528
			i915_gem_object_move_to_active(obj, ring,
C
Chris Wilson 已提交
1529
						       i915_gem_next_request_seqno(ring));
1530 1531

			trace_i915_gem_object_change_domain(obj,
1532
							    obj->base.read_domains,
1533 1534 1535 1536
							    old_write_domain);
		}
	}
}
1537

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
static u32
i915_gem_get_seqno(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 seqno = dev_priv->next_seqno;

	/* reserve 0 for non-seqno */
	if (++dev_priv->next_seqno == 0)
		dev_priv->next_seqno = 1;

	return seqno;
}

u32
i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
{
	if (ring->outstanding_lazy_request == 0)
		ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);

	return ring->outstanding_lazy_request;
}

1560
int
C
Chris Wilson 已提交
1561
i915_add_request(struct intel_ring_buffer *ring,
1562
		 struct drm_file *file,
C
Chris Wilson 已提交
1563
		 struct drm_i915_gem_request *request)
1564
{
C
Chris Wilson 已提交
1565
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1566
	uint32_t seqno;
1567
	u32 request_ring_position;
1568
	int was_empty;
1569 1570 1571
	int ret;

	BUG_ON(request == NULL);
1572
	seqno = i915_gem_next_request_seqno(ring);
1573

1574 1575 1576 1577 1578 1579 1580
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
	request_ring_position = intel_ring_get_tail(ring);

1581 1582 1583
	ret = ring->add_request(ring, &seqno);
	if (ret)
	    return ret;
1584

C
Chris Wilson 已提交
1585
	trace_i915_gem_request_add(ring, seqno);
1586 1587

	request->seqno = seqno;
1588
	request->ring = ring;
1589
	request->tail = request_ring_position;
1590
	request->emitted_jiffies = jiffies;
1591 1592 1593
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

C
Chris Wilson 已提交
1594 1595 1596
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

1597
		spin_lock(&file_priv->mm.lock);
1598
		request->file_priv = file_priv;
1599
		list_add_tail(&request->client_list,
1600
			      &file_priv->mm.request_list);
1601
		spin_unlock(&file_priv->mm.lock);
1602
	}
1603

1604
	ring->outstanding_lazy_request = 0;
C
Chris Wilson 已提交
1605

B
Ben Gamari 已提交
1606
	if (!dev_priv->mm.suspended) {
1607 1608 1609 1610 1611
		if (i915_enable_hangcheck) {
			mod_timer(&dev_priv->hangcheck_timer,
				  jiffies +
				  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
		}
B
Ben Gamari 已提交
1612
		if (was_empty)
1613 1614
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1615
	}
1616
	return 0;
1617 1618
}

1619 1620
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1621
{
1622
	struct drm_i915_file_private *file_priv = request->file_priv;
1623

1624 1625
	if (!file_priv)
		return;
C
Chris Wilson 已提交
1626

1627
	spin_lock(&file_priv->mm.lock);
1628 1629 1630 1631
	if (request->file_priv) {
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
1632
	spin_unlock(&file_priv->mm.lock);
1633 1634
}

1635 1636
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1637
{
1638 1639
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1640

1641 1642 1643
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);
1644

1645
		list_del(&request->list);
1646
		i915_gem_request_remove_from_client(request);
1647 1648
		kfree(request);
	}
1649

1650
	while (!list_empty(&ring->active_list)) {
1651
		struct drm_i915_gem_object *obj;
1652

1653 1654 1655
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
1656

1657 1658 1659
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1660 1661 1662
	}
}

1663 1664 1665 1666 1667
static void i915_gem_reset_fences(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

1668
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
1669
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1670

1671
		i915_gem_write_fence(dev, i, NULL);
1672

1673 1674
		if (reg->obj)
			i915_gem_object_fence_lost(reg->obj);
1675

1676 1677 1678
		reg->pin_count = 0;
		reg->obj = NULL;
		INIT_LIST_HEAD(&reg->lru_list);
1679
	}
1680 1681

	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1682 1683
}

1684
void i915_gem_reset(struct drm_device *dev)
1685
{
1686
	struct drm_i915_private *dev_priv = dev->dev_private;
1687
	struct drm_i915_gem_object *obj;
1688
	struct intel_ring_buffer *ring;
1689
	int i;
1690

1691 1692
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_lists(dev_priv, ring);
1693 1694 1695 1696 1697 1698

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
1699
		obj = list_first_entry(&dev_priv->mm.flushing_list,
1700 1701
				      struct drm_i915_gem_object,
				      mm_list);
1702

1703 1704 1705
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1706 1707 1708 1709 1710
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1711
	list_for_each_entry(obj,
1712
			    &dev_priv->mm.inactive_list,
1713
			    mm_list)
1714
	{
1715
		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1716
	}
1717 1718

	/* The fence registers are invalidated so clear them out */
1719
	i915_gem_reset_fences(dev);
1720 1721 1722 1723 1724
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
1725
void
C
Chris Wilson 已提交
1726
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1727 1728
{
	uint32_t seqno;
1729
	int i;
1730

C
Chris Wilson 已提交
1731
	if (list_empty(&ring->request_list))
1732 1733
		return;

C
Chris Wilson 已提交
1734
	WARN_ON(i915_verify_lists(ring->dev));
1735

1736
	seqno = ring->get_seqno(ring);
1737

1738
	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1739 1740 1741
		if (seqno >= ring->sync_seqno[i])
			ring->sync_seqno[i] = 0;

1742
	while (!list_empty(&ring->request_list)) {
1743 1744
		struct drm_i915_gem_request *request;

1745
		request = list_first_entry(&ring->request_list,
1746 1747 1748
					   struct drm_i915_gem_request,
					   list);

1749
		if (!i915_seqno_passed(seqno, request->seqno))
1750 1751
			break;

C
Chris Wilson 已提交
1752
		trace_i915_gem_request_retire(ring, request->seqno);
1753 1754 1755 1756 1757 1758
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
		ring->last_retired_head = request->tail;
1759 1760

		list_del(&request->list);
1761
		i915_gem_request_remove_from_client(request);
1762 1763
		kfree(request);
	}
1764

1765 1766 1767 1768
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
1769
		struct drm_i915_gem_object *obj;
1770

1771
		obj = list_first_entry(&ring->active_list,
1772 1773
				      struct drm_i915_gem_object,
				      ring_list);
1774

1775
		if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1776
			break;
1777

1778
		if (obj->base.write_domain != 0)
1779 1780 1781
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1782
	}
1783

C
Chris Wilson 已提交
1784 1785
	if (unlikely(ring->trace_irq_seqno &&
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1786
		ring->irq_put(ring);
C
Chris Wilson 已提交
1787
		ring->trace_irq_seqno = 0;
1788
	}
1789

C
Chris Wilson 已提交
1790
	WARN_ON(i915_verify_lists(ring->dev));
1791 1792
}

1793 1794 1795 1796
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1797
	struct intel_ring_buffer *ring;
1798
	int i;
1799

1800 1801
	for_each_ring(ring, dev_priv, i)
		i915_gem_retire_requests_ring(ring);
1802 1803
}

1804
static void
1805 1806 1807 1808
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;
1809
	struct intel_ring_buffer *ring;
1810 1811
	bool idle;
	int i;
1812 1813 1814 1815 1816

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

1817 1818 1819 1820 1821 1822
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

1823
	i915_gem_retire_requests(dev);
1824

1825 1826 1827 1828
	/* Send a periodic flush down the ring so we don't hold onto GEM
	 * objects indefinitely.
	 */
	idle = true;
1829
	for_each_ring(ring, dev_priv, i) {
1830 1831 1832 1833
		if (!list_empty(&ring->gpu_write_list)) {
			struct drm_i915_gem_request *request;
			int ret;

C
Chris Wilson 已提交
1834 1835
			ret = i915_gem_flush_ring(ring,
						  0, I915_GEM_GPU_DOMAINS);
1836 1837
			request = kzalloc(sizeof(*request), GFP_KERNEL);
			if (ret || request == NULL ||
C
Chris Wilson 已提交
1838
			    i915_add_request(ring, NULL, request))
1839 1840 1841 1842 1843 1844 1845
			    kfree(request);
		}

		idle &= list_empty(&ring->request_list);
	}

	if (!dev_priv->mm.suspended && !idle)
1846
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1847

1848 1849 1850
	mutex_unlock(&dev->struct_mutex);
}

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
static int
i915_gem_check_wedge(struct drm_i915_private *dev_priv)
{
	BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));

	if (atomic_read(&dev_priv->mm.wedged)) {
		struct completion *x = &dev_priv->error_completion;
		bool recovery_complete;
		unsigned long flags;

		/* Give the error handler a chance to run. */
		spin_lock_irqsave(&x->wait.lock, flags);
		recovery_complete = x->done > 0;
		spin_unlock_irqrestore(&x->wait.lock, flags);

		return recovery_complete ? -EIO : -EAGAIN;
	}

	return 0;
}

/*
 * Compare seqno against outstanding lazy request. Emit a request if they are
 * equal.
 */
static int
i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
{
	int ret = 0;

	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));

	if (seqno == ring->outstanding_lazy_request) {
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return -ENOMEM;

		ret = i915_add_request(ring, NULL, request);
		if (ret) {
			kfree(request);
			return ret;
		}

		BUG_ON(seqno != request->seqno);
	}

	return ret;
}

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
/**
 * __wait_seqno - wait until execution of seqno has finished
 * @ring: the ring expected to report seqno
 * @seqno: duh!
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
 * Returns 0 if the seqno was found within the alloted time. Else returns the
 * errno with remaining time filled in timeout argument.
 */
1912
static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1913
			bool interruptible, struct timespec *timeout)
1914 1915
{
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1916 1917 1918 1919
	struct timespec before, now, wait_time={1,0};
	unsigned long timeout_jiffies;
	long end;
	bool wait_forever = true;
1920 1921 1922 1923 1924

	if (i915_seqno_passed(ring->get_seqno(ring), seqno))
		return 0;

	trace_i915_gem_request_wait_begin(ring, seqno);
1925 1926 1927 1928 1929 1930 1931 1932

	if (timeout != NULL) {
		wait_time = *timeout;
		wait_forever = false;
	}

	timeout_jiffies = timespec_to_jiffies(&wait_time);

1933 1934 1935
	if (WARN_ON(!ring->irq_get(ring)))
		return -ENODEV;

1936 1937 1938
	/* Record current time in case interrupted by signal, or wedged * */
	getrawmonotonic(&before);

1939 1940 1941
#define EXIT_COND \
	(i915_seqno_passed(ring->get_seqno(ring), seqno) || \
	atomic_read(&dev_priv->mm.wedged))
1942 1943 1944 1945 1946 1947 1948 1949
	do {
		if (interruptible)
			end = wait_event_interruptible_timeout(ring->irq_queue,
							       EXIT_COND,
							       timeout_jiffies);
		else
			end = wait_event_timeout(ring->irq_queue, EXIT_COND,
						 timeout_jiffies);
1950

1951 1952 1953 1954 1955
		if (atomic_read(&dev_priv->mm.wedged))
			end = -EAGAIN;
	} while (end == 0 && wait_forever);

	getrawmonotonic(&now);
1956 1957 1958 1959 1960

	ring->irq_put(ring);
	trace_i915_gem_request_wait_end(ring, seqno);
#undef EXIT_COND

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
	if (timeout) {
		struct timespec sleep_time = timespec_sub(now, before);
		*timeout = timespec_sub(*timeout, sleep_time);
	}

	switch (end) {
	case -EAGAIN: /* Wedged */
	case -ERESTARTSYS: /* Signal */
		return (int)end;
	case 0: /* Timeout */
		if (timeout)
			set_normalized_timespec(timeout, 0, 0);
		return -ETIME;
	default: /* Completed */
		WARN_ON(end < 0); /* We're not aware of other errors */
		return 0;
	}
1978 1979
}

C
Chris Wilson 已提交
1980 1981 1982 1983
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
1984
int
1985
i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1986
{
C
Chris Wilson 已提交
1987
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1988 1989 1990 1991
	int ret = 0;

	BUG_ON(seqno == 0);

1992 1993 1994
	ret = i915_gem_check_wedge(dev_priv);
	if (ret)
		return ret;
1995

1996 1997 1998
	ret = i915_gem_check_olr(ring, seqno);
	if (ret)
		return ret;
1999

2000
	ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible, NULL);
2001 2002 2003 2004 2005 2006 2007 2008

	return ret;
}

/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
2009
int
2010
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
2011 2012 2013
{
	int ret;

2014 2015
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
2016
	 */
2017
	BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2018 2019 2020 2021

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
2022
	if (obj->active) {
2023
		ret = i915_wait_seqno(obj->ring, obj->last_rendering_seqno);
2024
		if (ret)
2025
			return ret;
2026
		i915_gem_retire_requests_ring(obj->ring);
2027 2028 2029 2030 2031
	}

	return 0;
}

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
	int ret;

	if (obj->active) {
		ret = i915_gem_object_flush_gpu_write_domain(obj);
		if (ret)
			return ret;

		ret = i915_gem_check_olr(obj->ring,
					 obj->last_rendering_seqno);
		if (ret)
			return ret;
		i915_gem_retire_requests_ring(obj->ring);
	}

	return 0;
}

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
	struct intel_ring_buffer *ring = NULL;
2085
	struct timespec timeout_stack, *timeout = NULL;
2086 2087 2088
	u32 seqno = 0;
	int ret = 0;

2089 2090 2091 2092
	if (args->timeout_ns >= 0) {
		timeout_stack = ns_to_timespec(args->timeout_ns);
		timeout = &timeout_stack;
	}
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2104 2105
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
	if (ret)
		goto out;

	if (obj->active) {
		seqno = obj->last_rendering_seqno;
		ring = obj->ring;
	}

	if (seqno == 0)
		 goto out;

	/* Do this after OLR check to make sure we make forward progress polling
	 * on this IOCTL with a 0 timeout (like busy ioctl)
	 */
	if (!args->timeout_ns) {
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);

2128 2129 2130 2131 2132
	ret = __wait_seqno(ring, seqno, true, timeout);
	if (timeout) {
		WARN_ON(!timespec_valid(timeout));
		args->timeout_ns = timespec_to_ns(timeout);
	}
2133 2134 2135 2136 2137 2138 2139 2140
	return ret;

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
		     struct intel_ring_buffer *to)
{
	struct intel_ring_buffer *from = obj->ring;
	u32 seqno;
	int ret, idx;

	if (from == NULL || to == from)
		return 0;

2164
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2165 2166 2167 2168 2169 2170 2171 2172
		return i915_gem_object_wait_rendering(obj);

	idx = intel_ring_sync_index(from, to);

	seqno = obj->last_rendering_seqno;
	if (seqno <= from->sync_seqno[idx])
		return 0;

2173 2174 2175
	ret = i915_gem_check_olr(obj->ring, seqno);
	if (ret)
		return ret;
2176

2177
	ret = to->sync_to(to, from, seqno);
2178 2179
	if (!ret)
		from->sync_seqno[idx] = seqno;
2180

2181
	return ret;
2182 2183
}

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Act a barrier for all accesses through the GTT */
	mb();

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2194 2195 2196
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2208 2209 2210
/**
 * Unbinds an object from the GTT aperture.
 */
2211
int
2212
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2213
{
2214
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2215 2216
	int ret = 0;

2217
	if (obj->gtt_space == NULL)
2218 2219
		return 0;

2220 2221
	if (obj->pin_count)
		return -EBUSY;
2222

2223
	ret = i915_gem_object_finish_gpu(obj);
2224
	if (ret)
2225 2226 2227 2228 2229 2230
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

2231
	i915_gem_object_finish_gtt(obj);
2232

2233 2234
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
2235
	 * are flushed when we go to remap it.
2236
	 */
2237 2238
	if (ret == 0)
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2239
	if (ret == -ERESTARTSYS)
2240
		return ret;
2241
	if (ret) {
2242 2243 2244
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2245
		i915_gem_clflush_object(obj);
2246
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2247
	}
2248

2249
	/* release the fence reg _after_ flushing */
2250
	ret = i915_gem_object_put_fence(obj);
2251
	if (ret)
2252
		return ret;
2253

C
Chris Wilson 已提交
2254 2255
	trace_i915_gem_object_unbind(obj);

2256 2257
	if (obj->has_global_gtt_mapping)
		i915_gem_gtt_unbind_object(obj);
2258 2259 2260 2261
	if (obj->has_aliasing_ppgtt_mapping) {
		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
		obj->has_aliasing_ppgtt_mapping = 0;
	}
2262
	i915_gem_gtt_finish_object(obj);
2263

2264
	i915_gem_object_put_pages_gtt(obj);
2265

2266
	list_del_init(&obj->gtt_list);
2267
	list_del_init(&obj->mm_list);
2268
	/* Avoid an unnecessary call to unbind on rebind. */
2269
	obj->map_and_fenceable = true;
2270

2271 2272 2273
	drm_mm_put_block(obj->gtt_space);
	obj->gtt_space = NULL;
	obj->gtt_offset = 0;
2274

2275
	if (i915_gem_object_is_purgeable(obj))
2276 2277
		i915_gem_object_truncate(obj);

2278
	return ret;
2279 2280
}

2281
int
C
Chris Wilson 已提交
2282
i915_gem_flush_ring(struct intel_ring_buffer *ring,
2283 2284 2285
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
2286 2287
	int ret;

2288 2289 2290
	if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
		return 0;

C
Chris Wilson 已提交
2291 2292
	trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);

2293 2294 2295 2296
	ret = ring->flush(ring, invalidate_domains, flush_domains);
	if (ret)
		return ret;

2297 2298 2299
	if (flush_domains & I915_GEM_GPU_DOMAINS)
		i915_gem_process_flushing_list(ring, flush_domains);

2300
	return 0;
2301 2302
}

2303
static int i915_ring_idle(struct intel_ring_buffer *ring)
2304
{
2305 2306
	int ret;

2307
	if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2308 2309
		return 0;

2310
	if (!list_empty(&ring->gpu_write_list)) {
C
Chris Wilson 已提交
2311
		ret = i915_gem_flush_ring(ring,
2312
				    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2313 2314 2315 2316
		if (ret)
			return ret;
	}

2317
	return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
2318 2319
}

2320
int i915_gpu_idle(struct drm_device *dev)
2321 2322
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2323
	struct intel_ring_buffer *ring;
2324
	int ret, i;
2325 2326

	/* Flush everything onto the inactive list. */
2327 2328
	for_each_ring(ring, dev_priv, i) {
		ret = i915_ring_idle(ring);
2329 2330
		if (ret)
			return ret;
2331 2332 2333 2334

		/* Is the device fubar? */
		if (WARN_ON(!list_empty(&ring->gpu_write_list)))
			return -EBUSY;
2335
	}
2336

2337
	return 0;
2338 2339
}

2340 2341
static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
					struct drm_i915_gem_object *obj)
2342 2343 2344 2345
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint64_t val;

2346 2347
	if (obj) {
		u32 size = obj->gtt_space->size;
2348

2349 2350 2351 2352 2353
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
				 0xfffff000) << 32;
		val |= obj->gtt_offset & 0xfffff000;
		val |= (uint64_t)((obj->stride / 128) - 1) <<
			SANDYBRIDGE_FENCE_PITCH_SHIFT;
2354

2355 2356 2357 2358 2359
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
	} else
		val = 0;
2360

2361 2362
	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
	POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2363 2364
}

2365 2366
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
2367 2368 2369 2370
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint64_t val;

2371 2372
	if (obj) {
		u32 size = obj->gtt_space->size;
2373

2374 2375 2376 2377 2378 2379 2380 2381 2382
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
				 0xfffff000) << 32;
		val |= obj->gtt_offset & 0xfffff000;
		val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
	} else
		val = 0;
2383

2384 2385
	I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
	POSTING_READ(FENCE_REG_965_0 + reg * 8);
2386 2387
}

2388 2389
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
2390 2391
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2392
	u32 val;
2393

2394 2395 2396 2397
	if (obj) {
		u32 size = obj->gtt_space->size;
		int pitch_val;
		int tile_width;
2398

2399 2400 2401 2402 2403
		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
		     (size & -size) != size ||
		     (obj->gtt_offset & (size - 1)),
		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     obj->gtt_offset, obj->map_and_fenceable, size);
2404

2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

		val = obj->gtt_offset;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
2430 2431
}

2432 2433
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
2434 2435 2436 2437
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t val;

2438 2439 2440
	if (obj) {
		u32 size = obj->gtt_space->size;
		uint32_t pitch_val;
2441

2442 2443 2444 2445 2446
		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
		     (size & -size) != size ||
		     (obj->gtt_offset & (size - 1)),
		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
		     obj->gtt_offset, size);
2447

2448 2449
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
2450

2451 2452 2453 2454 2455 2456 2457 2458
		val = obj->gtt_offset;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
2459

2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
	switch (INTEL_INFO(dev)->gen) {
	case 7:
	case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
	case 5:
	case 4: i965_write_fence_reg(dev, reg, obj); break;
	case 3: i915_write_fence_reg(dev, reg, obj); break;
	case 2: i830_write_fence_reg(dev, reg, obj); break;
	default: break;
	}
2476 2477
}

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);

	if (enable) {
		obj->fence_reg = reg;
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
}

2504
static int
C
Chris Wilson 已提交
2505
i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2506 2507 2508 2509
{
	int ret;

	if (obj->fenced_gpu_access) {
2510
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2511
			ret = i915_gem_flush_ring(obj->ring,
2512 2513 2514 2515
						  0, obj->base.write_domain);
			if (ret)
				return ret;
		}
2516 2517 2518 2519

		obj->fenced_gpu_access = false;
	}

2520
	if (obj->last_fenced_seqno) {
2521
		ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2522 2523
		if (ret)
			return ret;
2524 2525 2526 2527

		obj->last_fenced_seqno = 0;
	}

2528 2529 2530 2531 2532 2533
	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
		mb();

2534 2535 2536 2537 2538 2539
	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
2540
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2541 2542
	int ret;

C
Chris Wilson 已提交
2543
	ret = i915_gem_object_flush_fence(obj);
2544 2545 2546
	if (ret)
		return ret;

2547 2548
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
2549

2550 2551 2552 2553
	i915_gem_object_update_fence(obj,
				     &dev_priv->fence_regs[obj->fence_reg],
				     false);
	i915_gem_object_fence_lost(obj);
2554 2555 2556 2557 2558

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
2559
i915_find_fence_reg(struct drm_device *dev)
2560 2561
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
2562
	struct drm_i915_fence_reg *reg, *avail;
2563
	int i;
2564 2565

	/* First try to find a free reg */
2566
	avail = NULL;
2567 2568 2569
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
2570
			return reg;
2571

2572
		if (!reg->pin_count)
2573
			avail = reg;
2574 2575
	}

2576 2577
	if (avail == NULL)
		return NULL;
2578 2579

	/* None available, try to steal one or wait for a user to finish */
2580
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2581
		if (reg->pin_count)
2582 2583
			continue;

C
Chris Wilson 已提交
2584
		return reg;
2585 2586
	}

C
Chris Wilson 已提交
2587
	return NULL;
2588 2589
}

2590
/**
2591
 * i915_gem_object_get_fence - set up fencing for an object
2592 2593 2594 2595 2596 2597 2598 2599 2600
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
2601 2602
 *
 * For an untiled surface, this removes any existing fence.
2603
 */
2604
int
2605
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2606
{
2607
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
2608
	struct drm_i915_private *dev_priv = dev->dev_private;
2609
	bool enable = obj->tiling_mode != I915_TILING_NONE;
2610
	struct drm_i915_fence_reg *reg;
2611
	int ret;
2612

2613 2614 2615
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
2616
	if (obj->fence_dirty) {
2617 2618 2619 2620
		ret = i915_gem_object_flush_fence(obj);
		if (ret)
			return ret;
	}
2621

2622
	/* Just update our place in the LRU if our fence is getting reused. */
2623 2624
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
2625
		if (!obj->fence_dirty) {
2626 2627 2628 2629 2630 2631 2632 2633
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
		reg = i915_find_fence_reg(dev);
		if (reg == NULL)
			return -EDEADLK;
2634

2635 2636 2637 2638
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

			ret = i915_gem_object_flush_fence(old);
2639 2640 2641
			if (ret)
				return ret;

2642
			i915_gem_object_fence_lost(old);
2643
		}
2644
	} else
2645 2646
		return 0;

2647
	i915_gem_object_update_fence(obj, reg, enable);
2648
	obj->fence_dirty = false;
2649

2650
	return 0;
2651 2652
}

2653 2654 2655 2656
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
2657
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2658
			    unsigned alignment,
2659
			    bool map_and_fenceable)
2660
{
2661
	struct drm_device *dev = obj->base.dev;
2662 2663
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_mm_node *free_space;
2664
	gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2665
	u32 size, fence_size, fence_alignment, unfenced_alignment;
2666
	bool mappable, fenceable;
2667
	int ret;
2668

2669
	if (obj->madv != I915_MADV_WILLNEED) {
2670 2671 2672 2673
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
						     obj->tiling_mode);
	unfenced_alignment =
		i915_gem_get_unfenced_gtt_alignment(dev,
						    obj->base.size,
						    obj->tiling_mode);
2684

2685
	if (alignment == 0)
2686 2687
		alignment = map_and_fenceable ? fence_alignment :
						unfenced_alignment;
2688
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2689 2690 2691 2692
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2693
	size = map_and_fenceable ? fence_size : obj->base.size;
2694

2695 2696 2697
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2698
	if (obj->base.size >
2699
	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2700 2701 2702 2703
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2704
 search_free:
2705
	if (map_and_fenceable)
2706 2707
		free_space =
			drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2708
						    size, alignment, 0,
2709 2710 2711 2712
						    dev_priv->mm.gtt_mappable_end,
						    0);
	else
		free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2713
						size, alignment, 0);
2714 2715

	if (free_space != NULL) {
2716
		if (map_and_fenceable)
2717
			obj->gtt_space =
2718
				drm_mm_get_block_range_generic(free_space,
2719
							       size, alignment, 0,
2720 2721 2722
							       dev_priv->mm.gtt_mappable_end,
							       0);
		else
2723
			obj->gtt_space =
2724
				drm_mm_get_block(free_space, size, alignment);
2725
	}
2726
	if (obj->gtt_space == NULL) {
2727 2728 2729
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2730 2731
		ret = i915_gem_evict_something(dev, size, alignment,
					       map_and_fenceable);
2732
		if (ret)
2733
			return ret;
2734

2735 2736 2737
		goto search_free;
	}

2738
	ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2739
	if (ret) {
2740 2741
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2742 2743

		if (ret == -ENOMEM) {
2744 2745
			/* first try to reclaim some memory by clearing the GTT */
			ret = i915_gem_evict_everything(dev, false);
2746 2747
			if (ret) {
				/* now try to shrink everyone else */
2748 2749 2750
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2751 2752
				}

2753
				return -ENOMEM;
2754 2755 2756 2757 2758
			}

			goto search_free;
		}

2759 2760 2761
		return ret;
	}

2762
	ret = i915_gem_gtt_prepare_object(obj);
2763
	if (ret) {
2764
		i915_gem_object_put_pages_gtt(obj);
2765 2766
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2767

2768
		if (i915_gem_evict_everything(dev, false))
2769 2770 2771
			return ret;

		goto search_free;
2772 2773
	}

2774 2775
	if (!dev_priv->mm.aliasing_ppgtt)
		i915_gem_gtt_bind_object(obj, obj->cache_level);
2776

2777
	list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2778
	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2779

2780 2781 2782 2783
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2784 2785
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2786

2787
	obj->gtt_offset = obj->gtt_space->start;
C
Chris Wilson 已提交
2788

2789
	fenceable =
2790
		obj->gtt_space->size == fence_size &&
2791
		(obj->gtt_space->start & (fence_alignment - 1)) == 0;
2792

2793
	mappable =
2794
		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2795

2796
	obj->map_and_fenceable = mappable && fenceable;
2797

C
Chris Wilson 已提交
2798
	trace_i915_gem_object_bind(obj, map_and_fenceable);
2799 2800 2801 2802
	return 0;
}

void
2803
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2804 2805 2806 2807 2808
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2809
	if (obj->pages == NULL)
2810 2811
		return;

2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
	if (obj->cache_level != I915_CACHE_NONE)
		return;

C
Chris Wilson 已提交
2823
	trace_i915_gem_object_clflush(obj);
2824

2825
	drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2826 2827
}

2828
/** Flushes any GPU write domain for the object if it's dirty. */
2829
static int
2830
i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2831
{
2832
	if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2833
		return 0;
2834 2835

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2836
	return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2837 2838 2839 2840
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
2841
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2842
{
C
Chris Wilson 已提交
2843 2844
	uint32_t old_write_domain;

2845
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2846 2847
		return;

2848
	/* No actual flushing is required for the GTT write domain.  Writes
2849 2850
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
2851 2852 2853 2854
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
2855
	 */
2856 2857
	wmb();

2858 2859
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2860 2861

	trace_i915_gem_object_change_domain(obj,
2862
					    obj->base.read_domains,
C
Chris Wilson 已提交
2863
					    old_write_domain);
2864 2865 2866 2867
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
2868
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2869
{
C
Chris Wilson 已提交
2870
	uint32_t old_write_domain;
2871

2872
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2873 2874 2875
		return;

	i915_gem_clflush_object(obj);
2876
	intel_gtt_chipset_flush();
2877 2878
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2879 2880

	trace_i915_gem_object_change_domain(obj,
2881
					    obj->base.read_domains,
C
Chris Wilson 已提交
2882
					    old_write_domain);
2883 2884
}

2885 2886 2887 2888 2889 2890
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2891
int
2892
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2893
{
2894
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
C
Chris Wilson 已提交
2895
	uint32_t old_write_domain, old_read_domains;
2896
	int ret;
2897

2898
	/* Not valid to be called on unbound objects. */
2899
	if (obj->gtt_space == NULL)
2900 2901
		return -EINVAL;

2902 2903 2904
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

2905 2906 2907 2908
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2909
	if (obj->pending_gpu_write || write) {
2910
		ret = i915_gem_object_wait_rendering(obj);
2911 2912 2913
		if (ret)
			return ret;
	}
2914

2915
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2916

2917 2918
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
2919

2920 2921 2922
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2923 2924
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2925
	if (write) {
2926 2927 2928
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
2929 2930
	}

C
Chris Wilson 已提交
2931 2932 2933 2934
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2935 2936 2937 2938
	/* And bump the LRU for this access */
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);

2939 2940 2941
	return 0;
}

2942 2943 2944
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
2945 2946
	struct drm_device *dev = obj->base.dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

	if (obj->pin_count) {
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

	if (obj->gtt_space) {
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
		if (INTEL_INFO(obj->base.dev)->gen < 6) {
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

2974 2975
		if (obj->has_global_gtt_mapping)
			i915_gem_gtt_bind_object(obj, cache_level);
2976 2977 2978
		if (obj->has_aliasing_ppgtt_mapping)
			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
					       obj, cache_level);
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
	}

	if (cache_level == I915_CACHE_NONE) {
		u32 old_read_domains, old_write_domain;

		/* If we're coming from LLC cached, then we haven't
		 * actually been tracking whether the data is in the
		 * CPU cache or not, since we only allow one bit set
		 * in obj->write_domain and have been skipping the clflushes.
		 * Just set it to the CPU cache for now.
		 */
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);

		old_read_domains = obj->base.read_domains;
		old_write_domain = obj->base.write_domain;

		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;

		trace_i915_gem_object_change_domain(obj,
						    old_read_domains,
						    old_write_domain);
	}

	obj->cache_level = cache_level;
	return 0;
}

3008
/*
3009 3010 3011
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3012 3013
 */
int
3014 3015
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3016
				     struct intel_ring_buffer *pipelined)
3017
{
3018
	u32 old_read_domains, old_write_domain;
3019 3020
	int ret;

3021 3022 3023 3024
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3025
	if (pipelined != obj->ring) {
3026 3027
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
3028 3029 3030
			return ret;
	}

3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
	if (ret)
		return ret;

3044 3045 3046 3047 3048 3049 3050 3051
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
	ret = i915_gem_object_pin(obj, alignment, true);
	if (ret)
		return ret;

3052 3053
	i915_gem_object_flush_cpu_write_domain(obj);

3054
	old_write_domain = obj->base.write_domain;
3055
	old_read_domains = obj->base.read_domains;
3056 3057 3058 3059 3060

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3061
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3062 3063 3064

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3065
					    old_write_domain);
3066 3067 3068 3069

	return 0;
}

3070
int
3071
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3072
{
3073 3074
	int ret;

3075
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3076 3077
		return 0;

3078
	if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
3079
		ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
3080 3081 3082
		if (ret)
			return ret;
	}
3083

3084 3085 3086 3087
	ret = i915_gem_object_wait_rendering(obj);
	if (ret)
		return ret;

3088 3089
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3090
	return 0;
3091 3092
}

3093 3094 3095 3096 3097 3098
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3099
int
3100
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3101
{
C
Chris Wilson 已提交
3102
	uint32_t old_write_domain, old_read_domains;
3103 3104
	int ret;

3105 3106 3107
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3108 3109 3110 3111
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3112 3113 3114 3115 3116
	if (write || obj->pending_gpu_write) {
		ret = i915_gem_object_wait_rendering(obj);
		if (ret)
			return ret;
	}
3117

3118
	i915_gem_object_flush_gtt_write_domain(obj);
3119

3120 3121
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3122

3123
	/* Flush the CPU cache if it's still invalid. */
3124
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3125 3126
		i915_gem_clflush_object(obj);

3127
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3128 3129 3130 3131 3132
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3133
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3134 3135 3136 3137 3138

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3139 3140
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3141
	}
3142

C
Chris Wilson 已提交
3143 3144 3145 3146
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3147 3148 3149
	return 0;
}

3150 3151 3152
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3153 3154 3155 3156
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3157 3158 3159
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3160
static int
3161
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3162
{
3163 3164
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3165
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3166 3167 3168 3169
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3170

3171 3172 3173
	if (atomic_read(&dev_priv->mm.wedged))
		return -EIO;

3174
	spin_lock(&file_priv->mm.lock);
3175
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3176 3177
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3178

3179 3180
		ring = request->ring;
		seqno = request->seqno;
3181
	}
3182
	spin_unlock(&file_priv->mm.lock);
3183

3184 3185
	if (seqno == 0)
		return 0;
3186

3187
	ret = __wait_seqno(ring, seqno, true, NULL);
3188 3189
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3190 3191 3192 3193

	return ret;
}

3194
int
3195 3196
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    uint32_t alignment,
3197
		    bool map_and_fenceable)
3198 3199 3200
{
	int ret;

3201
	BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3202

3203 3204 3205 3206
	if (obj->gtt_space != NULL) {
		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
		    (map_and_fenceable && !obj->map_and_fenceable)) {
			WARN(obj->pin_count,
3207
			     "bo is already pinned with incorrect alignment:"
3208 3209
			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
			     " obj->map_and_fenceable=%d\n",
3210
			     obj->gtt_offset, alignment,
3211
			     map_and_fenceable,
3212
			     obj->map_and_fenceable);
3213 3214 3215 3216 3217 3218
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

3219
	if (obj->gtt_space == NULL) {
3220
		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3221
						  map_and_fenceable);
3222
		if (ret)
3223
			return ret;
3224
	}
J
Jesse Barnes 已提交
3225

3226 3227 3228
	if (!obj->has_global_gtt_mapping && map_and_fenceable)
		i915_gem_gtt_bind_object(obj, obj->cache_level);

3229
	obj->pin_count++;
3230
	obj->pin_mappable |= map_and_fenceable;
3231 3232 3233 3234 3235

	return 0;
}

void
3236
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3237
{
3238 3239
	BUG_ON(obj->pin_count == 0);
	BUG_ON(obj->gtt_space == NULL);
3240

3241
	if (--obj->pin_count == 0)
3242
		obj->pin_mappable = false;
3243 3244 3245 3246
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3247
		   struct drm_file *file)
3248 3249
{
	struct drm_i915_gem_pin *args = data;
3250
	struct drm_i915_gem_object *obj;
3251 3252
	int ret;

3253 3254 3255
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3256

3257
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3258
	if (&obj->base == NULL) {
3259 3260
		ret = -ENOENT;
		goto unlock;
3261 3262
	}

3263
	if (obj->madv != I915_MADV_WILLNEED) {
C
Chris Wilson 已提交
3264
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3265 3266
		ret = -EINVAL;
		goto out;
3267 3268
	}

3269
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
J
Jesse Barnes 已提交
3270 3271
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3272 3273
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3274 3275
	}

3276 3277 3278
	obj->user_pin_count++;
	obj->pin_filp = file;
	if (obj->user_pin_count == 1) {
3279
		ret = i915_gem_object_pin(obj, args->alignment, true);
3280 3281
		if (ret)
			goto out;
3282 3283 3284 3285 3286
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
3287
	i915_gem_object_flush_cpu_write_domain(obj);
3288
	args->offset = obj->gtt_offset;
3289
out:
3290
	drm_gem_object_unreference(&obj->base);
3291
unlock:
3292
	mutex_unlock(&dev->struct_mutex);
3293
	return ret;
3294 3295 3296 3297
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3298
		     struct drm_file *file)
3299 3300
{
	struct drm_i915_gem_pin *args = data;
3301
	struct drm_i915_gem_object *obj;
3302
	int ret;
3303

3304 3305 3306
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3307

3308
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3309
	if (&obj->base == NULL) {
3310 3311
		ret = -ENOENT;
		goto unlock;
3312
	}
3313

3314
	if (obj->pin_filp != file) {
J
Jesse Barnes 已提交
3315 3316
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3317 3318
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3319
	}
3320 3321 3322
	obj->user_pin_count--;
	if (obj->user_pin_count == 0) {
		obj->pin_filp = NULL;
J
Jesse Barnes 已提交
3323 3324
		i915_gem_object_unpin(obj);
	}
3325

3326
out:
3327
	drm_gem_object_unreference(&obj->base);
3328
unlock:
3329
	mutex_unlock(&dev->struct_mutex);
3330
	return ret;
3331 3332 3333 3334
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3335
		    struct drm_file *file)
3336 3337
{
	struct drm_i915_gem_busy *args = data;
3338
	struct drm_i915_gem_object *obj;
3339 3340
	int ret;

3341
	ret = i915_mutex_lock_interruptible(dev);
3342
	if (ret)
3343
		return ret;
3344

3345
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3346
	if (&obj->base == NULL) {
3347 3348
		ret = -ENOENT;
		goto unlock;
3349
	}
3350

3351 3352 3353 3354
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
3355
	 */
3356
	ret = i915_gem_object_flush_active(obj);
3357

3358
	args->busy = obj->active;
3359

3360
	drm_gem_object_unreference(&obj->base);
3361
unlock:
3362
	mutex_unlock(&dev->struct_mutex);
3363
	return ret;
3364 3365 3366 3367 3368 3369
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3370
	return i915_gem_ring_throttle(dev, file_priv);
3371 3372
}

3373 3374 3375 3376 3377
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
3378
	struct drm_i915_gem_object *obj;
3379
	int ret;
3380 3381 3382 3383 3384 3385 3386 3387 3388

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3389 3390 3391 3392
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3393
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3394
	if (&obj->base == NULL) {
3395 3396
		ret = -ENOENT;
		goto unlock;
3397 3398
	}

3399
	if (obj->pin_count) {
3400 3401
		ret = -EINVAL;
		goto out;
3402 3403
	}

3404 3405
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3406

3407
	/* if the object is no longer bound, discard its backing storage */
3408 3409
	if (i915_gem_object_is_purgeable(obj) &&
	    obj->gtt_space == NULL)
3410 3411
		i915_gem_object_truncate(obj);

3412
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3413

3414
out:
3415
	drm_gem_object_unreference(&obj->base);
3416
unlock:
3417
	mutex_unlock(&dev->struct_mutex);
3418
	return ret;
3419 3420
}

3421 3422
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
3423
{
3424
	struct drm_i915_private *dev_priv = dev->dev_private;
3425
	struct drm_i915_gem_object *obj;
3426
	struct address_space *mapping;
3427
	u32 mask;
3428

3429 3430 3431
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
3432

3433 3434 3435 3436
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
3437

3438 3439 3440 3441 3442 3443 3444
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

3445
	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3446
	mapping_set_gfp_mask(mapping, mask);
3447

3448 3449
	i915_gem_info_add_obj(dev_priv, size);

3450 3451
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3452

3453 3454
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

3470
	obj->base.driver_private = NULL;
3471
	obj->fence_reg = I915_FENCE_REG_NONE;
3472
	INIT_LIST_HEAD(&obj->mm_list);
D
Daniel Vetter 已提交
3473
	INIT_LIST_HEAD(&obj->gtt_list);
3474
	INIT_LIST_HEAD(&obj->ring_list);
3475
	INIT_LIST_HEAD(&obj->exec_list);
3476 3477
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
3478 3479
	/* Avoid an unnecessary call to unbind on the first bind. */
	obj->map_and_fenceable = true;
3480

3481
	return obj;
3482 3483 3484 3485 3486
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
3487

3488 3489 3490
	return 0;
}

3491
void i915_gem_free_object(struct drm_gem_object *gem_obj)
3492
{
3493
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3494
	struct drm_device *dev = obj->base.dev;
3495
	drm_i915_private_t *dev_priv = dev->dev_private;
3496

3497 3498
	trace_i915_gem_object_destroy(obj);

3499 3500 3501
	if (gem_obj->import_attach)
		drm_prime_gem_destroy(gem_obj, obj->sg_table);

3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
	if (obj->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

	obj->pin_count = 0;
	if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
		bool was_interruptible;

		was_interruptible = dev_priv->mm.interruptible;
		dev_priv->mm.interruptible = false;

		WARN_ON(i915_gem_object_unbind(obj));

		dev_priv->mm.interruptible = was_interruptible;
	}

3517
	if (obj->base.map_list.map)
3518
		drm_gem_free_mmap_offset(&obj->base);
3519

3520 3521
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3522

3523 3524
	kfree(obj->bit_17);
	kfree(obj);
3525 3526
}

3527 3528 3529 3530 3531
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3532

3533
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
3534

3535
	if (dev_priv->mm.suspended) {
3536 3537
		mutex_unlock(&dev->struct_mutex);
		return 0;
3538 3539
	}

3540
	ret = i915_gpu_idle(dev);
3541 3542
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
3543
		return ret;
3544
	}
3545
	i915_gem_retire_requests(dev);
3546

3547
	/* Under UMS, be paranoid and evict. */
3548 3549
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		i915_gem_evict_everything(dev, false);
3550

3551 3552
	i915_gem_reset_fences(dev);

3553 3554 3555 3556 3557
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
3558
	del_timer_sync(&dev_priv->hangcheck_timer);
3559 3560

	i915_kernel_lost_context(dev);
3561
	i915_gem_cleanup_ringbuffer(dev);
3562

3563 3564
	mutex_unlock(&dev->struct_mutex);

3565 3566 3567
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

3568 3569 3570
	return 0;
}

B
Ben Widawsky 已提交
3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
void i915_gem_l3_remap(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 misccpctl;
	int i;

	if (!IS_IVYBRIDGE(dev))
		return;

	if (!dev_priv->mm.l3_remap_info)
		return;

	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	POSTING_READ(GEN7_MISCCPCTL);

	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
		u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
		if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
			DRM_DEBUG("0x%x was already programmed to %x\n",
				  GEN7_L3LOG_BASE + i, remap);
		if (remap && !dev_priv->mm.l3_remap_info[i/4])
			DRM_DEBUG_DRIVER("Clearing remapped register\n");
		I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
	}

	/* Make sure all the writes land before disabling dop clock gating */
	POSTING_READ(GEN7_L3LOG_BASE);

	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

3603 3604 3605 3606
void i915_gem_init_swizzling(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

3607
	if (INTEL_INFO(dev)->gen < 5 ||
3608 3609 3610 3611 3612 3613
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

3614 3615 3616
	if (IS_GEN5(dev))
		return;

3617 3618
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
3619
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3620
	else
3621
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3622
}
D
Daniel Vetter 已提交
3623 3624 3625 3626 3627 3628

void i915_gem_init_ppgtt(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t pd_offset;
	struct intel_ring_buffer *ring;
3629 3630 3631
	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
	uint32_t __iomem *pd_addr;
	uint32_t pd_entry;
D
Daniel Vetter 已提交
3632 3633 3634 3635 3636
	int i;

	if (!dev_priv->mm.aliasing_ppgtt)
		return;

3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654

	pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
	for (i = 0; i < ppgtt->num_pd_entries; i++) {
		dma_addr_t pt_addr;

		if (dev_priv->mm.gtt->needs_dmar)
			pt_addr = ppgtt->pt_dma_addr[i];
		else
			pt_addr = page_to_phys(ppgtt->pt_pages[i]);

		pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
		pd_entry |= GEN6_PDE_VALID;

		writel(pd_entry, pd_addr + i);
	}
	readl(pd_addr);

	pd_offset = ppgtt->pd_offset;
D
Daniel Vetter 已提交
3655 3656 3657 3658
	pd_offset /= 64; /* in cachelines, */
	pd_offset <<= 16;

	if (INTEL_INFO(dev)->gen == 6) {
3659 3660 3661 3662
		uint32_t ecochk, gab_ctl, ecobits;

		ecobits = I915_READ(GAC_ECO_BITS); 
		I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3663 3664 3665 3666 3667

		gab_ctl = I915_READ(GAB_CTL);
		I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

		ecochk = I915_READ(GAM_ECOCHK);
D
Daniel Vetter 已提交
3668 3669
		I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
				       ECOCHK_PPGTT_CACHE64B);
3670
		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
D
Daniel Vetter 已提交
3671 3672 3673 3674 3675
	} else if (INTEL_INFO(dev)->gen >= 7) {
		I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
		/* GFX_MODE is per-ring on gen7+ */
	}

3676
	for_each_ring(ring, dev_priv, i) {
D
Daniel Vetter 已提交
3677 3678
		if (INTEL_INFO(dev)->gen >= 7)
			I915_WRITE(RING_MODE_GEN7(ring),
3679
				   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
D
Daniel Vetter 已提交
3680 3681 3682 3683 3684 3685

		I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
		I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
	}
}

3686
int
3687
i915_gem_init_hw(struct drm_device *dev)
3688 3689 3690
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3691

B
Ben Widawsky 已提交
3692 3693
	i915_gem_l3_remap(dev);

3694 3695
	i915_gem_init_swizzling(dev);

3696
	ret = intel_init_render_ring_buffer(dev);
3697
	if (ret)
3698
		return ret;
3699 3700

	if (HAS_BSD(dev)) {
3701
		ret = intel_init_bsd_ring_buffer(dev);
3702 3703
		if (ret)
			goto cleanup_render_ring;
3704
	}
3705

3706 3707 3708 3709 3710 3711
	if (HAS_BLT(dev)) {
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

3712 3713
	dev_priv->next_seqno = 1;

D
Daniel Vetter 已提交
3714 3715
	i915_gem_init_ppgtt(dev);

3716 3717
	return 0;

3718
cleanup_bsd_ring:
3719
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3720
cleanup_render_ring:
3721
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3722 3723 3724
	return ret;
}

3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
static bool
intel_enable_ppgtt(struct drm_device *dev)
{
	if (i915_enable_ppgtt >= 0)
		return i915_enable_ppgtt;

#ifdef CONFIG_INTEL_IOMMU
	/* Disable ppgtt on SNB if VT-d is on. */
	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long gtt_size, mappable_size;
	int ret;

	gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
	mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;

	mutex_lock(&dev->struct_mutex);
	if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
		/* PPGTT pdes are stolen from global gtt ptes, so shrink the
		 * aperture accordingly when using aliasing ppgtt. */
		gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;

		i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);

		ret = i915_gem_init_aliasing_ppgtt(dev);
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	} else {
		/* Let GEM Manage all of the aperture.
		 *
		 * However, leave one page at the end still bound to the scratch
		 * page.  There are a number of places where the hardware
		 * apparently prefetches past the end of the object, and we've
		 * seen multiple hangs with the GPU head pointer stuck in a
		 * batchbuffer bound at the last page of the aperture.  One page
		 * should be enough to keep any prefetching inside of the
		 * aperture.
		 */
		i915_gem_init_global_gtt(dev, 0, mappable_size,
					 gtt_size);
	}

	ret = i915_gem_init_hw(dev);
	mutex_unlock(&dev->struct_mutex);
	if (ret) {
		i915_gem_cleanup_aliasing_ppgtt(dev);
		return ret;
	}

3784 3785 3786
	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->dri1.allow_batchbuffer = 1;
3787 3788 3789
	return 0;
}

3790 3791 3792 3793
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3794
	struct intel_ring_buffer *ring;
3795
	int i;
3796

3797 3798
	for_each_ring(ring, dev_priv, i)
		intel_cleanup_ring_buffer(ring);
3799 3800
}

3801 3802 3803 3804 3805
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3806
	int ret;
3807

J
Jesse Barnes 已提交
3808 3809 3810
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3811
	if (atomic_read(&dev_priv->mm.wedged)) {
3812
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3813
		atomic_set(&dev_priv->mm.wedged, 0);
3814 3815 3816
	}

	mutex_lock(&dev->struct_mutex);
3817 3818
	dev_priv->mm.suspended = 0;

3819
	ret = i915_gem_init_hw(dev);
3820 3821
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
3822
		return ret;
3823
	}
3824

3825
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
3826 3827 3828
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
	mutex_unlock(&dev->struct_mutex);
3829

3830 3831 3832
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
3833

3834
	return 0;
3835 3836 3837 3838 3839 3840 3841 3842

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
3843 3844 3845 3846 3847 3848
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
3849 3850 3851
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3852
	drm_irq_uninstall(dev);
3853
	return i915_gem_idle(dev);
3854 3855 3856 3857 3858 3859 3860
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

3861 3862 3863
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

3864 3865 3866
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
3867 3868
}

3869 3870 3871 3872 3873 3874 3875 3876
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	INIT_LIST_HEAD(&ring->gpu_write_list);
}

3877 3878 3879
void
i915_gem_load(struct drm_device *dev)
{
3880
	int i;
3881 3882
	drm_i915_private_t *dev_priv = dev->dev_private;

3883
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
3884 3885
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3886
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
D
Daniel Vetter 已提交
3887
	INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3888 3889
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
3890
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
3891
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3892 3893
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
3894
	init_completion(&dev_priv->error_completion);
3895

3896 3897
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
3898 3899
		I915_WRITE(MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
3900 3901
	}

3902 3903
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

3904
	/* Old X drivers will take 0-2 for front, back, depth buffers */
3905 3906
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
3907

3908
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3909 3910 3911 3912
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

3913
	/* Initialize fence registers to zero */
3914
	i915_gem_reset_fences(dev);
3915

3916
	i915_gem_detect_bit_6_swizzle(dev);
3917
	init_waitqueue_head(&dev_priv->pending_flip_queue);
3918

3919 3920
	dev_priv->mm.interruptible = true;

3921 3922 3923
	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.inactive_shrinker);
3924
}
3925 3926 3927 3928 3929

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
3930 3931
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
3932 3933 3934 3935 3936 3937 3938 3939
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

3940
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3941 3942 3943 3944 3945
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

3946
	phys_obj->handle = drm_pci_alloc(dev, size, align);
3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
3959
	kfree(phys_obj);
3960 3961 3962
	return ret;
}

3963
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

3988
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3989 3990 3991 3992
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
3993
				 struct drm_i915_gem_object *obj)
3994
{
3995
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3996
	char *vaddr;
3997 3998 3999
	int i;
	int page_count;

4000
	if (!obj->phys_obj)
4001
		return;
4002
	vaddr = obj->phys_obj->handle->vaddr;
4003

4004
	page_count = obj->base.size / PAGE_SIZE;
4005
	for (i = 0; i < page_count; i++) {
4006
		struct page *page = shmem_read_mapping_page(mapping, i);
4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
		if (!IS_ERR(page)) {
			char *dst = kmap_atomic(page);
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
			kunmap_atomic(dst);

			drm_clflush_pages(&page, 1);

			set_page_dirty(page);
			mark_page_accessed(page);
			page_cache_release(page);
		}
4018
	}
4019
	intel_gtt_chipset_flush();
4020

4021 4022
	obj->phys_obj->cur_obj = NULL;
	obj->phys_obj = NULL;
4023 4024 4025 4026
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
4027
			    struct drm_i915_gem_object *obj,
4028 4029
			    int id,
			    int align)
4030
{
4031
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4032 4033 4034 4035 4036 4037 4038 4039
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4040 4041
	if (obj->phys_obj) {
		if (obj->phys_obj->id == id)
4042 4043 4044 4045 4046 4047 4048
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
4049
						obj->base.size, align);
4050
		if (ret) {
4051 4052
			DRM_ERROR("failed to init phys object %d size: %zu\n",
				  id, obj->base.size);
4053
			return ret;
4054 4055 4056 4057
		}
	}

	/* bind to the object */
4058 4059
	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj->phys_obj->cur_obj = obj;
4060

4061
	page_count = obj->base.size / PAGE_SIZE;
4062 4063

	for (i = 0; i < page_count; i++) {
4064 4065 4066
		struct page *page;
		char *dst, *src;

4067
		page = shmem_read_mapping_page(mapping, i);
4068 4069
		if (IS_ERR(page))
			return PTR_ERR(page);
4070

4071
		src = kmap_atomic(page);
4072
		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4073
		memcpy(dst, src, PAGE_SIZE);
P
Peter Zijlstra 已提交
4074
		kunmap_atomic(src);
4075

4076 4077 4078
		mark_page_accessed(page);
		page_cache_release(page);
	}
4079

4080 4081 4082 4083
	return 0;
}

static int
4084 4085
i915_gem_phys_pwrite(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
4086 4087 4088
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4089
	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4090
	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4091

4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}
4105

4106
	intel_gtt_chipset_flush();
4107 4108
	return 0;
}
4109

4110
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4111
{
4112
	struct drm_i915_file_private *file_priv = file->driver_priv;
4113 4114 4115 4116 4117

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4118
	spin_lock(&file_priv->mm.lock);
4119 4120 4121 4122 4123 4124 4125 4126 4127
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4128
	spin_unlock(&file_priv->mm.lock);
4129
}
4130

4131 4132 4133 4134 4135 4136 4137
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4138
		      list_empty(&dev_priv->mm.active_list);
4139 4140 4141 4142

	return !lists_empty;
}

4143
static int
4144
i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4145
{
4146 4147 4148 4149 4150 4151
	struct drm_i915_private *dev_priv =
		container_of(shrinker,
			     struct drm_i915_private,
			     mm.inactive_shrinker);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj, *next;
4152
	int nr_to_scan = sc->nr_to_scan;
4153 4154 4155
	int cnt;

	if (!mutex_trylock(&dev->struct_mutex))
4156
		return 0;
4157 4158 4159

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
4160 4161 4162 4163 4164 4165 4166
		cnt = 0;
		list_for_each_entry(obj,
				    &dev_priv->mm.inactive_list,
				    mm_list)
			cnt++;
		mutex_unlock(&dev->struct_mutex);
		return cnt / 100 * sysctl_vfs_cache_pressure;
4167 4168
	}

4169
rescan:
4170
	/* first scan for clean buffers */
4171
	i915_gem_retire_requests(dev);
4172

4173 4174 4175 4176
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (i915_gem_object_is_purgeable(obj)) {
4177 4178
			if (i915_gem_object_unbind(obj) == 0 &&
			    --nr_to_scan == 0)
4179
				break;
4180 4181 4182 4183
		}
	}

	/* second pass, evict/count anything still on the inactive list */
4184 4185 4186 4187
	cnt = 0;
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
4188 4189
		if (nr_to_scan &&
		    i915_gem_object_unbind(obj) == 0)
4190
			nr_to_scan--;
4191
		else
4192 4193 4194 4195
			cnt++;
	}

	if (nr_to_scan && i915_gpu_is_active(dev)) {
4196 4197 4198 4199 4200 4201
		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
4202
		if (i915_gpu_idle(dev) == 0)
4203 4204
			goto rescan;
	}
4205 4206
	mutex_unlock(&dev->struct_mutex);
	return cnt / 100 * sysctl_vfs_cache_pressure;
4207
}