blk.h 15.0 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
2 3 4
#ifndef BLK_INTERNAL_H
#define BLK_INTERNAL_H

5
#include <linux/blk-crypto.h>
6
#include <linux/memblock.h>	/* for max_pfn/max_low_pfn */
7
#include <xen/xen.h>
8
#include "blk-crypto-internal.h"
9

10 11
struct elevator_type;

12 13 14
/* Max future timer expiry for timeouts */
#define BLK_MAX_TIMEOUT		(5 * HZ)

15 16
extern struct dentry *blk_debugfs_root;

17 18 19
struct blk_flush_queue {
	unsigned int		flush_pending_idx:1;
	unsigned int		flush_running_idx:1;
20
	blk_status_t 		rq_status;
21 22 23 24
	unsigned long		flush_pending_since;
	struct list_head	flush_queue[2];
	struct list_head	flush_data_in_flight;
	struct request		*flush_rq;
25

26 27 28
	spinlock_t		mq_flush_lock;
};

29
extern struct kmem_cache *blk_requestq_cachep;
30
extern struct kmem_cache *blk_requestq_srcu_cachep;
31
extern struct kobj_type blk_queue_ktype;
32
extern struct ida blk_queue_ida;
33

T
Tejun Heo 已提交
34 35 36 37 38
static inline void __blk_get_queue(struct request_queue *q)
{
	kobject_get(&q->kobj);
}

M
Ming Lei 已提交
39
bool is_flush_rq(struct request *req);
40

41 42
struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
					      gfp_t flags);
43
void blk_free_flush_queue(struct blk_flush_queue *q);
44

45
void blk_freeze_queue(struct request_queue *q);
46
void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic);
47
void blk_queue_start_drain(struct request_queue *q);
48
int __bio_queue_enter(struct request_queue *q, struct bio *bio);
49
bool submit_bio_checks(struct bio *bio);
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

static inline bool blk_try_enter_queue(struct request_queue *q, bool pm)
{
	rcu_read_lock();
	if (!percpu_ref_tryget_live_rcu(&q->q_usage_counter))
		goto fail;

	/*
	 * The code that increments the pm_only counter must ensure that the
	 * counter is globally visible before the queue is unfrozen.
	 */
	if (blk_queue_pm_only(q) &&
	    (!pm || queue_rpm_status(q) == RPM_SUSPENDED))
		goto fail_put;

	rcu_read_unlock();
	return true;

fail_put:
	blk_queue_exit(q);
fail:
	rcu_read_unlock();
	return false;
}

static inline int bio_queue_enter(struct bio *bio)
{
	struct request_queue *q = bdev_get_queue(bio->bi_bdev);

	if (blk_try_enter_queue(q, false))
		return 0;
	return __bio_queue_enter(q, bio);
}
83

84
#define BIO_INLINE_VECS 4
85 86 87
struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
		gfp_t gfp_mask);
void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs);
88

89 90
static inline bool biovec_phys_mergeable(struct request_queue *q,
		struct bio_vec *vec1, struct bio_vec *vec2)
91
{
92
	unsigned long mask = queue_segment_boundary(q);
C
Christoph Hellwig 已提交
93 94
	phys_addr_t addr1 = page_to_phys(vec1->bv_page) + vec1->bv_offset;
	phys_addr_t addr2 = page_to_phys(vec2->bv_page) + vec2->bv_offset;
95 96

	if (addr1 + vec1->bv_len != addr2)
97
		return false;
98
	if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page))
99
		return false;
100 101
	if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask))
		return false;
102 103 104
	return true;
}

105 106 107
static inline bool __bvec_gap_to_prev(struct request_queue *q,
		struct bio_vec *bprv, unsigned int offset)
{
108
	return (offset & queue_virt_boundary(q)) ||
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
		((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q));
}

/*
 * Check if adding a bio_vec after bprv with offset would create a gap in
 * the SG list. Most drivers don't care about this, but some do.
 */
static inline bool bvec_gap_to_prev(struct request_queue *q,
		struct bio_vec *bprv, unsigned int offset)
{
	if (!queue_virt_boundary(q))
		return false;
	return __bvec_gap_to_prev(q, bprv, offset);
}

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
static inline bool rq_mergeable(struct request *rq)
{
	if (blk_rq_is_passthrough(rq))
		return false;

	if (req_op(rq) == REQ_OP_FLUSH)
		return false;

	if (req_op(rq) == REQ_OP_WRITE_ZEROES)
		return false;

	if (req_op(rq) == REQ_OP_ZONE_APPEND)
		return false;

	if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
		return false;
	if (rq->rq_flags & RQF_NOMERGE_FLAGS)
		return false;

	return true;
}

/*
 * There are two different ways to handle DISCARD merges:
 *  1) If max_discard_segments > 1, the driver treats every bio as a range and
 *     send the bios to controller together. The ranges don't need to be
 *     contiguous.
 *  2) Otherwise, the request will be normal read/write requests.  The ranges
 *     need to be contiguous.
 */
static inline bool blk_discard_mergable(struct request *req)
{
	if (req_op(req) == REQ_OP_DISCARD &&
	    queue_max_discard_segments(req->q) > 1)
		return true;
	return false;
}

162 163
#ifdef CONFIG_BLK_DEV_INTEGRITY
void blk_flush_integrity(void);
164
bool __bio_integrity_endio(struct bio *);
165
void bio_integrity_free(struct bio *bio);
166 167 168 169 170 171
static inline bool bio_integrity_endio(struct bio *bio)
{
	if (bio_integrity(bio))
		return __bio_integrity_endio(bio);
	return true;
}
172

173 174
bool blk_integrity_merge_rq(struct request_queue *, struct request *,
		struct request *);
175 176
bool blk_integrity_merge_bio(struct request_queue *, struct request *,
		struct bio *);
177

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
static inline bool integrity_req_gap_back_merge(struct request *req,
		struct bio *next)
{
	struct bio_integrity_payload *bip = bio_integrity(req->bio);
	struct bio_integrity_payload *bip_next = bio_integrity(next);

	return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
				bip_next->bip_vec[0].bv_offset);
}

static inline bool integrity_req_gap_front_merge(struct request *req,
		struct bio *bio)
{
	struct bio_integrity_payload *bip = bio_integrity(bio);
	struct bio_integrity_payload *bip_next = bio_integrity(req->bio);

	return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
				bip_next->bip_vec[0].bv_offset);
}
197

198
int blk_integrity_add(struct gendisk *disk);
199
void blk_integrity_del(struct gendisk *);
200
#else /* CONFIG_BLK_DEV_INTEGRITY */
201 202 203 204 205
static inline bool blk_integrity_merge_rq(struct request_queue *rq,
		struct request *r1, struct request *r2)
{
	return true;
}
206 207 208 209 210
static inline bool blk_integrity_merge_bio(struct request_queue *rq,
		struct request *r, struct bio *b)
{
	return true;
}
211 212 213 214 215 216 217 218 219 220 221
static inline bool integrity_req_gap_back_merge(struct request *req,
		struct bio *next)
{
	return false;
}
static inline bool integrity_req_gap_front_merge(struct request *req,
		struct bio *bio)
{
	return false;
}

222 223 224
static inline void blk_flush_integrity(void)
{
}
225 226 227 228
static inline bool bio_integrity_endio(struct bio *bio)
{
	return true;
}
229 230 231
static inline void bio_integrity_free(struct bio *bio)
{
}
232
static inline int blk_integrity_add(struct gendisk *disk)
233
{
234
	return 0;
235 236 237 238
}
static inline void blk_integrity_del(struct gendisk *disk)
{
}
239
#endif /* CONFIG_BLK_DEV_INTEGRITY */
240

241
unsigned long blk_rq_timeout(unsigned long timeout);
242
void blk_add_timer(struct request *req);
243
const char *blk_status_to_str(blk_status_t status);
244 245

bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
246
		unsigned int nr_segs);
247 248
bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
			struct bio *bio, unsigned int nr_segs);
249

250 251 252 253 254 255
/*
 * Plug flush limits
 */
#define BLK_MAX_REQUEST_COUNT	32
#define BLK_PLUG_FLUSH_SIZE	(128 * 1024)

256 257 258
/*
 * Internal elevator interface
 */
259
#define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED)
260

261
void blk_insert_flush(struct request *rq);
T
Tejun Heo 已提交
262

263 264
int elevator_switch_mq(struct request_queue *q,
			      struct elevator_type *new_e);
265
void elevator_exit(struct request_queue *q);
266
int elv_register_queue(struct request_queue *q, bool uevent);
267 268
void elv_unregister_queue(struct request_queue *q);

269 270 271 272 273 274 275 276 277 278
ssize_t part_size_show(struct device *dev, struct device_attribute *attr,
		char *buf);
ssize_t part_stat_show(struct device *dev, struct device_attribute *attr,
		char *buf);
ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
		char *buf);
ssize_t part_fail_show(struct device *dev, struct device_attribute *attr,
		char *buf);
ssize_t part_fail_store(struct device *dev, struct device_attribute *attr,
		const char *buf, size_t count);
279 280 281 282
ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
ssize_t part_timeout_store(struct device *, struct device_attribute *,
				const char *, size_t);

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
static inline bool blk_may_split(struct request_queue *q, struct bio *bio)
{
	switch (bio_op(bio)) {
	case REQ_OP_DISCARD:
	case REQ_OP_SECURE_ERASE:
	case REQ_OP_WRITE_ZEROES:
	case REQ_OP_WRITE_SAME:
		return true; /* non-trivial splitting decisions */
	default:
		break;
	}

	/*
	 * All drivers must accept single-segments bios that are <= PAGE_SIZE.
	 * This is a quick and dirty check that relies on the fact that
	 * bi_io_vec[0] is always valid if a bio has data.  The check might
	 * lead to occasional false negatives when bios are cloned, but compared
	 * to the performance impact of cloned bios themselves the loop below
	 * doesn't matter anyway.
	 */
	return q->limits.chunk_sectors || bio->bi_vcnt != 1 ||
		bio->bi_io_vec->bv_len + bio->bi_io_vec->bv_offset > PAGE_SIZE;
}

void __blk_queue_split(struct request_queue *q, struct bio **bio,
			unsigned int *nr_segs);
309 310
int ll_back_merge_fn(struct request *req, struct bio *bio,
		unsigned int nr_segs);
311
bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
312
				struct request *next);
313
unsigned int blk_recalc_rq_segments(struct request *rq);
314
void blk_rq_set_mixed_merge(struct request *rq);
315
bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
316
enum elv_merge blk_try_merge(struct request *rq, struct bio *bio);
317

318 319
int blk_dev_init(void);

320 321 322 323
/*
 * Contribute to IO statistics IFF:
 *
 *	a) it's attached to a gendisk, and
324
 *	b) the queue had IO stats enabled when this request was started
325
 */
326
static inline bool blk_do_io_stat(struct request *rq)
327
{
328
	return (rq->rq_flags & RQF_IO_STAT) && rq->q->disk;
329 330
}

331
void update_io_ticks(struct block_device *part, unsigned long now, bool end);
332

333 334 335 336 337 338 339
static inline void req_set_nomerge(struct request_queue *q, struct request *req)
{
	req->cmd_flags |= REQ_NOMERGE;
	if (req == q->last_merge)
		q->last_merge = NULL;
}

340 341 342 343 344 345 346 347 348 349
/*
 * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
 * is defined as 'unsigned int', meantime it has to aligned to with logical
 * block size which is the minimum accepted unit by hardware.
 */
static inline unsigned int bio_allowed_max_sectors(struct request_queue *q)
{
	return round_down(UINT_MAX, queue_logical_block_size(q)) >> 9;
}

350 351 352 353 354 355 356 357 358 359 360 361 362 363
/*
 * The max bio size which is aligned to q->limits.discard_granularity. This
 * is a hint to split large discard bio in generic block layer, then if device
 * driver needs to split the discard bio into smaller ones, their bi_size can
 * be very probably and easily aligned to discard_granularity of the device's
 * queue.
 */
static inline unsigned int bio_aligned_discard_max_sectors(
					struct request_queue *q)
{
	return round_down(UINT_MAX, q->limits.discard_granularity) >>
			SECTOR_SHIFT;
}

364 365 366
/*
 * Internal io_context interface
 */
367
struct io_cq *ioc_find_get_icq(struct request_queue *q);
C
Christoph Hellwig 已提交
368
struct io_cq *ioc_lookup_icq(struct request_queue *q);
369
#ifdef CONFIG_BLK_ICQ
370
void ioc_clear_queue(struct request_queue *q);
371 372 373 374 375
#else
static inline void ioc_clear_queue(struct request_queue *q)
{
}
#endif /* CONFIG_BLK_ICQ */
376

377 378 379 380
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
extern ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page);
extern ssize_t blk_throtl_sample_time_store(struct request_queue *q,
	const char *page, size_t count);
381
extern void blk_throtl_bio_endio(struct bio *bio);
382
extern void blk_throtl_stat_add(struct request *rq, u64 time);
383 384
#else
static inline void blk_throtl_bio_endio(struct bio *bio) { }
385
static inline void blk_throtl_stat_add(struct request *rq, u64 time) { }
386
#endif
387

388 389 390 391 392 393 394 395 396
void __blk_queue_bounce(struct request_queue *q, struct bio **bio);

static inline bool blk_queue_may_bounce(struct request_queue *q)
{
	return IS_ENABLED(CONFIG_BOUNCE) &&
		q->limits.bounce == BLK_BOUNCE_HIGH &&
		max_low_pfn >= max_pfn;
}

397 398
static inline void blk_queue_bounce(struct request_queue *q, struct bio **bio)
{
399 400
	if (unlikely(blk_queue_may_bounce(q) && bio_has_data(*bio)))
		__blk_queue_bounce(q, bio);	
401 402
}

403 404 405 406 407 408
#ifdef CONFIG_BLK_CGROUP_IOLATENCY
extern int blk_iolatency_init(struct request_queue *q);
#else
static inline int blk_iolatency_init(struct request_queue *q) { return 0; }
#endif

409 410
struct bio *blk_next_bio(struct bio *bio, unsigned int nr_pages, gfp_t gfp);

411 412
#ifdef CONFIG_BLK_DEV_ZONED
void blk_queue_free_zone_bitmaps(struct request_queue *q);
413
void blk_queue_clear_zone_settings(struct request_queue *q);
414 415
#else
static inline void blk_queue_free_zone_bitmaps(struct request_queue *q) {}
416
static inline void blk_queue_clear_zone_settings(struct request_queue *q) {}
417 418
#endif

419 420
int blk_alloc_ext_minor(void);
void blk_free_ext_minor(unsigned int minor);
421 422 423
#define ADDPART_FLAG_NONE	0
#define ADDPART_FLAG_RAID	1
#define ADDPART_FLAG_WHOLEDISK	2
424 425
int bdev_add_partition(struct gendisk *disk, int partno, sector_t start,
		sector_t length);
426
int bdev_del_partition(struct gendisk *disk, int partno);
427 428
int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start,
		sector_t length);
429

430
int bio_add_hw_page(struct request_queue *q, struct bio *bio,
431
		struct page *page, unsigned int len, unsigned int offset,
432
		unsigned int max_sectors, bool *same_page);
433

434 435 436 437 438 439 440 441
static inline struct kmem_cache *blk_get_queue_kmem_cache(bool srcu)
{
	if (srcu)
		return blk_requestq_srcu_cachep;
	return blk_requestq_cachep;
}
struct request_queue *blk_alloc_queue(int node_id, bool alloc_srcu);

442
int disk_scan_partitions(struct gendisk *disk, fmode_t mode);
443

444
int disk_alloc_events(struct gendisk *disk);
445 446 447
void disk_add_events(struct gendisk *disk);
void disk_del_events(struct gendisk *disk);
void disk_release_events(struct gendisk *disk);
448 449 450
extern struct device_attribute dev_attr_events;
extern struct device_attribute dev_attr_events_async;
extern struct device_attribute dev_attr_events_poll_msecs;
451

452
static inline void bio_clear_polled(struct bio *bio)
453 454 455
{
	/* can't support alloc cache if we turn off polling */
	bio_clear_flag(bio, BIO_PERCPU_CACHE);
456
	bio->bi_opf &= ~REQ_POLLED;
457 458
}

459
long blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg);
460 461
long compat_blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg);

462 463
extern const struct address_space_operations def_blk_aops;

464 465 466 467
int disk_register_independent_access_ranges(struct gendisk *disk,
				struct blk_independent_access_ranges *new_iars);
void disk_unregister_independent_access_ranges(struct gendisk *disk);

468 469 470 471 472 473 474 475 476 477
#ifdef CONFIG_FAIL_MAKE_REQUEST
bool should_fail_request(struct block_device *part, unsigned int bytes);
#else /* CONFIG_FAIL_MAKE_REQUEST */
static inline bool should_fail_request(struct block_device *part,
					unsigned int bytes)
{
	return false;
}
#endif /* CONFIG_FAIL_MAKE_REQUEST */

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
/*
 * Optimized request reference counting. Ideally we'd make timeouts be more
 * clever, as that's the only reason we need references at all... But until
 * this happens, this is faster than using refcount_t. Also see:
 *
 * abc54d634334 ("io_uring: switch to atomic_t for io_kiocb reference count")
 */
#define req_ref_zero_or_close_to_overflow(req)	\
	((unsigned int) atomic_read(&(req->ref)) + 127u <= 127u)

static inline bool req_ref_inc_not_zero(struct request *req)
{
	return atomic_inc_not_zero(&req->ref);
}

static inline bool req_ref_put_and_test(struct request *req)
{
	WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
	return atomic_dec_and_test(&req->ref);
}

static inline void req_ref_set(struct request *req, int value)
{
	atomic_set(&req->ref, value);
}

static inline int req_ref_read(struct request *req)
{
	return atomic_read(&req->ref);
}

509
#endif /* BLK_INTERNAL_H */