blk.h 14.0 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
2 3 4
#ifndef BLK_INTERNAL_H
#define BLK_INTERNAL_H

5
#include <linux/blk-crypto.h>
6
#include <linux/memblock.h>	/* for max_pfn/max_low_pfn */
7
#include <xen/xen.h>
8
#include "blk-crypto-internal.h"
9

10 11
struct elevator_type;

12 13 14
/* Max future timer expiry for timeouts */
#define BLK_MAX_TIMEOUT		(5 * HZ)

15 16
extern struct dentry *blk_debugfs_root;

17 18 19
struct blk_flush_queue {
	unsigned int		flush_pending_idx:1;
	unsigned int		flush_running_idx:1;
20
	blk_status_t 		rq_status;
21 22 23 24
	unsigned long		flush_pending_since;
	struct list_head	flush_queue[2];
	struct list_head	flush_data_in_flight;
	struct request		*flush_rq;
25

26 27 28
	spinlock_t		mq_flush_lock;
};

29 30
extern struct kmem_cache *blk_requestq_cachep;
extern struct kobj_type blk_queue_ktype;
31
extern struct ida blk_queue_ida;
32

T
Tejun Heo 已提交
33 34 35 36 37
static inline void __blk_get_queue(struct request_queue *q)
{
	kobject_get(&q->kobj);
}

M
Ming Lei 已提交
38
bool is_flush_rq(struct request *req);
39

40 41
struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
					      gfp_t flags);
42
void blk_free_flush_queue(struct blk_flush_queue *q);
43

44
void blk_freeze_queue(struct request_queue *q);
45
void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic);
46
void blk_queue_start_drain(struct request_queue *q);
47
int __bio_queue_enter(struct request_queue *q, struct bio *bio);
48
bool submit_bio_checks(struct bio *bio);
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

static inline bool blk_try_enter_queue(struct request_queue *q, bool pm)
{
	rcu_read_lock();
	if (!percpu_ref_tryget_live_rcu(&q->q_usage_counter))
		goto fail;

	/*
	 * The code that increments the pm_only counter must ensure that the
	 * counter is globally visible before the queue is unfrozen.
	 */
	if (blk_queue_pm_only(q) &&
	    (!pm || queue_rpm_status(q) == RPM_SUSPENDED))
		goto fail_put;

	rcu_read_unlock();
	return true;

fail_put:
	blk_queue_exit(q);
fail:
	rcu_read_unlock();
	return false;
}

static inline int bio_queue_enter(struct bio *bio)
{
	struct request_queue *q = bdev_get_queue(bio->bi_bdev);

	if (blk_try_enter_queue(q, false))
		return 0;
	return __bio_queue_enter(q, bio);
}
82

83
#define BIO_INLINE_VECS 4
84 85 86
struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
		gfp_t gfp_mask);
void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs);
87

88 89
static inline bool biovec_phys_mergeable(struct request_queue *q,
		struct bio_vec *vec1, struct bio_vec *vec2)
90
{
91
	unsigned long mask = queue_segment_boundary(q);
C
Christoph Hellwig 已提交
92 93
	phys_addr_t addr1 = page_to_phys(vec1->bv_page) + vec1->bv_offset;
	phys_addr_t addr2 = page_to_phys(vec2->bv_page) + vec2->bv_offset;
94 95

	if (addr1 + vec1->bv_len != addr2)
96
		return false;
97
	if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page))
98
		return false;
99 100
	if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask))
		return false;
101 102 103
	return true;
}

104 105 106
static inline bool __bvec_gap_to_prev(struct request_queue *q,
		struct bio_vec *bprv, unsigned int offset)
{
107
	return (offset & queue_virt_boundary(q)) ||
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
		((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q));
}

/*
 * Check if adding a bio_vec after bprv with offset would create a gap in
 * the SG list. Most drivers don't care about this, but some do.
 */
static inline bool bvec_gap_to_prev(struct request_queue *q,
		struct bio_vec *bprv, unsigned int offset)
{
	if (!queue_virt_boundary(q))
		return false;
	return __bvec_gap_to_prev(q, bprv, offset);
}

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
static inline bool rq_mergeable(struct request *rq)
{
	if (blk_rq_is_passthrough(rq))
		return false;

	if (req_op(rq) == REQ_OP_FLUSH)
		return false;

	if (req_op(rq) == REQ_OP_WRITE_ZEROES)
		return false;

	if (req_op(rq) == REQ_OP_ZONE_APPEND)
		return false;

	if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
		return false;
	if (rq->rq_flags & RQF_NOMERGE_FLAGS)
		return false;

	return true;
}

/*
 * There are two different ways to handle DISCARD merges:
 *  1) If max_discard_segments > 1, the driver treats every bio as a range and
 *     send the bios to controller together. The ranges don't need to be
 *     contiguous.
 *  2) Otherwise, the request will be normal read/write requests.  The ranges
 *     need to be contiguous.
 */
static inline bool blk_discard_mergable(struct request *req)
{
	if (req_op(req) == REQ_OP_DISCARD &&
	    queue_max_discard_segments(req->q) > 1)
		return true;
	return false;
}

161 162
#ifdef CONFIG_BLK_DEV_INTEGRITY
void blk_flush_integrity(void);
163
bool __bio_integrity_endio(struct bio *);
164
void bio_integrity_free(struct bio *bio);
165 166 167 168 169 170
static inline bool bio_integrity_endio(struct bio *bio)
{
	if (bio_integrity(bio))
		return __bio_integrity_endio(bio);
	return true;
}
171

172 173
bool blk_integrity_merge_rq(struct request_queue *, struct request *,
		struct request *);
174 175
bool blk_integrity_merge_bio(struct request_queue *, struct request *,
		struct bio *);
176

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
static inline bool integrity_req_gap_back_merge(struct request *req,
		struct bio *next)
{
	struct bio_integrity_payload *bip = bio_integrity(req->bio);
	struct bio_integrity_payload *bip_next = bio_integrity(next);

	return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
				bip_next->bip_vec[0].bv_offset);
}

static inline bool integrity_req_gap_front_merge(struct request *req,
		struct bio *bio)
{
	struct bio_integrity_payload *bip = bio_integrity(bio);
	struct bio_integrity_payload *bip_next = bio_integrity(req->bio);

	return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
				bip_next->bip_vec[0].bv_offset);
}
196

197
int blk_integrity_add(struct gendisk *disk);
198
void blk_integrity_del(struct gendisk *);
199
#else /* CONFIG_BLK_DEV_INTEGRITY */
200 201 202 203 204
static inline bool blk_integrity_merge_rq(struct request_queue *rq,
		struct request *r1, struct request *r2)
{
	return true;
}
205 206 207 208 209
static inline bool blk_integrity_merge_bio(struct request_queue *rq,
		struct request *r, struct bio *b)
{
	return true;
}
210 211 212 213 214 215 216 217 218 219 220
static inline bool integrity_req_gap_back_merge(struct request *req,
		struct bio *next)
{
	return false;
}
static inline bool integrity_req_gap_front_merge(struct request *req,
		struct bio *bio)
{
	return false;
}

221 222 223
static inline void blk_flush_integrity(void)
{
}
224 225 226 227
static inline bool bio_integrity_endio(struct bio *bio)
{
	return true;
}
228 229 230
static inline void bio_integrity_free(struct bio *bio)
{
}
231
static inline int blk_integrity_add(struct gendisk *disk)
232
{
233
	return 0;
234 235 236 237
}
static inline void blk_integrity_del(struct gendisk *disk)
{
}
238
#endif /* CONFIG_BLK_DEV_INTEGRITY */
239

240
unsigned long blk_rq_timeout(unsigned long timeout);
241
void blk_add_timer(struct request *req);
242
const char *blk_status_to_str(blk_status_t status);
243 244

bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
245
		unsigned int nr_segs);
246 247
bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
			struct bio *bio, unsigned int nr_segs);
248

249 250 251 252 253 254
/*
 * Plug flush limits
 */
#define BLK_MAX_REQUEST_COUNT	32
#define BLK_PLUG_FLUSH_SIZE	(128 * 1024)

255 256 257
/*
 * Internal elevator interface
 */
258
#define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED)
259

260
void blk_insert_flush(struct request *rq);
T
Tejun Heo 已提交
261

262 263
int elevator_switch_mq(struct request_queue *q,
			      struct elevator_type *new_e);
264
void elevator_exit(struct request_queue *q);
265
int elv_register_queue(struct request_queue *q, bool uevent);
266 267
void elv_unregister_queue(struct request_queue *q);

268 269 270 271 272 273 274 275 276 277
ssize_t part_size_show(struct device *dev, struct device_attribute *attr,
		char *buf);
ssize_t part_stat_show(struct device *dev, struct device_attribute *attr,
		char *buf);
ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
		char *buf);
ssize_t part_fail_show(struct device *dev, struct device_attribute *attr,
		char *buf);
ssize_t part_fail_store(struct device *dev, struct device_attribute *attr,
		const char *buf, size_t count);
278 279 280 281
ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
ssize_t part_timeout_store(struct device *, struct device_attribute *,
				const char *, size_t);

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
static inline bool blk_may_split(struct request_queue *q, struct bio *bio)
{
	switch (bio_op(bio)) {
	case REQ_OP_DISCARD:
	case REQ_OP_SECURE_ERASE:
	case REQ_OP_WRITE_ZEROES:
	case REQ_OP_WRITE_SAME:
		return true; /* non-trivial splitting decisions */
	default:
		break;
	}

	/*
	 * All drivers must accept single-segments bios that are <= PAGE_SIZE.
	 * This is a quick and dirty check that relies on the fact that
	 * bi_io_vec[0] is always valid if a bio has data.  The check might
	 * lead to occasional false negatives when bios are cloned, but compared
	 * to the performance impact of cloned bios themselves the loop below
	 * doesn't matter anyway.
	 */
	return q->limits.chunk_sectors || bio->bi_vcnt != 1 ||
		bio->bi_io_vec->bv_len + bio->bi_io_vec->bv_offset > PAGE_SIZE;
}

void __blk_queue_split(struct request_queue *q, struct bio **bio,
			unsigned int *nr_segs);
308 309
int ll_back_merge_fn(struct request *req, struct bio *bio,
		unsigned int nr_segs);
310
bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
311
				struct request *next);
312
unsigned int blk_recalc_rq_segments(struct request *rq);
313
void blk_rq_set_mixed_merge(struct request *rq);
314
bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
315
enum elv_merge blk_try_merge(struct request *rq, struct bio *bio);
316

317 318
int blk_dev_init(void);

319 320 321 322
/*
 * Contribute to IO statistics IFF:
 *
 *	a) it's attached to a gendisk, and
323
 *	b) the queue had IO stats enabled when this request was started
324
 */
325
static inline bool blk_do_io_stat(struct request *rq)
326
{
327 328 329
	return (rq->rq_flags & RQF_IO_STAT) && rq->rq_disk;
}

330
void update_io_ticks(struct block_device *part, unsigned long now, bool end);
331

332 333 334 335 336 337 338
static inline void req_set_nomerge(struct request_queue *q, struct request *req)
{
	req->cmd_flags |= REQ_NOMERGE;
	if (req == q->last_merge)
		q->last_merge = NULL;
}

339 340 341 342 343 344 345 346 347 348
/*
 * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
 * is defined as 'unsigned int', meantime it has to aligned to with logical
 * block size which is the minimum accepted unit by hardware.
 */
static inline unsigned int bio_allowed_max_sectors(struct request_queue *q)
{
	return round_down(UINT_MAX, queue_logical_block_size(q)) >> 9;
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362
/*
 * The max bio size which is aligned to q->limits.discard_granularity. This
 * is a hint to split large discard bio in generic block layer, then if device
 * driver needs to split the discard bio into smaller ones, their bi_size can
 * be very probably and easily aligned to discard_granularity of the device's
 * queue.
 */
static inline unsigned int bio_aligned_discard_max_sectors(
					struct request_queue *q)
{
	return round_down(UINT_MAX, q->limits.discard_granularity) >>
			SECTOR_SHIFT;
}

363 364 365 366
/*
 * Internal io_context interface
 */
void get_io_context(struct io_context *ioc);
367
struct io_cq *ioc_lookup_icq(struct io_context *ioc, struct request_queue *q);
368 369
struct io_cq *ioc_create_icq(struct io_context *ioc, struct request_queue *q,
			     gfp_t gfp_mask);
370
void ioc_clear_queue(struct request_queue *q);
371

372
int create_task_io_context(struct task_struct *task, gfp_t gfp_mask, int node);
373

374 375 376 377
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
extern ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page);
extern ssize_t blk_throtl_sample_time_store(struct request_queue *q,
	const char *page, size_t count);
378
extern void blk_throtl_bio_endio(struct bio *bio);
379
extern void blk_throtl_stat_add(struct request *rq, u64 time);
380 381
#else
static inline void blk_throtl_bio_endio(struct bio *bio) { }
382
static inline void blk_throtl_stat_add(struct request *rq, u64 time) { }
383
#endif
384

385 386 387 388 389 390 391 392 393
void __blk_queue_bounce(struct request_queue *q, struct bio **bio);

static inline bool blk_queue_may_bounce(struct request_queue *q)
{
	return IS_ENABLED(CONFIG_BOUNCE) &&
		q->limits.bounce == BLK_BOUNCE_HIGH &&
		max_low_pfn >= max_pfn;
}

394 395
static inline void blk_queue_bounce(struct request_queue *q, struct bio **bio)
{
396 397
	if (unlikely(blk_queue_may_bounce(q) && bio_has_data(*bio)))
		__blk_queue_bounce(q, bio);	
398 399
}

400 401 402 403 404 405
#ifdef CONFIG_BLK_CGROUP_IOLATENCY
extern int blk_iolatency_init(struct request_queue *q);
#else
static inline int blk_iolatency_init(struct request_queue *q) { return 0; }
#endif

406 407
struct bio *blk_next_bio(struct bio *bio, unsigned int nr_pages, gfp_t gfp);

408 409
#ifdef CONFIG_BLK_DEV_ZONED
void blk_queue_free_zone_bitmaps(struct request_queue *q);
410
void blk_queue_clear_zone_settings(struct request_queue *q);
411 412
#else
static inline void blk_queue_free_zone_bitmaps(struct request_queue *q) {}
413
static inline void blk_queue_clear_zone_settings(struct request_queue *q) {}
414 415
#endif

416 417
int blk_alloc_ext_minor(void);
void blk_free_ext_minor(unsigned int minor);
418 419 420
#define ADDPART_FLAG_NONE	0
#define ADDPART_FLAG_RAID	1
#define ADDPART_FLAG_WHOLEDISK	2
421 422
int bdev_add_partition(struct gendisk *disk, int partno, sector_t start,
		sector_t length);
423
int bdev_del_partition(struct gendisk *disk, int partno);
424 425
int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start,
		sector_t length);
426

427
int bio_add_hw_page(struct request_queue *q, struct bio *bio,
428
		struct page *page, unsigned int len, unsigned int offset,
429
		unsigned int max_sectors, bool *same_page);
430

431
struct request_queue *blk_alloc_queue(int node_id);
432
int disk_scan_partitions(struct gendisk *disk, fmode_t mode);
433

434
int disk_alloc_events(struct gendisk *disk);
435 436 437
void disk_add_events(struct gendisk *disk);
void disk_del_events(struct gendisk *disk);
void disk_release_events(struct gendisk *disk);
438 439 440
extern struct device_attribute dev_attr_events;
extern struct device_attribute dev_attr_events_async;
extern struct device_attribute dev_attr_events_poll_msecs;
441

442
static inline void bio_clear_polled(struct bio *bio)
443 444 445
{
	/* can't support alloc cache if we turn off polling */
	bio_clear_flag(bio, BIO_PERCPU_CACHE);
446
	bio->bi_opf &= ~REQ_POLLED;
447 448
}

449
long blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg);
450 451
long compat_blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg);

452 453
extern const struct address_space_operations def_blk_aops;

454 455 456 457
int disk_register_independent_access_ranges(struct gendisk *disk,
				struct blk_independent_access_ranges *new_iars);
void disk_unregister_independent_access_ranges(struct gendisk *disk);

458 459 460 461 462 463 464 465 466 467
#ifdef CONFIG_FAIL_MAKE_REQUEST
bool should_fail_request(struct block_device *part, unsigned int bytes);
#else /* CONFIG_FAIL_MAKE_REQUEST */
static inline bool should_fail_request(struct block_device *part,
					unsigned int bytes)
{
	return false;
}
#endif /* CONFIG_FAIL_MAKE_REQUEST */

468
#endif /* BLK_INTERNAL_H */