blk.h 11.8 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
2 3 4
#ifndef BLK_INTERNAL_H
#define BLK_INTERNAL_H

5
#include <linux/idr.h>
6
#include <linux/blk-mq.h>
7
#include <linux/part_stat.h>
8
#include <linux/blk-crypto.h>
9
#include <linux/memblock.h>	/* for max_pfn/max_low_pfn */
10
#include <xen/xen.h>
11
#include "blk-crypto-internal.h"
12
#include "blk-mq.h"
13
#include "blk-mq-sched.h"
14

15 16 17
/* Max future timer expiry for timeouts */
#define BLK_MAX_TIMEOUT		(5 * HZ)

18 19
extern struct dentry *blk_debugfs_root;

20 21 22
struct blk_flush_queue {
	unsigned int		flush_pending_idx:1;
	unsigned int		flush_running_idx:1;
23
	blk_status_t 		rq_status;
24 25 26 27
	unsigned long		flush_pending_since;
	struct list_head	flush_queue[2];
	struct list_head	flush_data_in_flight;
	struct request		*flush_rq;
28

29 30 31
	spinlock_t		mq_flush_lock;
};

32 33
extern struct kmem_cache *blk_requestq_cachep;
extern struct kobj_type blk_queue_ktype;
34
extern struct ida blk_queue_ida;
35

36 37
static inline struct blk_flush_queue *
blk_get_flush_queue(struct request_queue *q, struct blk_mq_ctx *ctx)
38
{
39
	return blk_mq_map_queue(q, REQ_OP_FLUSH, ctx)->fq;
40 41
}

T
Tejun Heo 已提交
42 43 44 45 46
static inline void __blk_get_queue(struct request_queue *q)
{
	kobject_get(&q->kobj);
}

M
Ming Lei 已提交
47
bool is_flush_rq(struct request *req);
48

49 50
struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
					      gfp_t flags);
51
void blk_free_flush_queue(struct blk_flush_queue *q);
52

53 54
void blk_freeze_queue(struct request_queue *q);

55
#define BIO_INLINE_VECS 4
56 57 58
struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
		gfp_t gfp_mask);
void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs);
59

60 61
static inline bool biovec_phys_mergeable(struct request_queue *q,
		struct bio_vec *vec1, struct bio_vec *vec2)
62
{
63
	unsigned long mask = queue_segment_boundary(q);
C
Christoph Hellwig 已提交
64 65
	phys_addr_t addr1 = page_to_phys(vec1->bv_page) + vec1->bv_offset;
	phys_addr_t addr2 = page_to_phys(vec2->bv_page) + vec2->bv_offset;
66 67

	if (addr1 + vec1->bv_len != addr2)
68
		return false;
69
	if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page))
70
		return false;
71 72
	if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask))
		return false;
73 74 75
	return true;
}

76 77 78
static inline bool __bvec_gap_to_prev(struct request_queue *q,
		struct bio_vec *bprv, unsigned int offset)
{
79
	return (offset & queue_virt_boundary(q)) ||
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
		((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q));
}

/*
 * Check if adding a bio_vec after bprv with offset would create a gap in
 * the SG list. Most drivers don't care about this, but some do.
 */
static inline bool bvec_gap_to_prev(struct request_queue *q,
		struct bio_vec *bprv, unsigned int offset)
{
	if (!queue_virt_boundary(q))
		return false;
	return __bvec_gap_to_prev(q, bprv, offset);
}

95 96
#ifdef CONFIG_BLK_DEV_INTEGRITY
void blk_flush_integrity(void);
97
bool __bio_integrity_endio(struct bio *);
98
void bio_integrity_free(struct bio *bio);
99 100 101 102 103 104
static inline bool bio_integrity_endio(struct bio *bio)
{
	if (bio_integrity(bio))
		return __bio_integrity_endio(bio);
	return true;
}
105

106 107
bool blk_integrity_merge_rq(struct request_queue *, struct request *,
		struct request *);
108 109
bool blk_integrity_merge_bio(struct request_queue *, struct request *,
		struct bio *);
110

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
static inline bool integrity_req_gap_back_merge(struct request *req,
		struct bio *next)
{
	struct bio_integrity_payload *bip = bio_integrity(req->bio);
	struct bio_integrity_payload *bip_next = bio_integrity(next);

	return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
				bip_next->bip_vec[0].bv_offset);
}

static inline bool integrity_req_gap_front_merge(struct request *req,
		struct bio *bio)
{
	struct bio_integrity_payload *bip = bio_integrity(bio);
	struct bio_integrity_payload *bip_next = bio_integrity(req->bio);

	return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
				bip_next->bip_vec[0].bv_offset);
}
130

131
int blk_integrity_add(struct gendisk *disk);
132
void blk_integrity_del(struct gendisk *);
133
#else /* CONFIG_BLK_DEV_INTEGRITY */
134 135 136 137 138
static inline bool blk_integrity_merge_rq(struct request_queue *rq,
		struct request *r1, struct request *r2)
{
	return true;
}
139 140 141 142 143
static inline bool blk_integrity_merge_bio(struct request_queue *rq,
		struct request *r, struct bio *b)
{
	return true;
}
144 145 146 147 148 149 150 151 152 153 154
static inline bool integrity_req_gap_back_merge(struct request *req,
		struct bio *next)
{
	return false;
}
static inline bool integrity_req_gap_front_merge(struct request *req,
		struct bio *bio)
{
	return false;
}

155 156 157
static inline void blk_flush_integrity(void)
{
}
158 159 160 161
static inline bool bio_integrity_endio(struct bio *bio)
{
	return true;
}
162 163 164
static inline void bio_integrity_free(struct bio *bio)
{
}
165
static inline int blk_integrity_add(struct gendisk *disk)
166
{
167
	return 0;
168 169 170 171
}
static inline void blk_integrity_del(struct gendisk *disk)
{
}
172
#endif /* CONFIG_BLK_DEV_INTEGRITY */
173

174
unsigned long blk_rq_timeout(unsigned long timeout);
175
void blk_add_timer(struct request *req);
176 177

bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
178
		unsigned int nr_segs, struct request **same_queue_rq);
179 180
bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
			struct bio *bio, unsigned int nr_segs);
181

182
void blk_account_io_start(struct request *req);
183
void blk_account_io_done(struct request *req, u64 now);
184

185 186 187
/*
 * Internal elevator interface
 */
188
#define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED)
189

190
void blk_insert_flush(struct request *rq);
T
Tejun Heo 已提交
191

192 193
int elevator_switch_mq(struct request_queue *q,
			      struct elevator_type *new_e);
194
void __elevator_exit(struct request_queue *, struct elevator_queue *);
195
int elv_register_queue(struct request_queue *q, bool uevent);
196 197
void elv_unregister_queue(struct request_queue *q);

198 199 200
static inline void elevator_exit(struct request_queue *q,
		struct elevator_queue *e)
{
201 202
	lockdep_assert_held(&q->sysfs_lock);

203 204 205 206
	blk_mq_sched_free_requests(q);
	__elevator_exit(q, e);
}

207 208 209 210 211 212 213 214 215 216
ssize_t part_size_show(struct device *dev, struct device_attribute *attr,
		char *buf);
ssize_t part_stat_show(struct device *dev, struct device_attribute *attr,
		char *buf);
ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
		char *buf);
ssize_t part_fail_show(struct device *dev, struct device_attribute *attr,
		char *buf);
ssize_t part_fail_store(struct device *dev, struct device_attribute *attr,
		const char *buf, size_t count);
217 218 219 220
ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
ssize_t part_timeout_store(struct device *, struct device_attribute *,
				const char *, size_t);

221
void __blk_queue_split(struct bio **bio, unsigned int *nr_segs);
222 223
int ll_back_merge_fn(struct request *req, struct bio *bio,
		unsigned int nr_segs);
224
bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
225
				struct request *next);
226
unsigned int blk_recalc_rq_segments(struct request *rq);
227
void blk_rq_set_mixed_merge(struct request *rq);
228
bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
229
enum elv_merge blk_try_merge(struct request *rq, struct bio *bio);
230

231 232
int blk_dev_init(void);

233 234 235 236
/*
 * Contribute to IO statistics IFF:
 *
 *	a) it's attached to a gendisk, and
237
 *	b) the queue had IO stats enabled when this request was started
238
 */
239
static inline bool blk_do_io_stat(struct request *rq)
240
{
241
	return rq->rq_disk && (rq->rq_flags & RQF_IO_STAT);
242 243
}

244 245 246 247 248 249 250
static inline void req_set_nomerge(struct request_queue *q, struct request *req)
{
	req->cmd_flags |= REQ_NOMERGE;
	if (req == q->last_merge)
		q->last_merge = NULL;
}

251 252 253 254 255 256 257 258 259 260
/*
 * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
 * is defined as 'unsigned int', meantime it has to aligned to with logical
 * block size which is the minimum accepted unit by hardware.
 */
static inline unsigned int bio_allowed_max_sectors(struct request_queue *q)
{
	return round_down(UINT_MAX, queue_logical_block_size(q)) >> 9;
}

261 262 263 264 265 266 267 268 269 270 271 272 273 274
/*
 * The max bio size which is aligned to q->limits.discard_granularity. This
 * is a hint to split large discard bio in generic block layer, then if device
 * driver needs to split the discard bio into smaller ones, their bi_size can
 * be very probably and easily aligned to discard_granularity of the device's
 * queue.
 */
static inline unsigned int bio_aligned_discard_max_sectors(
					struct request_queue *q)
{
	return round_down(UINT_MAX, q->limits.discard_granularity) >>
			SECTOR_SHIFT;
}

275 276 277 278
/*
 * Internal io_context interface
 */
void get_io_context(struct io_context *ioc);
279
struct io_cq *ioc_lookup_icq(struct io_context *ioc, struct request_queue *q);
280 281
struct io_cq *ioc_create_icq(struct io_context *ioc, struct request_queue *q,
			     gfp_t gfp_mask);
282
void ioc_clear_queue(struct request_queue *q);
283

284
int create_task_io_context(struct task_struct *task, gfp_t gfp_mask, int node);
285 286 287 288

/*
 * Internal throttling interface
 */
289 290 291
#ifdef CONFIG_BLK_DEV_THROTTLING
extern int blk_throtl_init(struct request_queue *q);
extern void blk_throtl_exit(struct request_queue *q);
292
extern void blk_throtl_register_queue(struct request_queue *q);
293
extern void blk_throtl_charge_bio_split(struct bio *bio);
294
bool blk_throtl_bio(struct bio *bio);
295 296 297
#else /* CONFIG_BLK_DEV_THROTTLING */
static inline int blk_throtl_init(struct request_queue *q) { return 0; }
static inline void blk_throtl_exit(struct request_queue *q) { }
298
static inline void blk_throtl_register_queue(struct request_queue *q) { }
299
static inline void blk_throtl_charge_bio_split(struct bio *bio) { }
300
static inline bool blk_throtl_bio(struct bio *bio) { return false; }
301
#endif /* CONFIG_BLK_DEV_THROTTLING */
302 303 304 305
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
extern ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page);
extern ssize_t blk_throtl_sample_time_store(struct request_queue *q,
	const char *page, size_t count);
306
extern void blk_throtl_bio_endio(struct bio *bio);
307
extern void blk_throtl_stat_add(struct request *rq, u64 time);
308 309
#else
static inline void blk_throtl_bio_endio(struct bio *bio) { }
310
static inline void blk_throtl_stat_add(struct request *rq, u64 time) { }
311
#endif
312

313 314 315 316 317 318 319 320 321
void __blk_queue_bounce(struct request_queue *q, struct bio **bio);

static inline bool blk_queue_may_bounce(struct request_queue *q)
{
	return IS_ENABLED(CONFIG_BOUNCE) &&
		q->limits.bounce == BLK_BOUNCE_HIGH &&
		max_low_pfn >= max_pfn;
}

322 323
static inline void blk_queue_bounce(struct request_queue *q, struct bio **bio)
{
324 325
	if (unlikely(blk_queue_may_bounce(q) && bio_has_data(*bio)))
		__blk_queue_bounce(q, bio);	
326 327
}

328 329 330 331 332 333
#ifdef CONFIG_BLK_CGROUP_IOLATENCY
extern int blk_iolatency_init(struct request_queue *q);
#else
static inline int blk_iolatency_init(struct request_queue *q) { return 0; }
#endif

334 335
struct bio *blk_next_bio(struct bio *bio, unsigned int nr_pages, gfp_t gfp);

336 337
#ifdef CONFIG_BLK_DEV_ZONED
void blk_queue_free_zone_bitmaps(struct request_queue *q);
338
void blk_queue_clear_zone_settings(struct request_queue *q);
339 340
#else
static inline void blk_queue_free_zone_bitmaps(struct request_queue *q) {}
341
static inline void blk_queue_clear_zone_settings(struct request_queue *q) {}
342 343
#endif

344 345
int blk_alloc_ext_minor(void);
void blk_free_ext_minor(unsigned int minor);
346 347 348
#define ADDPART_FLAG_NONE	0
#define ADDPART_FLAG_RAID	1
#define ADDPART_FLAG_WHOLEDISK	2
349 350
int bdev_add_partition(struct gendisk *disk, int partno, sector_t start,
		sector_t length);
351
int bdev_del_partition(struct gendisk *disk, int partno);
352 353
int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start,
		sector_t length);
354

355
int bio_add_hw_page(struct request_queue *q, struct bio *bio,
356
		struct page *page, unsigned int len, unsigned int offset,
357
		unsigned int max_sectors, bool *same_page);
358

359 360
struct request_queue *blk_alloc_queue(int node_id);

361
int disk_alloc_events(struct gendisk *disk);
362 363 364
void disk_add_events(struct gendisk *disk);
void disk_del_events(struct gendisk *disk);
void disk_release_events(struct gendisk *disk);
365 366 367
extern struct device_attribute dev_attr_events;
extern struct device_attribute dev_attr_events_async;
extern struct device_attribute dev_attr_events_poll_msecs;
368

369 370 371 372 373 374 375
static inline void bio_clear_hipri(struct bio *bio)
{
	/* can't support alloc cache if we turn off polling */
	bio_clear_flag(bio, BIO_PERCPU_CACHE);
	bio->bi_opf &= ~REQ_HIPRI;
}

376
#endif /* BLK_INTERNAL_H */