ice_common.c 103.7 KB
Newer Older
1 2 3 4
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018, Intel Corporation. */

#include "ice_common.h"
5
#include "ice_sched.h"
6 7
#include "ice_adminq_cmd.h"

8 9
#define ICE_PF_RESET_WAIT_COUNT	200

10 11
#define ICE_PROG_FLEX_ENTRY(hw, rxdid, mdid, idx) \
	wr32((hw), GLFLXP_RXDID_FLX_WRD_##idx(rxdid), \
12 13 14 15 16 17
	     ((ICE_RX_OPC_MDID << \
	       GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_S) & \
	      GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_M) | \
	     (((mdid) << GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_S) & \
	      GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_M))

18 19
#define ICE_PROG_FLG_ENTRY(hw, rxdid, flg_0, flg_1, flg_2, flg_3, idx) \
	wr32((hw), GLFLXP_RXDID_FLAGS(rxdid, idx), \
20 21 22 23 24 25 26 27 28
	     (((flg_0) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) & \
	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) | \
	     (((flg_1) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_S) & \
	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_M) | \
	     (((flg_2) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_S) & \
	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_M) | \
	     (((flg_3) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_S) & \
	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_M))

29 30 31 32 33
/**
 * ice_set_mac_type - Sets MAC type
 * @hw: pointer to the HW structure
 *
 * This function sets the MAC type of the adapter based on the
34
 * vendor ID and device ID stored in the HW structure.
35 36 37 38 39 40 41 42 43 44
 */
static enum ice_status ice_set_mac_type(struct ice_hw *hw)
{
	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
		return ICE_ERR_DEVICE_NOT_SUPPORTED;

	hw->mac_type = ICE_MAC_GENERIC;
	return 0;
}

45 46 47 48 49 50 51 52 53 54 55 56 57 58
/**
 * ice_dev_onetime_setup - Temporary HW/FW workarounds
 * @hw: pointer to the HW structure
 *
 * This function provides temporary workarounds for certain issues
 * that are expected to be fixed in the HW/FW.
 */
void ice_dev_onetime_setup(struct ice_hw *hw)
{
#define MBX_PF_VT_PFALLOC	0x00231E80
	/* set VFs per PF */
	wr32(hw, MBX_PF_VT_PFALLOC, rd32(hw, PF_VT_PFALLOC_HIF));
}

59 60 61
/**
 * ice_clear_pf_cfg - Clear PF configuration
 * @hw: pointer to the hardware structure
62 63 64
 *
 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
 * configuration, flow director filters, etc.).
65 66 67 68 69 70 71 72 73 74
 */
enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
{
	struct ice_aq_desc desc;

	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);

	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
}

75 76
/**
 * ice_aq_manage_mac_read - manage MAC address read command
77
 * @hw: pointer to the HW struct
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
 * @buf: a virtual buffer to hold the manage MAC read response
 * @buf_size: Size of the virtual buffer
 * @cd: pointer to command details structure or NULL
 *
 * This function is used to return per PF station MAC address (0x0107).
 * NOTE: Upon successful completion of this command, MAC address information
 * is returned in user specified buffer. Please interpret user specified
 * buffer as "manage_mac_read" response.
 * Response such as various MAC addresses are stored in HW struct (port.mac)
 * ice_aq_discover_caps is expected to be called before this function is called.
 */
static enum ice_status
ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
		       struct ice_sq_cd *cd)
{
	struct ice_aqc_manage_mac_read_resp *resp;
	struct ice_aqc_manage_mac_read *cmd;
	struct ice_aq_desc desc;
	enum ice_status status;
	u16 flags;
98
	u8 i;
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118

	cmd = &desc.params.mac_read;

	if (buf_size < sizeof(*resp))
		return ICE_ERR_BUF_TOO_SHORT;

	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);

	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
	if (status)
		return status;

	resp = (struct ice_aqc_manage_mac_read_resp *)buf;
	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;

	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
		return ICE_ERR_CFG;
	}

119 120 121 122 123 124 125 126 127 128
	/* A single port can report up to two (LAN and WoL) addresses */
	for (i = 0; i < cmd->num_addr; i++)
		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
			ether_addr_copy(hw->port_info->mac.lan_addr,
					resp[i].mac_addr);
			ether_addr_copy(hw->port_info->mac.perm_addr,
					resp[i].mac_addr);
			break;
		}

129 130 131 132 133 134 135 136 137 138 139 140 141
	return 0;
}

/**
 * ice_aq_get_phy_caps - returns PHY capabilities
 * @pi: port information structure
 * @qual_mods: report qualified modules
 * @report_mode: report mode capabilities
 * @pcaps: structure for PHY capabilities to be filled
 * @cd: pointer to command details structure or NULL
 *
 * Returns the various PHY capabilities supported on the Port (0x0600)
 */
142
enum ice_status
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
		    struct ice_aqc_get_phy_caps_data *pcaps,
		    struct ice_sq_cd *cd)
{
	struct ice_aqc_get_phy_caps *cmd;
	u16 pcaps_size = sizeof(*pcaps);
	struct ice_aq_desc desc;
	enum ice_status status;

	cmd = &desc.params.get_phy;

	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
		return ICE_ERR_PARAM;

	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);

	if (qual_mods)
		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);

	cmd->param0 |= cpu_to_le16(report_mode);
	status = ice_aq_send_cmd(pi->hw, &desc, pcaps, pcaps_size, cd);

165
	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP) {
166
		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
167 168
		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
	}
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184

	return status;
}

/**
 * ice_get_media_type - Gets media type
 * @pi: port information structure
 */
static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
{
	struct ice_link_status *hw_link_info;

	if (!pi)
		return ICE_MEDIA_UNKNOWN;

	hw_link_info = &pi->phy.link_info;
185 186 187
	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
		/* If more than one media type is selected, report unknown */
		return ICE_MEDIA_UNKNOWN;
188 189 190 191 192 193 194 195 196 197 198 199 200

	if (hw_link_info->phy_type_low) {
		switch (hw_link_info->phy_type_low) {
		case ICE_PHY_TYPE_LOW_1000BASE_SX:
		case ICE_PHY_TYPE_LOW_1000BASE_LX:
		case ICE_PHY_TYPE_LOW_10GBASE_SR:
		case ICE_PHY_TYPE_LOW_10GBASE_LR:
		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
		case ICE_PHY_TYPE_LOW_25GBASE_SR:
		case ICE_PHY_TYPE_LOW_25GBASE_LR:
		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
201 202 203 204 205 206 207 208 209
		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
		case ICE_PHY_TYPE_LOW_50GBASE_SR:
		case ICE_PHY_TYPE_LOW_50GBASE_FR:
		case ICE_PHY_TYPE_LOW_50GBASE_LR:
		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
		case ICE_PHY_TYPE_LOW_100GBASE_DR:
210 211 212 213 214 215 216 217 218 219 220 221 222
			return ICE_MEDIA_FIBER;
		case ICE_PHY_TYPE_LOW_100BASE_TX:
		case ICE_PHY_TYPE_LOW_1000BASE_T:
		case ICE_PHY_TYPE_LOW_2500BASE_T:
		case ICE_PHY_TYPE_LOW_5GBASE_T:
		case ICE_PHY_TYPE_LOW_10GBASE_T:
		case ICE_PHY_TYPE_LOW_25GBASE_T:
			return ICE_MEDIA_BASET;
		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
		case ICE_PHY_TYPE_LOW_25GBASE_CR:
		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
223 224 225 226 227
		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
		case ICE_PHY_TYPE_LOW_50GBASE_CP:
		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
228 229 230 231 232 233 234 235 236 237
			return ICE_MEDIA_DA;
		case ICE_PHY_TYPE_LOW_1000BASE_KX:
		case ICE_PHY_TYPE_LOW_2500BASE_KX:
		case ICE_PHY_TYPE_LOW_2500BASE_X:
		case ICE_PHY_TYPE_LOW_5GBASE_KR:
		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
		case ICE_PHY_TYPE_LOW_25GBASE_KR:
		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
238 239 240 241 242 243 244 245 246
		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
			return ICE_MEDIA_BACKPLANE;
		}
	} else {
		switch (hw_link_info->phy_type_high) {
		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
			return ICE_MEDIA_BACKPLANE;
		}
	}
	return ICE_MEDIA_UNKNOWN;
}

/**
 * ice_aq_get_link_info
 * @pi: port information structure
 * @ena_lse: enable/disable LinkStatusEvent reporting
 * @link: pointer to link status structure - optional
 * @cd: pointer to command details structure or NULL
 *
 * Get Link Status (0x607). Returns the link status of the adapter.
 */
262
enum ice_status
263 264 265 266 267
ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
		     struct ice_link_status *link, struct ice_sq_cd *cd)
{
	struct ice_aqc_get_link_status_data link_data = { 0 };
	struct ice_aqc_get_link_status *resp;
268
	struct ice_link_status *li_old, *li;
269 270 271 272 273
	enum ice_media_type *hw_media_type;
	struct ice_fc_info *hw_fc_info;
	bool tx_pause, rx_pause;
	struct ice_aq_desc desc;
	enum ice_status status;
274
	struct ice_hw *hw;
275 276 277 278
	u16 cmd_flags;

	if (!pi)
		return ICE_ERR_PARAM;
279 280
	hw = pi->hw;
	li_old = &pi->phy.link_info_old;
281
	hw_media_type = &pi->phy.media_type;
282
	li = &pi->phy.link_info;
283 284 285 286 287 288 289 290
	hw_fc_info = &pi->fc;

	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
	resp = &desc.params.get_link_status;
	resp->cmd_flags = cpu_to_le16(cmd_flags);
	resp->lport_num = pi->lport;

291
	status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd);
292 293 294 295 296

	if (status)
		return status;

	/* save off old link status information */
297
	*li_old = *li;
298 299

	/* update current link status information */
300 301 302
	li->link_speed = le16_to_cpu(link_data.link_speed);
	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
303
	*hw_media_type = ice_get_media_type(pi);
304 305 306 307 308 309 310 311
	li->link_info = link_data.link_info;
	li->an_info = link_data.an_info;
	li->ext_info = link_data.ext_info;
	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
	li->topo_media_conflict = link_data.topo_media_conflict;
	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
				      ICE_AQ_CFG_PACING_TYPE_M);
312 313 314 315 316 317 318 319 320 321 322 323 324

	/* update fc info */
	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
	if (tx_pause && rx_pause)
		hw_fc_info->current_mode = ICE_FC_FULL;
	else if (tx_pause)
		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
	else if (rx_pause)
		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
	else
		hw_fc_info->current_mode = ICE_FC_NONE;

325 326 327 328 329 330 331 332 333 334 335 336 337 338
	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));

	ice_debug(hw, ICE_DBG_LINK, "link_speed = 0x%x\n", li->link_speed);
	ice_debug(hw, ICE_DBG_LINK, "phy_type_low = 0x%llx\n",
		  (unsigned long long)li->phy_type_low);
	ice_debug(hw, ICE_DBG_LINK, "phy_type_high = 0x%llx\n",
		  (unsigned long long)li->phy_type_high);
	ice_debug(hw, ICE_DBG_LINK, "media_type = 0x%x\n", *hw_media_type);
	ice_debug(hw, ICE_DBG_LINK, "link_info = 0x%x\n", li->link_info);
	ice_debug(hw, ICE_DBG_LINK, "an_info = 0x%x\n", li->an_info);
	ice_debug(hw, ICE_DBG_LINK, "ext_info = 0x%x\n", li->ext_info);
	ice_debug(hw, ICE_DBG_LINK, "lse_ena = 0x%x\n", li->lse_ena);
	ice_debug(hw, ICE_DBG_LINK, "max_frame = 0x%x\n", li->max_frame_size);
	ice_debug(hw, ICE_DBG_LINK, "pacing = 0x%x\n", li->pacing);
339 340 341

	/* save link status information */
	if (link)
342
		*link = *li;
343 344 345 346

	/* flag cleared so calling functions don't call AQ again */
	pi->phy.get_link_info = false;

B
Bruce Allan 已提交
347
	return 0;
348 349
}

350
/**
351
 * ice_init_flex_flags
352
 * @hw: pointer to the hardware structure
353
 * @prof_id: Rx Descriptor Builder profile ID
354
 *
355
 * Function to initialize Rx flex flags
356
 */
357
static void ice_init_flex_flags(struct ice_hw *hw, enum ice_rxdid prof_id)
358 359 360
{
	u8 idx = 0;

361 362 363 364 365 366 367 368 369 370 371 372 373
	/* Flex-flag fields (0-2) are programmed with FLG64 bits with layout:
	 * flexiflags0[5:0] - TCP flags, is_packet_fragmented, is_packet_UDP_GRE
	 * flexiflags1[3:0] - Not used for flag programming
	 * flexiflags2[7:0] - Tunnel and VLAN types
	 * 2 invalid fields in last index
	 */
	switch (prof_id) {
	/* Rx flex flags are currently programmed for the NIC profiles only.
	 * Different flag bit programming configurations can be added per
	 * profile as needed.
	 */
	case ICE_RXDID_FLEX_NIC:
	case ICE_RXDID_FLEX_NIC_2:
374 375 376
		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_PKT_FRG,
				   ICE_FLG_UDP_GRE, ICE_FLG_PKT_DSI,
				   ICE_FLG_FIN, idx++);
377 378 379
		/* flex flag 1 is not used for flexi-flag programming, skipping
		 * these four FLG64 bits.
		 */
380 381 382 383 384 385 386 387 388 389
		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_SYN, ICE_FLG_RST,
				   ICE_FLG_PKT_DSI, ICE_FLG_PKT_DSI, idx++);
		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_PKT_DSI,
				   ICE_FLG_PKT_DSI, ICE_FLG_EVLAN_x8100,
				   ICE_FLG_EVLAN_x9100, idx++);
		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_VLAN_x8100,
				   ICE_FLG_TNL_VLAN, ICE_FLG_TNL_MAC,
				   ICE_FLG_TNL0, idx++);
		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_TNL1, ICE_FLG_TNL2,
				   ICE_FLG_PKT_DSI, ICE_FLG_PKT_DSI, idx);
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
		break;

	default:
		ice_debug(hw, ICE_DBG_INIT,
			  "Flag programming for profile ID %d not supported\n",
			  prof_id);
	}
}

/**
 * ice_init_flex_flds
 * @hw: pointer to the hardware structure
 * @prof_id: Rx Descriptor Builder profile ID
 *
 * Function to initialize flex descriptors
 */
static void ice_init_flex_flds(struct ice_hw *hw, enum ice_rxdid prof_id)
{
	enum ice_flex_rx_mdid mdid;

	switch (prof_id) {
	case ICE_RXDID_FLEX_NIC:
	case ICE_RXDID_FLEX_NIC_2:
		ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_HASH_LOW, 0);
		ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_HASH_HIGH, 1);
		ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_FLOW_ID_LOWER, 2);

		mdid = (prof_id == ICE_RXDID_FLEX_NIC_2) ?
			ICE_RX_MDID_SRC_VSI : ICE_RX_MDID_FLOW_ID_HIGH;

		ICE_PROG_FLEX_ENTRY(hw, prof_id, mdid, 3);

		ice_init_flex_flags(hw, prof_id);
		break;

	default:
		ice_debug(hw, ICE_DBG_INIT,
			  "Field init for profile ID %d not supported\n",
			  prof_id);
	}
430 431
}

432 433
/**
 * ice_init_fltr_mgmt_struct - initializes filter management list and locks
434
 * @hw: pointer to the HW struct
435 436 437 438 439 440 441 442 443 444 445 446 447 448
 */
static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
{
	struct ice_switch_info *sw;

	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
				       sizeof(*hw->switch_info), GFP_KERNEL);
	sw = hw->switch_info;

	if (!sw)
		return ICE_ERR_NO_MEMORY;

	INIT_LIST_HEAD(&sw->vsi_list_map_head);

449
	return ice_init_def_sw_recp(hw);
450 451 452 453
}

/**
 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
454
 * @hw: pointer to the HW struct
455 456 457 458 459 460
 */
static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
{
	struct ice_switch_info *sw = hw->switch_info;
	struct ice_vsi_list_map_info *v_pos_map;
	struct ice_vsi_list_map_info *v_tmp_map;
461 462
	struct ice_sw_recipe *recps;
	u8 i;
463 464 465 466 467 468

	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
				 list_entry) {
		list_del(&v_pos_map->list_entry);
		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
	}
469 470 471 472 473 474 475 476 477 478 479 480
	recps = hw->switch_info->recp_list;
	for (i = 0; i < ICE_SW_LKUP_LAST; i++) {
		struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;

		recps[i].root_rid = i;
		mutex_destroy(&recps[i].filt_rule_lock);
		list_for_each_entry_safe(lst_itr, tmp_entry,
					 &recps[i].filt_rules, list_entry) {
			list_del(&lst_itr->list_entry);
			devm_kfree(ice_hw_to_dev(hw), lst_itr);
		}
	}
481
	ice_rm_all_sw_replay_rule_info(hw);
482
	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
483 484 485
	devm_kfree(ice_hw_to_dev(hw), sw);
}

486 487 488 489 490
#define ICE_FW_LOG_DESC_SIZE(n)	(sizeof(struct ice_aqc_fw_logging_data) + \
	(((n) - 1) * sizeof(((struct ice_aqc_fw_logging_data *)0)->entry)))
#define ICE_FW_LOG_DESC_SIZE_MAX	\
	ICE_FW_LOG_DESC_SIZE(ICE_AQC_FW_LOG_ID_MAX)

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
/**
 * ice_get_fw_log_cfg - get FW logging configuration
 * @hw: pointer to the HW struct
 */
static enum ice_status ice_get_fw_log_cfg(struct ice_hw *hw)
{
	struct ice_aqc_fw_logging_data *config;
	struct ice_aq_desc desc;
	enum ice_status status;
	u16 size;

	size = ICE_FW_LOG_DESC_SIZE_MAX;
	config = devm_kzalloc(ice_hw_to_dev(hw), size, GFP_KERNEL);
	if (!config)
		return ICE_ERR_NO_MEMORY;

	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging_info);

	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_BUF);
	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);

	status = ice_aq_send_cmd(hw, &desc, config, size, NULL);
	if (!status) {
		u16 i;

516
		/* Save FW logging information into the HW structure */
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
			u16 v, m, flgs;

			v = le16_to_cpu(config->entry[i]);
			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
			flgs = (v & ICE_AQC_FW_LOG_EN_M) >> ICE_AQC_FW_LOG_EN_S;

			if (m < ICE_AQC_FW_LOG_ID_MAX)
				hw->fw_log.evnts[m].cur = flgs;
		}
	}

	devm_kfree(ice_hw_to_dev(hw), config);

	return status;
}

534 535
/**
 * ice_cfg_fw_log - configure FW logging
536
 * @hw: pointer to the HW struct
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
 * @enable: enable certain FW logging events if true, disable all if false
 *
 * This function enables/disables the FW logging via Rx CQ events and a UART
 * port based on predetermined configurations. FW logging via the Rx CQ can be
 * enabled/disabled for individual PF's. However, FW logging via the UART can
 * only be enabled/disabled for all PFs on the same device.
 *
 * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
 * hw->fw_log need to be set accordingly, e.g. based on user-provided input,
 * before initializing the device.
 *
 * When re/configuring FW logging, callers need to update the "cfg" elements of
 * the hw->fw_log.evnts array with the desired logging event configurations for
 * modules of interest. When disabling FW logging completely, the callers can
 * just pass false in the "enable" parameter. On completion, the function will
 * update the "cur" element of the hw->fw_log.evnts array with the resulting
 * logging event configurations of the modules that are being re/configured. FW
 * logging modules that are not part of a reconfiguration operation retain their
 * previous states.
 *
 * Before resetting the device, it is recommended that the driver disables FW
 * logging before shutting down the control queue. When disabling FW logging
 * ("enable" = false), the latest configurations of FW logging events stored in
 * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
 * a device reset.
 *
 * When enabling FW logging to emit log messages via the Rx CQ during the
 * device's initialization phase, a mechanism alternative to interrupt handlers
 * needs to be used to extract FW log messages from the Rx CQ periodically and
 * to prevent the Rx CQ from being full and stalling other types of control
 * messages from FW to SW. Interrupts are typically disabled during the device's
 * initialization phase.
 */
static enum ice_status ice_cfg_fw_log(struct ice_hw *hw, bool enable)
{
	struct ice_aqc_fw_logging_data *data = NULL;
	struct ice_aqc_fw_logging *cmd;
	enum ice_status status = 0;
	u16 i, chgs = 0, len = 0;
	struct ice_aq_desc desc;
	u8 actv_evnts = 0;
	void *buf = NULL;

	if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
		return 0;

	/* Disable FW logging only when the control queue is still responsive */
	if (!enable &&
	    (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq)))
		return 0;

588 589 590 591 592
	/* Get current FW log settings */
	status = ice_get_fw_log_cfg(hw);
	if (status)
		return status;

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging);
	cmd = &desc.params.fw_logging;

	/* Indicate which controls are valid */
	if (hw->fw_log.cq_en)
		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;

	if (hw->fw_log.uart_en)
		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;

	if (enable) {
		/* Fill in an array of entries with FW logging modules and
		 * logging events being reconfigured.
		 */
		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
			u16 val;

			/* Keep track of enabled event types */
			actv_evnts |= hw->fw_log.evnts[i].cfg;

			if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
				continue;

			if (!data) {
				data = devm_kzalloc(ice_hw_to_dev(hw),
						    ICE_FW_LOG_DESC_SIZE_MAX,
						    GFP_KERNEL);
				if (!data)
					return ICE_ERR_NO_MEMORY;
			}

			val = i << ICE_AQC_FW_LOG_ID_S;
			val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
			data->entry[chgs++] = cpu_to_le16(val);
		}

		/* Only enable FW logging if at least one module is specified.
		 * If FW logging is currently enabled but all modules are not
		 * enabled to emit log messages, disable FW logging altogether.
		 */
		if (actv_evnts) {
			/* Leave if there is effectively no change */
			if (!chgs)
				goto out;

			if (hw->fw_log.cq_en)
				cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;

			if (hw->fw_log.uart_en)
				cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;

			buf = data;
			len = ICE_FW_LOG_DESC_SIZE(chgs);
			desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
		}
	}

	status = ice_aq_send_cmd(hw, &desc, buf, len, NULL);
	if (!status) {
		/* Update the current configuration to reflect events enabled.
		 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
		 * logging mode is enabled for the device. They do not reflect
		 * actual modules being enabled to emit log messages. So, their
		 * values remain unchanged even when all modules are disabled.
		 */
		u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;

		hw->fw_log.actv_evnts = actv_evnts;
		for (i = 0; i < cnt; i++) {
			u16 v, m;

			if (!enable) {
				/* When disabling all FW logging events as part
				 * of device's de-initialization, the original
				 * configurations are retained, and can be used
				 * to reconfigure FW logging later if the device
				 * is re-initialized.
				 */
				hw->fw_log.evnts[i].cur = 0;
				continue;
			}

			v = le16_to_cpu(data->entry[i]);
			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
			hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
		}
	}

out:
	if (data)
		devm_kfree(ice_hw_to_dev(hw), data);

	return status;
}

/**
 * ice_output_fw_log
690
 * @hw: pointer to the HW struct
691 692 693 694 695 696 697
 * @desc: pointer to the AQ message descriptor
 * @buf: pointer to the buffer accompanying the AQ message
 *
 * Formats a FW Log message and outputs it via the standard driver logs.
 */
void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
{
698 699
	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg Start ]\n");
	ice_debug_array(hw, ICE_DBG_FW_LOG, 16, 1, (u8 *)buf,
700
			le16_to_cpu(desc->datalen));
701
	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg End ]\n");
702 703
}

704 705
/**
 * ice_get_itr_intrl_gran - determine int/intrl granularity
706
 * @hw: pointer to the HW struct
707
 *
708
 * Determines the ITR/intrl granularities based on the maximum aggregate
709 710
 * bandwidth according to the device's configuration during power-on.
 */
711
static void ice_get_itr_intrl_gran(struct ice_hw *hw)
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
{
	u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
			 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
			GL_PWR_MODE_CTL_CAR_MAX_BW_S;

	switch (max_agg_bw) {
	case ICE_MAX_AGG_BW_200G:
	case ICE_MAX_AGG_BW_100G:
	case ICE_MAX_AGG_BW_50G:
		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
		break;
	case ICE_MAX_AGG_BW_25G:
		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
		break;
	}
}

731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
/**
 * ice_get_nvm_version - get cached NVM version data
 * @hw: pointer to the hardware structure
 * @oem_ver: 8 bit NVM version
 * @oem_build: 16 bit NVM build number
 * @oem_patch: 8 NVM patch number
 * @ver_hi: high 16 bits of the NVM version
 * @ver_lo: low 16 bits of the NVM version
 */
void
ice_get_nvm_version(struct ice_hw *hw, u8 *oem_ver, u16 *oem_build,
		    u8 *oem_patch, u8 *ver_hi, u8 *ver_lo)
{
	struct ice_nvm_info *nvm = &hw->nvm;

	*oem_ver = (u8)((nvm->oem_ver & ICE_OEM_VER_MASK) >> ICE_OEM_VER_SHIFT);
	*oem_patch = (u8)(nvm->oem_ver & ICE_OEM_VER_PATCH_MASK);
	*oem_build = (u16)((nvm->oem_ver & ICE_OEM_VER_BUILD_MASK) >>
			   ICE_OEM_VER_BUILD_SHIFT);
	*ver_hi = (nvm->ver & ICE_NVM_VER_HI_MASK) >> ICE_NVM_VER_HI_SHIFT;
	*ver_lo = (nvm->ver & ICE_NVM_VER_LO_MASK) >> ICE_NVM_VER_LO_SHIFT;
}

754 755 756 757 758 759
/**
 * ice_init_hw - main hardware initialization routine
 * @hw: pointer to the hardware structure
 */
enum ice_status ice_init_hw(struct ice_hw *hw)
{
760
	struct ice_aqc_get_phy_caps_data *pcaps;
761
	enum ice_status status;
762 763
	u16 mac_buf_len;
	void *mac_buf;
764 765 766 767 768 769 770 771 772 773 774 775 776 777

	/* Set MAC type based on DeviceID */
	status = ice_set_mac_type(hw);
	if (status)
		return status;

	hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
			 PF_FUNC_RID_FUNC_NUM_M) >>
		PF_FUNC_RID_FUNC_NUM_S;

	status = ice_reset(hw, ICE_RESET_PFR);
	if (status)
		return status;

778
	ice_get_itr_intrl_gran(hw);
779

780
	status = ice_create_all_ctrlq(hw);
781 782 783
	if (status)
		goto err_unroll_cqinit;

784 785 786 787 788
	/* Enable FW logging. Not fatal if this fails. */
	status = ice_cfg_fw_log(hw, true);
	if (status)
		ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");

789 790 791 792 793 794 795 796 797 798
	status = ice_clear_pf_cfg(hw);
	if (status)
		goto err_unroll_cqinit;

	ice_clear_pxe_mode(hw);

	status = ice_init_nvm(hw);
	if (status)
		goto err_unroll_cqinit;

799 800 801 802 803 804 805 806 807 808 809
	status = ice_get_caps(hw);
	if (status)
		goto err_unroll_cqinit;

	hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
				     sizeof(*hw->port_info), GFP_KERNEL);
	if (!hw->port_info) {
		status = ICE_ERR_NO_MEMORY;
		goto err_unroll_cqinit;
	}

810
	/* set the back pointer to HW */
811 812 813 814 815 816 817
	hw->port_info->hw = hw;

	/* Initialize port_info struct with switch configuration data */
	status = ice_get_initial_sw_cfg(hw);
	if (status)
		goto err_unroll_alloc;

818 819
	hw->evb_veb = true;

820
	/* Query the allocated resources for Tx scheduler */
821 822 823 824 825 826 827
	status = ice_sched_query_res_alloc(hw);
	if (status) {
		ice_debug(hw, ICE_DBG_SCHED,
			  "Failed to get scheduler allocated resources\n");
		goto err_unroll_alloc;
	}

828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
	/* Initialize port_info struct with scheduler data */
	status = ice_sched_init_port(hw->port_info);
	if (status)
		goto err_unroll_sched;

	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
	if (!pcaps) {
		status = ICE_ERR_NO_MEMORY;
		goto err_unroll_sched;
	}

	/* Initialize port_info struct with PHY capabilities */
	status = ice_aq_get_phy_caps(hw->port_info, false,
				     ICE_AQC_REPORT_TOPO_CAP, pcaps, NULL);
	devm_kfree(ice_hw_to_dev(hw), pcaps);
	if (status)
		goto err_unroll_sched;

	/* Initialize port_info struct with link information */
	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
	if (status)
		goto err_unroll_sched;

851 852 853 854 855 856
	/* need a valid SW entry point to build a Tx tree */
	if (!hw->sw_entry_point_layer) {
		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
		status = ICE_ERR_CFG;
		goto err_unroll_sched;
	}
857
	INIT_LIST_HEAD(&hw->agg_list);
858 859 860
	/* Initialize max burst size */
	if (!hw->max_burst_size)
		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
861

862 863 864 865
	status = ice_init_fltr_mgmt_struct(hw);
	if (status)
		goto err_unroll_sched;

866 867
	ice_dev_onetime_setup(hw);

868 869 870 871 872 873
	/* Get MAC information */
	/* A single port can report up to two (LAN and WoL) addresses */
	mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
			       sizeof(struct ice_aqc_manage_mac_read_resp),
			       GFP_KERNEL);
	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
874

875 876
	if (!mac_buf) {
		status = ICE_ERR_NO_MEMORY;
877
		goto err_unroll_fltr_mgmt_struct;
878
	}
879 880 881 882 883

	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
	devm_kfree(ice_hw_to_dev(hw), mac_buf);

	if (status)
884
		goto err_unroll_fltr_mgmt_struct;
885

886 887
	ice_init_flex_flds(hw, ICE_RXDID_FLEX_NIC);
	ice_init_flex_flds(hw, ICE_RXDID_FLEX_NIC_2);
888 889 890
	status = ice_init_hw_tbls(hw);
	if (status)
		goto err_unroll_fltr_mgmt_struct;
891 892
	return 0;

893 894
err_unroll_fltr_mgmt_struct:
	ice_cleanup_fltr_mgmt_struct(hw);
895 896
err_unroll_sched:
	ice_sched_cleanup_all(hw);
897 898
err_unroll_alloc:
	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
899
err_unroll_cqinit:
900
	ice_destroy_all_ctrlq(hw);
901 902 903 904 905 906
	return status;
}

/**
 * ice_deinit_hw - unroll initialization operations done by ice_init_hw
 * @hw: pointer to the hardware structure
907 908 909 910
 *
 * This should be called only during nominal operation, not as a result of
 * ice_init_hw() failing since ice_init_hw() will take care of unrolling
 * applicable initializations if it fails for any reason.
911 912 913
 */
void ice_deinit_hw(struct ice_hw *hw)
{
914 915
	ice_cleanup_fltr_mgmt_struct(hw);

916
	ice_sched_cleanup_all(hw);
917
	ice_sched_clear_agg(hw);
918
	ice_free_seg(hw);
919
	ice_free_hw_tbls(hw);
920

921 922 923 924
	if (hw->port_info) {
		devm_kfree(ice_hw_to_dev(hw), hw->port_info);
		hw->port_info = NULL;
	}
925

926 927
	/* Attempt to disable FW logging before shutting down control queues */
	ice_cfg_fw_log(hw, false);
928
	ice_destroy_all_ctrlq(hw);
929 930 931

	/* Clear VSI contexts if not already cleared */
	ice_clear_all_vsi_ctx(hw);
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
}

/**
 * ice_check_reset - Check to see if a global reset is complete
 * @hw: pointer to the hardware structure
 */
enum ice_status ice_check_reset(struct ice_hw *hw)
{
	u32 cnt, reg = 0, grst_delay;

	/* Poll for Device Active state in case a recent CORER, GLOBR,
	 * or EMPR has occurred. The grst delay value is in 100ms units.
	 * Add 1sec for outstanding AQ commands that can take a long time.
	 */
	grst_delay = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
		      GLGEN_RSTCTL_GRSTDEL_S) + 10;

	for (cnt = 0; cnt < grst_delay; cnt++) {
		mdelay(100);
		reg = rd32(hw, GLGEN_RSTAT);
		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
			break;
	}

	if (cnt == grst_delay) {
		ice_debug(hw, ICE_DBG_INIT,
			  "Global reset polling failed to complete.\n");
		return ICE_ERR_RESET_FAILED;
	}

#define ICE_RESET_DONE_MASK	(GLNVM_ULD_CORER_DONE_M | \
				 GLNVM_ULD_GLOBR_DONE_M)

	/* Device is Active; check Global Reset processes are done */
	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
		reg = rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK;
		if (reg == ICE_RESET_DONE_MASK) {
			ice_debug(hw, ICE_DBG_INIT,
				  "Global reset processes done. %d\n", cnt);
			break;
		}
		mdelay(10);
	}

	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
		ice_debug(hw, ICE_DBG_INIT,
			  "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
			  reg);
		return ICE_ERR_RESET_FAILED;
	}

	return 0;
}

/**
 * ice_pf_reset - Reset the PF
 * @hw: pointer to the hardware structure
 *
 * If a global reset has been triggered, this function checks
 * for its completion and then issues the PF reset
 */
static enum ice_status ice_pf_reset(struct ice_hw *hw)
{
	u32 cnt, reg;

	/* If at function entry a global reset was already in progress, i.e.
	 * state is not 'device active' or any of the reset done bits are not
	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
	 * global reset is done.
	 */
	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
		/* poll on global reset currently in progress until done */
		if (ice_check_reset(hw))
			return ICE_ERR_RESET_FAILED;

		return 0;
	}

	/* Reset the PF */
	reg = rd32(hw, PFGEN_CTRL);

	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));

	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
		reg = rd32(hw, PFGEN_CTRL);
		if (!(reg & PFGEN_CTRL_PFSWR_M))
			break;

		mdelay(1);
	}

	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
		ice_debug(hw, ICE_DBG_INIT,
			  "PF reset polling failed to complete.\n");
		return ICE_ERR_RESET_FAILED;
	}

	return 0;
}

/**
 * ice_reset - Perform different types of reset
 * @hw: pointer to the hardware structure
 * @req: reset request
 *
 * This function triggers a reset as specified by the req parameter.
 *
 * Note:
 * If anything other than a PF reset is triggered, PXE mode is restored.
 * This has to be cleared using ice_clear_pxe_mode again, once the AQ
 * interface has been restored in the rebuild flow.
 */
enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
{
	u32 val = 0;

	switch (req) {
	case ICE_RESET_PFR:
		return ice_pf_reset(hw);
	case ICE_RESET_CORER:
		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
		val = GLGEN_RTRIG_CORER_M;
		break;
	case ICE_RESET_GLOBR:
		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
		val = GLGEN_RTRIG_GLOBR_M;
		break;
1060 1061
	default:
		return ICE_ERR_PARAM;
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
	}

	val |= rd32(hw, GLGEN_RTRIG);
	wr32(hw, GLGEN_RTRIG, val);
	ice_flush(hw);

	/* wait for the FW to be ready */
	return ice_check_reset(hw);
}

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
/**
 * ice_get_pfa_module_tlv - Reads sub module TLV from NVM PFA
 * @hw: pointer to hardware structure
 * @module_tlv: pointer to module TLV to return
 * @module_tlv_len: pointer to module TLV length to return
 * @module_type: module type requested
 *
 * Finds the requested sub module TLV type from the Preserved Field
 * Area (PFA) and returns the TLV pointer and length. The caller can
 * use these to read the variable length TLV value.
 */
enum ice_status
ice_get_pfa_module_tlv(struct ice_hw *hw, u16 *module_tlv, u16 *module_tlv_len,
		       u16 module_type)
{
	enum ice_status status;
	u16 pfa_len, pfa_ptr;
	u16 next_tlv;

	status = ice_read_sr_word(hw, ICE_SR_PFA_PTR, &pfa_ptr);
	if (status) {
		ice_debug(hw, ICE_DBG_INIT, "Preserved Field Array pointer.\n");
		return status;
	}
	status = ice_read_sr_word(hw, pfa_ptr, &pfa_len);
	if (status) {
		ice_debug(hw, ICE_DBG_INIT, "Failed to read PFA length.\n");
		return status;
	}
	/* Starting with first TLV after PFA length, iterate through the list
	 * of TLVs to find the requested one.
	 */
	next_tlv = pfa_ptr + 1;
	while (next_tlv < pfa_ptr + pfa_len) {
		u16 tlv_sub_module_type;
		u16 tlv_len;

		/* Read TLV type */
		status = ice_read_sr_word(hw, next_tlv, &tlv_sub_module_type);
		if (status) {
			ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV type.\n");
			break;
		}
		/* Read TLV length */
		status = ice_read_sr_word(hw, next_tlv + 1, &tlv_len);
		if (status) {
			ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV length.\n");
			break;
		}
		if (tlv_sub_module_type == module_type) {
			if (tlv_len) {
				*module_tlv = next_tlv;
				*module_tlv_len = tlv_len;
				return 0;
			}
			return ICE_ERR_INVAL_SIZE;
		}
		/* Check next TLV, i.e. current TLV pointer + length + 2 words
		 * (for current TLV's type and length)
		 */
		next_tlv = next_tlv + tlv_len + 2;
	}
	/* Module does not exist */
	return ICE_ERR_DOES_NOT_EXIST;
}

1138 1139 1140 1141
/**
 * ice_copy_rxq_ctx_to_hw
 * @hw: pointer to the hardware structure
 * @ice_rxq_ctx: pointer to the rxq context
1142
 * @rxq_index: the index of the Rx queue
1143
 *
1144
 * Copies rxq context from dense structure to HW register space
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
 */
static enum ice_status
ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
{
	u8 i;

	if (!ice_rxq_ctx)
		return ICE_ERR_BAD_PTR;

	if (rxq_index > QRX_CTRL_MAX_INDEX)
		return ICE_ERR_PARAM;

1157
	/* Copy each dword separately to HW */
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
		wr32(hw, QRX_CONTEXT(i, rxq_index),
		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));

		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
	}

	return 0;
}

/* LAN Rx Queue Context */
static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
	/* Field		Width	LSB */
	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1191
	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1192 1193 1194 1195 1196 1197 1198
	{ 0 }
};

/**
 * ice_write_rxq_ctx
 * @hw: pointer to the hardware structure
 * @rlan_ctx: pointer to the rxq context
1199
 * @rxq_index: the index of the Rx queue
1200 1201
 *
 * Converts rxq context from sparse to dense structure and then writes
1202 1203
 * it to HW register space and enables the hardware to prefetch descriptors
 * instead of only fetching them on demand
1204 1205 1206 1207 1208 1209 1210
 */
enum ice_status
ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
		  u32 rxq_index)
{
	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };

1211 1212 1213 1214 1215
	if (!rlan_ctx)
		return ICE_ERR_BAD_PTR;

	rlan_ctx->prefena = 1;

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
	ice_set_ctx((u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
}

/* LAN Tx Queue Context */
const struct ice_ctx_ele ice_tlan_ctx_info[] = {
				    /* Field			Width	LSB */
	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
A
Ashish Shah 已提交
1231
	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
A
Ashish Shah 已提交
1250
	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1251 1252 1253
	{ 0 }
};

1254 1255
/* FW Admin Queue command wrappers */

1256 1257 1258 1259 1260 1261
/* Software lock/mutex that is meant to be held while the Global Config Lock
 * in firmware is acquired by the software to prevent most (but not all) types
 * of AQ commands from being sent to FW
 */
DEFINE_MUTEX(ice_global_cfg_lock_sw);

1262 1263
/**
 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1264
 * @hw: pointer to the HW struct
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
 * @desc: descriptor describing the command
 * @buf: buffer to use for indirect commands (NULL for direct commands)
 * @buf_size: size of buffer for indirect commands (0 for direct commands)
 * @cd: pointer to command details structure
 *
 * Helper function to send FW Admin Queue commands to the FW Admin Queue.
 */
enum ice_status
ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
		u16 buf_size, struct ice_sq_cd *cd)
{
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
	struct ice_aqc_req_res *cmd = &desc->params.res_owner;
	bool lock_acquired = false;
	enum ice_status status;

	/* When a package download is in process (i.e. when the firmware's
	 * Global Configuration Lock resource is held), only the Download
	 * Package, Get Version, Get Package Info List and Release Resource
	 * (with resource ID set to Global Config Lock) AdminQ commands are
	 * allowed; all others must block until the package download completes
	 * and the Global Config Lock is released.  See also
	 * ice_acquire_global_cfg_lock().
	 */
	switch (le16_to_cpu(desc->opcode)) {
	case ice_aqc_opc_download_pkg:
	case ice_aqc_opc_get_pkg_info_list:
	case ice_aqc_opc_get_ver:
		break;
	case ice_aqc_opc_release_res:
		if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
			break;
		/* fall-through */
	default:
		mutex_lock(&ice_global_cfg_lock_sw);
		lock_acquired = true;
		break;
	}

	status = ice_sq_send_cmd(hw, &hw->adminq, desc, buf, buf_size, cd);
	if (lock_acquired)
		mutex_unlock(&ice_global_cfg_lock_sw);

	return status;
1308 1309 1310 1311
}

/**
 * ice_aq_get_fw_ver
1312
 * @hw: pointer to the HW struct
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
 * @cd: pointer to command details structure or NULL
 *
 * Get the firmware version (0x0001) from the admin queue commands
 */
enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
{
	struct ice_aqc_get_ver *resp;
	struct ice_aq_desc desc;
	enum ice_status status;

	resp = &desc.params.get_ver;

	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);

	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);

	if (!status) {
		hw->fw_branch = resp->fw_branch;
		hw->fw_maj_ver = resp->fw_major;
		hw->fw_min_ver = resp->fw_minor;
		hw->fw_patch = resp->fw_patch;
		hw->fw_build = le32_to_cpu(resp->fw_build);
		hw->api_branch = resp->api_branch;
		hw->api_maj_ver = resp->api_major;
		hw->api_min_ver = resp->api_minor;
		hw->api_patch = resp->api_patch;
	}

	return status;
}

1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
/**
 * ice_aq_send_driver_ver
 * @hw: pointer to the HW struct
 * @dv: driver's major, minor version
 * @cd: pointer to command details structure or NULL
 *
 * Send the driver version (0x0002) to the firmware
 */
enum ice_status
ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
		       struct ice_sq_cd *cd)
{
	struct ice_aqc_driver_ver *cmd;
	struct ice_aq_desc desc;
	u16 len;

	cmd = &desc.params.driver_ver;

	if (!dv)
		return ICE_ERR_PARAM;

	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);

	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
	cmd->major_ver = dv->major_ver;
	cmd->minor_ver = dv->minor_ver;
	cmd->build_ver = dv->build_ver;
	cmd->subbuild_ver = dv->subbuild_ver;

	len = 0;
	while (len < sizeof(dv->driver_string) &&
	       isascii(dv->driver_string[len]) && dv->driver_string[len])
		len++;

	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
}

1381 1382
/**
 * ice_aq_q_shutdown
1383
 * @hw: pointer to the HW struct
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
 * @unloading: is the driver unloading itself
 *
 * Tell the Firmware that we're shutting down the AdminQ and whether
 * or not the driver is unloading as well (0x0003).
 */
enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
{
	struct ice_aqc_q_shutdown *cmd;
	struct ice_aq_desc desc;

	cmd = &desc.params.q_shutdown;

	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);

	if (unloading)
1399
		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1400 1401 1402

	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
}
1403 1404 1405

/**
 * ice_aq_req_res
1406 1407
 * @hw: pointer to the HW struct
 * @res: resource ID
1408 1409 1410 1411 1412
 * @access: access type
 * @sdp_number: resource number
 * @timeout: the maximum time in ms that the driver may hold the resource
 * @cd: pointer to command details structure or NULL
 *
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
 * Requests common resource using the admin queue commands (0x0008).
 * When attempting to acquire the Global Config Lock, the driver can
 * learn of three states:
 *  1) ICE_SUCCESS -        acquired lock, and can perform download package
 *  2) ICE_ERR_AQ_ERROR -   did not get lock, driver should fail to load
 *  3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
 *                          successfully downloaded the package; the driver does
 *                          not have to download the package and can continue
 *                          loading
 *
 * Note that if the caller is in an acquire lock, perform action, release lock
 * phase of operation, it is possible that the FW may detect a timeout and issue
 * a CORER. In this case, the driver will receive a CORER interrupt and will
 * have to determine its cause. The calling thread that is handling this flow
 * will likely get an error propagated back to it indicating the Download
 * Package, Update Package or the Release Resource AQ commands timed out.
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
 */
static enum ice_status
ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
	       struct ice_sq_cd *cd)
{
	struct ice_aqc_req_res *cmd_resp;
	struct ice_aq_desc desc;
	enum ice_status status;

	cmd_resp = &desc.params.res_owner;

	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);

	cmd_resp->res_id = cpu_to_le16(res);
	cmd_resp->access_type = cpu_to_le16(access);
	cmd_resp->res_number = cpu_to_le32(sdp_number);
1446 1447
	cmd_resp->timeout = cpu_to_le32(*timeout);
	*timeout = 0;
1448 1449

	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1450

1451 1452
	/* The completion specifies the maximum time in ms that the driver
	 * may hold the resource in the Timeout field.
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
	 */

	/* Global config lock response utilizes an additional status field.
	 *
	 * If the Global config lock resource is held by some other driver, the
	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
	 * and the timeout field indicates the maximum time the current owner
	 * of the resource has to free it.
	 */
	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
			*timeout = le32_to_cpu(cmd_resp->timeout);
			return 0;
		} else if (le16_to_cpu(cmd_resp->status) ==
			   ICE_AQ_RES_GLBL_IN_PROG) {
			*timeout = le32_to_cpu(cmd_resp->timeout);
			return ICE_ERR_AQ_ERROR;
		} else if (le16_to_cpu(cmd_resp->status) ==
			   ICE_AQ_RES_GLBL_DONE) {
			return ICE_ERR_AQ_NO_WORK;
		}

		/* invalid FW response, force a timeout immediately */
		*timeout = 0;
		return ICE_ERR_AQ_ERROR;
	}

	/* If the resource is held by some other driver, the command completes
	 * with a busy return value and the timeout field indicates the maximum
	 * time the current owner of the resource has to free it.
1483 1484 1485 1486 1487 1488 1489 1490 1491
	 */
	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
		*timeout = le32_to_cpu(cmd_resp->timeout);

	return status;
}

/**
 * ice_aq_release_res
1492 1493
 * @hw: pointer to the HW struct
 * @res: resource ID
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
 * @sdp_number: resource number
 * @cd: pointer to command details structure or NULL
 *
 * release common resource using the admin queue commands (0x0009)
 */
static enum ice_status
ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
		   struct ice_sq_cd *cd)
{
	struct ice_aqc_req_res *cmd;
	struct ice_aq_desc desc;

	cmd = &desc.params.res_owner;

	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);

	cmd->res_id = cpu_to_le16(res);
	cmd->res_number = cpu_to_le32(sdp_number);

	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}

/**
 * ice_acquire_res
 * @hw: pointer to the HW structure
1519
 * @res: resource ID
1520
 * @access: access type (read or write)
1521
 * @timeout: timeout in milliseconds
1522 1523 1524 1525 1526
 *
 * This function will attempt to acquire the ownership of a resource.
 */
enum ice_status
ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1527
		enum ice_aq_res_access_type access, u32 timeout)
1528 1529 1530
{
#define ICE_RES_POLLING_DELAY_MS	10
	u32 delay = ICE_RES_POLLING_DELAY_MS;
1531
	u32 time_left = timeout;
1532 1533 1534 1535
	enum ice_status status;

	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);

1536 1537 1538 1539
	/* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
	 * previously acquired the resource and performed any necessary updates;
	 * in this case the caller does not obtain the resource and has no
	 * further work to do.
1540
	 */
1541
	if (status == ICE_ERR_AQ_NO_WORK)
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
		goto ice_acquire_res_exit;

	if (status)
		ice_debug(hw, ICE_DBG_RES,
			  "resource %d acquire type %d failed.\n", res, access);

	/* If necessary, poll until the current lock owner timeouts */
	timeout = time_left;
	while (status && timeout && time_left) {
		mdelay(delay);
		timeout = (timeout > delay) ? timeout - delay : 0;
		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);

1555
		if (status == ICE_ERR_AQ_NO_WORK)
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
			/* lock free, but no work to do */
			break;

		if (!status)
			/* lock acquired */
			break;
	}
	if (status && status != ICE_ERR_AQ_NO_WORK)
		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");

ice_acquire_res_exit:
	if (status == ICE_ERR_AQ_NO_WORK) {
		if (access == ICE_RES_WRITE)
			ice_debug(hw, ICE_DBG_RES,
				  "resource indicates no work to do.\n");
		else
			ice_debug(hw, ICE_DBG_RES,
				  "Warning: ICE_ERR_AQ_NO_WORK not expected\n");
	}
	return status;
}

/**
 * ice_release_res
 * @hw: pointer to the HW structure
1581
 * @res: resource ID
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
 *
 * This function will release a resource using the proper Admin Command.
 */
void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
{
	enum ice_status status;
	u32 total_delay = 0;

	status = ice_aq_release_res(hw, res, 0, NULL);

	/* there are some rare cases when trying to release the resource
1593
	 * results in an admin queue timeout, so handle them correctly
1594 1595 1596 1597 1598 1599 1600 1601 1602
	 */
	while ((status == ICE_ERR_AQ_TIMEOUT) &&
	       (total_delay < hw->adminq.sq_cmd_timeout)) {
		mdelay(1);
		status = ice_aq_release_res(hw, res, 0, NULL);
		total_delay++;
	}
}

1603
/**
B
Brett Creeley 已提交
1604
 * ice_get_num_per_func - determine number of resources per PF
1605
 * @hw: pointer to the HW structure
B
Brett Creeley 已提交
1606
 * @max: value to be evenly split between each PF
1607 1608
 *
 * Determine the number of valid functions by going through the bitmap returned
B
Brett Creeley 已提交
1609 1610
 * from parsing capabilities and use this to calculate the number of resources
 * per PF based on the max value passed in.
1611
 */
B
Brett Creeley 已提交
1612
static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
{
	u8 funcs;

#define ICE_CAPS_VALID_FUNCS_M	0xFF
	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
			 ICE_CAPS_VALID_FUNCS_M);

	if (!funcs)
		return 0;

B
Brett Creeley 已提交
1623
	return max / funcs;
1624 1625
}

1626 1627
/**
 * ice_parse_caps - parse function/device capabilities
1628
 * @hw: pointer to the HW struct
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
 * @buf: pointer to a buffer containing function/device capability records
 * @cap_count: number of capability records in the list
 * @opc: type of capabilities list to parse
 *
 * Helper function to parse function(0x000a)/device(0x000b) capabilities list.
 */
static void
ice_parse_caps(struct ice_hw *hw, void *buf, u32 cap_count,
	       enum ice_adminq_opc opc)
{
	struct ice_aqc_list_caps_elem *cap_resp;
	struct ice_hw_func_caps *func_p = NULL;
	struct ice_hw_dev_caps *dev_p = NULL;
	struct ice_hw_common_caps *caps;
1643
	char const *prefix;
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
	u32 i;

	if (!buf)
		return;

	cap_resp = (struct ice_aqc_list_caps_elem *)buf;

	if (opc == ice_aqc_opc_list_dev_caps) {
		dev_p = &hw->dev_caps;
		caps = &dev_p->common_cap;
1654
		prefix = "dev cap";
1655 1656 1657
	} else if (opc == ice_aqc_opc_list_func_caps) {
		func_p = &hw->func_caps;
		caps = &func_p->common_cap;
1658
		prefix = "func cap";
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
	} else {
		ice_debug(hw, ICE_DBG_INIT, "wrong opcode\n");
		return;
	}

	for (i = 0; caps && i < cap_count; i++, cap_resp++) {
		u32 logical_id = le32_to_cpu(cap_resp->logical_id);
		u32 phys_id = le32_to_cpu(cap_resp->phys_id);
		u32 number = le32_to_cpu(cap_resp->number);
		u16 cap = le16_to_cpu(cap_resp->cap);

		switch (cap) {
1671 1672 1673
		case ICE_AQC_CAPS_VALID_FUNCTIONS:
			caps->valid_functions = number;
			ice_debug(hw, ICE_DBG_INIT,
1674
				  "%s: valid_functions (bitmap) = %d\n", prefix,
1675 1676
				  caps->valid_functions);
			break;
1677 1678 1679
		case ICE_AQC_CAPS_SRIOV:
			caps->sr_iov_1_1 = (number == 1);
			ice_debug(hw, ICE_DBG_INIT,
1680
				  "%s: sr_iov_1_1 = %d\n", prefix,
1681
				  caps->sr_iov_1_1);
1682 1683 1684 1685 1686
			break;
		case ICE_AQC_CAPS_VF:
			if (dev_p) {
				dev_p->num_vfs_exposed = number;
				ice_debug(hw, ICE_DBG_INIT,
1687
					  "%s: num_vfs_exposed = %d\n", prefix,
1688 1689 1690 1691 1692
					  dev_p->num_vfs_exposed);
			} else if (func_p) {
				func_p->num_allocd_vfs = number;
				func_p->vf_base_id = logical_id;
				ice_debug(hw, ICE_DBG_INIT,
1693
					  "%s: num_allocd_vfs = %d\n", prefix,
1694 1695
					  func_p->num_allocd_vfs);
				ice_debug(hw, ICE_DBG_INIT,
1696
					  "%s: vf_base_id = %d\n", prefix,
1697 1698 1699
					  func_p->vf_base_id);
			}
			break;
1700 1701 1702 1703
		case ICE_AQC_CAPS_VSI:
			if (dev_p) {
				dev_p->num_vsi_allocd_to_host = number;
				ice_debug(hw, ICE_DBG_INIT,
1704
					  "%s: num_vsi_allocd_to_host = %d\n",
1705
					  prefix,
1706 1707
					  dev_p->num_vsi_allocd_to_host);
			} else if (func_p) {
B
Brett Creeley 已提交
1708 1709
				func_p->guar_num_vsi =
					ice_get_num_per_func(hw, ICE_MAX_VSI);
1710
				ice_debug(hw, ICE_DBG_INIT,
1711
					  "%s: guar_num_vsi (fw) = %d\n",
1712 1713
					  prefix, number);
				ice_debug(hw, ICE_DBG_INIT,
1714
					  "%s: guar_num_vsi = %d\n",
1715
					  prefix, func_p->guar_num_vsi);
1716 1717
			}
			break;
1718 1719 1720 1721 1722
		case ICE_AQC_CAPS_DCB:
			caps->dcb = (number == 1);
			caps->active_tc_bitmap = logical_id;
			caps->maxtc = phys_id;
			ice_debug(hw, ICE_DBG_INIT,
1723
				  "%s: dcb = %d\n", prefix, caps->dcb);
1724
			ice_debug(hw, ICE_DBG_INIT,
1725
				  "%s: active_tc_bitmap = %d\n", prefix,
1726 1727
				  caps->active_tc_bitmap);
			ice_debug(hw, ICE_DBG_INIT,
1728
				  "%s: maxtc = %d\n", prefix, caps->maxtc);
1729
			break;
1730 1731 1732 1733
		case ICE_AQC_CAPS_RSS:
			caps->rss_table_size = number;
			caps->rss_table_entry_width = logical_id;
			ice_debug(hw, ICE_DBG_INIT,
1734
				  "%s: rss_table_size = %d\n", prefix,
1735 1736
				  caps->rss_table_size);
			ice_debug(hw, ICE_DBG_INIT,
1737
				  "%s: rss_table_entry_width = %d\n", prefix,
1738 1739 1740 1741 1742 1743
				  caps->rss_table_entry_width);
			break;
		case ICE_AQC_CAPS_RXQS:
			caps->num_rxq = number;
			caps->rxq_first_id = phys_id;
			ice_debug(hw, ICE_DBG_INIT,
1744
				  "%s: num_rxq = %d\n", prefix,
1745
				  caps->num_rxq);
1746
			ice_debug(hw, ICE_DBG_INIT,
1747
				  "%s: rxq_first_id = %d\n", prefix,
1748 1749 1750 1751 1752 1753
				  caps->rxq_first_id);
			break;
		case ICE_AQC_CAPS_TXQS:
			caps->num_txq = number;
			caps->txq_first_id = phys_id;
			ice_debug(hw, ICE_DBG_INIT,
1754
				  "%s: num_txq = %d\n", prefix,
1755
				  caps->num_txq);
1756
			ice_debug(hw, ICE_DBG_INIT,
1757
				  "%s: txq_first_id = %d\n", prefix,
1758 1759 1760 1761 1762 1763
				  caps->txq_first_id);
			break;
		case ICE_AQC_CAPS_MSIX:
			caps->num_msix_vectors = number;
			caps->msix_vector_first_id = phys_id;
			ice_debug(hw, ICE_DBG_INIT,
1764
				  "%s: num_msix_vectors = %d\n", prefix,
1765 1766
				  caps->num_msix_vectors);
			ice_debug(hw, ICE_DBG_INIT,
1767
				  "%s: msix_vector_first_id = %d\n", prefix,
1768 1769 1770 1771
				  caps->msix_vector_first_id);
			break;
		case ICE_AQC_CAPS_MAX_MTU:
			caps->max_mtu = number;
1772
			ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
1773
				  prefix, caps->max_mtu);
1774 1775 1776
			break;
		default:
			ice_debug(hw, ICE_DBG_INIT,
1777 1778
				  "%s: unknown capability[%d]: 0x%x\n", prefix,
				  i, cap);
1779 1780 1781 1782 1783 1784 1785
			break;
		}
	}
}

/**
 * ice_aq_discover_caps - query function/device capabilities
1786
 * @hw: pointer to the HW struct
1787 1788
 * @buf: a virtual buffer to hold the capabilities
 * @buf_size: Size of the virtual buffer
1789
 * @cap_count: cap count needed if AQ err==ENOMEM
1790 1791 1792 1793 1794 1795 1796
 * @opc: capabilities type to discover - pass in the command opcode
 * @cd: pointer to command details structure or NULL
 *
 * Get the function(0x000a)/device(0x000b) capabilities description from
 * the firmware.
 */
static enum ice_status
1797
ice_aq_discover_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
		     enum ice_adminq_opc opc, struct ice_sq_cd *cd)
{
	struct ice_aqc_list_caps *cmd;
	struct ice_aq_desc desc;
	enum ice_status status;

	cmd = &desc.params.get_cap;

	if (opc != ice_aqc_opc_list_func_caps &&
	    opc != ice_aqc_opc_list_dev_caps)
		return ICE_ERR_PARAM;

	ice_fill_dflt_direct_cmd_desc(&desc, opc);

	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
	if (!status)
		ice_parse_caps(hw, buf, le32_to_cpu(cmd->count), opc);
1815
	else if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOMEM)
1816
		*cap_count = le32_to_cpu(cmd->count);
1817 1818 1819 1820
	return status;
}

/**
1821
 * ice_discover_caps - get info about the HW
1822
 * @hw: pointer to the hardware structure
1823
 * @opc: capabilities type to discover - pass in the command opcode
1824
 */
1825 1826
static enum ice_status
ice_discover_caps(struct ice_hw *hw, enum ice_adminq_opc opc)
1827 1828
{
	enum ice_status status;
1829
	u32 cap_count;
1830 1831 1832 1833 1834 1835
	u16 cbuf_len;
	u8 retries;

	/* The driver doesn't know how many capabilities the device will return
	 * so the buffer size required isn't known ahead of time. The driver
	 * starts with cbuf_len and if this turns out to be insufficient, the
1836 1837 1838
	 * device returns ICE_AQ_RC_ENOMEM and also the cap_count it needs.
	 * The driver then allocates the buffer based on the count and retries
	 * the operation. So it follows that the retry count is 2.
1839 1840 1841 1842
	 */
#define ICE_GET_CAP_BUF_COUNT	40
#define ICE_GET_CAP_RETRY_COUNT	2

1843
	cap_count = ICE_GET_CAP_BUF_COUNT;
1844 1845 1846 1847 1848
	retries = ICE_GET_CAP_RETRY_COUNT;

	do {
		void *cbuf;

1849 1850
		cbuf_len = (u16)(cap_count *
				 sizeof(struct ice_aqc_list_caps_elem));
1851 1852 1853 1854
		cbuf = devm_kzalloc(ice_hw_to_dev(hw), cbuf_len, GFP_KERNEL);
		if (!cbuf)
			return ICE_ERR_NO_MEMORY;

1855 1856
		status = ice_aq_discover_caps(hw, cbuf, cbuf_len, &cap_count,
					      opc, NULL);
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
		devm_kfree(ice_hw_to_dev(hw), cbuf);

		if (!status || hw->adminq.sq_last_status != ICE_AQ_RC_ENOMEM)
			break;

		/* If ENOMEM is returned, try again with bigger buffer */
	} while (--retries);

	return status;
}

T
Tony Nguyen 已提交
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
/**
 * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
 * @hw: pointer to the hardware structure
 */
void ice_set_safe_mode_caps(struct ice_hw *hw)
{
	struct ice_hw_func_caps *func_caps = &hw->func_caps;
	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
	u32 valid_func, rxq_first_id, txq_first_id;
	u32 msix_vector_first_id, max_mtu;
	u32 num_func = 0;
	u8 i;

	/* cache some func_caps values that should be restored after memset */
	valid_func = func_caps->common_cap.valid_functions;
	txq_first_id = func_caps->common_cap.txq_first_id;
	rxq_first_id = func_caps->common_cap.rxq_first_id;
	msix_vector_first_id = func_caps->common_cap.msix_vector_first_id;
	max_mtu = func_caps->common_cap.max_mtu;

	/* unset func capabilities */
	memset(func_caps, 0, sizeof(*func_caps));

	/* restore cached values */
	func_caps->common_cap.valid_functions = valid_func;
	func_caps->common_cap.txq_first_id = txq_first_id;
	func_caps->common_cap.rxq_first_id = rxq_first_id;
	func_caps->common_cap.msix_vector_first_id = msix_vector_first_id;
	func_caps->common_cap.max_mtu = max_mtu;

	/* one Tx and one Rx queue in safe mode */
	func_caps->common_cap.num_rxq = 1;
	func_caps->common_cap.num_txq = 1;

	/* two MSIX vectors, one for traffic and one for misc causes */
	func_caps->common_cap.num_msix_vectors = 2;
	func_caps->guar_num_vsi = 1;

	/* cache some dev_caps values that should be restored after memset */
	valid_func = dev_caps->common_cap.valid_functions;
	txq_first_id = dev_caps->common_cap.txq_first_id;
	rxq_first_id = dev_caps->common_cap.rxq_first_id;
	msix_vector_first_id = dev_caps->common_cap.msix_vector_first_id;
	max_mtu = dev_caps->common_cap.max_mtu;

	/* unset dev capabilities */
	memset(dev_caps, 0, sizeof(*dev_caps));

	/* restore cached values */
	dev_caps->common_cap.valid_functions = valid_func;
	dev_caps->common_cap.txq_first_id = txq_first_id;
	dev_caps->common_cap.rxq_first_id = rxq_first_id;
	dev_caps->common_cap.msix_vector_first_id = msix_vector_first_id;
	dev_caps->common_cap.max_mtu = max_mtu;

	/* valid_func is a bitmap. get number of functions */
#define ICE_MAX_FUNCS 8
	for (i = 0; i < ICE_MAX_FUNCS; i++)
		if (valid_func & BIT(i))
			num_func++;

	/* one Tx and one Rx queue per function in safe mode */
	dev_caps->common_cap.num_rxq = num_func;
	dev_caps->common_cap.num_txq = num_func;

	/* two MSIX vectors per function */
	dev_caps->common_cap.num_msix_vectors = 2 * num_func;
}

1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
/**
 * ice_get_caps - get info about the HW
 * @hw: pointer to the hardware structure
 */
enum ice_status ice_get_caps(struct ice_hw *hw)
{
	enum ice_status status;

	status = ice_discover_caps(hw, ice_aqc_opc_list_dev_caps);
	if (!status)
		status = ice_discover_caps(hw, ice_aqc_opc_list_func_caps);

	return status;
}

1952 1953
/**
 * ice_aq_manage_mac_write - manage MAC address write command
1954
 * @hw: pointer to the HW struct
1955 1956 1957 1958 1959 1960 1961
 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
 * @flags: flags to control write behavior
 * @cd: pointer to command details structure or NULL
 *
 * This function is used to write MAC address to the NVM (0x0108).
 */
enum ice_status
1962
ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
			struct ice_sq_cd *cd)
{
	struct ice_aqc_manage_mac_write *cmd;
	struct ice_aq_desc desc;

	cmd = &desc.params.mac_write;
	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);

	cmd->flags = flags;

	/* Prep values for flags, sah, sal */
1974 1975
	cmd->sah = htons(*((const u16 *)mac_addr));
	cmd->sal = htonl(*((const u32 *)(mac_addr + 2)));
1976 1977 1978 1979

	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}

1980 1981
/**
 * ice_aq_clear_pxe_mode
1982
 * @hw: pointer to the HW struct
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
 *
 * Tell the firmware that the driver is taking over from PXE (0x0110).
 */
static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
{
	struct ice_aq_desc desc;

	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;

	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
}

/**
 * ice_clear_pxe_mode - clear pxe operations mode
1998
 * @hw: pointer to the HW struct
1999 2000 2001 2002 2003 2004 2005 2006 2007
 *
 * Make sure all PXE mode settings are cleared, including things
 * like descriptor fetch/write-back mode.
 */
void ice_clear_pxe_mode(struct ice_hw *hw)
{
	if (ice_check_sq_alive(hw, &hw->adminq))
		ice_aq_clear_pxe_mode(hw);
}
2008

2009 2010 2011
/**
 * ice_get_link_speed_based_on_phy_type - returns link speed
 * @phy_type_low: lower part of phy_type
2012
 * @phy_type_high: higher part of phy_type
2013
 *
2014
 * This helper function will convert an entry in PHY type structure
2015 2016
 * [phy_type_low, phy_type_high] to its corresponding link speed.
 * Note: In the structure of [phy_type_low, phy_type_high], there should
2017
 * be one bit set, as this function will convert one PHY type to its
2018 2019 2020 2021
 * speed.
 * If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
 * If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
 */
2022 2023
static u16
ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
2024
{
2025
	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;

	switch (phy_type_low) {
	case ICE_PHY_TYPE_LOW_100BASE_TX:
	case ICE_PHY_TYPE_LOW_100M_SGMII:
		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
		break;
	case ICE_PHY_TYPE_LOW_1000BASE_T:
	case ICE_PHY_TYPE_LOW_1000BASE_SX:
	case ICE_PHY_TYPE_LOW_1000BASE_LX:
	case ICE_PHY_TYPE_LOW_1000BASE_KX:
	case ICE_PHY_TYPE_LOW_1G_SGMII:
		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
		break;
	case ICE_PHY_TYPE_LOW_2500BASE_T:
	case ICE_PHY_TYPE_LOW_2500BASE_X:
	case ICE_PHY_TYPE_LOW_2500BASE_KX:
		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
		break;
	case ICE_PHY_TYPE_LOW_5GBASE_T:
	case ICE_PHY_TYPE_LOW_5GBASE_KR:
		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
		break;
	case ICE_PHY_TYPE_LOW_10GBASE_T:
	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
	case ICE_PHY_TYPE_LOW_10GBASE_SR:
	case ICE_PHY_TYPE_LOW_10GBASE_LR:
	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
		break;
	case ICE_PHY_TYPE_LOW_25GBASE_T:
	case ICE_PHY_TYPE_LOW_25GBASE_CR:
	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
	case ICE_PHY_TYPE_LOW_25GBASE_SR:
	case ICE_PHY_TYPE_LOW_25GBASE_LR:
	case ICE_PHY_TYPE_LOW_25GBASE_KR:
	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
		break;
	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
	case ICE_PHY_TYPE_LOW_40G_XLAUI:
		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
		break;
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
	case ICE_PHY_TYPE_LOW_50G_LAUI2:
	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
	case ICE_PHY_TYPE_LOW_50G_AUI2:
	case ICE_PHY_TYPE_LOW_50GBASE_CP:
	case ICE_PHY_TYPE_LOW_50GBASE_SR:
	case ICE_PHY_TYPE_LOW_50GBASE_FR:
	case ICE_PHY_TYPE_LOW_50GBASE_LR:
	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
	case ICE_PHY_TYPE_LOW_50G_AUI1:
		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
		break;
	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
	case ICE_PHY_TYPE_LOW_100G_CAUI4:
	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
	case ICE_PHY_TYPE_LOW_100G_AUI4:
	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
	case ICE_PHY_TYPE_LOW_100GBASE_DR:
		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
		break;
2111 2112 2113 2114 2115
	default:
		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
		break;
	}

2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
	switch (phy_type_high) {
	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
	case ICE_PHY_TYPE_HIGH_100G_AUI2:
		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
		break;
	default:
		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
		break;
	}

	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
		return ICE_AQ_LINK_SPEED_UNKNOWN;
	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
		return ICE_AQ_LINK_SPEED_UNKNOWN;
	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
		return speed_phy_type_low;
	else
		return speed_phy_type_high;
2140 2141 2142 2143 2144
}

/**
 * ice_update_phy_type
 * @phy_type_low: pointer to the lower part of phy_type
2145
 * @phy_type_high: pointer to the higher part of phy_type
2146 2147 2148 2149 2150 2151
 * @link_speeds_bitmap: targeted link speeds bitmap
 *
 * Note: For the link_speeds_bitmap structure, you can check it at
 * [ice_aqc_get_link_status->link_speed]. Caller can pass in
 * link_speeds_bitmap include multiple speeds.
 *
2152 2153 2154
 * Each entry in this [phy_type_low, phy_type_high] structure will
 * present a certain link speed. This helper function will turn on bits
 * in [phy_type_low, phy_type_high] structure based on the value of
2155 2156
 * link_speeds_bitmap input parameter.
 */
2157 2158 2159
void
ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
		    u16 link_speeds_bitmap)
2160
{
2161
	u64 pt_high;
2162 2163
	u64 pt_low;
	int index;
2164
	u16 speed;
2165 2166 2167 2168

	/* We first check with low part of phy_type */
	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
		pt_low = BIT_ULL(index);
2169
		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
2170 2171 2172 2173

		if (link_speeds_bitmap & speed)
			*phy_type_low |= BIT_ULL(index);
	}
2174 2175 2176 2177 2178 2179 2180 2181 2182

	/* We then check with high part of phy_type */
	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
		pt_high = BIT_ULL(index);
		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);

		if (link_speeds_bitmap & speed)
			*phy_type_high |= BIT_ULL(index);
	}
2183 2184
}

2185 2186
/**
 * ice_aq_set_phy_cfg
2187
 * @hw: pointer to the HW struct
2188 2189 2190 2191 2192 2193 2194 2195 2196
 * @lport: logical port number
 * @cfg: structure with PHY configuration data to be set
 * @cd: pointer to command details structure or NULL
 *
 * Set the various PHY configuration parameters supported on the Port.
 * One or more of the Set PHY config parameters may be ignored in an MFP
 * mode as the PF may not have the privilege to set some of the PHY Config
 * parameters. This status will be indicated by the command response (0x0601).
 */
2197
enum ice_status
2198 2199 2200 2201 2202 2203 2204 2205
ice_aq_set_phy_cfg(struct ice_hw *hw, u8 lport,
		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
{
	struct ice_aq_desc desc;

	if (!cfg)
		return ICE_ERR_PARAM;

2206 2207 2208 2209 2210 2211 2212 2213 2214
	/* Ensure that only valid bits of cfg->caps can be turned on. */
	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
		ice_debug(hw, ICE_DBG_PHY,
			  "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
			  cfg->caps);

		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
	}

2215
	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
2216 2217
	desc.params.set_phy.lport_num = lport;
	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2218

2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
	ice_debug(hw, ICE_DBG_LINK, "phy_type_low = 0x%llx\n",
		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
	ice_debug(hw, ICE_DBG_LINK, "phy_type_high = 0x%llx\n",
		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
	ice_debug(hw, ICE_DBG_LINK, "caps = 0x%x\n", cfg->caps);
	ice_debug(hw, ICE_DBG_LINK, "low_power_ctrl = 0x%x\n",
		  cfg->low_power_ctrl);
	ice_debug(hw, ICE_DBG_LINK, "eee_cap = 0x%x\n", cfg->eee_cap);
	ice_debug(hw, ICE_DBG_LINK, "eeer_value = 0x%x\n", cfg->eeer_value);
	ice_debug(hw, ICE_DBG_LINK, "link_fec_opt = 0x%x\n", cfg->link_fec_opt);

2230 2231 2232 2233 2234 2235 2236
	return ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
}

/**
 * ice_update_link_info - update status of the HW network link
 * @pi: port info structure of the interested logical port
 */
2237
enum ice_status ice_update_link_info(struct ice_port_info *pi)
2238
{
B
Bruce Allan 已提交
2239
	struct ice_link_status *li;
2240 2241 2242 2243 2244
	enum ice_status status;

	if (!pi)
		return ICE_ERR_PARAM;

B
Bruce Allan 已提交
2245
	li = &pi->phy.link_info;
2246 2247 2248

	status = ice_aq_get_link_info(pi, true, NULL, NULL);
	if (status)
B
Bruce Allan 已提交
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
		return status;

	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
		struct ice_aqc_get_phy_caps_data *pcaps;
		struct ice_hw *hw;

		hw = pi->hw;
		pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps),
				     GFP_KERNEL);
		if (!pcaps)
			return ICE_ERR_NO_MEMORY;
2260

2261
		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP,
2262
					     pcaps, NULL);
B
Bruce Allan 已提交
2263 2264 2265
		if (!status)
			memcpy(li->module_type, &pcaps->module_type,
			       sizeof(li->module_type));
2266

B
Bruce Allan 已提交
2267
		devm_kfree(ice_hw_to_dev(hw), pcaps);
2268
	}
B
Bruce Allan 已提交
2269

2270 2271 2272 2273 2274 2275 2276
	return status;
}

/**
 * ice_set_fc
 * @pi: port information structure
 * @aq_failures: pointer to status code, specific to ice_set_fc routine
2277
 * @ena_auto_link_update: enable automatic link update
2278 2279 2280 2281
 *
 * Set the requested flow control mode.
 */
enum ice_status
2282
ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
{
	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
	struct ice_aqc_get_phy_caps_data *pcaps;
	enum ice_status status;
	u8 pause_mask = 0x0;
	struct ice_hw *hw;

	if (!pi)
		return ICE_ERR_PARAM;
	hw = pi->hw;
	*aq_failures = ICE_SET_FC_AQ_FAIL_NONE;

	switch (pi->fc.req_mode) {
	case ICE_FC_FULL:
		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
		break;
	case ICE_FC_RX_PAUSE:
		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
		break;
	case ICE_FC_TX_PAUSE:
		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
		break;
	default:
		break;
	}

	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
	if (!pcaps)
		return ICE_ERR_NO_MEMORY;

2314
	/* Get the current PHY config */
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
				     NULL);
	if (status) {
		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
		goto out;
	}

	/* clear the old pause settings */
	cfg.caps = pcaps->caps & ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
				   ICE_AQC_PHY_EN_RX_LINK_PAUSE);
2325

2326 2327
	/* set the new capabilities */
	cfg.caps |= pause_mask;
2328

2329 2330 2331 2332 2333
	/* If the capabilities have changed, then set the new config */
	if (cfg.caps != pcaps->caps) {
		int retry_count, retry_max = 10;

		/* Auto restart link so settings take effect */
2334 2335
		if (ena_auto_link_update)
			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2336
		/* Copy over all the old settings */
2337
		cfg.phy_type_high = pcaps->phy_type_high;
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
		cfg.phy_type_low = pcaps->phy_type_low;
		cfg.low_power_ctrl = pcaps->low_power_ctrl;
		cfg.eee_cap = pcaps->eee_cap;
		cfg.eeer_value = pcaps->eeer_value;
		cfg.link_fec_opt = pcaps->link_fec_options;

		status = ice_aq_set_phy_cfg(hw, pi->lport, &cfg, NULL);
		if (status) {
			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
			goto out;
		}

		/* Update the link info
		 * It sometimes takes a really long time for link to
		 * come back from the atomic reset. Thus, we wait a
		 * little bit.
		 */
		for (retry_count = 0; retry_count < retry_max; retry_count++) {
			status = ice_update_link_info(pi);

			if (!status)
				break;

			mdelay(100);
		}

		if (status)
			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
	}

out:
	devm_kfree(ice_hw_to_dev(hw), pcaps);
	return status;
}

2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
/**
 * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
 * @caps: PHY ability structure to copy date from
 * @cfg: PHY configuration structure to copy data to
 *
 * Helper function to copy AQC PHY get ability data to PHY set configuration
 * data structure
 */
void
ice_copy_phy_caps_to_cfg(struct ice_aqc_get_phy_caps_data *caps,
			 struct ice_aqc_set_phy_cfg_data *cfg)
{
	if (!caps || !cfg)
		return;

	cfg->phy_type_low = caps->phy_type_low;
	cfg->phy_type_high = caps->phy_type_high;
	cfg->caps = caps->caps;
	cfg->low_power_ctrl = caps->low_power_ctrl;
	cfg->eee_cap = caps->eee_cap;
	cfg->eeer_value = caps->eeer_value;
	cfg->link_fec_opt = caps->link_fec_options;
}

/**
 * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
 * @cfg: PHY configuration data to set FEC mode
 * @fec: FEC mode to configure
 *
 * Caller should copy ice_aqc_get_phy_caps_data.caps ICE_AQC_PHY_EN_AUTO_FEC
 * (bit 7) and ice_aqc_get_phy_caps_data.link_fec_options to cfg.caps
 * ICE_AQ_PHY_ENA_AUTO_FEC (bit 7) and cfg.link_fec_options before calling.
 */
void
ice_cfg_phy_fec(struct ice_aqc_set_phy_cfg_data *cfg, enum ice_fec_mode fec)
{
	switch (fec) {
	case ICE_FEC_BASER:
2411
		/* Clear RS bits, and AND BASE-R ability
2412 2413 2414 2415 2416 2417 2418 2419
		 * bits and OR request bits.
		 */
		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
				     ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
				     ICE_AQC_PHY_FEC_25G_KR_REQ;
		break;
	case ICE_FEC_RS:
2420
		/* Clear BASE-R bits, and AND RS ability
2421 2422 2423 2424 2425 2426 2427
		 * bits and OR request bits.
		 */
		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
				     ICE_AQC_PHY_FEC_25G_RS_544_REQ;
		break;
	case ICE_FEC_NONE:
2428
		/* Clear all FEC option bits. */
2429 2430 2431 2432 2433 2434 2435 2436 2437
		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
		break;
	case ICE_FEC_AUTO:
		/* AND auto FEC bit, and all caps bits. */
		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
		break;
	}
}

2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
/**
 * ice_get_link_status - get status of the HW network link
 * @pi: port information structure
 * @link_up: pointer to bool (true/false = linkup/linkdown)
 *
 * Variable link_up is true if link is up, false if link is down.
 * The variable link_up is invalid if status is non zero. As a
 * result of this call, link status reporting becomes enabled
 */
enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
{
	struct ice_phy_info *phy_info;
	enum ice_status status = 0;

2452
	if (!pi || !link_up)
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
		return ICE_ERR_PARAM;

	phy_info = &pi->phy;

	if (phy_info->get_link_info) {
		status = ice_update_link_info(pi);

		if (status)
			ice_debug(pi->hw, ICE_DBG_LINK,
				  "get link status error, status = %d\n",
				  status);
	}

	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;

	return status;
}

2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
/**
 * ice_aq_set_link_restart_an
 * @pi: pointer to the port information structure
 * @ena_link: if true: enable link, if false: disable link
 * @cd: pointer to command details structure or NULL
 *
 * Sets up the link and restarts the Auto-Negotiation over the link.
 */
enum ice_status
ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
			   struct ice_sq_cd *cd)
{
	struct ice_aqc_restart_an *cmd;
	struct ice_aq_desc desc;

	cmd = &desc.params.restart_an;

	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);

	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
	cmd->lport_num = pi->lport;
	if (ena_link)
		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
	else
		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;

	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
}

2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
/**
 * ice_aq_set_event_mask
 * @hw: pointer to the HW struct
 * @port_num: port number of the physical function
 * @mask: event mask to be set
 * @cd: pointer to command details structure or NULL
 *
 * Set event mask (0x0613)
 */
enum ice_status
ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
		      struct ice_sq_cd *cd)
{
	struct ice_aqc_set_event_mask *cmd;
	struct ice_aq_desc desc;

	cmd = &desc.params.set_event_mask;

	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);

	cmd->lport_num = port_num;

	cmd->event_mask = cpu_to_le16(mask);
	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}

2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
/**
 * ice_aq_set_mac_loopback
 * @hw: pointer to the HW struct
 * @ena_lpbk: Enable or Disable loopback
 * @cd: pointer to command details structure or NULL
 *
 * Enable/disable loopback on a given port
 */
enum ice_status
ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
{
	struct ice_aqc_set_mac_lb *cmd;
	struct ice_aq_desc desc;

	cmd = &desc.params.set_mac_lb;

	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
	if (ena_lpbk)
		cmd->lb_mode = ICE_AQ_MAC_LB_EN;

	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}

2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
/**
 * ice_aq_set_port_id_led
 * @pi: pointer to the port information
 * @is_orig_mode: is this LED set to original mode (by the net-list)
 * @cd: pointer to command details structure or NULL
 *
 * Set LED value for the given port (0x06e9)
 */
enum ice_status
ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
		       struct ice_sq_cd *cd)
{
	struct ice_aqc_set_port_id_led *cmd;
	struct ice_hw *hw = pi->hw;
	struct ice_aq_desc desc;

	cmd = &desc.params.set_port_id_led;

	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);

	if (is_orig_mode)
		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
	else
		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;

	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}

2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
/**
 * ice_aq_sff_eeprom
 * @hw: pointer to the HW struct
 * @lport: bits [7:0] = logical port, bit [8] = logical port valid
 * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
 * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
 * @page: QSFP page
 * @set_page: set or ignore the page
 * @data: pointer to data buffer to be read/written to the I2C device.
 * @length: 1-16 for read, 1 for write.
 * @write: 0 read, 1 for write.
 * @cd: pointer to command details structure or NULL
 *
 * Read/Write SFF EEPROM (0x06EE)
 */
enum ice_status
ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
		  bool write, struct ice_sq_cd *cd)
{
	struct ice_aqc_sff_eeprom *cmd;
	struct ice_aq_desc desc;
	enum ice_status status;

	if (!data || (mem_addr & 0xff00))
		return ICE_ERR_PARAM;

	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
	cmd = &desc.params.read_write_sff_param;
	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD | ICE_AQ_FLAG_BUF);
	cmd->lport_num = (u8)(lport & 0xff);
	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
	cmd->i2c_bus_addr = cpu_to_le16(((bus_addr >> 1) &
					 ICE_AQC_SFF_I2CBUS_7BIT_M) |
					((set_page <<
					  ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
					 ICE_AQC_SFF_SET_EEPROM_PAGE_M));
	cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
	cmd->eeprom_page = cpu_to_le16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
	if (write)
		cmd->i2c_bus_addr |= cpu_to_le16(ICE_AQC_SFF_IS_WRITE);

	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
	return status;
}

2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
/**
 * __ice_aq_get_set_rss_lut
 * @hw: pointer to the hardware structure
 * @vsi_id: VSI FW index
 * @lut_type: LUT table type
 * @lut: pointer to the LUT buffer provided by the caller
 * @lut_size: size of the LUT buffer
 * @glob_lut_idx: global LUT index
 * @set: set true to set the table, false to get the table
 *
 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
 */
static enum ice_status
__ice_aq_get_set_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut,
			 u16 lut_size, u8 glob_lut_idx, bool set)
{
	struct ice_aqc_get_set_rss_lut *cmd_resp;
	struct ice_aq_desc desc;
	enum ice_status status;
	u16 flags = 0;

	cmd_resp = &desc.params.get_set_rss_lut;

	if (set) {
		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
	} else {
		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
	}

	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
					 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
					ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
				       ICE_AQC_GSET_RSS_LUT_VSI_VALID);

	switch (lut_type) {
	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
		flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
			  ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
		break;
	default:
		status = ICE_ERR_PARAM;
		goto ice_aq_get_set_rss_lut_exit;
	}

	if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
		flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
			  ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);

		if (!set)
			goto ice_aq_get_set_rss_lut_send;
	} else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
		if (!set)
			goto ice_aq_get_set_rss_lut_send;
	} else {
		goto ice_aq_get_set_rss_lut_send;
	}

	/* LUT size is only valid for Global and PF table types */
2684 2685 2686 2687
	switch (lut_size) {
	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
		break;
	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
2688 2689 2690
		flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
			  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
			 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
		break;
	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
		if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
			flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
				  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
				 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
			break;
		}
		/* fall-through */
	default:
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
		status = ICE_ERR_PARAM;
		goto ice_aq_get_set_rss_lut_exit;
	}

ice_aq_get_set_rss_lut_send:
	cmd_resp->flags = cpu_to_le16(flags);
	status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);

ice_aq_get_set_rss_lut_exit:
	return status;
}

/**
 * ice_aq_get_rss_lut
 * @hw: pointer to the hardware structure
2716
 * @vsi_handle: software VSI handle
2717 2718 2719 2720 2721 2722 2723
 * @lut_type: LUT table type
 * @lut: pointer to the LUT buffer provided by the caller
 * @lut_size: size of the LUT buffer
 *
 * get the RSS lookup table, PF or VSI type
 */
enum ice_status
2724 2725
ice_aq_get_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
		   u8 *lut, u16 lut_size)
2726
{
2727 2728 2729 2730 2731
	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
		return ICE_ERR_PARAM;

	return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
					lut_type, lut, lut_size, 0, false);
2732 2733 2734 2735 2736
}

/**
 * ice_aq_set_rss_lut
 * @hw: pointer to the hardware structure
2737
 * @vsi_handle: software VSI handle
2738 2739 2740 2741 2742 2743 2744
 * @lut_type: LUT table type
 * @lut: pointer to the LUT buffer provided by the caller
 * @lut_size: size of the LUT buffer
 *
 * set the RSS lookup table, PF or VSI type
 */
enum ice_status
2745 2746
ice_aq_set_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
		   u8 *lut, u16 lut_size)
2747
{
2748 2749 2750 2751 2752
	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
		return ICE_ERR_PARAM;

	return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
					lut_type, lut, lut_size, 0, true);
2753 2754 2755 2756
}

/**
 * __ice_aq_get_set_rss_key
2757
 * @hw: pointer to the HW struct
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
 * @vsi_id: VSI FW index
 * @key: pointer to key info struct
 * @set: set true to set the key, false to get the key
 *
 * get (0x0B04) or set (0x0B02) the RSS key per VSI
 */
static enum
ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
				    struct ice_aqc_get_set_rss_keys *key,
				    bool set)
{
	struct ice_aqc_get_set_rss_key *cmd_resp;
	u16 key_size = sizeof(*key);
	struct ice_aq_desc desc;

	cmd_resp = &desc.params.get_set_rss_key;

	if (set) {
		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
	} else {
		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
	}

	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
					 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
					ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
				       ICE_AQC_GSET_RSS_KEY_VSI_VALID);

	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
}

/**
 * ice_aq_get_rss_key
2792
 * @hw: pointer to the HW struct
2793
 * @vsi_handle: software VSI handle
2794 2795 2796 2797 2798
 * @key: pointer to key info struct
 *
 * get the RSS key per VSI
 */
enum ice_status
2799
ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
2800 2801
		   struct ice_aqc_get_set_rss_keys *key)
{
2802 2803 2804 2805 2806
	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
		return ICE_ERR_PARAM;

	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
					key, false);
2807 2808 2809 2810
}

/**
 * ice_aq_set_rss_key
2811
 * @hw: pointer to the HW struct
2812
 * @vsi_handle: software VSI handle
2813 2814 2815 2816 2817
 * @keys: pointer to key info struct
 *
 * set the RSS key per VSI
 */
enum ice_status
2818
ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
2819 2820
		   struct ice_aqc_get_set_rss_keys *keys)
{
2821 2822 2823 2824 2825
	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
		return ICE_ERR_PARAM;

	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
					keys, true);
2826 2827
}

2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
/**
 * ice_aq_add_lan_txq
 * @hw: pointer to the hardware structure
 * @num_qgrps: Number of added queue groups
 * @qg_list: list of queue groups to be added
 * @buf_size: size of buffer for indirect command
 * @cd: pointer to command details structure or NULL
 *
 * Add Tx LAN queue (0x0C30)
 *
 * NOTE:
 * Prior to calling add Tx LAN queue:
 * Initialize the following as part of the Tx queue context:
 * Completion queue ID if the queue uses Completion queue, Quanta profile,
 * Cache profile and Packet shaper profile.
 *
 * After add Tx LAN queue AQ command is completed:
 * Interrupts should be associated with specific queues,
 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
 * flow.
 */
static enum ice_status
ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
		   struct ice_sq_cd *cd)
{
	u16 i, sum_header_size, sum_q_size = 0;
	struct ice_aqc_add_tx_qgrp *list;
	struct ice_aqc_add_txqs *cmd;
	struct ice_aq_desc desc;

	cmd = &desc.params.add_txqs;

	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);

	if (!qg_list)
		return ICE_ERR_PARAM;

	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
		return ICE_ERR_PARAM;

	sum_header_size = num_qgrps *
		(sizeof(*qg_list) - sizeof(*qg_list->txqs));

	list = qg_list;
	for (i = 0; i < num_qgrps; i++) {
		struct ice_aqc_add_txqs_perq *q = list->txqs;

		sum_q_size += list->num_txqs * sizeof(*q);
		list = (struct ice_aqc_add_tx_qgrp *)(q + list->num_txqs);
	}

	if (buf_size != (sum_header_size + sum_q_size))
		return ICE_ERR_PARAM;

	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);

	cmd->num_qgrps = num_qgrps;

	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
}

/**
 * ice_aq_dis_lan_txq
 * @hw: pointer to the hardware structure
 * @num_qgrps: number of groups in the list
 * @qg_list: the list of groups to disable
 * @buf_size: the total size of the qg_list buffer in bytes
2896
 * @rst_src: if called due to reset, specifies the reset source
2897
 * @vmvf_num: the relative VM or VF number that is undergoing the reset
2898 2899 2900 2901 2902 2903 2904
 * @cd: pointer to command details structure or NULL
 *
 * Disable LAN Tx queue (0x0C31)
 */
static enum ice_status
ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
2905
		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
2906 2907 2908 2909
		   struct ice_sq_cd *cd)
{
	struct ice_aqc_dis_txqs *cmd;
	struct ice_aq_desc desc;
2910
	enum ice_status status;
2911 2912 2913 2914 2915
	u16 i, sz = 0;

	cmd = &desc.params.dis_txqs;
	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);

2916 2917
	/* qg_list can be NULL only in VM/VF reset flow */
	if (!qg_list && !rst_src)
2918 2919 2920 2921
		return ICE_ERR_PARAM;

	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
		return ICE_ERR_PARAM;
2922

2923 2924
	cmd->num_entries = num_qgrps;

2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
	cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
					    ICE_AQC_Q_DIS_TIMEOUT_M);

	switch (rst_src) {
	case ICE_VM_RESET:
		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
		cmd->vmvf_and_timeout |=
			cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
		break;
	case ICE_VF_RESET:
		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
2936
		/* In this case, FW expects vmvf_num to be absolute VF ID */
2937 2938 2939 2940 2941 2942 2943 2944 2945
		cmd->vmvf_and_timeout |=
			cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
				    ICE_AQC_Q_DIS_VMVF_NUM_M);
		break;
	case ICE_NO_RESET:
	default:
		break;
	}

2946 2947
	/* flush pipe on time out */
	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
2948 2949 2950 2951 2952 2953 2954 2955 2956
	/* If no queue group info, we are in a reset flow. Issue the AQ */
	if (!qg_list)
		goto do_aq;

	/* set RD bit to indicate that command buffer is provided by the driver
	 * and it needs to be read by the firmware
	 */
	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);

2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
	for (i = 0; i < num_qgrps; ++i) {
		/* Calculate the size taken up by the queue IDs in this group */
		sz += qg_list[i].num_qs * sizeof(qg_list[i].q_id);

		/* Add the size of the group header */
		sz += sizeof(qg_list[i]) - sizeof(qg_list[i].q_id);

		/* If the num of queues is even, add 2 bytes of padding */
		if ((qg_list[i].num_qs % 2) == 0)
			sz += 2;
	}

	if (buf_size != sz)
		return ICE_ERR_PARAM;

2972
do_aq:
2973 2974 2975 2976 2977 2978
	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
	if (status) {
		if (!qg_list)
			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
				  vmvf_num, hw->adminq.sq_last_status);
		else
2979
			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
2980 2981 2982 2983
				  le16_to_cpu(qg_list[0].q_id[0]),
				  hw->adminq.sq_last_status);
	}
	return status;
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
}

/* End of FW Admin Queue command wrappers */

/**
 * ice_write_byte - write a byte to a packed context structure
 * @src_ctx:  the context structure to read from
 * @dest_ctx: the context to be written to
 * @ce_info:  a description of the struct to be filled
 */
2994 2995
static void
ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
{
	u8 src_byte, dest_byte, mask;
	u8 *from, *dest;
	u16 shift_width;

	/* copy from the next struct field */
	from = src_ctx + ce_info->offset;

	/* prepare the bits and mask */
	shift_width = ce_info->lsb % 8;
	mask = (u8)(BIT(ce_info->width) - 1);

	src_byte = *from;
	src_byte &= mask;

	/* shift to correct alignment */
	mask <<= shift_width;
	src_byte <<= shift_width;

	/* get the current bits from the target bit string */
	dest = dest_ctx + (ce_info->lsb / 8);

	memcpy(&dest_byte, dest, sizeof(dest_byte));

	dest_byte &= ~mask;	/* get the bits not changing */
	dest_byte |= src_byte;	/* add in the new bits */

	/* put it all back */
	memcpy(dest, &dest_byte, sizeof(dest_byte));
}

/**
 * ice_write_word - write a word to a packed context structure
 * @src_ctx:  the context structure to read from
 * @dest_ctx: the context to be written to
 * @ce_info:  a description of the struct to be filled
 */
3033 3034
static void
ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
{
	u16 src_word, mask;
	__le16 dest_word;
	u8 *from, *dest;
	u16 shift_width;

	/* copy from the next struct field */
	from = src_ctx + ce_info->offset;

	/* prepare the bits and mask */
	shift_width = ce_info->lsb % 8;
	mask = BIT(ce_info->width) - 1;

	/* don't swizzle the bits until after the mask because the mask bits
	 * will be in a different bit position on big endian machines
	 */
	src_word = *(u16 *)from;
	src_word &= mask;

	/* shift to correct alignment */
	mask <<= shift_width;
	src_word <<= shift_width;

	/* get the current bits from the target bit string */
	dest = dest_ctx + (ce_info->lsb / 8);

	memcpy(&dest_word, dest, sizeof(dest_word));

	dest_word &= ~(cpu_to_le16(mask));	/* get the bits not changing */
	dest_word |= cpu_to_le16(src_word);	/* add in the new bits */

	/* put it all back */
	memcpy(dest, &dest_word, sizeof(dest_word));
}

/**
 * ice_write_dword - write a dword to a packed context structure
 * @src_ctx:  the context structure to read from
 * @dest_ctx: the context to be written to
 * @ce_info:  a description of the struct to be filled
 */
3076 3077
static void
ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
{
	u32 src_dword, mask;
	__le32 dest_dword;
	u8 *from, *dest;
	u16 shift_width;

	/* copy from the next struct field */
	from = src_ctx + ce_info->offset;

	/* prepare the bits and mask */
	shift_width = ce_info->lsb % 8;

	/* if the field width is exactly 32 on an x86 machine, then the shift
	 * operation will not work because the SHL instructions count is masked
	 * to 5 bits so the shift will do nothing
	 */
	if (ce_info->width < 32)
		mask = BIT(ce_info->width) - 1;
	else
		mask = (u32)~0;

	/* don't swizzle the bits until after the mask because the mask bits
	 * will be in a different bit position on big endian machines
	 */
	src_dword = *(u32 *)from;
	src_dword &= mask;

	/* shift to correct alignment */
	mask <<= shift_width;
	src_dword <<= shift_width;

	/* get the current bits from the target bit string */
	dest = dest_ctx + (ce_info->lsb / 8);

	memcpy(&dest_dword, dest, sizeof(dest_dword));

	dest_dword &= ~(cpu_to_le32(mask));	/* get the bits not changing */
	dest_dword |= cpu_to_le32(src_dword);	/* add in the new bits */

	/* put it all back */
	memcpy(dest, &dest_dword, sizeof(dest_dword));
}

/**
 * ice_write_qword - write a qword to a packed context structure
 * @src_ctx:  the context structure to read from
 * @dest_ctx: the context to be written to
 * @ce_info:  a description of the struct to be filled
 */
3127 3128
static void
ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
{
	u64 src_qword, mask;
	__le64 dest_qword;
	u8 *from, *dest;
	u16 shift_width;

	/* copy from the next struct field */
	from = src_ctx + ce_info->offset;

	/* prepare the bits and mask */
	shift_width = ce_info->lsb % 8;

	/* if the field width is exactly 64 on an x86 machine, then the shift
	 * operation will not work because the SHL instructions count is masked
	 * to 6 bits so the shift will do nothing
	 */
	if (ce_info->width < 64)
		mask = BIT_ULL(ce_info->width) - 1;
	else
		mask = (u64)~0;

	/* don't swizzle the bits until after the mask because the mask bits
	 * will be in a different bit position on big endian machines
	 */
	src_qword = *(u64 *)from;
	src_qword &= mask;

	/* shift to correct alignment */
	mask <<= shift_width;
	src_qword <<= shift_width;

	/* get the current bits from the target bit string */
	dest = dest_ctx + (ce_info->lsb / 8);

	memcpy(&dest_qword, dest, sizeof(dest_qword));

	dest_qword &= ~(cpu_to_le64(mask));	/* get the bits not changing */
	dest_qword |= cpu_to_le64(src_qword);	/* add in the new bits */

	/* put it all back */
	memcpy(dest, &dest_qword, sizeof(dest_qword));
}

/**
 * ice_set_ctx - set context bits in packed structure
 * @src_ctx:  pointer to a generic non-packed context structure
 * @dest_ctx: pointer to memory for the packed structure
 * @ce_info:  a description of the structure to be transformed
 */
enum ice_status
ice_set_ctx(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
{
	int f;

	for (f = 0; ce_info[f].width; f++) {
		/* We have to deal with each element of the FW response
		 * using the correct size so that we are correct regardless
		 * of the endianness of the machine.
		 */
		switch (ce_info[f].size_of) {
		case sizeof(u8):
			ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
			break;
		case sizeof(u16):
			ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
			break;
		case sizeof(u32):
			ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
			break;
		case sizeof(u64):
			ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
			break;
		default:
			return ICE_ERR_INVAL_SIZE;
		}
	}

	return 0;
}

3209 3210 3211 3212 3213 3214 3215
/**
 * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
 * @hw: pointer to the HW struct
 * @vsi_handle: software VSI handle
 * @tc: TC number
 * @q_handle: software queue handle
 */
3216
struct ice_q_ctx *
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
{
	struct ice_vsi_ctx *vsi;
	struct ice_q_ctx *q_ctx;

	vsi = ice_get_vsi_ctx(hw, vsi_handle);
	if (!vsi)
		return NULL;
	if (q_handle >= vsi->num_lan_q_entries[tc])
		return NULL;
	if (!vsi->lan_q_ctx[tc])
		return NULL;
	q_ctx = vsi->lan_q_ctx[tc];
	return &q_ctx[q_handle];
}

3233 3234 3235
/**
 * ice_ena_vsi_txq
 * @pi: port information structure
3236
 * @vsi_handle: software VSI handle
3237
 * @tc: TC number
3238
 * @q_handle: software queue handle
3239 3240 3241 3242 3243
 * @num_qgrps: Number of added queue groups
 * @buf: list of queue groups to be added
 * @buf_size: size of buffer for indirect command
 * @cd: pointer to command details structure or NULL
 *
3244
 * This function adds one LAN queue
3245 3246
 */
enum ice_status
3247 3248
ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
3249 3250 3251 3252
		struct ice_sq_cd *cd)
{
	struct ice_aqc_txsched_elem_data node = { 0 };
	struct ice_sched_node *parent;
3253
	struct ice_q_ctx *q_ctx;
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
	enum ice_status status;
	struct ice_hw *hw;

	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
		return ICE_ERR_CFG;

	if (num_qgrps > 1 || buf->num_txqs > 1)
		return ICE_ERR_MAX_LIMIT;

	hw = pi->hw;

3265 3266 3267
	if (!ice_is_vsi_valid(hw, vsi_handle))
		return ICE_ERR_PARAM;

3268 3269
	mutex_lock(&pi->sched_lock);

3270 3271 3272 3273 3274 3275 3276 3277
	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
	if (!q_ctx) {
		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
			  q_handle);
		status = ICE_ERR_PARAM;
		goto ena_txq_exit;
	}

3278
	/* find a parent node */
3279
	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
3280 3281 3282 3283 3284
					    ICE_SCHED_NODE_OWNER_LAN);
	if (!parent) {
		status = ICE_ERR_PARAM;
		goto ena_txq_exit;
	}
3285

3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
	buf->parent_teid = parent->info.node_teid;
	node.parent_teid = parent->info.node_teid;
	/* Mark that the values in the "generic" section as valid. The default
	 * value in the "generic" section is zero. This means that :
	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
	 * - 0 priority among siblings, indicated by Bit 1-3.
	 * - WFQ, indicated by Bit 4.
	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
	 * Bit 5-6.
	 * - Bit 7 is reserved.
	 * Without setting the generic section as valid in valid_sections, the
3297
	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
3298 3299 3300
	 */
	buf->txqs[0].info.valid_sections = ICE_AQC_ELEM_VALID_GENERIC;

3301
	/* add the LAN queue */
3302
	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
3303
	if (status) {
3304
		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
3305 3306
			  le16_to_cpu(buf->txqs[0].txq_id),
			  hw->adminq.sq_last_status);
3307
		goto ena_txq_exit;
3308
	}
3309 3310 3311

	node.node_teid = buf->txqs[0].q_teid;
	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
3312
	q_ctx->q_handle = q_handle;
3313
	q_ctx->q_teid = le32_to_cpu(node.node_teid);
3314

3315
	/* add a leaf node into scheduler tree queue layer */
3316
	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
3317 3318
	if (!status)
		status = ice_sched_replay_q_bw(pi, q_ctx);
3319 3320 3321 3322 3323 3324 3325 3326 3327

ena_txq_exit:
	mutex_unlock(&pi->sched_lock);
	return status;
}

/**
 * ice_dis_vsi_txq
 * @pi: port information structure
3328 3329
 * @vsi_handle: software VSI handle
 * @tc: TC number
3330
 * @num_queues: number of queues
3331
 * @q_handles: pointer to software queue handle array
3332 3333
 * @q_ids: pointer to the q_id array
 * @q_teids: pointer to queue node teids
3334
 * @rst_src: if called due to reset, specifies the reset source
3335
 * @vmvf_num: the relative VM or VF number that is undergoing the reset
3336 3337 3338 3339 3340
 * @cd: pointer to command details structure or NULL
 *
 * This function removes queues and their corresponding nodes in SW DB
 */
enum ice_status
3341 3342 3343
ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
		u16 *q_handles, u16 *q_ids, u32 *q_teids,
		enum ice_disq_rst_src rst_src, u16 vmvf_num,
3344
		struct ice_sq_cd *cd)
3345 3346 3347
{
	enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
	struct ice_aqc_dis_txq_item qg_list;
3348
	struct ice_q_ctx *q_ctx;
3349 3350 3351 3352 3353
	u16 i;

	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
		return ICE_ERR_CFG;

3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
	if (!num_queues) {
		/* if queue is disabled already yet the disable queue command
		 * has to be sent to complete the VF reset, then call
		 * ice_aq_dis_lan_txq without any queue information
		 */
		if (rst_src)
			return ice_aq_dis_lan_txq(pi->hw, 0, NULL, 0, rst_src,
						  vmvf_num, NULL);
		return ICE_ERR_CFG;
	}
3364

3365 3366 3367 3368 3369 3370 3371 3372
	mutex_lock(&pi->sched_lock);

	for (i = 0; i < num_queues; i++) {
		struct ice_sched_node *node;

		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
		if (!node)
			continue;
3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
		q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handles[i]);
		if (!q_ctx) {
			ice_debug(pi->hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
				  q_handles[i]);
			continue;
		}
		if (q_ctx->q_handle != q_handles[i]) {
			ice_debug(pi->hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
				  q_ctx->q_handle, q_handles[i]);
			continue;
		}
3384 3385 3386 3387
		qg_list.parent_teid = node->info.parent_teid;
		qg_list.num_qs = 1;
		qg_list.q_id[0] = cpu_to_le16(q_ids[i]);
		status = ice_aq_dis_lan_txq(pi->hw, 1, &qg_list,
3388 3389
					    sizeof(qg_list), rst_src, vmvf_num,
					    cd);
3390 3391 3392 3393

		if (status)
			break;
		ice_free_sched_node(pi, node);
3394
		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
3395 3396 3397 3398
	}
	mutex_unlock(&pi->sched_lock);
	return status;
}
3399 3400

/**
3401
 * ice_cfg_vsi_qs - configure the new/existing VSI queues
3402
 * @pi: port information structure
3403
 * @vsi_handle: software VSI handle
3404 3405
 * @tc_bitmap: TC bitmap
 * @maxqs: max queues array per TC
3406
 * @owner: LAN or RDMA
3407 3408 3409 3410
 *
 * This function adds/updates the VSI queues per TC.
 */
static enum ice_status
3411
ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
3412 3413 3414 3415 3416 3417 3418 3419
	       u16 *maxqs, u8 owner)
{
	enum ice_status status = 0;
	u8 i;

	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
		return ICE_ERR_CFG;

3420 3421 3422
	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
		return ICE_ERR_PARAM;

3423 3424
	mutex_lock(&pi->sched_lock);

3425
	ice_for_each_traffic_class(i) {
3426 3427 3428 3429
		/* configuration is possible only if TC node is present */
		if (!ice_sched_get_tc_node(pi, i))
			continue;

3430
		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
					   ice_is_tc_ena(tc_bitmap, i));
		if (status)
			break;
	}

	mutex_unlock(&pi->sched_lock);
	return status;
}

/**
3441
 * ice_cfg_vsi_lan - configure VSI LAN queues
3442
 * @pi: port information structure
3443
 * @vsi_handle: software VSI handle
3444
 * @tc_bitmap: TC bitmap
3445
 * @max_lanqs: max LAN queues array per TC
3446
 *
3447
 * This function adds/updates the VSI LAN queues per TC.
3448 3449
 */
enum ice_status
3450
ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
3451 3452
		u16 *max_lanqs)
{
3453
	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
3454 3455
			      ICE_SCHED_NODE_OWNER_LAN);
}
3456

3457 3458
/**
 * ice_replay_pre_init - replay pre initialization
3459
 * @hw: pointer to the HW struct
3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
 *
 * Initializes required config data for VSI, FD, ACL, and RSS before replay.
 */
static enum ice_status ice_replay_pre_init(struct ice_hw *hw)
{
	struct ice_switch_info *sw = hw->switch_info;
	u8 i;

	/* Delete old entries from replay filter list head if there is any */
	ice_rm_all_sw_replay_rule_info(hw);
	/* In start of replay, move entries into replay_rules list, it
	 * will allow adding rules entries back to filt_rules list,
	 * which is operational list.
	 */
	for (i = 0; i < ICE_SW_LKUP_LAST; i++)
		list_replace_init(&sw->recp_list[i].filt_rules,
				  &sw->recp_list[i].filt_replay_rules);

	return 0;
}

/**
 * ice_replay_vsi - replay VSI configuration
3483
 * @hw: pointer to the HW struct
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509
 * @vsi_handle: driver VSI handle
 *
 * Restore all VSI configuration after reset. It is required to call this
 * function with main VSI first.
 */
enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
{
	enum ice_status status;

	if (!ice_is_vsi_valid(hw, vsi_handle))
		return ICE_ERR_PARAM;

	/* Replay pre-initialization if there is any */
	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
		status = ice_replay_pre_init(hw);
		if (status)
			return status;
	}

	/* Replay per VSI all filters */
	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
	return status;
}

/**
 * ice_replay_post - post replay configuration cleanup
3510
 * @hw: pointer to the HW struct
3511 3512 3513 3514 3515 3516 3517 3518 3519
 *
 * Post replay cleanup.
 */
void ice_replay_post(struct ice_hw *hw)
{
	/* Delete old entries from replay filter list head */
	ice_rm_all_sw_replay_rule_info(hw);
}

3520 3521 3522
/**
 * ice_stat_update40 - read 40 bit stat from the chip and update stat values
 * @hw: ptr to the hardware info
3523
 * @reg: offset of 64 bit HW register to read from
3524 3525 3526 3527
 * @prev_stat_loaded: bool to specify if previous stats are loaded
 * @prev_stat: ptr to previous loaded stat value
 * @cur_stat: ptr to current stat value
 */
3528
void
3529 3530
ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
		  u64 *prev_stat, u64 *cur_stat)
3531
{
3532
	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
3533 3534

	/* device stats are not reset at PFR, they likely will not be zeroed
3535 3536 3537
	 * when the driver starts. Thus, save the value from the first read
	 * without adding to the statistic value so that we report stats which
	 * count up from zero.
3538
	 */
3539
	if (!prev_stat_loaded) {
3540
		*prev_stat = new_data;
3541 3542 3543 3544 3545 3546
		return;
	}

	/* Calculate the difference between the new and old values, and then
	 * add it to the software stat value.
	 */
3547
	if (new_data >= *prev_stat)
3548
		*cur_stat += new_data - *prev_stat;
3549 3550
	else
		/* to manage the potential roll-over */
3551 3552 3553 3554
		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;

	/* Update the previously stored value to prepare for next read */
	*prev_stat = new_data;
3555 3556 3557 3558 3559
}

/**
 * ice_stat_update32 - read 32 bit stat from the chip and update stat values
 * @hw: ptr to the hardware info
3560
 * @reg: offset of HW register to read from
3561 3562 3563 3564
 * @prev_stat_loaded: bool to specify if previous stats are loaded
 * @prev_stat: ptr to previous loaded stat value
 * @cur_stat: ptr to current stat value
 */
3565 3566 3567
void
ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
		  u64 *prev_stat, u64 *cur_stat)
3568 3569 3570 3571 3572 3573
{
	u32 new_data;

	new_data = rd32(hw, reg);

	/* device stats are not reset at PFR, they likely will not be zeroed
3574 3575 3576
	 * when the driver starts. Thus, save the value from the first read
	 * without adding to the statistic value so that we report stats which
	 * count up from zero.
3577
	 */
3578
	if (!prev_stat_loaded) {
3579
		*prev_stat = new_data;
3580 3581 3582 3583 3584 3585
		return;
	}

	/* Calculate the difference between the new and old values, and then
	 * add it to the software stat value.
	 */
3586
	if (new_data >= *prev_stat)
3587
		*cur_stat += new_data - *prev_stat;
3588 3589
	else
		/* to manage the potential roll-over */
3590 3591 3592 3593
		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;

	/* Update the previously stored value to prepare for next read */
	*prev_stat = new_data;
3594
}
3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619

/**
 * ice_sched_query_elem - query element information from HW
 * @hw: pointer to the HW struct
 * @node_teid: node TEID to be queried
 * @buf: buffer to element information
 *
 * This function queries HW element information
 */
enum ice_status
ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
		     struct ice_aqc_get_elem *buf)
{
	u16 buf_size, num_elem_ret = 0;
	enum ice_status status;

	buf_size = sizeof(*buf);
	memset(buf, 0, buf_size);
	buf->generic[0].node_teid = cpu_to_le32(node_teid);
	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
					  NULL);
	if (status || num_elem_ret != 1)
		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
	return status;
}