ice_common.c 80.2 KB
Newer Older
1 2 3 4
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018, Intel Corporation. */

#include "ice_common.h"
5
#include "ice_sched.h"
6 7
#include "ice_adminq_cmd.h"

8 9
#define ICE_PF_RESET_WAIT_COUNT	200

10 11
#define ICE_PROG_FLEX_ENTRY(hw, rxdid, mdid, idx) \
	wr32((hw), GLFLXP_RXDID_FLX_WRD_##idx(rxdid), \
12 13 14 15 16 17
	     ((ICE_RX_OPC_MDID << \
	       GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_S) & \
	      GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_M) | \
	     (((mdid) << GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_S) & \
	      GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_M))

18 19
#define ICE_PROG_FLG_ENTRY(hw, rxdid, flg_0, flg_1, flg_2, flg_3, idx) \
	wr32((hw), GLFLXP_RXDID_FLAGS(rxdid, idx), \
20 21 22 23 24 25 26 27 28
	     (((flg_0) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) & \
	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) | \
	     (((flg_1) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_S) & \
	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_M) | \
	     (((flg_2) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_S) & \
	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_M) | \
	     (((flg_3) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_S) & \
	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_M))

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
/**
 * ice_set_mac_type - Sets MAC type
 * @hw: pointer to the HW structure
 *
 * This function sets the MAC type of the adapter based on the
 * vendor ID and device ID stored in the hw structure.
 */
static enum ice_status ice_set_mac_type(struct ice_hw *hw)
{
	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
		return ICE_ERR_DEVICE_NOT_SUPPORTED;

	hw->mac_type = ICE_MAC_GENERIC;
	return 0;
}

/**
 * ice_clear_pf_cfg - Clear PF configuration
 * @hw: pointer to the hardware structure
48 49 50
 *
 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
 * configuration, flow director filters, etc.).
51 52 53 54 55 56 57 58 59 60
 */
enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
{
	struct ice_aq_desc desc;

	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);

	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
}

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
/**
 * ice_aq_manage_mac_read - manage MAC address read command
 * @hw: pointer to the hw struct
 * @buf: a virtual buffer to hold the manage MAC read response
 * @buf_size: Size of the virtual buffer
 * @cd: pointer to command details structure or NULL
 *
 * This function is used to return per PF station MAC address (0x0107).
 * NOTE: Upon successful completion of this command, MAC address information
 * is returned in user specified buffer. Please interpret user specified
 * buffer as "manage_mac_read" response.
 * Response such as various MAC addresses are stored in HW struct (port.mac)
 * ice_aq_discover_caps is expected to be called before this function is called.
 */
static enum ice_status
ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
		       struct ice_sq_cd *cd)
{
	struct ice_aqc_manage_mac_read_resp *resp;
	struct ice_aqc_manage_mac_read *cmd;
	struct ice_aq_desc desc;
	enum ice_status status;
	u16 flags;
84
	u8 i;
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104

	cmd = &desc.params.mac_read;

	if (buf_size < sizeof(*resp))
		return ICE_ERR_BUF_TOO_SHORT;

	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);

	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
	if (status)
		return status;

	resp = (struct ice_aqc_manage_mac_read_resp *)buf;
	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;

	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
		return ICE_ERR_CFG;
	}

105 106 107 108 109 110 111 112 113 114
	/* A single port can report up to two (LAN and WoL) addresses */
	for (i = 0; i < cmd->num_addr; i++)
		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
			ether_addr_copy(hw->port_info->mac.lan_addr,
					resp[i].mac_addr);
			ether_addr_copy(hw->port_info->mac.perm_addr,
					resp[i].mac_addr);
			break;
		}

115 116 117 118 119 120 121 122 123 124 125 126 127
	return 0;
}

/**
 * ice_aq_get_phy_caps - returns PHY capabilities
 * @pi: port information structure
 * @qual_mods: report qualified modules
 * @report_mode: report mode capabilities
 * @pcaps: structure for PHY capabilities to be filled
 * @cd: pointer to command details structure or NULL
 *
 * Returns the various PHY capabilities supported on the Port (0x0600)
 */
128
enum ice_status
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
		    struct ice_aqc_get_phy_caps_data *pcaps,
		    struct ice_sq_cd *cd)
{
	struct ice_aqc_get_phy_caps *cmd;
	u16 pcaps_size = sizeof(*pcaps);
	struct ice_aq_desc desc;
	enum ice_status status;

	cmd = &desc.params.get_phy;

	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
		return ICE_ERR_PARAM;

	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);

	if (qual_mods)
		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);

	cmd->param0 |= cpu_to_le16(report_mode);
	status = ice_aq_send_cmd(pi->hw, &desc, pcaps, pcaps_size, cd);

	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP)
		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);

	return status;
}

/**
 * ice_get_media_type - Gets media type
 * @pi: port information structure
 */
static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
{
	struct ice_link_status *hw_link_info;

	if (!pi)
		return ICE_MEDIA_UNKNOWN;

	hw_link_info = &pi->phy.link_info;

	if (hw_link_info->phy_type_low) {
		switch (hw_link_info->phy_type_low) {
		case ICE_PHY_TYPE_LOW_1000BASE_SX:
		case ICE_PHY_TYPE_LOW_1000BASE_LX:
		case ICE_PHY_TYPE_LOW_10GBASE_SR:
		case ICE_PHY_TYPE_LOW_10GBASE_LR:
		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
		case ICE_PHY_TYPE_LOW_25GBASE_SR:
		case ICE_PHY_TYPE_LOW_25GBASE_LR:
		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
			return ICE_MEDIA_FIBER;
		case ICE_PHY_TYPE_LOW_100BASE_TX:
		case ICE_PHY_TYPE_LOW_1000BASE_T:
		case ICE_PHY_TYPE_LOW_2500BASE_T:
		case ICE_PHY_TYPE_LOW_5GBASE_T:
		case ICE_PHY_TYPE_LOW_10GBASE_T:
		case ICE_PHY_TYPE_LOW_25GBASE_T:
			return ICE_MEDIA_BASET;
		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
		case ICE_PHY_TYPE_LOW_25GBASE_CR:
		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
			return ICE_MEDIA_DA;
		case ICE_PHY_TYPE_LOW_1000BASE_KX:
		case ICE_PHY_TYPE_LOW_2500BASE_KX:
		case ICE_PHY_TYPE_LOW_2500BASE_X:
		case ICE_PHY_TYPE_LOW_5GBASE_KR:
		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
		case ICE_PHY_TYPE_LOW_25GBASE_KR:
		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
			return ICE_MEDIA_BACKPLANE;
		}
	}

	return ICE_MEDIA_UNKNOWN;
}

/**
 * ice_aq_get_link_info
 * @pi: port information structure
 * @ena_lse: enable/disable LinkStatusEvent reporting
 * @link: pointer to link status structure - optional
 * @cd: pointer to command details structure or NULL
 *
 * Get Link Status (0x607). Returns the link status of the adapter.
 */
enum ice_status
ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
		     struct ice_link_status *link, struct ice_sq_cd *cd)
{
	struct ice_link_status *hw_link_info_old, *hw_link_info;
	struct ice_aqc_get_link_status_data link_data = { 0 };
	struct ice_aqc_get_link_status *resp;
	enum ice_media_type *hw_media_type;
	struct ice_fc_info *hw_fc_info;
	bool tx_pause, rx_pause;
	struct ice_aq_desc desc;
	enum ice_status status;
	u16 cmd_flags;

	if (!pi)
		return ICE_ERR_PARAM;
	hw_link_info_old = &pi->phy.link_info_old;
	hw_media_type = &pi->phy.media_type;
	hw_link_info = &pi->phy.link_info;
	hw_fc_info = &pi->fc;

	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
	resp = &desc.params.get_link_status;
	resp->cmd_flags = cpu_to_le16(cmd_flags);
	resp->lport_num = pi->lport;

	status = ice_aq_send_cmd(pi->hw, &desc, &link_data, sizeof(link_data),
				 cd);

	if (status)
		return status;

	/* save off old link status information */
	*hw_link_info_old = *hw_link_info;

	/* update current link status information */
	hw_link_info->link_speed = le16_to_cpu(link_data.link_speed);
	hw_link_info->phy_type_low = le64_to_cpu(link_data.phy_type_low);
	*hw_media_type = ice_get_media_type(pi);
	hw_link_info->link_info = link_data.link_info;
	hw_link_info->an_info = link_data.an_info;
	hw_link_info->ext_info = link_data.ext_info;
	hw_link_info->max_frame_size = le16_to_cpu(link_data.max_frame_size);
	hw_link_info->pacing = link_data.cfg & ICE_AQ_CFG_PACING_M;

	/* update fc info */
	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
	if (tx_pause && rx_pause)
		hw_fc_info->current_mode = ICE_FC_FULL;
	else if (tx_pause)
		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
	else if (rx_pause)
		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
	else
		hw_fc_info->current_mode = ICE_FC_NONE;

	hw_link_info->lse_ena =
		!!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));

	/* save link status information */
	if (link)
		*link = *hw_link_info;

	/* flag cleared so calling functions don't call AQ again */
	pi->phy.get_link_info = false;

	return status;
}

292
/**
293
 * ice_init_flex_flags
294
 * @hw: pointer to the hardware structure
295
 * @prof_id: Rx Descriptor Builder profile ID
296
 *
297
 * Function to initialize Rx flex flags
298
 */
299
static void ice_init_flex_flags(struct ice_hw *hw, enum ice_rxdid prof_id)
300 301 302
{
	u8 idx = 0;

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
	/* Flex-flag fields (0-2) are programmed with FLG64 bits with layout:
	 * flexiflags0[5:0] - TCP flags, is_packet_fragmented, is_packet_UDP_GRE
	 * flexiflags1[3:0] - Not used for flag programming
	 * flexiflags2[7:0] - Tunnel and VLAN types
	 * 2 invalid fields in last index
	 */
	switch (prof_id) {
	/* Rx flex flags are currently programmed for the NIC profiles only.
	 * Different flag bit programming configurations can be added per
	 * profile as needed.
	 */
	case ICE_RXDID_FLEX_NIC:
	case ICE_RXDID_FLEX_NIC_2:
		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_PKT_FRG,
				   ICE_RXFLG_UDP_GRE, ICE_RXFLG_PKT_DSI,
				   ICE_RXFLG_FIN, idx++);
		/* flex flag 1 is not used for flexi-flag programming, skipping
		 * these four FLG64 bits.
		 */
		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_SYN, ICE_RXFLG_RST,
				   ICE_RXFLG_PKT_DSI, ICE_RXFLG_PKT_DSI, idx++);
		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_PKT_DSI,
				   ICE_RXFLG_PKT_DSI, ICE_RXFLG_EVLAN_x8100,
				   ICE_RXFLG_EVLAN_x9100, idx++);
		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_VLAN_x8100,
				   ICE_RXFLG_TNL_VLAN, ICE_RXFLG_TNL_MAC,
				   ICE_RXFLG_TNL0, idx++);
		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_TNL1, ICE_RXFLG_TNL2,
				   ICE_RXFLG_PKT_DSI, ICE_RXFLG_PKT_DSI, idx);
		break;

	default:
		ice_debug(hw, ICE_DBG_INIT,
			  "Flag programming for profile ID %d not supported\n",
			  prof_id);
	}
}

/**
 * ice_init_flex_flds
 * @hw: pointer to the hardware structure
 * @prof_id: Rx Descriptor Builder profile ID
 *
 * Function to initialize flex descriptors
 */
static void ice_init_flex_flds(struct ice_hw *hw, enum ice_rxdid prof_id)
{
	enum ice_flex_rx_mdid mdid;

	switch (prof_id) {
	case ICE_RXDID_FLEX_NIC:
	case ICE_RXDID_FLEX_NIC_2:
		ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_HASH_LOW, 0);
		ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_HASH_HIGH, 1);
		ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_FLOW_ID_LOWER, 2);

		mdid = (prof_id == ICE_RXDID_FLEX_NIC_2) ?
			ICE_RX_MDID_SRC_VSI : ICE_RX_MDID_FLOW_ID_HIGH;

		ICE_PROG_FLEX_ENTRY(hw, prof_id, mdid, 3);

		ice_init_flex_flags(hw, prof_id);
		break;

	default:
		ice_debug(hw, ICE_DBG_INIT,
			  "Field init for profile ID %d not supported\n",
			  prof_id);
	}
372 373
}

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
/**
 * ice_init_fltr_mgmt_struct - initializes filter management list and locks
 * @hw: pointer to the hw struct
 */
static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
{
	struct ice_switch_info *sw;

	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
				       sizeof(*hw->switch_info), GFP_KERNEL);
	sw = hw->switch_info;

	if (!sw)
		return ICE_ERR_NO_MEMORY;

	INIT_LIST_HEAD(&sw->vsi_list_map_head);

391
	ice_init_def_sw_recp(hw);
392 393 394 395 396 397 398 399 400 401 402 403 404

	return 0;
}

/**
 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
 * @hw: pointer to the hw struct
 */
static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
{
	struct ice_switch_info *sw = hw->switch_info;
	struct ice_vsi_list_map_info *v_pos_map;
	struct ice_vsi_list_map_info *v_tmp_map;
405 406
	struct ice_sw_recipe *recps;
	u8 i;
407 408 409 410 411 412

	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
				 list_entry) {
		list_del(&v_pos_map->list_entry);
		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
	}
413 414 415 416 417 418 419 420 421 422 423 424
	recps = hw->switch_info->recp_list;
	for (i = 0; i < ICE_SW_LKUP_LAST; i++) {
		struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;

		recps[i].root_rid = i;
		mutex_destroy(&recps[i].filt_rule_lock);
		list_for_each_entry_safe(lst_itr, tmp_entry,
					 &recps[i].filt_rules, list_entry) {
			list_del(&lst_itr->list_entry);
			devm_kfree(ice_hw_to_dev(hw), lst_itr);
		}
	}
425
	ice_rm_all_sw_replay_rule_info(hw);
426
	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
427 428 429
	devm_kfree(ice_hw_to_dev(hw), sw);
}

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
#define ICE_FW_LOG_DESC_SIZE(n)	(sizeof(struct ice_aqc_fw_logging_data) + \
	(((n) - 1) * sizeof(((struct ice_aqc_fw_logging_data *)0)->entry)))
#define ICE_FW_LOG_DESC_SIZE_MAX	\
	ICE_FW_LOG_DESC_SIZE(ICE_AQC_FW_LOG_ID_MAX)

/**
 * ice_cfg_fw_log - configure FW logging
 * @hw: pointer to the hw struct
 * @enable: enable certain FW logging events if true, disable all if false
 *
 * This function enables/disables the FW logging via Rx CQ events and a UART
 * port based on predetermined configurations. FW logging via the Rx CQ can be
 * enabled/disabled for individual PF's. However, FW logging via the UART can
 * only be enabled/disabled for all PFs on the same device.
 *
 * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
 * hw->fw_log need to be set accordingly, e.g. based on user-provided input,
 * before initializing the device.
 *
 * When re/configuring FW logging, callers need to update the "cfg" elements of
 * the hw->fw_log.evnts array with the desired logging event configurations for
 * modules of interest. When disabling FW logging completely, the callers can
 * just pass false in the "enable" parameter. On completion, the function will
 * update the "cur" element of the hw->fw_log.evnts array with the resulting
 * logging event configurations of the modules that are being re/configured. FW
 * logging modules that are not part of a reconfiguration operation retain their
 * previous states.
 *
 * Before resetting the device, it is recommended that the driver disables FW
 * logging before shutting down the control queue. When disabling FW logging
 * ("enable" = false), the latest configurations of FW logging events stored in
 * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
 * a device reset.
 *
 * When enabling FW logging to emit log messages via the Rx CQ during the
 * device's initialization phase, a mechanism alternative to interrupt handlers
 * needs to be used to extract FW log messages from the Rx CQ periodically and
 * to prevent the Rx CQ from being full and stalling other types of control
 * messages from FW to SW. Interrupts are typically disabled during the device's
 * initialization phase.
 */
static enum ice_status ice_cfg_fw_log(struct ice_hw *hw, bool enable)
{
	struct ice_aqc_fw_logging_data *data = NULL;
	struct ice_aqc_fw_logging *cmd;
	enum ice_status status = 0;
	u16 i, chgs = 0, len = 0;
	struct ice_aq_desc desc;
	u8 actv_evnts = 0;
	void *buf = NULL;

	if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
		return 0;

	/* Disable FW logging only when the control queue is still responsive */
	if (!enable &&
	    (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq)))
		return 0;

	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging);
	cmd = &desc.params.fw_logging;

	/* Indicate which controls are valid */
	if (hw->fw_log.cq_en)
		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;

	if (hw->fw_log.uart_en)
		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;

	if (enable) {
		/* Fill in an array of entries with FW logging modules and
		 * logging events being reconfigured.
		 */
		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
			u16 val;

			/* Keep track of enabled event types */
			actv_evnts |= hw->fw_log.evnts[i].cfg;

			if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
				continue;

			if (!data) {
				data = devm_kzalloc(ice_hw_to_dev(hw),
						    ICE_FW_LOG_DESC_SIZE_MAX,
						    GFP_KERNEL);
				if (!data)
					return ICE_ERR_NO_MEMORY;
			}

			val = i << ICE_AQC_FW_LOG_ID_S;
			val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
			data->entry[chgs++] = cpu_to_le16(val);
		}

		/* Only enable FW logging if at least one module is specified.
		 * If FW logging is currently enabled but all modules are not
		 * enabled to emit log messages, disable FW logging altogether.
		 */
		if (actv_evnts) {
			/* Leave if there is effectively no change */
			if (!chgs)
				goto out;

			if (hw->fw_log.cq_en)
				cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;

			if (hw->fw_log.uart_en)
				cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;

			buf = data;
			len = ICE_FW_LOG_DESC_SIZE(chgs);
			desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
		}
	}

	status = ice_aq_send_cmd(hw, &desc, buf, len, NULL);
	if (!status) {
		/* Update the current configuration to reflect events enabled.
		 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
		 * logging mode is enabled for the device. They do not reflect
		 * actual modules being enabled to emit log messages. So, their
		 * values remain unchanged even when all modules are disabled.
		 */
		u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;

		hw->fw_log.actv_evnts = actv_evnts;
		for (i = 0; i < cnt; i++) {
			u16 v, m;

			if (!enable) {
				/* When disabling all FW logging events as part
				 * of device's de-initialization, the original
				 * configurations are retained, and can be used
				 * to reconfigure FW logging later if the device
				 * is re-initialized.
				 */
				hw->fw_log.evnts[i].cur = 0;
				continue;
			}

			v = le16_to_cpu(data->entry[i]);
			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
			hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
		}
	}

out:
	if (data)
		devm_kfree(ice_hw_to_dev(hw), data);

	return status;
}

/**
 * ice_output_fw_log
 * @hw: pointer to the hw struct
 * @desc: pointer to the AQ message descriptor
 * @buf: pointer to the buffer accompanying the AQ message
 *
 * Formats a FW Log message and outputs it via the standard driver logs.
 */
void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
{
	ice_debug(hw, ICE_DBG_AQ_MSG, "[ FW Log Msg Start ]\n");
	ice_debug_array(hw, ICE_DBG_AQ_MSG, 16, 1, (u8 *)buf,
			le16_to_cpu(desc->datalen));
	ice_debug(hw, ICE_DBG_AQ_MSG, "[ FW Log Msg End ]\n");
}

600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
/**
 * ice_get_itr_intrl_gran - determine int/intrl granularity
 * @hw: pointer to the hw struct
 *
 * Determines the itr/intrl granularities based on the maximum aggregate
 * bandwidth according to the device's configuration during power-on.
 */
static enum ice_status ice_get_itr_intrl_gran(struct ice_hw *hw)
{
	u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
			 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
			GL_PWR_MODE_CTL_CAR_MAX_BW_S;

	switch (max_agg_bw) {
	case ICE_MAX_AGG_BW_200G:
	case ICE_MAX_AGG_BW_100G:
	case ICE_MAX_AGG_BW_50G:
		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
		break;
	case ICE_MAX_AGG_BW_25G:
		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
		break;
	default:
		ice_debug(hw, ICE_DBG_INIT,
			  "Failed to determine itr/intrl granularity\n");
		return ICE_ERR_CFG;
	}

	return 0;
}

633 634 635 636 637 638
/**
 * ice_init_hw - main hardware initialization routine
 * @hw: pointer to the hardware structure
 */
enum ice_status ice_init_hw(struct ice_hw *hw)
{
639
	struct ice_aqc_get_phy_caps_data *pcaps;
640
	enum ice_status status;
641 642
	u16 mac_buf_len;
	void *mac_buf;
643 644 645 646 647 648 649 650 651 652 653 654 655 656

	/* Set MAC type based on DeviceID */
	status = ice_set_mac_type(hw);
	if (status)
		return status;

	hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
			 PF_FUNC_RID_FUNC_NUM_M) >>
		PF_FUNC_RID_FUNC_NUM_S;

	status = ice_reset(hw, ICE_RESET_PFR);
	if (status)
		return status;

657 658 659
	status = ice_get_itr_intrl_gran(hw);
	if (status)
		return status;
660

661 662 663 664
	status = ice_init_all_ctrlq(hw);
	if (status)
		goto err_unroll_cqinit;

665 666 667 668 669
	/* Enable FW logging. Not fatal if this fails. */
	status = ice_cfg_fw_log(hw, true);
	if (status)
		ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");

670 671 672 673 674 675 676 677 678 679
	status = ice_clear_pf_cfg(hw);
	if (status)
		goto err_unroll_cqinit;

	ice_clear_pxe_mode(hw);

	status = ice_init_nvm(hw);
	if (status)
		goto err_unroll_cqinit;

680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
	status = ice_get_caps(hw);
	if (status)
		goto err_unroll_cqinit;

	hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
				     sizeof(*hw->port_info), GFP_KERNEL);
	if (!hw->port_info) {
		status = ICE_ERR_NO_MEMORY;
		goto err_unroll_cqinit;
	}

	/* set the back pointer to hw */
	hw->port_info->hw = hw;

	/* Initialize port_info struct with switch configuration data */
	status = ice_get_initial_sw_cfg(hw);
	if (status)
		goto err_unroll_alloc;

699 700
	hw->evb_veb = true;

701 702 703 704 705 706 707 708
	/* Query the allocated resources for tx scheduler */
	status = ice_sched_query_res_alloc(hw);
	if (status) {
		ice_debug(hw, ICE_DBG_SCHED,
			  "Failed to get scheduler allocated resources\n");
		goto err_unroll_alloc;
	}

709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
	/* Initialize port_info struct with scheduler data */
	status = ice_sched_init_port(hw->port_info);
	if (status)
		goto err_unroll_sched;

	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
	if (!pcaps) {
		status = ICE_ERR_NO_MEMORY;
		goto err_unroll_sched;
	}

	/* Initialize port_info struct with PHY capabilities */
	status = ice_aq_get_phy_caps(hw->port_info, false,
				     ICE_AQC_REPORT_TOPO_CAP, pcaps, NULL);
	devm_kfree(ice_hw_to_dev(hw), pcaps);
	if (status)
		goto err_unroll_sched;

	/* Initialize port_info struct with link information */
	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
	if (status)
		goto err_unroll_sched;

732 733 734 735 736 737 738
	/* need a valid SW entry point to build a Tx tree */
	if (!hw->sw_entry_point_layer) {
		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
		status = ICE_ERR_CFG;
		goto err_unroll_sched;
	}

739 740 741 742
	status = ice_init_fltr_mgmt_struct(hw);
	if (status)
		goto err_unroll_sched;

743 744 745 746 747 748
	/* Get MAC information */
	/* A single port can report up to two (LAN and WoL) addresses */
	mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
			       sizeof(struct ice_aqc_manage_mac_read_resp),
			       GFP_KERNEL);
	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
749

750 751
	if (!mac_buf) {
		status = ICE_ERR_NO_MEMORY;
752
		goto err_unroll_fltr_mgmt_struct;
753
	}
754 755 756 757 758

	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
	devm_kfree(ice_hw_to_dev(hw), mac_buf);

	if (status)
759
		goto err_unroll_fltr_mgmt_struct;
760

761 762
	ice_init_flex_flds(hw, ICE_RXDID_FLEX_NIC);
	ice_init_flex_flds(hw, ICE_RXDID_FLEX_NIC_2);
763

764 765
	return 0;

766 767
err_unroll_fltr_mgmt_struct:
	ice_cleanup_fltr_mgmt_struct(hw);
768 769
err_unroll_sched:
	ice_sched_cleanup_all(hw);
770 771
err_unroll_alloc:
	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
772 773 774 775 776 777 778 779 780 781 782
err_unroll_cqinit:
	ice_shutdown_all_ctrlq(hw);
	return status;
}

/**
 * ice_deinit_hw - unroll initialization operations done by ice_init_hw
 * @hw: pointer to the hardware structure
 */
void ice_deinit_hw(struct ice_hw *hw)
{
783 784
	ice_cleanup_fltr_mgmt_struct(hw);

785
	ice_sched_cleanup_all(hw);
786

787 788 789 790
	if (hw->port_info) {
		devm_kfree(ice_hw_to_dev(hw), hw->port_info);
		hw->port_info = NULL;
	}
791

792 793 794
	/* Attempt to disable FW logging before shutting down control queues */
	ice_cfg_fw_log(hw, false);
	ice_shutdown_all_ctrlq(hw);
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
}

/**
 * ice_check_reset - Check to see if a global reset is complete
 * @hw: pointer to the hardware structure
 */
enum ice_status ice_check_reset(struct ice_hw *hw)
{
	u32 cnt, reg = 0, grst_delay;

	/* Poll for Device Active state in case a recent CORER, GLOBR,
	 * or EMPR has occurred. The grst delay value is in 100ms units.
	 * Add 1sec for outstanding AQ commands that can take a long time.
	 */
	grst_delay = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
		      GLGEN_RSTCTL_GRSTDEL_S) + 10;

	for (cnt = 0; cnt < grst_delay; cnt++) {
		mdelay(100);
		reg = rd32(hw, GLGEN_RSTAT);
		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
			break;
	}

	if (cnt == grst_delay) {
		ice_debug(hw, ICE_DBG_INIT,
			  "Global reset polling failed to complete.\n");
		return ICE_ERR_RESET_FAILED;
	}

#define ICE_RESET_DONE_MASK	(GLNVM_ULD_CORER_DONE_M | \
				 GLNVM_ULD_GLOBR_DONE_M)

	/* Device is Active; check Global Reset processes are done */
	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
		reg = rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK;
		if (reg == ICE_RESET_DONE_MASK) {
			ice_debug(hw, ICE_DBG_INIT,
				  "Global reset processes done. %d\n", cnt);
			break;
		}
		mdelay(10);
	}

	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
		ice_debug(hw, ICE_DBG_INIT,
			  "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
			  reg);
		return ICE_ERR_RESET_FAILED;
	}

	return 0;
}

/**
 * ice_pf_reset - Reset the PF
 * @hw: pointer to the hardware structure
 *
 * If a global reset has been triggered, this function checks
 * for its completion and then issues the PF reset
 */
static enum ice_status ice_pf_reset(struct ice_hw *hw)
{
	u32 cnt, reg;

	/* If at function entry a global reset was already in progress, i.e.
	 * state is not 'device active' or any of the reset done bits are not
	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
	 * global reset is done.
	 */
	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
		/* poll on global reset currently in progress until done */
		if (ice_check_reset(hw))
			return ICE_ERR_RESET_FAILED;

		return 0;
	}

	/* Reset the PF */
	reg = rd32(hw, PFGEN_CTRL);

	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));

	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
		reg = rd32(hw, PFGEN_CTRL);
		if (!(reg & PFGEN_CTRL_PFSWR_M))
			break;

		mdelay(1);
	}

	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
		ice_debug(hw, ICE_DBG_INIT,
			  "PF reset polling failed to complete.\n");
		return ICE_ERR_RESET_FAILED;
	}

	return 0;
}

/**
 * ice_reset - Perform different types of reset
 * @hw: pointer to the hardware structure
 * @req: reset request
 *
 * This function triggers a reset as specified by the req parameter.
 *
 * Note:
 * If anything other than a PF reset is triggered, PXE mode is restored.
 * This has to be cleared using ice_clear_pxe_mode again, once the AQ
 * interface has been restored in the rebuild flow.
 */
enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
{
	u32 val = 0;

	switch (req) {
	case ICE_RESET_PFR:
		return ice_pf_reset(hw);
	case ICE_RESET_CORER:
		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
		val = GLGEN_RTRIG_CORER_M;
		break;
	case ICE_RESET_GLOBR:
		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
		val = GLGEN_RTRIG_GLOBR_M;
		break;
923 924
	default:
		return ICE_ERR_PARAM;
925 926 927 928 929 930 931 932 933 934
	}

	val |= rd32(hw, GLGEN_RTRIG);
	wr32(hw, GLGEN_RTRIG, val);
	ice_flush(hw);

	/* wait for the FW to be ready */
	return ice_check_reset(hw);
}

935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
/**
 * ice_copy_rxq_ctx_to_hw
 * @hw: pointer to the hardware structure
 * @ice_rxq_ctx: pointer to the rxq context
 * @rxq_index: the index of the rx queue
 *
 * Copies rxq context from dense structure to hw register space
 */
static enum ice_status
ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
{
	u8 i;

	if (!ice_rxq_ctx)
		return ICE_ERR_BAD_PTR;

	if (rxq_index > QRX_CTRL_MAX_INDEX)
		return ICE_ERR_PARAM;

	/* Copy each dword separately to hw */
	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
		wr32(hw, QRX_CONTEXT(i, rxq_index),
		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));

		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
	}

	return 0;
}

/* LAN Rx Queue Context */
static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
	/* Field		Width	LSB */
	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
	{ 0 }
};

/**
 * ice_write_rxq_ctx
 * @hw: pointer to the hardware structure
 * @rlan_ctx: pointer to the rxq context
 * @rxq_index: the index of the rx queue
 *
 * Converts rxq context from sparse to dense structure and then writes
 * it to hw register space
 */
enum ice_status
ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
		  u32 rxq_index)
{
	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };

	ice_set_ctx((u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
}

/* LAN Tx Queue Context */
const struct ice_ctx_ele ice_tlan_ctx_info[] = {
				    /* Field			Width	LSB */
	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		110,	171),
	{ 0 }
};

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
/**
 * ice_debug_cq
 * @hw: pointer to the hardware structure
 * @mask: debug mask
 * @desc: pointer to control queue descriptor
 * @buf: pointer to command buffer
 * @buf_len: max length of buf
 *
 * Dumps debug log about control command with descriptor contents.
 */
void ice_debug_cq(struct ice_hw *hw, u32 __maybe_unused mask, void *desc,
		  void *buf, u16 buf_len)
{
	struct ice_aq_desc *cq_desc = (struct ice_aq_desc *)desc;
	u16 len;

#ifndef CONFIG_DYNAMIC_DEBUG
	if (!(mask & hw->debug_mask))
		return;
#endif

	if (!desc)
		return;

	len = le16_to_cpu(cq_desc->datalen);

	ice_debug(hw, mask,
		  "CQ CMD: opcode 0x%04X, flags 0x%04X, datalen 0x%04X, retval 0x%04X\n",
		  le16_to_cpu(cq_desc->opcode),
		  le16_to_cpu(cq_desc->flags),
		  le16_to_cpu(cq_desc->datalen), le16_to_cpu(cq_desc->retval));
	ice_debug(hw, mask, "\tcookie (h,l) 0x%08X 0x%08X\n",
		  le32_to_cpu(cq_desc->cookie_high),
		  le32_to_cpu(cq_desc->cookie_low));
	ice_debug(hw, mask, "\tparam (0,1)  0x%08X 0x%08X\n",
		  le32_to_cpu(cq_desc->params.generic.param0),
		  le32_to_cpu(cq_desc->params.generic.param1));
	ice_debug(hw, mask, "\taddr (h,l)   0x%08X 0x%08X\n",
		  le32_to_cpu(cq_desc->params.generic.addr_high),
		  le32_to_cpu(cq_desc->params.generic.addr_low));
	if (buf && cq_desc->datalen != 0) {
		ice_debug(hw, mask, "Buffer:\n");
		if (buf_len < len)
			len = buf_len;

		ice_debug_array(hw, mask, 16, 1, (u8 *)buf, len);
	}
}

/* FW Admin Queue command wrappers */

/**
 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
 * @hw: pointer to the hw struct
 * @desc: descriptor describing the command
 * @buf: buffer to use for indirect commands (NULL for direct commands)
 * @buf_size: size of buffer for indirect commands (0 for direct commands)
 * @cd: pointer to command details structure
 *
 * Helper function to send FW Admin Queue commands to the FW Admin Queue.
 */
enum ice_status
ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
		u16 buf_size, struct ice_sq_cd *cd)
{
	return ice_sq_send_cmd(hw, &hw->adminq, desc, buf, buf_size, cd);
}

/**
 * ice_aq_get_fw_ver
 * @hw: pointer to the hw struct
 * @cd: pointer to command details structure or NULL
 *
 * Get the firmware version (0x0001) from the admin queue commands
 */
enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
{
	struct ice_aqc_get_ver *resp;
	struct ice_aq_desc desc;
	enum ice_status status;

	resp = &desc.params.get_ver;

	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);

	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);

	if (!status) {
		hw->fw_branch = resp->fw_branch;
		hw->fw_maj_ver = resp->fw_major;
		hw->fw_min_ver = resp->fw_minor;
		hw->fw_patch = resp->fw_patch;
		hw->fw_build = le32_to_cpu(resp->fw_build);
		hw->api_branch = resp->api_branch;
		hw->api_maj_ver = resp->api_major;
		hw->api_min_ver = resp->api_minor;
		hw->api_patch = resp->api_patch;
	}

	return status;
}

/**
 * ice_aq_q_shutdown
 * @hw: pointer to the hw struct
 * @unloading: is the driver unloading itself
 *
 * Tell the Firmware that we're shutting down the AdminQ and whether
 * or not the driver is unloading as well (0x0003).
 */
enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
{
	struct ice_aqc_q_shutdown *cmd;
	struct ice_aq_desc desc;

	cmd = &desc.params.q_shutdown;

	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);

	if (unloading)
		cmd->driver_unloading = cpu_to_le32(ICE_AQC_DRIVER_UNLOADING);

	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
}
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176

/**
 * ice_aq_req_res
 * @hw: pointer to the hw struct
 * @res: resource id
 * @access: access type
 * @sdp_number: resource number
 * @timeout: the maximum time in ms that the driver may hold the resource
 * @cd: pointer to command details structure or NULL
 *
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
 * Requests common resource using the admin queue commands (0x0008).
 * When attempting to acquire the Global Config Lock, the driver can
 * learn of three states:
 *  1) ICE_SUCCESS -        acquired lock, and can perform download package
 *  2) ICE_ERR_AQ_ERROR -   did not get lock, driver should fail to load
 *  3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
 *                          successfully downloaded the package; the driver does
 *                          not have to download the package and can continue
 *                          loading
 *
 * Note that if the caller is in an acquire lock, perform action, release lock
 * phase of operation, it is possible that the FW may detect a timeout and issue
 * a CORER. In this case, the driver will receive a CORER interrupt and will
 * have to determine its cause. The calling thread that is handling this flow
 * will likely get an error propagated back to it indicating the Download
 * Package, Update Package or the Release Resource AQ commands timed out.
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
 */
static enum ice_status
ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
	       struct ice_sq_cd *cd)
{
	struct ice_aqc_req_res *cmd_resp;
	struct ice_aq_desc desc;
	enum ice_status status;

	cmd_resp = &desc.params.res_owner;

	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);

	cmd_resp->res_id = cpu_to_le16(res);
	cmd_resp->access_type = cpu_to_le16(access);
	cmd_resp->res_number = cpu_to_le32(sdp_number);
1210 1211
	cmd_resp->timeout = cpu_to_le32(*timeout);
	*timeout = 0;
1212 1213

	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1214

1215 1216
	/* The completion specifies the maximum time in ms that the driver
	 * may hold the resource in the Timeout field.
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	 */

	/* Global config lock response utilizes an additional status field.
	 *
	 * If the Global config lock resource is held by some other driver, the
	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
	 * and the timeout field indicates the maximum time the current owner
	 * of the resource has to free it.
	 */
	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
			*timeout = le32_to_cpu(cmd_resp->timeout);
			return 0;
		} else if (le16_to_cpu(cmd_resp->status) ==
			   ICE_AQ_RES_GLBL_IN_PROG) {
			*timeout = le32_to_cpu(cmd_resp->timeout);
			return ICE_ERR_AQ_ERROR;
		} else if (le16_to_cpu(cmd_resp->status) ==
			   ICE_AQ_RES_GLBL_DONE) {
			return ICE_ERR_AQ_NO_WORK;
		}

		/* invalid FW response, force a timeout immediately */
		*timeout = 0;
		return ICE_ERR_AQ_ERROR;
	}

	/* If the resource is held by some other driver, the command completes
	 * with a busy return value and the timeout field indicates the maximum
	 * time the current owner of the resource has to free it.
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
	 */
	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
		*timeout = le32_to_cpu(cmd_resp->timeout);

	return status;
}

/**
 * ice_aq_release_res
 * @hw: pointer to the hw struct
 * @res: resource id
 * @sdp_number: resource number
 * @cd: pointer to command details structure or NULL
 *
 * release common resource using the admin queue commands (0x0009)
 */
static enum ice_status
ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
		   struct ice_sq_cd *cd)
{
	struct ice_aqc_req_res *cmd;
	struct ice_aq_desc desc;

	cmd = &desc.params.res_owner;

	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);

	cmd->res_id = cpu_to_le16(res);
	cmd->res_number = cpu_to_le32(sdp_number);

	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}

/**
 * ice_acquire_res
 * @hw: pointer to the HW structure
 * @res: resource id
 * @access: access type (read or write)
1285
 * @timeout: timeout in milliseconds
1286 1287 1288 1289 1290
 *
 * This function will attempt to acquire the ownership of a resource.
 */
enum ice_status
ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1291
		enum ice_aq_res_access_type access, u32 timeout)
1292 1293 1294
{
#define ICE_RES_POLLING_DELAY_MS	10
	u32 delay = ICE_RES_POLLING_DELAY_MS;
1295
	u32 time_left = timeout;
1296 1297 1298 1299
	enum ice_status status;

	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);

1300 1301 1302 1303
	/* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
	 * previously acquired the resource and performed any necessary updates;
	 * in this case the caller does not obtain the resource and has no
	 * further work to do.
1304
	 */
1305
	if (status == ICE_ERR_AQ_NO_WORK)
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
		goto ice_acquire_res_exit;

	if (status)
		ice_debug(hw, ICE_DBG_RES,
			  "resource %d acquire type %d failed.\n", res, access);

	/* If necessary, poll until the current lock owner timeouts */
	timeout = time_left;
	while (status && timeout && time_left) {
		mdelay(delay);
		timeout = (timeout > delay) ? timeout - delay : 0;
		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);

1319
		if (status == ICE_ERR_AQ_NO_WORK)
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
			/* lock free, but no work to do */
			break;

		if (!status)
			/* lock acquired */
			break;
	}
	if (status && status != ICE_ERR_AQ_NO_WORK)
		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");

ice_acquire_res_exit:
	if (status == ICE_ERR_AQ_NO_WORK) {
		if (access == ICE_RES_WRITE)
			ice_debug(hw, ICE_DBG_RES,
				  "resource indicates no work to do.\n");
		else
			ice_debug(hw, ICE_DBG_RES,
				  "Warning: ICE_ERR_AQ_NO_WORK not expected\n");
	}
	return status;
}

/**
 * ice_release_res
 * @hw: pointer to the HW structure
 * @res: resource id
 *
 * This function will release a resource using the proper Admin Command.
 */
void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
{
	enum ice_status status;
	u32 total_delay = 0;

	status = ice_aq_release_res(hw, res, 0, NULL);

	/* there are some rare cases when trying to release the resource
	 * results in an admin Q timeout, so handle them correctly
	 */
	while ((status == ICE_ERR_AQ_TIMEOUT) &&
	       (total_delay < hw->adminq.sq_cmd_timeout)) {
		mdelay(1);
		status = ice_aq_release_res(hw, res, 0, NULL);
		total_delay++;
	}
}

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
/**
 * ice_parse_caps - parse function/device capabilities
 * @hw: pointer to the hw struct
 * @buf: pointer to a buffer containing function/device capability records
 * @cap_count: number of capability records in the list
 * @opc: type of capabilities list to parse
 *
 * Helper function to parse function(0x000a)/device(0x000b) capabilities list.
 */
static void
ice_parse_caps(struct ice_hw *hw, void *buf, u32 cap_count,
	       enum ice_adminq_opc opc)
{
	struct ice_aqc_list_caps_elem *cap_resp;
	struct ice_hw_func_caps *func_p = NULL;
	struct ice_hw_dev_caps *dev_p = NULL;
	struct ice_hw_common_caps *caps;
	u32 i;

	if (!buf)
		return;

	cap_resp = (struct ice_aqc_list_caps_elem *)buf;

	if (opc == ice_aqc_opc_list_dev_caps) {
		dev_p = &hw->dev_caps;
		caps = &dev_p->common_cap;
	} else if (opc == ice_aqc_opc_list_func_caps) {
		func_p = &hw->func_caps;
		caps = &func_p->common_cap;
	} else {
		ice_debug(hw, ICE_DBG_INIT, "wrong opcode\n");
		return;
	}

	for (i = 0; caps && i < cap_count; i++, cap_resp++) {
		u32 logical_id = le32_to_cpu(cap_resp->logical_id);
		u32 phys_id = le32_to_cpu(cap_resp->phys_id);
		u32 number = le32_to_cpu(cap_resp->number);
		u16 cap = le16_to_cpu(cap_resp->cap);

		switch (cap) {
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
		case ICE_AQC_CAPS_SRIOV:
			caps->sr_iov_1_1 = (number == 1);
			ice_debug(hw, ICE_DBG_INIT,
				  "HW caps: SR-IOV = %d\n", caps->sr_iov_1_1);
			break;
		case ICE_AQC_CAPS_VF:
			if (dev_p) {
				dev_p->num_vfs_exposed = number;
				ice_debug(hw, ICE_DBG_INIT,
					  "HW caps: VFs exposed = %d\n",
					  dev_p->num_vfs_exposed);
			} else if (func_p) {
				func_p->num_allocd_vfs = number;
				func_p->vf_base_id = logical_id;
				ice_debug(hw, ICE_DBG_INIT,
					  "HW caps: VFs allocated = %d\n",
					  func_p->num_allocd_vfs);
				ice_debug(hw, ICE_DBG_INIT,
					  "HW caps: VF base_id = %d\n",
					  func_p->vf_base_id);
			}
			break;
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
		case ICE_AQC_CAPS_VSI:
			if (dev_p) {
				dev_p->num_vsi_allocd_to_host = number;
				ice_debug(hw, ICE_DBG_INIT,
					  "HW caps: Dev.VSI cnt = %d\n",
					  dev_p->num_vsi_allocd_to_host);
			} else if (func_p) {
				func_p->guaranteed_num_vsi = number;
				ice_debug(hw, ICE_DBG_INIT,
					  "HW caps: Func.VSI cnt = %d\n",
					  func_p->guaranteed_num_vsi);
			}
			break;
		case ICE_AQC_CAPS_RSS:
			caps->rss_table_size = number;
			caps->rss_table_entry_width = logical_id;
			ice_debug(hw, ICE_DBG_INIT,
				  "HW caps: RSS table size = %d\n",
				  caps->rss_table_size);
			ice_debug(hw, ICE_DBG_INIT,
				  "HW caps: RSS table width = %d\n",
				  caps->rss_table_entry_width);
			break;
		case ICE_AQC_CAPS_RXQS:
			caps->num_rxq = number;
			caps->rxq_first_id = phys_id;
			ice_debug(hw, ICE_DBG_INIT,
				  "HW caps: Num Rx Qs = %d\n", caps->num_rxq);
			ice_debug(hw, ICE_DBG_INIT,
				  "HW caps: Rx first queue ID = %d\n",
				  caps->rxq_first_id);
			break;
		case ICE_AQC_CAPS_TXQS:
			caps->num_txq = number;
			caps->txq_first_id = phys_id;
			ice_debug(hw, ICE_DBG_INIT,
				  "HW caps: Num Tx Qs = %d\n", caps->num_txq);
			ice_debug(hw, ICE_DBG_INIT,
				  "HW caps: Tx first queue ID = %d\n",
				  caps->txq_first_id);
			break;
		case ICE_AQC_CAPS_MSIX:
			caps->num_msix_vectors = number;
			caps->msix_vector_first_id = phys_id;
			ice_debug(hw, ICE_DBG_INIT,
				  "HW caps: MSIX vector count = %d\n",
				  caps->num_msix_vectors);
			ice_debug(hw, ICE_DBG_INIT,
				  "HW caps: MSIX first vector index = %d\n",
				  caps->msix_vector_first_id);
			break;
		case ICE_AQC_CAPS_MAX_MTU:
			caps->max_mtu = number;
			if (dev_p)
				ice_debug(hw, ICE_DBG_INIT,
					  "HW caps: Dev.MaxMTU = %d\n",
					  caps->max_mtu);
			else if (func_p)
				ice_debug(hw, ICE_DBG_INIT,
					  "HW caps: func.MaxMTU = %d\n",
					  caps->max_mtu);
			break;
		default:
			ice_debug(hw, ICE_DBG_INIT,
				  "HW caps: Unknown capability[%d]: 0x%x\n", i,
				  cap);
			break;
		}
	}
}

/**
 * ice_aq_discover_caps - query function/device capabilities
 * @hw: pointer to the hw struct
 * @buf: a virtual buffer to hold the capabilities
 * @buf_size: Size of the virtual buffer
1507
 * @cap_count: cap count needed if AQ err==ENOMEM
1508 1509 1510 1511 1512 1513 1514
 * @opc: capabilities type to discover - pass in the command opcode
 * @cd: pointer to command details structure or NULL
 *
 * Get the function(0x000a)/device(0x000b) capabilities description from
 * the firmware.
 */
static enum ice_status
1515
ice_aq_discover_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
		     enum ice_adminq_opc opc, struct ice_sq_cd *cd)
{
	struct ice_aqc_list_caps *cmd;
	struct ice_aq_desc desc;
	enum ice_status status;

	cmd = &desc.params.get_cap;

	if (opc != ice_aqc_opc_list_func_caps &&
	    opc != ice_aqc_opc_list_dev_caps)
		return ICE_ERR_PARAM;

	ice_fill_dflt_direct_cmd_desc(&desc, opc);

	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
	if (!status)
		ice_parse_caps(hw, buf, le32_to_cpu(cmd->count), opc);
1533 1534 1535 1536
	else if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOMEM)
		*cap_count =
			DIV_ROUND_UP(le16_to_cpu(desc.datalen),
				     sizeof(struct ice_aqc_list_caps_elem));
1537 1538 1539 1540
	return status;
}

/**
1541
 * ice_discover_caps - get info about the HW
1542
 * @hw: pointer to the hardware structure
1543
 * @opc: capabilities type to discover - pass in the command opcode
1544
 */
1545 1546
static enum ice_status ice_discover_caps(struct ice_hw *hw,
					 enum ice_adminq_opc opc)
1547 1548
{
	enum ice_status status;
1549
	u32 cap_count;
1550 1551 1552 1553 1554 1555
	u16 cbuf_len;
	u8 retries;

	/* The driver doesn't know how many capabilities the device will return
	 * so the buffer size required isn't known ahead of time. The driver
	 * starts with cbuf_len and if this turns out to be insufficient, the
1556 1557 1558
	 * device returns ICE_AQ_RC_ENOMEM and also the cap_count it needs.
	 * The driver then allocates the buffer based on the count and retries
	 * the operation. So it follows that the retry count is 2.
1559 1560 1561 1562
	 */
#define ICE_GET_CAP_BUF_COUNT	40
#define ICE_GET_CAP_RETRY_COUNT	2

1563
	cap_count = ICE_GET_CAP_BUF_COUNT;
1564 1565 1566 1567 1568
	retries = ICE_GET_CAP_RETRY_COUNT;

	do {
		void *cbuf;

1569 1570
		cbuf_len = (u16)(cap_count *
				 sizeof(struct ice_aqc_list_caps_elem));
1571 1572 1573 1574
		cbuf = devm_kzalloc(ice_hw_to_dev(hw), cbuf_len, GFP_KERNEL);
		if (!cbuf)
			return ICE_ERR_NO_MEMORY;

1575 1576
		status = ice_aq_discover_caps(hw, cbuf, cbuf_len, &cap_count,
					      opc, NULL);
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
		devm_kfree(ice_hw_to_dev(hw), cbuf);

		if (!status || hw->adminq.sq_last_status != ICE_AQ_RC_ENOMEM)
			break;

		/* If ENOMEM is returned, try again with bigger buffer */
	} while (--retries);

	return status;
}

1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
/**
 * ice_get_caps - get info about the HW
 * @hw: pointer to the hardware structure
 */
enum ice_status ice_get_caps(struct ice_hw *hw)
{
	enum ice_status status;

	status = ice_discover_caps(hw, ice_aqc_opc_list_dev_caps);
	if (!status)
		status = ice_discover_caps(hw, ice_aqc_opc_list_func_caps);

	return status;
}

1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
/**
 * ice_aq_manage_mac_write - manage MAC address write command
 * @hw: pointer to the hw struct
 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
 * @flags: flags to control write behavior
 * @cd: pointer to command details structure or NULL
 *
 * This function is used to write MAC address to the NVM (0x0108).
 */
enum ice_status
ice_aq_manage_mac_write(struct ice_hw *hw, u8 *mac_addr, u8 flags,
			struct ice_sq_cd *cd)
{
	struct ice_aqc_manage_mac_write *cmd;
	struct ice_aq_desc desc;

	cmd = &desc.params.mac_write;
	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);

	cmd->flags = flags;

	/* Prep values for flags, sah, sal */
	cmd->sah = htons(*((u16 *)mac_addr));
	cmd->sal = htonl(*((u32 *)(mac_addr + 2)));

	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}

1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
/**
 * ice_aq_clear_pxe_mode
 * @hw: pointer to the hw struct
 *
 * Tell the firmware that the driver is taking over from PXE (0x0110).
 */
static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
{
	struct ice_aq_desc desc;

	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;

	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
}

/**
 * ice_clear_pxe_mode - clear pxe operations mode
 * @hw: pointer to the hw struct
 *
 * Make sure all PXE mode settings are cleared, including things
 * like descriptor fetch/write-back mode.
 */
void ice_clear_pxe_mode(struct ice_hw *hw)
{
	if (ice_check_sq_alive(hw, &hw->adminq))
		ice_aq_clear_pxe_mode(hw);
}
1659

1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
/**
 * ice_get_link_speed_based_on_phy_type - returns link speed
 * @phy_type_low: lower part of phy_type
 *
 * This helper function will convert a phy_type_low to its corresponding link
 * speed.
 * Note: In the structure of phy_type_low, there should be one bit set, as
 * this function will convert one phy type to its speed.
 * If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
 * If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
 */
static u16
ice_get_link_speed_based_on_phy_type(u64 phy_type_low)
{
	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;

	switch (phy_type_low) {
	case ICE_PHY_TYPE_LOW_100BASE_TX:
	case ICE_PHY_TYPE_LOW_100M_SGMII:
		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
		break;
	case ICE_PHY_TYPE_LOW_1000BASE_T:
	case ICE_PHY_TYPE_LOW_1000BASE_SX:
	case ICE_PHY_TYPE_LOW_1000BASE_LX:
	case ICE_PHY_TYPE_LOW_1000BASE_KX:
	case ICE_PHY_TYPE_LOW_1G_SGMII:
		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
		break;
	case ICE_PHY_TYPE_LOW_2500BASE_T:
	case ICE_PHY_TYPE_LOW_2500BASE_X:
	case ICE_PHY_TYPE_LOW_2500BASE_KX:
		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
		break;
	case ICE_PHY_TYPE_LOW_5GBASE_T:
	case ICE_PHY_TYPE_LOW_5GBASE_KR:
		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
		break;
	case ICE_PHY_TYPE_LOW_10GBASE_T:
	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
	case ICE_PHY_TYPE_LOW_10GBASE_SR:
	case ICE_PHY_TYPE_LOW_10GBASE_LR:
	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
		break;
	case ICE_PHY_TYPE_LOW_25GBASE_T:
	case ICE_PHY_TYPE_LOW_25GBASE_CR:
	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
	case ICE_PHY_TYPE_LOW_25GBASE_SR:
	case ICE_PHY_TYPE_LOW_25GBASE_LR:
	case ICE_PHY_TYPE_LOW_25GBASE_KR:
	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
		break;
	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
	case ICE_PHY_TYPE_LOW_40G_XLAUI:
		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
		break;
	default:
		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
		break;
	}

	return speed_phy_type_low;
}

/**
 * ice_update_phy_type
 * @phy_type_low: pointer to the lower part of phy_type
 * @link_speeds_bitmap: targeted link speeds bitmap
 *
 * Note: For the link_speeds_bitmap structure, you can check it at
 * [ice_aqc_get_link_status->link_speed]. Caller can pass in
 * link_speeds_bitmap include multiple speeds.
 *
 * The value of phy_type_low will present a certain link speed. This helper
 * function will turn on bits in the phy_type_low based on the value of
 * link_speeds_bitmap input parameter.
 */
void ice_update_phy_type(u64 *phy_type_low, u16 link_speeds_bitmap)
{
	u16 speed = ICE_AQ_LINK_SPEED_UNKNOWN;
	u64 pt_low;
	int index;

	/* We first check with low part of phy_type */
	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
		pt_low = BIT_ULL(index);
		speed = ice_get_link_speed_based_on_phy_type(pt_low);

		if (link_speeds_bitmap & speed)
			*phy_type_low |= BIT_ULL(index);
	}
}

1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
/**
 * ice_aq_set_phy_cfg
 * @hw: pointer to the hw struct
 * @lport: logical port number
 * @cfg: structure with PHY configuration data to be set
 * @cd: pointer to command details structure or NULL
 *
 * Set the various PHY configuration parameters supported on the Port.
 * One or more of the Set PHY config parameters may be ignored in an MFP
 * mode as the PF may not have the privilege to set some of the PHY Config
 * parameters. This status will be indicated by the command response (0x0601).
 */
1776
enum ice_status
1777 1778 1779 1780 1781 1782 1783 1784 1785
ice_aq_set_phy_cfg(struct ice_hw *hw, u8 lport,
		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
{
	struct ice_aq_desc desc;

	if (!cfg)
		return ICE_ERR_PARAM;

	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
1786 1787
	desc.params.set_phy.lport_num = lport;
	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1788 1789 1790 1791 1792 1793 1794 1795

	return ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
}

/**
 * ice_update_link_info - update status of the HW network link
 * @pi: port info structure of the interested logical port
 */
1796
enum ice_status ice_update_link_info(struct ice_port_info *pi)
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
{
	struct ice_aqc_get_phy_caps_data *pcaps;
	struct ice_phy_info *phy_info;
	enum ice_status status;
	struct ice_hw *hw;

	if (!pi)
		return ICE_ERR_PARAM;

	hw = pi->hw;

	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
	if (!pcaps)
		return ICE_ERR_NO_MEMORY;

	phy_info = &pi->phy;
	status = ice_aq_get_link_info(pi, true, NULL, NULL);
	if (status)
		goto out;

	if (phy_info->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG,
					     pcaps, NULL);
		if (status)
			goto out;

		memcpy(phy_info->link_info.module_type, &pcaps->module_type,
		       sizeof(phy_info->link_info.module_type));
	}
out:
	devm_kfree(ice_hw_to_dev(hw), pcaps);
	return status;
}

/**
 * ice_set_fc
 * @pi: port information structure
 * @aq_failures: pointer to status code, specific to ice_set_fc routine
1835
 * @ena_auto_link_update: enable automatic link update
1836 1837 1838 1839
 *
 * Set the requested flow control mode.
 */
enum ice_status
1840
ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
{
	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
	struct ice_aqc_get_phy_caps_data *pcaps;
	enum ice_status status;
	u8 pause_mask = 0x0;
	struct ice_hw *hw;

	if (!pi)
		return ICE_ERR_PARAM;
	hw = pi->hw;
	*aq_failures = ICE_SET_FC_AQ_FAIL_NONE;

	switch (pi->fc.req_mode) {
	case ICE_FC_FULL:
		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
		break;
	case ICE_FC_RX_PAUSE:
		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
		break;
	case ICE_FC_TX_PAUSE:
		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
		break;
	default:
		break;
	}

	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
	if (!pcaps)
		return ICE_ERR_NO_MEMORY;

	/* Get the current phy config */
	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
				     NULL);
	if (status) {
		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
		goto out;
	}

	/* clear the old pause settings */
	cfg.caps = pcaps->caps & ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
				   ICE_AQC_PHY_EN_RX_LINK_PAUSE);
	/* set the new capabilities */
	cfg.caps |= pause_mask;
	/* If the capabilities have changed, then set the new config */
	if (cfg.caps != pcaps->caps) {
		int retry_count, retry_max = 10;

		/* Auto restart link so settings take effect */
1890 1891
		if (ena_auto_link_update)
			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
		/* Copy over all the old settings */
		cfg.phy_type_low = pcaps->phy_type_low;
		cfg.low_power_ctrl = pcaps->low_power_ctrl;
		cfg.eee_cap = pcaps->eee_cap;
		cfg.eeer_value = pcaps->eeer_value;
		cfg.link_fec_opt = pcaps->link_fec_options;

		status = ice_aq_set_phy_cfg(hw, pi->lport, &cfg, NULL);
		if (status) {
			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
			goto out;
		}

		/* Update the link info
		 * It sometimes takes a really long time for link to
		 * come back from the atomic reset. Thus, we wait a
		 * little bit.
		 */
		for (retry_count = 0; retry_count < retry_max; retry_count++) {
			status = ice_update_link_info(pi);

			if (!status)
				break;

			mdelay(100);
		}

		if (status)
			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
	}

out:
	devm_kfree(ice_hw_to_dev(hw), pcaps);
	return status;
}

1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
/**
 * ice_get_link_status - get status of the HW network link
 * @pi: port information structure
 * @link_up: pointer to bool (true/false = linkup/linkdown)
 *
 * Variable link_up is true if link is up, false if link is down.
 * The variable link_up is invalid if status is non zero. As a
 * result of this call, link status reporting becomes enabled
 */
enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
{
	struct ice_phy_info *phy_info;
	enum ice_status status = 0;

1942
	if (!pi || !link_up)
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
		return ICE_ERR_PARAM;

	phy_info = &pi->phy;

	if (phy_info->get_link_info) {
		status = ice_update_link_info(pi);

		if (status)
			ice_debug(pi->hw, ICE_DBG_LINK,
				  "get link status error, status = %d\n",
				  status);
	}

	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;

	return status;
}

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
/**
 * ice_aq_set_link_restart_an
 * @pi: pointer to the port information structure
 * @ena_link: if true: enable link, if false: disable link
 * @cd: pointer to command details structure or NULL
 *
 * Sets up the link and restarts the Auto-Negotiation over the link.
 */
enum ice_status
ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
			   struct ice_sq_cd *cd)
{
	struct ice_aqc_restart_an *cmd;
	struct ice_aq_desc desc;

	cmd = &desc.params.restart_an;

	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);

	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
	cmd->lport_num = pi->lport;
	if (ena_link)
		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
	else
		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;

	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
}

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
/**
 * ice_aq_set_event_mask
 * @hw: pointer to the hw struct
 * @port_num: port number of the physical function
 * @mask: event mask to be set
 * @cd: pointer to command details structure or NULL
 *
 * Set event mask (0x0613)
 */
enum ice_status
ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
		      struct ice_sq_cd *cd)
{
	struct ice_aqc_set_event_mask *cmd;
	struct ice_aq_desc desc;

	cmd = &desc.params.set_event_mask;

	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);

	cmd->lport_num = port_num;

	cmd->event_mask = cpu_to_le16(mask);

	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
/**
 * __ice_aq_get_set_rss_lut
 * @hw: pointer to the hardware structure
 * @vsi_id: VSI FW index
 * @lut_type: LUT table type
 * @lut: pointer to the LUT buffer provided by the caller
 * @lut_size: size of the LUT buffer
 * @glob_lut_idx: global LUT index
 * @set: set true to set the table, false to get the table
 *
 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
 */
static enum ice_status
__ice_aq_get_set_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut,
			 u16 lut_size, u8 glob_lut_idx, bool set)
{
	struct ice_aqc_get_set_rss_lut *cmd_resp;
	struct ice_aq_desc desc;
	enum ice_status status;
	u16 flags = 0;

	cmd_resp = &desc.params.get_set_rss_lut;

	if (set) {
		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
	} else {
		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
	}

	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
					 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
					ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
				       ICE_AQC_GSET_RSS_LUT_VSI_VALID);

	switch (lut_type) {
	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
		flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
			  ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
		break;
	default:
		status = ICE_ERR_PARAM;
		goto ice_aq_get_set_rss_lut_exit;
	}

	if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
		flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
			  ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);

		if (!set)
			goto ice_aq_get_set_rss_lut_send;
	} else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
		if (!set)
			goto ice_aq_get_set_rss_lut_send;
	} else {
		goto ice_aq_get_set_rss_lut_send;
	}

	/* LUT size is only valid for Global and PF table types */
2078 2079 2080 2081
	switch (lut_size) {
	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
		break;
	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
2082 2083 2084
		flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
			  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
			 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
		break;
	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
		if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
			flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
				  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
				 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
			break;
		}
		/* fall-through */
	default:
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
		status = ICE_ERR_PARAM;
		goto ice_aq_get_set_rss_lut_exit;
	}

ice_aq_get_set_rss_lut_send:
	cmd_resp->flags = cpu_to_le16(flags);
	status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);

ice_aq_get_set_rss_lut_exit:
	return status;
}

/**
 * ice_aq_get_rss_lut
 * @hw: pointer to the hardware structure
2110
 * @vsi_handle: software VSI handle
2111 2112 2113 2114 2115 2116 2117
 * @lut_type: LUT table type
 * @lut: pointer to the LUT buffer provided by the caller
 * @lut_size: size of the LUT buffer
 *
 * get the RSS lookup table, PF or VSI type
 */
enum ice_status
2118 2119
ice_aq_get_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
		   u8 *lut, u16 lut_size)
2120
{
2121 2122 2123 2124 2125
	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
		return ICE_ERR_PARAM;

	return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
					lut_type, lut, lut_size, 0, false);
2126 2127 2128 2129 2130
}

/**
 * ice_aq_set_rss_lut
 * @hw: pointer to the hardware structure
2131
 * @vsi_handle: software VSI handle
2132 2133 2134 2135 2136 2137 2138
 * @lut_type: LUT table type
 * @lut: pointer to the LUT buffer provided by the caller
 * @lut_size: size of the LUT buffer
 *
 * set the RSS lookup table, PF or VSI type
 */
enum ice_status
2139 2140
ice_aq_set_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
		   u8 *lut, u16 lut_size)
2141
{
2142 2143 2144 2145 2146
	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
		return ICE_ERR_PARAM;

	return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
					lut_type, lut, lut_size, 0, true);
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
}

/**
 * __ice_aq_get_set_rss_key
 * @hw: pointer to the hw struct
 * @vsi_id: VSI FW index
 * @key: pointer to key info struct
 * @set: set true to set the key, false to get the key
 *
 * get (0x0B04) or set (0x0B02) the RSS key per VSI
 */
static enum
ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
				    struct ice_aqc_get_set_rss_keys *key,
				    bool set)
{
	struct ice_aqc_get_set_rss_key *cmd_resp;
	u16 key_size = sizeof(*key);
	struct ice_aq_desc desc;

	cmd_resp = &desc.params.get_set_rss_key;

	if (set) {
		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
	} else {
		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
	}

	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
					 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
					ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
				       ICE_AQC_GSET_RSS_KEY_VSI_VALID);

	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
}

/**
 * ice_aq_get_rss_key
 * @hw: pointer to the hw struct
2187
 * @vsi_handle: software VSI handle
2188 2189 2190 2191 2192
 * @key: pointer to key info struct
 *
 * get the RSS key per VSI
 */
enum ice_status
2193
ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
2194 2195
		   struct ice_aqc_get_set_rss_keys *key)
{
2196 2197 2198 2199 2200
	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
		return ICE_ERR_PARAM;

	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
					key, false);
2201 2202 2203 2204 2205
}

/**
 * ice_aq_set_rss_key
 * @hw: pointer to the hw struct
2206
 * @vsi_handle: software VSI handle
2207 2208 2209 2210 2211
 * @keys: pointer to key info struct
 *
 * set the RSS key per VSI
 */
enum ice_status
2212
ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
2213 2214
		   struct ice_aqc_get_set_rss_keys *keys)
{
2215 2216 2217 2218 2219
	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
		return ICE_ERR_PARAM;

	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
					keys, true);
2220 2221
}

2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
/**
 * ice_aq_add_lan_txq
 * @hw: pointer to the hardware structure
 * @num_qgrps: Number of added queue groups
 * @qg_list: list of queue groups to be added
 * @buf_size: size of buffer for indirect command
 * @cd: pointer to command details structure or NULL
 *
 * Add Tx LAN queue (0x0C30)
 *
 * NOTE:
 * Prior to calling add Tx LAN queue:
 * Initialize the following as part of the Tx queue context:
 * Completion queue ID if the queue uses Completion queue, Quanta profile,
 * Cache profile and Packet shaper profile.
 *
 * After add Tx LAN queue AQ command is completed:
 * Interrupts should be associated with specific queues,
 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
 * flow.
 */
static enum ice_status
ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
		   struct ice_sq_cd *cd)
{
	u16 i, sum_header_size, sum_q_size = 0;
	struct ice_aqc_add_tx_qgrp *list;
	struct ice_aqc_add_txqs *cmd;
	struct ice_aq_desc desc;

	cmd = &desc.params.add_txqs;

	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);

	if (!qg_list)
		return ICE_ERR_PARAM;

	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
		return ICE_ERR_PARAM;

	sum_header_size = num_qgrps *
		(sizeof(*qg_list) - sizeof(*qg_list->txqs));

	list = qg_list;
	for (i = 0; i < num_qgrps; i++) {
		struct ice_aqc_add_txqs_perq *q = list->txqs;

		sum_q_size += list->num_txqs * sizeof(*q);
		list = (struct ice_aqc_add_tx_qgrp *)(q + list->num_txqs);
	}

	if (buf_size != (sum_header_size + sum_q_size))
		return ICE_ERR_PARAM;

	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);

	cmd->num_qgrps = num_qgrps;

	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
}

/**
 * ice_aq_dis_lan_txq
 * @hw: pointer to the hardware structure
 * @num_qgrps: number of groups in the list
 * @qg_list: the list of groups to disable
 * @buf_size: the total size of the qg_list buffer in bytes
 * @cd: pointer to command details structure or NULL
 *
 * Disable LAN Tx queue (0x0C31)
 */
static enum ice_status
ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
		   struct ice_sq_cd *cd)
{
	struct ice_aqc_dis_txqs *cmd;
	struct ice_aq_desc desc;
	u16 i, sz = 0;

	cmd = &desc.params.dis_txqs;
	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);

	if (!qg_list)
		return ICE_ERR_PARAM;

	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
		return ICE_ERR_PARAM;
	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
	cmd->num_entries = num_qgrps;

	for (i = 0; i < num_qgrps; ++i) {
		/* Calculate the size taken up by the queue IDs in this group */
		sz += qg_list[i].num_qs * sizeof(qg_list[i].q_id);

		/* Add the size of the group header */
		sz += sizeof(qg_list[i]) - sizeof(qg_list[i].q_id);

		/* If the num of queues is even, add 2 bytes of padding */
		if ((qg_list[i].num_qs % 2) == 0)
			sz += 2;
	}

	if (buf_size != sz)
		return ICE_ERR_PARAM;

	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
}

/* End of FW Admin Queue command wrappers */

/**
 * ice_write_byte - write a byte to a packed context structure
 * @src_ctx:  the context structure to read from
 * @dest_ctx: the context to be written to
 * @ce_info:  a description of the struct to be filled
 */
static void ice_write_byte(u8 *src_ctx, u8 *dest_ctx,
			   const struct ice_ctx_ele *ce_info)
{
	u8 src_byte, dest_byte, mask;
	u8 *from, *dest;
	u16 shift_width;

	/* copy from the next struct field */
	from = src_ctx + ce_info->offset;

	/* prepare the bits and mask */
	shift_width = ce_info->lsb % 8;
	mask = (u8)(BIT(ce_info->width) - 1);

	src_byte = *from;
	src_byte &= mask;

	/* shift to correct alignment */
	mask <<= shift_width;
	src_byte <<= shift_width;

	/* get the current bits from the target bit string */
	dest = dest_ctx + (ce_info->lsb / 8);

	memcpy(&dest_byte, dest, sizeof(dest_byte));

	dest_byte &= ~mask;	/* get the bits not changing */
	dest_byte |= src_byte;	/* add in the new bits */

	/* put it all back */
	memcpy(dest, &dest_byte, sizeof(dest_byte));
}

/**
 * ice_write_word - write a word to a packed context structure
 * @src_ctx:  the context structure to read from
 * @dest_ctx: the context to be written to
 * @ce_info:  a description of the struct to be filled
 */
static void ice_write_word(u8 *src_ctx, u8 *dest_ctx,
			   const struct ice_ctx_ele *ce_info)
{
	u16 src_word, mask;
	__le16 dest_word;
	u8 *from, *dest;
	u16 shift_width;

	/* copy from the next struct field */
	from = src_ctx + ce_info->offset;

	/* prepare the bits and mask */
	shift_width = ce_info->lsb % 8;
	mask = BIT(ce_info->width) - 1;

	/* don't swizzle the bits until after the mask because the mask bits
	 * will be in a different bit position on big endian machines
	 */
	src_word = *(u16 *)from;
	src_word &= mask;

	/* shift to correct alignment */
	mask <<= shift_width;
	src_word <<= shift_width;

	/* get the current bits from the target bit string */
	dest = dest_ctx + (ce_info->lsb / 8);

	memcpy(&dest_word, dest, sizeof(dest_word));

	dest_word &= ~(cpu_to_le16(mask));	/* get the bits not changing */
	dest_word |= cpu_to_le16(src_word);	/* add in the new bits */

	/* put it all back */
	memcpy(dest, &dest_word, sizeof(dest_word));
}

/**
 * ice_write_dword - write a dword to a packed context structure
 * @src_ctx:  the context structure to read from
 * @dest_ctx: the context to be written to
 * @ce_info:  a description of the struct to be filled
 */
static void ice_write_dword(u8 *src_ctx, u8 *dest_ctx,
			    const struct ice_ctx_ele *ce_info)
{
	u32 src_dword, mask;
	__le32 dest_dword;
	u8 *from, *dest;
	u16 shift_width;

	/* copy from the next struct field */
	from = src_ctx + ce_info->offset;

	/* prepare the bits and mask */
	shift_width = ce_info->lsb % 8;

	/* if the field width is exactly 32 on an x86 machine, then the shift
	 * operation will not work because the SHL instructions count is masked
	 * to 5 bits so the shift will do nothing
	 */
	if (ce_info->width < 32)
		mask = BIT(ce_info->width) - 1;
	else
		mask = (u32)~0;

	/* don't swizzle the bits until after the mask because the mask bits
	 * will be in a different bit position on big endian machines
	 */
	src_dword = *(u32 *)from;
	src_dword &= mask;

	/* shift to correct alignment */
	mask <<= shift_width;
	src_dword <<= shift_width;

	/* get the current bits from the target bit string */
	dest = dest_ctx + (ce_info->lsb / 8);

	memcpy(&dest_dword, dest, sizeof(dest_dword));

	dest_dword &= ~(cpu_to_le32(mask));	/* get the bits not changing */
	dest_dword |= cpu_to_le32(src_dword);	/* add in the new bits */

	/* put it all back */
	memcpy(dest, &dest_dword, sizeof(dest_dword));
}

/**
 * ice_write_qword - write a qword to a packed context structure
 * @src_ctx:  the context structure to read from
 * @dest_ctx: the context to be written to
 * @ce_info:  a description of the struct to be filled
 */
static void ice_write_qword(u8 *src_ctx, u8 *dest_ctx,
			    const struct ice_ctx_ele *ce_info)
{
	u64 src_qword, mask;
	__le64 dest_qword;
	u8 *from, *dest;
	u16 shift_width;

	/* copy from the next struct field */
	from = src_ctx + ce_info->offset;

	/* prepare the bits and mask */
	shift_width = ce_info->lsb % 8;

	/* if the field width is exactly 64 on an x86 machine, then the shift
	 * operation will not work because the SHL instructions count is masked
	 * to 6 bits so the shift will do nothing
	 */
	if (ce_info->width < 64)
		mask = BIT_ULL(ce_info->width) - 1;
	else
		mask = (u64)~0;

	/* don't swizzle the bits until after the mask because the mask bits
	 * will be in a different bit position on big endian machines
	 */
	src_qword = *(u64 *)from;
	src_qword &= mask;

	/* shift to correct alignment */
	mask <<= shift_width;
	src_qword <<= shift_width;

	/* get the current bits from the target bit string */
	dest = dest_ctx + (ce_info->lsb / 8);

	memcpy(&dest_qword, dest, sizeof(dest_qword));

	dest_qword &= ~(cpu_to_le64(mask));	/* get the bits not changing */
	dest_qword |= cpu_to_le64(src_qword);	/* add in the new bits */

	/* put it all back */
	memcpy(dest, &dest_qword, sizeof(dest_qword));
}

/**
 * ice_set_ctx - set context bits in packed structure
 * @src_ctx:  pointer to a generic non-packed context structure
 * @dest_ctx: pointer to memory for the packed structure
 * @ce_info:  a description of the structure to be transformed
 */
enum ice_status
ice_set_ctx(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
{
	int f;

	for (f = 0; ce_info[f].width; f++) {
		/* We have to deal with each element of the FW response
		 * using the correct size so that we are correct regardless
		 * of the endianness of the machine.
		 */
		switch (ce_info[f].size_of) {
		case sizeof(u8):
			ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
			break;
		case sizeof(u16):
			ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
			break;
		case sizeof(u32):
			ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
			break;
		case sizeof(u64):
			ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
			break;
		default:
			return ICE_ERR_INVAL_SIZE;
		}
	}

	return 0;
}

/**
 * ice_ena_vsi_txq
 * @pi: port information structure
2558
 * @vsi_handle: software VSI handle
2559 2560 2561 2562 2563 2564 2565 2566 2567
 * @tc: tc number
 * @num_qgrps: Number of added queue groups
 * @buf: list of queue groups to be added
 * @buf_size: size of buffer for indirect command
 * @cd: pointer to command details structure or NULL
 *
 * This function adds one lan q
 */
enum ice_status
2568
ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_qgrps,
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
		struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
		struct ice_sq_cd *cd)
{
	struct ice_aqc_txsched_elem_data node = { 0 };
	struct ice_sched_node *parent;
	enum ice_status status;
	struct ice_hw *hw;

	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
		return ICE_ERR_CFG;

	if (num_qgrps > 1 || buf->num_txqs > 1)
		return ICE_ERR_MAX_LIMIT;

	hw = pi->hw;

2585 2586 2587
	if (!ice_is_vsi_valid(hw, vsi_handle))
		return ICE_ERR_PARAM;

2588 2589 2590
	mutex_lock(&pi->sched_lock);

	/* find a parent node */
2591
	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
2592 2593 2594 2595 2596
					    ICE_SCHED_NODE_OWNER_LAN);
	if (!parent) {
		status = ICE_ERR_PARAM;
		goto ena_txq_exit;
	}
2597

2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
	buf->parent_teid = parent->info.node_teid;
	node.parent_teid = parent->info.node_teid;
	/* Mark that the values in the "generic" section as valid. The default
	 * value in the "generic" section is zero. This means that :
	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
	 * - 0 priority among siblings, indicated by Bit 1-3.
	 * - WFQ, indicated by Bit 4.
	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
	 * Bit 5-6.
	 * - Bit 7 is reserved.
	 * Without setting the generic section as valid in valid_sections, the
	 * Admin Q command will fail with error code ICE_AQ_RC_EINVAL.
	 */
	buf->txqs[0].info.valid_sections = ICE_AQC_ELEM_VALID_GENERIC;

	/* add the lan q */
	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
	if (status)
		goto ena_txq_exit;

	node.node_teid = buf->txqs[0].q_teid;
	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;

	/* add a leaf node into schduler tree q layer */
	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);

ena_txq_exit:
	mutex_unlock(&pi->sched_lock);
	return status;
}

/**
 * ice_dis_vsi_txq
 * @pi: port information structure
 * @num_queues: number of queues
 * @q_ids: pointer to the q_id array
 * @q_teids: pointer to queue node teids
 * @cd: pointer to command details structure or NULL
 *
 * This function removes queues and their corresponding nodes in SW DB
 */
enum ice_status
ice_dis_vsi_txq(struct ice_port_info *pi, u8 num_queues, u16 *q_ids,
		u32 *q_teids, struct ice_sq_cd *cd)
{
	enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
	struct ice_aqc_dis_txq_item qg_list;
	u16 i;

	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
		return ICE_ERR_CFG;

	mutex_lock(&pi->sched_lock);

	for (i = 0; i < num_queues; i++) {
		struct ice_sched_node *node;

		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
		if (!node)
			continue;
		qg_list.parent_teid = node->info.parent_teid;
		qg_list.num_qs = 1;
		qg_list.q_id[0] = cpu_to_le16(q_ids[i]);
		status = ice_aq_dis_lan_txq(pi->hw, 1, &qg_list,
					    sizeof(qg_list), cd);

		if (status)
			break;
		ice_free_sched_node(pi, node);
	}
	mutex_unlock(&pi->sched_lock);
	return status;
}
2671 2672 2673 2674

/**
 * ice_cfg_vsi_qs - configure the new/exisiting VSI queues
 * @pi: port information structure
2675
 * @vsi_handle: software VSI handle
2676 2677 2678 2679 2680 2681 2682
 * @tc_bitmap: TC bitmap
 * @maxqs: max queues array per TC
 * @owner: lan or rdma
 *
 * This function adds/updates the VSI queues per TC.
 */
static enum ice_status
2683
ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
2684 2685 2686 2687 2688 2689 2690 2691
	       u16 *maxqs, u8 owner)
{
	enum ice_status status = 0;
	u8 i;

	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
		return ICE_ERR_CFG;

2692 2693 2694
	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
		return ICE_ERR_PARAM;

2695 2696 2697 2698 2699 2700 2701
	mutex_lock(&pi->sched_lock);

	for (i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++) {
		/* configuration is possible only if TC node is present */
		if (!ice_sched_get_tc_node(pi, i))
			continue;

2702
		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
					   ice_is_tc_ena(tc_bitmap, i));
		if (status)
			break;
	}

	mutex_unlock(&pi->sched_lock);
	return status;
}

/**
 * ice_cfg_vsi_lan - configure VSI lan queues
 * @pi: port information structure
2715
 * @vsi_handle: software VSI handle
2716 2717 2718 2719 2720 2721
 * @tc_bitmap: TC bitmap
 * @max_lanqs: max lan queues array per TC
 *
 * This function adds/updates the VSI lan queues per TC.
 */
enum ice_status
2722
ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
2723 2724
		u16 *max_lanqs)
{
2725
	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
2726 2727
			      ICE_SCHED_NODE_OWNER_LAN);
}
2728

2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
/**
 * ice_replay_pre_init - replay pre initialization
 * @hw: pointer to the hw struct
 *
 * Initializes required config data for VSI, FD, ACL, and RSS before replay.
 */
static enum ice_status ice_replay_pre_init(struct ice_hw *hw)
{
	struct ice_switch_info *sw = hw->switch_info;
	u8 i;

	/* Delete old entries from replay filter list head if there is any */
	ice_rm_all_sw_replay_rule_info(hw);
	/* In start of replay, move entries into replay_rules list, it
	 * will allow adding rules entries back to filt_rules list,
	 * which is operational list.
	 */
	for (i = 0; i < ICE_SW_LKUP_LAST; i++)
		list_replace_init(&sw->recp_list[i].filt_rules,
				  &sw->recp_list[i].filt_replay_rules);

	return 0;
}

/**
 * ice_replay_vsi - replay VSI configuration
 * @hw: pointer to the hw struct
 * @vsi_handle: driver VSI handle
 *
 * Restore all VSI configuration after reset. It is required to call this
 * function with main VSI first.
 */
enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
{
	enum ice_status status;

	if (!ice_is_vsi_valid(hw, vsi_handle))
		return ICE_ERR_PARAM;

	/* Replay pre-initialization if there is any */
	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
		status = ice_replay_pre_init(hw);
		if (status)
			return status;
	}

	/* Replay per VSI all filters */
	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
	return status;
}

/**
 * ice_replay_post - post replay configuration cleanup
 * @hw: pointer to the hw struct
 *
 * Post replay cleanup.
 */
void ice_replay_post(struct ice_hw *hw)
{
	/* Delete old entries from replay filter list head */
	ice_rm_all_sw_replay_rule_info(hw);
}

2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
/**
 * ice_stat_update40 - read 40 bit stat from the chip and update stat values
 * @hw: ptr to the hardware info
 * @hireg: high 32 bit HW register to read from
 * @loreg: low 32 bit HW register to read from
 * @prev_stat_loaded: bool to specify if previous stats are loaded
 * @prev_stat: ptr to previous loaded stat value
 * @cur_stat: ptr to current stat value
 */
void ice_stat_update40(struct ice_hw *hw, u32 hireg, u32 loreg,
		       bool prev_stat_loaded, u64 *prev_stat, u64 *cur_stat)
{
	u64 new_data;

	new_data = rd32(hw, loreg);
	new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32;

	/* device stats are not reset at PFR, they likely will not be zeroed
	 * when the driver starts. So save the first values read and use them as
	 * offsets to be subtracted from the raw values in order to report stats
	 * that count from zero.
	 */
	if (!prev_stat_loaded)
		*prev_stat = new_data;
	if (new_data >= *prev_stat)
		*cur_stat = new_data - *prev_stat;
	else
		/* to manage the potential roll-over */
		*cur_stat = (new_data + BIT_ULL(40)) - *prev_stat;
	*cur_stat &= 0xFFFFFFFFFFULL;
}

/**
 * ice_stat_update32 - read 32 bit stat from the chip and update stat values
 * @hw: ptr to the hardware info
 * @reg: HW register to read from
 * @prev_stat_loaded: bool to specify if previous stats are loaded
 * @prev_stat: ptr to previous loaded stat value
 * @cur_stat: ptr to current stat value
 */
void ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
		       u64 *prev_stat, u64 *cur_stat)
{
	u32 new_data;

	new_data = rd32(hw, reg);

	/* device stats are not reset at PFR, they likely will not be zeroed
	 * when the driver starts. So save the first values read and use them as
	 * offsets to be subtracted from the raw values in order to report stats
	 * that count from zero.
	 */
	if (!prev_stat_loaded)
		*prev_stat = new_data;
	if (new_data >= *prev_stat)
		*cur_stat = new_data - *prev_stat;
	else
		/* to manage the potential roll-over */
		*cur_stat = (new_data + BIT_ULL(32)) - *prev_stat;
}