nfp_net_common.c 76.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/*
 * Copyright (C) 2015 Netronome Systems, Inc.
 *
 * This software is dual licensed under the GNU General License Version 2,
 * June 1991 as shown in the file COPYING in the top-level directory of this
 * source tree or the BSD 2-Clause License provided below.  You have the
 * option to license this software under the complete terms of either license.
 *
 * The BSD 2-Clause License:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      1. Redistributions of source code must retain the above
 *         copyright notice, this list of conditions and the following
 *         disclaimer.
 *
 *      2. Redistributions in binary form must reproduce the above
 *         copyright notice, this list of conditions and the following
 *         disclaimer in the documentation and/or other materials
 *         provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

/*
 * nfp_net_common.c
 * Netronome network device driver: Common functions between PF and VF
 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
 *          Jason McMullan <jason.mcmullan@netronome.com>
 *          Rolf Neugebauer <rolf.neugebauer@netronome.com>
 *          Brad Petrus <brad.petrus@netronome.com>
 *          Chris Telfer <chris.telfer@netronome.com>
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
53
#include <linux/page_ref.h>
54 55 56 57 58 59 60 61 62 63
#include <linux/pci.h>
#include <linux/pci_regs.h>
#include <linux/msi.h>
#include <linux/ethtool.h>
#include <linux/log2.h>
#include <linux/if_vlan.h>
#include <linux/random.h>

#include <linux/ktime.h>

64
#include <net/pkt_cls.h>
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
#include <net/vxlan.h>

#include "nfp_net_ctrl.h"
#include "nfp_net.h"

/**
 * nfp_net_get_fw_version() - Read and parse the FW version
 * @fw_ver:	Output fw_version structure to read to
 * @ctrl_bar:	Mapped address of the control BAR
 */
void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver,
			    void __iomem *ctrl_bar)
{
	u32 reg;

	reg = readl(ctrl_bar + NFP_NET_CFG_VERSION);
	put_unaligned_le32(reg, fw_ver);
}

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
static dma_addr_t
nfp_net_dma_map_rx(struct nfp_net *nn, void *frag, unsigned int bufsz,
		   int direction)
{
	return dma_map_single(&nn->pdev->dev, frag + NFP_NET_RX_BUF_HEADROOM,
			      bufsz - NFP_NET_RX_BUF_NON_DATA, direction);
}

static void
nfp_net_dma_unmap_rx(struct nfp_net *nn, dma_addr_t dma_addr,
		     unsigned int bufsz, int direction)
{
	dma_unmap_single(&nn->pdev->dev, dma_addr,
			 bufsz - NFP_NET_RX_BUF_NON_DATA, direction);
}

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
/* Firmware reconfig
 *
 * Firmware reconfig may take a while so we have two versions of it -
 * synchronous and asynchronous (posted).  All synchronous callers are holding
 * RTNL so we don't have to worry about serializing them.
 */
static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update)
{
	nn_writel(nn, NFP_NET_CFG_UPDATE, update);
	/* ensure update is written before pinging HW */
	nn_pci_flush(nn);
	nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1);
}

/* Pass 0 as update to run posted reconfigs. */
static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update)
{
	update |= nn->reconfig_posted;
	nn->reconfig_posted = 0;

	nfp_net_reconfig_start(nn, update);

	nn->reconfig_timer_active = true;
	mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ);
}

static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check)
{
	u32 reg;

	reg = nn_readl(nn, NFP_NET_CFG_UPDATE);
	if (reg == 0)
		return true;
	if (reg & NFP_NET_CFG_UPDATE_ERR) {
		nn_err(nn, "Reconfig error: 0x%08x\n", reg);
		return true;
	} else if (last_check) {
		nn_err(nn, "Reconfig timeout: 0x%08x\n", reg);
		return true;
	}

	return false;
}

static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
{
	bool timed_out = false;

	/* Poll update field, waiting for NFP to ack the config */
	while (!nfp_net_reconfig_check_done(nn, timed_out)) {
		msleep(1);
		timed_out = time_is_before_eq_jiffies(deadline);
	}

	if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR)
		return -EIO;

	return timed_out ? -EIO : 0;
}

static void nfp_net_reconfig_timer(unsigned long data)
{
	struct nfp_net *nn = (void *)data;

	spin_lock_bh(&nn->reconfig_lock);

	nn->reconfig_timer_active = false;

	/* If sync caller is present it will take over from us */
	if (nn->reconfig_sync_present)
		goto done;

	/* Read reconfig status and report errors */
	nfp_net_reconfig_check_done(nn, true);

	if (nn->reconfig_posted)
		nfp_net_reconfig_start_async(nn, 0);
done:
	spin_unlock_bh(&nn->reconfig_lock);
}

/**
 * nfp_net_reconfig_post() - Post async reconfig request
 * @nn:      NFP Net device to reconfigure
 * @update:  The value for the update field in the BAR config
 *
 * Record FW reconfiguration request.  Reconfiguration will be kicked off
 * whenever reconfiguration machinery is idle.  Multiple requests can be
 * merged together!
 */
static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update)
{
	spin_lock_bh(&nn->reconfig_lock);

	/* Sync caller will kick off async reconf when it's done, just post */
	if (nn->reconfig_sync_present) {
		nn->reconfig_posted |= update;
		goto done;
	}

	/* Opportunistically check if the previous command is done */
	if (!nn->reconfig_timer_active ||
	    nfp_net_reconfig_check_done(nn, false))
		nfp_net_reconfig_start_async(nn, update);
	else
		nn->reconfig_posted |= update;
done:
	spin_unlock_bh(&nn->reconfig_lock);
}

210 211 212 213 214 215 216 217 218 219 220 221 222
/**
 * nfp_net_reconfig() - Reconfigure the firmware
 * @nn:      NFP Net device to reconfigure
 * @update:  The value for the update field in the BAR config
 *
 * Write the update word to the BAR and ping the reconfig queue.  The
 * poll until the firmware has acknowledged the update by zeroing the
 * update word.
 *
 * Return: Negative errno on error, 0 on success
 */
int nfp_net_reconfig(struct nfp_net *nn, u32 update)
{
223 224 225
	bool cancelled_timer = false;
	u32 pre_posted_requests;
	int ret;
226 227 228

	spin_lock_bh(&nn->reconfig_lock);

229
	nn->reconfig_sync_present = true;
230

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
	if (nn->reconfig_timer_active) {
		del_timer(&nn->reconfig_timer);
		nn->reconfig_timer_active = false;
		cancelled_timer = true;
	}
	pre_posted_requests = nn->reconfig_posted;
	nn->reconfig_posted = 0;

	spin_unlock_bh(&nn->reconfig_lock);

	if (cancelled_timer)
		nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires);

	/* Run the posted reconfigs which were issued before we started */
	if (pre_posted_requests) {
		nfp_net_reconfig_start(nn, pre_posted_requests);
		nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
248 249
	}

250 251 252 253 254 255 256 257 258 259
	nfp_net_reconfig_start(nn, update);
	ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);

	spin_lock_bh(&nn->reconfig_lock);

	if (nn->reconfig_posted)
		nfp_net_reconfig_start_async(nn, 0);

	nn->reconfig_sync_present = false;

260
	spin_unlock_bh(&nn->reconfig_lock);
261

262 263 264 265 266 267 268 269 270 271 272
	return ret;
}

/* Interrupt configuration and handling
 */

/**
 * nfp_net_irq_unmask() - Unmask automasked interrupt
 * @nn:       NFP Network structure
 * @entry_nr: MSI-X table entry
 *
J
Jakub Kicinski 已提交
273
 * Clear the ICR for the IRQ entry.
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
 */
static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr)
{
	nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED);
	nn_pci_flush(nn);
}

/**
 * nfp_net_msix_alloc() - Try to allocate MSI-X irqs
 * @nn:       NFP Network structure
 * @nr_vecs:  Number of MSI-X vectors to allocate
 *
 * For MSI-X we want at least NFP_NET_NON_Q_VECTORS + 1 vectors.
 *
 * Return: Number of MSI-X vectors obtained or 0 on error.
 */
static int nfp_net_msix_alloc(struct nfp_net *nn, int nr_vecs)
{
	struct pci_dev *pdev = nn->pdev;
	int nvecs;
	int i;

	for (i = 0; i < nr_vecs; i++)
		nn->irq_entries[i].entry = i;

	nvecs = pci_enable_msix_range(pdev, nn->irq_entries,
				      NFP_NET_NON_Q_VECTORS + 1, nr_vecs);
	if (nvecs < 0) {
		nn_warn(nn, "Failed to enable MSI-X. Wanted %d-%d (err=%d)\n",
			NFP_NET_NON_Q_VECTORS + 1, nr_vecs, nvecs);
		return 0;
	}

	return nvecs;
}

/**
 * nfp_net_irqs_alloc() - allocates MSI-X irqs
 * @nn:       NFP Network structure
 *
 * Return: Number of irqs obtained or 0 on error.
 */
int nfp_net_irqs_alloc(struct nfp_net *nn)
{
	int wanted_irqs;
319
	unsigned int n;
320

J
Jakub Kicinski 已提交
321
	wanted_irqs = nn->num_r_vecs + NFP_NET_NON_Q_VECTORS;
322

323 324
	n = nfp_net_msix_alloc(nn, wanted_irqs);
	if (n == 0) {
325 326 327 328
		nn_err(nn, "Failed to allocate MSI-X IRQs\n");
		return 0;
	}

329 330
	nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS;
	nn->num_r_vecs = nn->max_r_vecs;
331

332
	if (n < wanted_irqs)
333
		nn_warn(nn, "Unable to allocate %d vectors. Got %d instead\n",
334
			wanted_irqs, n);
335

336
	return n;
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
}

/**
 * nfp_net_irqs_disable() - Disable interrupts
 * @nn:       NFP Network structure
 *
 * Undoes what @nfp_net_irqs_alloc() does.
 */
void nfp_net_irqs_disable(struct nfp_net *nn)
{
	pci_disable_msix(nn->pdev);
}

/**
 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings.
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_rxtx(int irq, void *data)
{
	struct nfp_net_r_vector *r_vec = data;

	napi_schedule_irqoff(&r_vec->napi);

	/* The FW auto-masks any interrupt, either via the MASK bit in
	 * the MSI-X table or via the per entry ICR field.  So there
	 * is no need to disable interrupts here.
	 */
	return IRQ_HANDLED;
}

/**
 * nfp_net_read_link_status() - Reread link status from control BAR
 * @nn:       NFP Network structure
 */
static void nfp_net_read_link_status(struct nfp_net *nn)
{
	unsigned long flags;
	bool link_up;
	u32 sts;

	spin_lock_irqsave(&nn->link_status_lock, flags);

	sts = nn_readl(nn, NFP_NET_CFG_STS);
	link_up = !!(sts & NFP_NET_CFG_STS_LINK);

	if (nn->link_up == link_up)
		goto out;

	nn->link_up = link_up;

	if (nn->link_up) {
		netif_carrier_on(nn->netdev);
		netdev_info(nn->netdev, "NIC Link is Up\n");
	} else {
		netif_carrier_off(nn->netdev);
		netdev_info(nn->netdev, "NIC Link is Down\n");
	}
out:
	spin_unlock_irqrestore(&nn->link_status_lock, flags);
}

/**
 * nfp_net_irq_lsc() - Interrupt service routine for link state changes
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_lsc(int irq, void *data)
{
	struct nfp_net *nn = data;

	nfp_net_read_link_status(nn);

	nfp_net_irq_unmask(nn, NFP_NET_IRQ_LSC_IDX);

	return IRQ_HANDLED;
}

/**
 * nfp_net_irq_exn() - Interrupt service routine for exceptions
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_exn(int irq, void *data)
{
	struct nfp_net *nn = data;

	nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__);
	/* XXX TO BE IMPLEMENTED */
	return IRQ_HANDLED;
}

/**
 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring
 * @tx_ring:  TX ring structure
438 439
 * @r_vec:    IRQ vector servicing this ring
 * @idx:      Ring index
440
 */
441 442 443
static void
nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring,
		     struct nfp_net_r_vector *r_vec, unsigned int idx)
444 445 446
{
	struct nfp_net *nn = r_vec->nfp_net;

447 448 449
	tx_ring->idx = idx;
	tx_ring->r_vec = r_vec;

450 451 452 453 454 455 456
	tx_ring->qcidx = tx_ring->idx * nn->stride_tx;
	tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx);
}

/**
 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring
 * @rx_ring:  RX ring structure
457 458
 * @r_vec:    IRQ vector servicing this ring
 * @idx:      Ring index
459
 */
460 461 462
static void
nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring,
		     struct nfp_net_r_vector *r_vec, unsigned int idx)
463 464 465
{
	struct nfp_net *nn = r_vec->nfp_net;

466 467 468
	rx_ring->idx = idx;
	rx_ring->r_vec = r_vec;

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
	rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx;
	rx_ring->rx_qcidx = rx_ring->fl_qcidx + (nn->stride_rx - 1);

	rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx);
	rx_ring->qcp_rx = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->rx_qcidx);
}

/**
 * nfp_net_irqs_assign() - Assign IRQs and setup rvecs.
 * @netdev:   netdev structure
 */
static void nfp_net_irqs_assign(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	struct nfp_net_r_vector *r_vec;
	int r;

486 487 488 489 490 491 492
	if (nn->num_rx_rings > nn->num_r_vecs ||
	    nn->num_tx_rings > nn->num_r_vecs)
		nn_warn(nn, "More rings (%d,%d) than vectors (%d).\n",
			nn->num_rx_rings, nn->num_tx_rings, nn->num_r_vecs);

	nn->num_rx_rings = min(nn->num_r_vecs, nn->num_rx_rings);
	nn->num_tx_rings = min(nn->num_r_vecs, nn->num_tx_rings);
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575

	nn->lsc_handler = nfp_net_irq_lsc;
	nn->exn_handler = nfp_net_irq_exn;

	for (r = 0; r < nn->num_r_vecs; r++) {
		r_vec = &nn->r_vecs[r];
		r_vec->nfp_net = nn;
		r_vec->handler = nfp_net_irq_rxtx;
		r_vec->irq_idx = NFP_NET_NON_Q_VECTORS + r;

		cpumask_set_cpu(r, &r_vec->affinity_mask);
	}
}

/**
 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN)
 * @nn:		NFP Network structure
 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
 * @format:	printf-style format to construct the interrupt name
 * @name:	Pointer to allocated space for interrupt name
 * @name_sz:	Size of space for interrupt name
 * @vector_idx:	Index of MSI-X vector used for this interrupt
 * @handler:	IRQ handler to register for this interrupt
 */
static int
nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset,
			const char *format, char *name, size_t name_sz,
			unsigned int vector_idx, irq_handler_t handler)
{
	struct msix_entry *entry;
	int err;

	entry = &nn->irq_entries[vector_idx];

	snprintf(name, name_sz, format, netdev_name(nn->netdev));
	err = request_irq(entry->vector, handler, 0, name, nn);
	if (err) {
		nn_err(nn, "Failed to request IRQ %d (err=%d).\n",
		       entry->vector, err);
		return err;
	}
	nn_writeb(nn, ctrl_offset, vector_idx);

	return 0;
}

/**
 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN)
 * @nn:		NFP Network structure
 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
 * @vector_idx:	Index of MSI-X vector used for this interrupt
 */
static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset,
				 unsigned int vector_idx)
{
	nn_writeb(nn, ctrl_offset, 0xff);
	free_irq(nn->irq_entries[vector_idx].vector, nn);
}

/* Transmit
 *
 * One queue controller peripheral queue is used for transmit.  The
 * driver en-queues packets for transmit by advancing the write
 * pointer.  The device indicates that packets have transmitted by
 * advancing the read pointer.  The driver maintains a local copy of
 * the read and write pointer in @struct nfp_net_tx_ring.  The driver
 * keeps @wr_p in sync with the queue controller write pointer and can
 * determine how many packets have been transmitted by comparing its
 * copy of the read pointer @rd_p with the read pointer maintained by
 * the queue controller peripheral.
 */

/**
 * nfp_net_tx_full() - Check if the TX ring is full
 * @tx_ring: TX ring to check
 * @dcnt:    Number of descriptors that need to be enqueued (must be >= 1)
 *
 * This function checks, based on the *host copy* of read/write
 * pointer if a given TX ring is full.  The real TX queue may have
 * some newly made available slots.
 *
 * Return: True if the ring is full.
 */
576
static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt)
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
{
	return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt);
}

/* Wrappers for deciding when to stop and restart TX queues */
static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
{
	return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
}

static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
{
	return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
}

/**
 * nfp_net_tx_ring_stop() - stop tx ring
 * @nd_q:    netdev queue
 * @tx_ring: driver tx queue structure
 *
 * Safely stop TX ring.  Remember that while we are running .start_xmit()
 * someone else may be cleaning the TX ring completions so we need to be
 * extra careful here.
 */
static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q,
				 struct nfp_net_tx_ring *tx_ring)
{
	netif_tx_stop_queue(nd_q);

	/* We can race with the TX completion out of NAPI so recheck */
	smp_mb();
	if (unlikely(nfp_net_tx_ring_should_wake(tx_ring)))
		netif_tx_start_queue(nd_q);
}

/**
 * nfp_net_tx_tso() - Set up Tx descriptor for LSO
 * @nn:  NFP Net device
 * @r_vec: per-ring structure
 * @txbuf: Pointer to driver soft TX descriptor
 * @txd: Pointer to HW TX descriptor
 * @skb: Pointer to SKB
 *
 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
 * Return error on packet header greater than maximum supported LSO header size.
 */
static void nfp_net_tx_tso(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
			   struct nfp_net_tx_buf *txbuf,
			   struct nfp_net_tx_desc *txd, struct sk_buff *skb)
{
	u32 hdrlen;
	u16 mss;

	if (!skb_is_gso(skb))
		return;

	if (!skb->encapsulation)
		hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb);
	else
		hdrlen = skb_inner_transport_header(skb) - skb->data +
			inner_tcp_hdrlen(skb);

	txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
	txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);

	mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK;
	txd->l4_offset = hdrlen;
	txd->mss = cpu_to_le16(mss);
	txd->flags |= PCIE_DESC_TX_LSO;

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_lso++;
	u64_stats_update_end(&r_vec->tx_sync);
}

/**
 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor
 * @nn:  NFP Net device
 * @r_vec: per-ring structure
 * @txbuf: Pointer to driver soft TX descriptor
 * @txd: Pointer to TX descriptor
 * @skb: Pointer to SKB
 *
 * This function sets the TX checksum flags in the TX descriptor based
 * on the configuration and the protocol of the packet to be transmitted.
 */
static void nfp_net_tx_csum(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
			    struct nfp_net_tx_buf *txbuf,
			    struct nfp_net_tx_desc *txd, struct sk_buff *skb)
{
	struct ipv6hdr *ipv6h;
	struct iphdr *iph;
	u8 l4_hdr;

	if (!(nn->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
		return;

	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return;

	txd->flags |= PCIE_DESC_TX_CSUM;
	if (skb->encapsulation)
		txd->flags |= PCIE_DESC_TX_ENCAP;

	iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
	ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);

	if (iph->version == 4) {
		txd->flags |= PCIE_DESC_TX_IP4_CSUM;
		l4_hdr = iph->protocol;
	} else if (ipv6h->version == 6) {
		l4_hdr = ipv6h->nexthdr;
	} else {
		nn_warn_ratelimit(nn, "partial checksum but ipv=%x!\n",
				  iph->version);
		return;
	}

	switch (l4_hdr) {
	case IPPROTO_TCP:
		txd->flags |= PCIE_DESC_TX_TCP_CSUM;
		break;
	case IPPROTO_UDP:
		txd->flags |= PCIE_DESC_TX_UDP_CSUM;
		break;
	default:
		nn_warn_ratelimit(nn, "partial checksum but l4 proto=%x!\n",
				  l4_hdr);
		return;
	}

	u64_stats_update_begin(&r_vec->tx_sync);
	if (skb->encapsulation)
		r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
	else
		r_vec->hw_csum_tx += txbuf->pkt_cnt;
	u64_stats_update_end(&r_vec->tx_sync);
}

/**
 * nfp_net_tx() - Main transmit entry point
 * @skb:    SKB to transmit
 * @netdev: netdev structure
 *
 * Return: NETDEV_TX_OK on success.
 */
static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	const struct skb_frag_struct *frag;
	struct nfp_net_r_vector *r_vec;
	struct nfp_net_tx_desc *txd, txdg;
	struct nfp_net_tx_buf *txbuf;
	struct nfp_net_tx_ring *tx_ring;
	struct netdev_queue *nd_q;
	dma_addr_t dma_addr;
	unsigned int fsize;
	int f, nr_frags;
	int wr_idx;
	u16 qidx;

	qidx = skb_get_queue_mapping(skb);
	tx_ring = &nn->tx_rings[qidx];
	r_vec = tx_ring->r_vec;
	nd_q = netdev_get_tx_queue(nn->netdev, qidx);

	nr_frags = skb_shinfo(skb)->nr_frags;

	if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
		nn_warn_ratelimit(nn, "TX ring %d busy. wrp=%u rdp=%u\n",
				  qidx, tx_ring->wr_p, tx_ring->rd_p);
		netif_tx_stop_queue(nd_q);
		u64_stats_update_begin(&r_vec->tx_sync);
		r_vec->tx_busy++;
		u64_stats_update_end(&r_vec->tx_sync);
		return NETDEV_TX_BUSY;
	}

	/* Start with the head skbuf */
	dma_addr = dma_map_single(&nn->pdev->dev, skb->data, skb_headlen(skb),
				  DMA_TO_DEVICE);
	if (dma_mapping_error(&nn->pdev->dev, dma_addr))
		goto err_free;

761
	wr_idx = tx_ring->wr_p & (tx_ring->cnt - 1);
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804

	/* Stash the soft descriptor of the head then initialize it */
	txbuf = &tx_ring->txbufs[wr_idx];
	txbuf->skb = skb;
	txbuf->dma_addr = dma_addr;
	txbuf->fidx = -1;
	txbuf->pkt_cnt = 1;
	txbuf->real_len = skb->len;

	/* Build TX descriptor */
	txd = &tx_ring->txds[wr_idx];
	txd->offset_eop = (nr_frags == 0) ? PCIE_DESC_TX_EOP : 0;
	txd->dma_len = cpu_to_le16(skb_headlen(skb));
	nfp_desc_set_dma_addr(txd, dma_addr);
	txd->data_len = cpu_to_le16(skb->len);

	txd->flags = 0;
	txd->mss = 0;
	txd->l4_offset = 0;

	nfp_net_tx_tso(nn, r_vec, txbuf, txd, skb);

	nfp_net_tx_csum(nn, r_vec, txbuf, txd, skb);

	if (skb_vlan_tag_present(skb) && nn->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
		txd->flags |= PCIE_DESC_TX_VLAN;
		txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
	}

	/* Gather DMA */
	if (nr_frags > 0) {
		/* all descs must match except for in addr, length and eop */
		txdg = *txd;

		for (f = 0; f < nr_frags; f++) {
			frag = &skb_shinfo(skb)->frags[f];
			fsize = skb_frag_size(frag);

			dma_addr = skb_frag_dma_map(&nn->pdev->dev, frag, 0,
						    fsize, DMA_TO_DEVICE);
			if (dma_mapping_error(&nn->pdev->dev, dma_addr))
				goto err_unmap;

805
			wr_idx = (wr_idx + 1) & (tx_ring->cnt - 1);
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
			tx_ring->txbufs[wr_idx].skb = skb;
			tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
			tx_ring->txbufs[wr_idx].fidx = f;

			txd = &tx_ring->txds[wr_idx];
			*txd = txdg;
			txd->dma_len = cpu_to_le16(fsize);
			nfp_desc_set_dma_addr(txd, dma_addr);
			txd->offset_eop =
				(f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0;
		}

		u64_stats_update_begin(&r_vec->tx_sync);
		r_vec->tx_gather++;
		u64_stats_update_end(&r_vec->tx_sync);
	}

	netdev_tx_sent_queue(nd_q, txbuf->real_len);

	tx_ring->wr_p += nr_frags + 1;
	if (nfp_net_tx_ring_should_stop(tx_ring))
		nfp_net_tx_ring_stop(nd_q, tx_ring);

	tx_ring->wr_ptr_add += nr_frags + 1;
	if (!skb->xmit_more || netif_xmit_stopped(nd_q)) {
		/* force memory write before we let HW know */
		wmb();
		nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add);
		tx_ring->wr_ptr_add = 0;
	}

	skb_tx_timestamp(skb);

	return NETDEV_TX_OK;

err_unmap:
	--f;
	while (f >= 0) {
		frag = &skb_shinfo(skb)->frags[f];
		dma_unmap_page(&nn->pdev->dev,
			       tx_ring->txbufs[wr_idx].dma_addr,
			       skb_frag_size(frag), DMA_TO_DEVICE);
		tx_ring->txbufs[wr_idx].skb = NULL;
		tx_ring->txbufs[wr_idx].dma_addr = 0;
		tx_ring->txbufs[wr_idx].fidx = -2;
		wr_idx = wr_idx - 1;
		if (wr_idx < 0)
			wr_idx += tx_ring->cnt;
	}
	dma_unmap_single(&nn->pdev->dev, tx_ring->txbufs[wr_idx].dma_addr,
			 skb_headlen(skb), DMA_TO_DEVICE);
	tx_ring->txbufs[wr_idx].skb = NULL;
	tx_ring->txbufs[wr_idx].dma_addr = 0;
	tx_ring->txbufs[wr_idx].fidx = -2;
err_free:
	nn_warn_ratelimit(nn, "Failed to map DMA TX buffer\n");
	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_errors++;
	u64_stats_update_end(&r_vec->tx_sync);
	dev_kfree_skb_any(skb);
	return NETDEV_TX_OK;
}

/**
 * nfp_net_tx_complete() - Handled completed TX packets
 * @tx_ring:   TX ring structure
 *
 * Return: Number of completed TX descriptors
 */
static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
	struct nfp_net *nn = r_vec->nfp_net;
	const struct skb_frag_struct *frag;
	struct netdev_queue *nd_q;
	u32 done_pkts = 0, done_bytes = 0;
	struct sk_buff *skb;
	int todo, nr_frags;
	u32 qcp_rd_p;
	int fidx;
	int idx;

	/* Work out how many descriptors have been transmitted */
	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);

	if (qcp_rd_p == tx_ring->qcp_rd_p)
		return;

	if (qcp_rd_p > tx_ring->qcp_rd_p)
		todo = qcp_rd_p - tx_ring->qcp_rd_p;
	else
		todo = qcp_rd_p + tx_ring->cnt - tx_ring->qcp_rd_p;

	while (todo--) {
900
		idx = tx_ring->rd_p & (tx_ring->cnt - 1);
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
		tx_ring->rd_p++;

		skb = tx_ring->txbufs[idx].skb;
		if (!skb)
			continue;

		nr_frags = skb_shinfo(skb)->nr_frags;
		fidx = tx_ring->txbufs[idx].fidx;

		if (fidx == -1) {
			/* unmap head */
			dma_unmap_single(&nn->pdev->dev,
					 tx_ring->txbufs[idx].dma_addr,
					 skb_headlen(skb), DMA_TO_DEVICE);

			done_pkts += tx_ring->txbufs[idx].pkt_cnt;
			done_bytes += tx_ring->txbufs[idx].real_len;
		} else {
			/* unmap fragment */
			frag = &skb_shinfo(skb)->frags[fidx];
			dma_unmap_page(&nn->pdev->dev,
				       tx_ring->txbufs[idx].dma_addr,
				       skb_frag_size(frag), DMA_TO_DEVICE);
		}

		/* check for last gather fragment */
		if (fidx == nr_frags - 1)
			dev_kfree_skb_any(skb);

		tx_ring->txbufs[idx].dma_addr = 0;
		tx_ring->txbufs[idx].skb = NULL;
		tx_ring->txbufs[idx].fidx = -2;
	}

	tx_ring->qcp_rd_p = qcp_rd_p;

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_bytes += done_bytes;
	r_vec->tx_pkts += done_pkts;
	u64_stats_update_end(&r_vec->tx_sync);

	nd_q = netdev_get_tx_queue(nn->netdev, tx_ring->idx);
	netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
	if (nfp_net_tx_ring_should_wake(tx_ring)) {
		/* Make sure TX thread will see updated tx_ring->rd_p */
		smp_mb();

		if (unlikely(netif_tx_queue_stopped(nd_q)))
			netif_tx_wake_queue(nd_q);
	}

	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
		  "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
}

/**
958 959 960
 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers
 * @nn:		NFP Net device
 * @tx_ring:	TX ring structure
961 962 963
 *
 * Assumes that the device is stopped
 */
964 965
static void
nfp_net_tx_ring_reset(struct nfp_net *nn, struct nfp_net_tx_ring *tx_ring)
966 967 968
{
	const struct skb_frag_struct *frag;
	struct netdev_queue *nd_q;
969
	struct pci_dev *pdev = nn->pdev;
970 971

	while (tx_ring->rd_p != tx_ring->wr_p) {
972 973
		int nr_frags, fidx, idx;
		struct sk_buff *skb;
974

975
		idx = tx_ring->rd_p & (tx_ring->cnt - 1);
976
		skb = tx_ring->txbufs[idx].skb;
977 978 979 980 981 982 983 984 985 986 987 988 989 990
		nr_frags = skb_shinfo(skb)->nr_frags;
		fidx = tx_ring->txbufs[idx].fidx;

		if (fidx == -1) {
			/* unmap head */
			dma_unmap_single(&pdev->dev,
					 tx_ring->txbufs[idx].dma_addr,
					 skb_headlen(skb), DMA_TO_DEVICE);
		} else {
			/* unmap fragment */
			frag = &skb_shinfo(skb)->frags[fidx];
			dma_unmap_page(&pdev->dev,
				       tx_ring->txbufs[idx].dma_addr,
				       skb_frag_size(frag), DMA_TO_DEVICE);
991 992
		}

993 994 995 996 997 998 999
		/* check for last gather fragment */
		if (fidx == nr_frags - 1)
			dev_kfree_skb_any(skb);

		tx_ring->txbufs[idx].dma_addr = 0;
		tx_ring->txbufs[idx].skb = NULL;
		tx_ring->txbufs[idx].fidx = -2;
1000 1001 1002 1003 1004

		tx_ring->qcp_rd_p++;
		tx_ring->rd_p++;
	}

1005 1006 1007 1008 1009 1010
	memset(tx_ring->txds, 0, sizeof(*tx_ring->txds) * tx_ring->cnt);
	tx_ring->wr_p = 0;
	tx_ring->rd_p = 0;
	tx_ring->qcp_rd_p = 0;
	tx_ring->wr_ptr_add = 0;

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
	nd_q = netdev_get_tx_queue(nn->netdev, tx_ring->idx);
	netdev_tx_reset_queue(nd_q);
}

static void nfp_net_tx_timeout(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int i;

	for (i = 0; i < nn->num_tx_rings; i++) {
		if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i)))
			continue;
		nn_warn(nn, "TX timeout on ring: %d\n", i);
	}
	nn_warn(nn, "TX watchdog timeout\n");
}

/* Receive processing
 */
1030 1031 1032 1033 1034
static unsigned int
nfp_net_calc_fl_bufsz(struct nfp_net *nn, unsigned int mtu)
{
	unsigned int fl_bufsz;

1035
	fl_bufsz = NFP_NET_RX_BUF_HEADROOM;
1036
	if (nn->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1037
		fl_bufsz += NFP_NET_MAX_PREPEND;
1038
	else
1039
		fl_bufsz += nn->rx_offset;
1040 1041
	fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + mtu;

1042 1043 1044
	fl_bufsz = SKB_DATA_ALIGN(fl_bufsz);
	fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));

1045 1046
	return fl_bufsz;
}
1047 1048

/**
1049
 * nfp_net_rx_alloc_one() - Allocate and map page frag for RX
1050 1051
 * @rx_ring:	RX ring structure of the skb
 * @dma_addr:	Pointer to storage for DMA address (output param)
1052
 * @fl_bufsz:	size of freelist buffers
1053
 *
1054
 * This function will allcate a new page frag, map it for DMA.
1055
 *
1056
 * Return: allocated page frag or NULL on failure.
1057
 */
1058
static void *
1059 1060
nfp_net_rx_alloc_one(struct nfp_net_rx_ring *rx_ring, dma_addr_t *dma_addr,
		     unsigned int fl_bufsz)
1061 1062
{
	struct nfp_net *nn = rx_ring->r_vec->nfp_net;
1063
	void *frag;
1064

1065 1066 1067
	frag = netdev_alloc_frag(fl_bufsz);
	if (!frag) {
		nn_warn_ratelimit(nn, "Failed to alloc receive page frag\n");
1068 1069 1070
		return NULL;
	}

1071
	*dma_addr = nfp_net_dma_map_rx(nn, frag, fl_bufsz, DMA_FROM_DEVICE);
1072
	if (dma_mapping_error(&nn->pdev->dev, *dma_addr)) {
1073
		skb_free_frag(frag);
1074 1075 1076 1077
		nn_warn_ratelimit(nn, "Failed to map DMA RX buffer\n");
		return NULL;
	}

1078
	return frag;
1079 1080
}

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
static void *nfp_net_napi_alloc_one(struct nfp_net *nn, dma_addr_t *dma_addr)
{
	void *frag;

	frag = napi_alloc_frag(nn->fl_bufsz);
	if (!frag) {
		nn_warn_ratelimit(nn, "Failed to alloc receive page frag\n");
		return NULL;
	}

	*dma_addr = nfp_net_dma_map_rx(nn, frag, nn->fl_bufsz, DMA_FROM_DEVICE);
	if (dma_mapping_error(&nn->pdev->dev, *dma_addr)) {
		skb_free_frag(frag);
		nn_warn_ratelimit(nn, "Failed to map DMA RX buffer\n");
		return NULL;
	}

	return frag;
}

1101 1102 1103
/**
 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings
 * @rx_ring:	RX ring structure
1104
 * @frag:	page fragment buffer
1105 1106 1107
 * @dma_addr:	DMA address of skb mapping
 */
static void nfp_net_rx_give_one(struct nfp_net_rx_ring *rx_ring,
1108
				void *frag, dma_addr_t dma_addr)
1109 1110 1111
{
	unsigned int wr_idx;

1112
	wr_idx = rx_ring->wr_p & (rx_ring->cnt - 1);
1113 1114

	/* Stash SKB and DMA address away */
1115
	rx_ring->rxbufs[wr_idx].frag = frag;
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
	rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;

	/* Fill freelist descriptor */
	rx_ring->rxds[wr_idx].fld.reserved = 0;
	rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
	nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld, dma_addr);

	rx_ring->wr_p++;
	rx_ring->wr_ptr_add++;
	if (rx_ring->wr_ptr_add >= NFP_NET_FL_BATCH) {
		/* Update write pointer of the freelist queue. Make
		 * sure all writes are flushed before telling the hardware.
		 */
		wmb();
		nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, rx_ring->wr_ptr_add);
		rx_ring->wr_ptr_add = 0;
	}
}

/**
1136 1137
 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable
 * @rx_ring:	RX ring structure
1138
 *
1139 1140
 * Warning: Do *not* call if ring buffers were never put on the FW freelist
 *	    (i.e. device was not enabled)!
1141
 */
1142
static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring)
1143
{
1144
	unsigned int wr_idx, last_idx;
1145

1146
	/* Move the empty entry to the end of the list */
1147
	wr_idx = rx_ring->wr_p & (rx_ring->cnt - 1);
1148 1149
	last_idx = rx_ring->cnt - 1;
	rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr;
1150
	rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag;
1151
	rx_ring->rxbufs[last_idx].dma_addr = 0;
1152
	rx_ring->rxbufs[last_idx].frag = NULL;
1153

1154 1155 1156 1157 1158
	memset(rx_ring->rxds, 0, sizeof(*rx_ring->rxds) * rx_ring->cnt);
	rx_ring->wr_p = 0;
	rx_ring->rd_p = 0;
	rx_ring->wr_ptr_add = 0;
}
1159

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
/**
 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring
 * @nn:		NFP Net device
 * @rx_ring:	RX ring to remove buffers from
 *
 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1)
 * entries.  After device is disabled nfp_net_rx_ring_reset() must be called
 * to restore required ring geometry.
 */
static void
nfp_net_rx_ring_bufs_free(struct nfp_net *nn, struct nfp_net_rx_ring *rx_ring)
{
	unsigned int i;
1173

1174 1175 1176 1177 1178
	for (i = 0; i < rx_ring->cnt - 1; i++) {
		/* NULL skb can only happen when initial filling of the ring
		 * fails to allocate enough buffers and calls here to free
		 * already allocated ones.
		 */
1179
		if (!rx_ring->rxbufs[i].frag)
1180 1181
			continue;

1182 1183 1184
		nfp_net_dma_unmap_rx(nn, rx_ring->rxbufs[i].dma_addr,
				     rx_ring->bufsz, DMA_FROM_DEVICE);
		skb_free_frag(rx_ring->rxbufs[i].frag);
1185
		rx_ring->rxbufs[i].dma_addr = 0;
1186
		rx_ring->rxbufs[i].frag = NULL;
1187 1188 1189 1190
	}
}

/**
1191 1192 1193
 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW)
 * @nn:		NFP Net device
 * @rx_ring:	RX ring to remove buffers from
1194
 */
1195 1196
static int
nfp_net_rx_ring_bufs_alloc(struct nfp_net *nn, struct nfp_net_rx_ring *rx_ring)
1197
{
1198 1199 1200 1201
	struct nfp_net_rx_buf *rxbufs;
	unsigned int i;

	rxbufs = rx_ring->rxbufs;
1202

1203
	for (i = 0; i < rx_ring->cnt - 1; i++) {
1204
		rxbufs[i].frag =
1205 1206
			nfp_net_rx_alloc_one(rx_ring, &rxbufs[i].dma_addr,
					     rx_ring->bufsz);
1207
		if (!rxbufs[i].frag) {
1208
			nfp_net_rx_ring_bufs_free(nn, rx_ring);
1209 1210 1211 1212 1213 1214 1215
			return -ENOMEM;
		}
	}

	return 0;
}

1216 1217 1218 1219 1220 1221 1222 1223 1224
/**
 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW
 * @rx_ring: RX ring to fill
 */
static void nfp_net_rx_ring_fill_freelist(struct nfp_net_rx_ring *rx_ring)
{
	unsigned int i;

	for (i = 0; i < rx_ring->cnt - 1; i++)
1225
		nfp_net_rx_give_one(rx_ring, rx_ring->rxbufs[i].frag,
1226 1227 1228
				    rx_ring->rxbufs[i].dma_addr);
}

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
/**
 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors
 * @flags: RX descriptor flags field in CPU byte order
 */
static int nfp_net_rx_csum_has_errors(u16 flags)
{
	u16 csum_all_checked, csum_all_ok;

	csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
	csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;

	return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
}

/**
 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags
 * @nn:  NFP Net device
 * @r_vec: per-ring structure
 * @rxd: Pointer to RX descriptor
 * @skb: Pointer to SKB
 */
static void nfp_net_rx_csum(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
			    struct nfp_net_rx_desc *rxd, struct sk_buff *skb)
{
	skb_checksum_none_assert(skb);

	if (!(nn->netdev->features & NETIF_F_RXCSUM))
		return;

	if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_error++;
		u64_stats_update_end(&r_vec->rx_sync);
		return;
	}

	/* Assume that the firmware will never report inner CSUM_OK unless outer
	 * L4 headers were successfully parsed. FW will always report zero UDP
	 * checksum as CSUM_OK.
	 */
	if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
	    rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
		__skb_incr_checksum_unnecessary(skb);
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_ok++;
		u64_stats_update_end(&r_vec->rx_sync);
	}

	if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
	    rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
		__skb_incr_checksum_unnecessary(skb);
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_inner_ok++;
		u64_stats_update_end(&r_vec->rx_sync);
	}
}

static void nfp_net_set_hash(struct net_device *netdev, struct sk_buff *skb,
1287
			     unsigned int type, __be32 *hash)
1288
{
1289
	if (!(netdev->features & NETIF_F_RXHASH))
1290 1291
		return;

1292
	switch (type) {
1293 1294 1295
	case NFP_NET_RSS_IPV4:
	case NFP_NET_RSS_IPV6:
	case NFP_NET_RSS_IPV6_EX:
1296
		skb_set_hash(skb, get_unaligned_be32(hash), PKT_HASH_TYPE_L3);
1297 1298
		break;
	default:
1299
		skb_set_hash(skb, get_unaligned_be32(hash), PKT_HASH_TYPE_L4);
1300 1301 1302 1303
		break;
	}
}

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
static void
nfp_net_set_hash_desc(struct net_device *netdev, struct sk_buff *skb,
		      struct nfp_net_rx_desc *rxd)
{
	struct nfp_net_rx_hash *rx_hash;

	if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
		return;

	rx_hash = (struct nfp_net_rx_hash *)(skb->data - sizeof(*rx_hash));

	nfp_net_set_hash(netdev, skb, get_unaligned_be32(&rx_hash->hash_type),
			 &rx_hash->hash);
}

static void *
nfp_net_parse_meta(struct net_device *netdev, struct sk_buff *skb,
		   int meta_len)
{
	u8 *data = skb->data - meta_len;
	u32 meta_info;

	meta_info = get_unaligned_be32(data);
	data += 4;

	while (meta_info) {
		switch (meta_info & NFP_NET_META_FIELD_MASK) {
		case NFP_NET_META_HASH:
			meta_info >>= NFP_NET_META_FIELD_SIZE;
			nfp_net_set_hash(netdev, skb,
					 meta_info & NFP_NET_META_FIELD_MASK,
					 (__be32 *)data);
			data += 4;
			break;
		case NFP_NET_META_MARK:
			skb->mark = get_unaligned_be32(data);
			data += 4;
			break;
		default:
			return NULL;
		}

		meta_info >>= NFP_NET_META_FIELD_SIZE;
	}

	return data;
}

1352 1353 1354 1355 1356 1357 1358 1359
static void
nfp_net_rx_drop(struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring,
		struct nfp_net_rx_buf *rxbuf, struct sk_buff *skb)
{
	u64_stats_update_begin(&r_vec->rx_sync);
	r_vec->rx_drops++;
	u64_stats_update_end(&r_vec->rx_sync);

1360 1361 1362 1363 1364
	/* skb is build based on the frag, free_skb() would free the frag
	 * so to be able to reuse it we need an extra ref.
	 */
	if (skb && rxbuf && skb->head == rxbuf->frag)
		page_ref_inc(virt_to_head_page(rxbuf->frag));
1365
	if (rxbuf)
1366
		nfp_net_rx_give_one(rx_ring, rxbuf->frag, rxbuf->dma_addr);
1367 1368 1369 1370
	if (skb)
		dev_kfree_skb_any(skb);
}

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
/**
 * nfp_net_rx() - receive up to @budget packets on @rx_ring
 * @rx_ring:   RX ring to receive from
 * @budget:    NAPI budget
 *
 * Note, this function is separated out from the napi poll function to
 * more cleanly separate packet receive code from other bookkeeping
 * functions performed in the napi poll function.
 *
 * Return: Number of packets received.
 */
static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget)
{
	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
	struct nfp_net *nn = r_vec->nfp_net;
	unsigned int data_len, meta_len;
1387
	struct nfp_net_rx_buf *rxbuf;
1388 1389
	struct nfp_net_rx_desc *rxd;
	dma_addr_t new_dma_addr;
1390
	struct sk_buff *skb;
J
Jakub Kicinski 已提交
1391
	int pkts_polled = 0;
1392
	void *new_frag;
1393 1394
	int idx;

J
Jakub Kicinski 已提交
1395
	while (pkts_polled < budget) {
1396
		idx = rx_ring->rd_p & (rx_ring->cnt - 1);
1397 1398

		rxd = &rx_ring->rxds[idx];
J
Jakub Kicinski 已提交
1399
		if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1400
			break;
J
Jakub Kicinski 已提交
1401

1402 1403 1404 1405 1406 1407 1408 1409
		/* Memory barrier to ensure that we won't do other reads
		 * before the DD bit.
		 */
		dma_rmb();

		rx_ring->rd_p++;
		pkts_polled++;

1410 1411 1412 1413 1414 1415
		rxbuf =	&rx_ring->rxbufs[idx];
		skb = build_skb(rxbuf->frag, nn->fl_bufsz);
		if (unlikely(!skb)) {
			nfp_net_rx_drop(r_vec, rx_ring, rxbuf, NULL);
			continue;
		}
1416
		new_frag = nfp_net_napi_alloc_one(nn, &new_dma_addr);
1417 1418
		if (unlikely(!new_frag)) {
			nfp_net_rx_drop(r_vec, rx_ring, rxbuf, skb);
1419 1420 1421
			continue;
		}

1422 1423
		nfp_net_dma_unmap_rx(nn, rx_ring->rxbufs[idx].dma_addr,
				     nn->fl_bufsz, DMA_FROM_DEVICE);
1424

1425
		nfp_net_rx_give_one(rx_ring, new_frag, new_dma_addr);
1426

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
		/*         < meta_len >
		 *  <-- [rx_offset] -->
		 *  ---------------------------------------------------------
		 * | [XX] |  metadata  |             packet           | XXXX |
		 *  ---------------------------------------------------------
		 *         <---------------- data_len --------------->
		 *
		 * The rx_offset is fixed for all packets, the meta_len can vary
		 * on a packet by packet basis. If rx_offset is set to zero
		 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
		 * buffer and is immediately followed by the packet (no [XX]).
		 */
1439 1440 1441
		meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
		data_len = le16_to_cpu(rxd->rxd.data_len);

1442
		if (nn->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1443
			skb_reserve(skb, NFP_NET_RX_BUF_HEADROOM + meta_len);
1444
		else
1445 1446
			skb_reserve(skb,
				    NFP_NET_RX_BUF_HEADROOM + nn->rx_offset);
1447 1448 1449 1450 1451 1452 1453 1454
		skb_put(skb, data_len - meta_len);

		/* Stats update */
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->rx_pkts++;
		r_vec->rx_bytes += skb->len;
		u64_stats_update_end(&r_vec->rx_sync);

1455 1456 1457 1458 1459 1460 1461 1462
		if (nn->fw_ver.major <= 3) {
			nfp_net_set_hash_desc(nn->netdev, skb, rxd);
		} else if (meta_len) {
			void *end;

			end = nfp_net_parse_meta(nn->netdev, skb, meta_len);
			if (unlikely(end != skb->data)) {
				nn_warn_ratelimit(nn, "invalid RX packet metadata\n");
1463
				nfp_net_rx_drop(r_vec, rx_ring, NULL, skb);
1464 1465 1466 1467
				continue;
			}
		}

1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
		skb_record_rx_queue(skb, rx_ring->idx);
		skb->protocol = eth_type_trans(skb, nn->netdev);

		nfp_net_rx_csum(nn, r_vec, rxd, skb);

		if (rxd->rxd.flags & PCIE_DESC_RX_VLAN)
			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
					       le16_to_cpu(rxd->rxd.vlan));

		napi_gro_receive(&rx_ring->r_vec->napi, skb);
	}

	return pkts_polled;
}

/**
 * nfp_net_poll() - napi poll function
 * @napi:    NAPI structure
 * @budget:  NAPI budget
 *
 * Return: number of packets polled.
 */
static int nfp_net_poll(struct napi_struct *napi, int budget)
{
	struct nfp_net_r_vector *r_vec =
		container_of(napi, struct nfp_net_r_vector, napi);
1494
	unsigned int pkts_polled = 0;
1495

1496 1497 1498 1499
	if (r_vec->tx_ring)
		nfp_net_tx_complete(r_vec->tx_ring);
	if (r_vec->rx_ring)
		pkts_polled = nfp_net_rx(r_vec->rx_ring, budget);
1500 1501 1502

	if (pkts_polled < budget) {
		napi_complete_done(napi, pkts_polled);
J
Jakub Kicinski 已提交
1503
		nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_idx);
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
	}

	return pkts_polled;
}

/* Setup and Configuration
 */

/**
 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring
 * @tx_ring:   TX ring to free
 */
static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
	struct nfp_net *nn = r_vec->nfp_net;
	struct pci_dev *pdev = nn->pdev;

	kfree(tx_ring->txbufs);

	if (tx_ring->txds)
		dma_free_coherent(&pdev->dev, tx_ring->size,
				  tx_ring->txds, tx_ring->dma);

	tx_ring->cnt = 0;
	tx_ring->txbufs = NULL;
	tx_ring->txds = NULL;
	tx_ring->dma = 0;
	tx_ring->size = 0;
}

/**
 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring
 * @tx_ring:   TX Ring structure to allocate
1538
 * @cnt:       Ring buffer count
1539 1540 1541
 *
 * Return: 0 on success, negative errno otherwise.
 */
1542
static int nfp_net_tx_ring_alloc(struct nfp_net_tx_ring *tx_ring, u32 cnt)
1543 1544 1545 1546 1547 1548
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
	struct nfp_net *nn = r_vec->nfp_net;
	struct pci_dev *pdev = nn->pdev;
	int sz;

1549
	tx_ring->cnt = cnt;
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574

	tx_ring->size = sizeof(*tx_ring->txds) * tx_ring->cnt;
	tx_ring->txds = dma_zalloc_coherent(&pdev->dev, tx_ring->size,
					    &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->txds)
		goto err_alloc;

	sz = sizeof(*tx_ring->txbufs) * tx_ring->cnt;
	tx_ring->txbufs = kzalloc(sz, GFP_KERNEL);
	if (!tx_ring->txbufs)
		goto err_alloc;

	netif_set_xps_queue(nn->netdev, &r_vec->affinity_mask, tx_ring->idx);

	nn_dbg(nn, "TxQ%02d: QCidx=%02d cnt=%d dma=%#llx host=%p\n",
	       tx_ring->idx, tx_ring->qcidx,
	       tx_ring->cnt, (unsigned long long)tx_ring->dma, tx_ring->txds);

	return 0;

err_alloc:
	nfp_net_tx_ring_free(tx_ring);
	return -ENOMEM;
}

1575
static struct nfp_net_tx_ring *
1576
nfp_net_shadow_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_ring_set *s)
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
{
	struct nfp_net_tx_ring *rings;
	unsigned int r;

	rings = kcalloc(nn->num_tx_rings, sizeof(*rings), GFP_KERNEL);
	if (!rings)
		return NULL;

	for (r = 0; r < nn->num_tx_rings; r++) {
		nfp_net_tx_ring_init(&rings[r], nn->tx_rings[r].r_vec, r);

1588
		if (nfp_net_tx_ring_alloc(&rings[r], s->dcnt))
1589 1590 1591
			goto err_free_prev;
	}

1592
	return s->rings = rings;
1593 1594 1595 1596 1597 1598 1599 1600

err_free_prev:
	while (r--)
		nfp_net_tx_ring_free(&rings[r]);
	kfree(rings);
	return NULL;
}

1601 1602
static void
nfp_net_shadow_tx_rings_swap(struct nfp_net *nn, struct nfp_net_ring_set *s)
1603
{
1604 1605
	struct nfp_net_tx_ring *rings = s->rings;
	struct nfp_net_ring_set new = *s;
1606 1607
	unsigned int r;

1608 1609 1610
	s->dcnt = nn->txd_cnt;
	s->rings = nn->tx_rings;

1611
	for (r = 0; r < nn->num_tx_rings; r++)
1612
		nn->tx_rings[r].r_vec->tx_ring = &rings[r];
1613

1614 1615
	nn->txd_cnt = new.dcnt;
	nn->tx_rings = new.rings;
1616 1617 1618
}

static void
1619
nfp_net_shadow_tx_rings_free(struct nfp_net *nn, struct nfp_net_ring_set *s)
1620
{
1621
	struct nfp_net_tx_ring *rings = s->rings;
1622 1623 1624 1625 1626 1627 1628 1629
	unsigned int r;

	for (r = 0; r < nn->num_tx_rings; r++)
		nfp_net_tx_ring_free(&rings[r]);

	kfree(rings);
}

1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
/**
 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring
 * @rx_ring:  RX ring to free
 */
static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring)
{
	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
	struct nfp_net *nn = r_vec->nfp_net;
	struct pci_dev *pdev = nn->pdev;

	kfree(rx_ring->rxbufs);

	if (rx_ring->rxds)
		dma_free_coherent(&pdev->dev, rx_ring->size,
				  rx_ring->rxds, rx_ring->dma);

	rx_ring->cnt = 0;
	rx_ring->rxbufs = NULL;
	rx_ring->rxds = NULL;
	rx_ring->dma = 0;
	rx_ring->size = 0;
}

/**
 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring
 * @rx_ring:  RX ring to allocate
1656
 * @fl_bufsz: Size of buffers to allocate
1657
 * @cnt:      Ring buffer count
1658 1659 1660
 *
 * Return: 0 on success, negative errno otherwise.
 */
1661
static int
1662 1663
nfp_net_rx_ring_alloc(struct nfp_net_rx_ring *rx_ring, unsigned int fl_bufsz,
		      u32 cnt)
1664 1665 1666 1667 1668 1669
{
	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
	struct nfp_net *nn = r_vec->nfp_net;
	struct pci_dev *pdev = nn->pdev;
	int sz;

1670
	rx_ring->cnt = cnt;
1671
	rx_ring->bufsz = fl_bufsz;
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694

	rx_ring->size = sizeof(*rx_ring->rxds) * rx_ring->cnt;
	rx_ring->rxds = dma_zalloc_coherent(&pdev->dev, rx_ring->size,
					    &rx_ring->dma, GFP_KERNEL);
	if (!rx_ring->rxds)
		goto err_alloc;

	sz = sizeof(*rx_ring->rxbufs) * rx_ring->cnt;
	rx_ring->rxbufs = kzalloc(sz, GFP_KERNEL);
	if (!rx_ring->rxbufs)
		goto err_alloc;

	nn_dbg(nn, "RxQ%02d: FlQCidx=%02d RxQCidx=%02d cnt=%d dma=%#llx host=%p\n",
	       rx_ring->idx, rx_ring->fl_qcidx, rx_ring->rx_qcidx,
	       rx_ring->cnt, (unsigned long long)rx_ring->dma, rx_ring->rxds);

	return 0;

err_alloc:
	nfp_net_rx_ring_free(rx_ring);
	return -ENOMEM;
}

1695
static struct nfp_net_rx_ring *
1696
nfp_net_shadow_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_ring_set *s)
1697
{
1698
	unsigned int fl_bufsz =	nfp_net_calc_fl_bufsz(nn, s->mtu);
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
	struct nfp_net_rx_ring *rings;
	unsigned int r;

	rings = kcalloc(nn->num_rx_rings, sizeof(*rings), GFP_KERNEL);
	if (!rings)
		return NULL;

	for (r = 0; r < nn->num_rx_rings; r++) {
		nfp_net_rx_ring_init(&rings[r], nn->rx_rings[r].r_vec, r);

1709
		if (nfp_net_rx_ring_alloc(&rings[r], fl_bufsz, s->dcnt))
1710 1711 1712 1713 1714 1715
			goto err_free_prev;

		if (nfp_net_rx_ring_bufs_alloc(nn, &rings[r]))
			goto err_free_ring;
	}

1716
	return s->rings = rings;
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

err_free_prev:
	while (r--) {
		nfp_net_rx_ring_bufs_free(nn, &rings[r]);
err_free_ring:
		nfp_net_rx_ring_free(&rings[r]);
	}
	kfree(rings);
	return NULL;
}

1728 1729
static void
nfp_net_shadow_rx_rings_swap(struct nfp_net *nn, struct nfp_net_ring_set *s)
1730
{
1731 1732
	struct nfp_net_rx_ring *rings = s->rings;
	struct nfp_net_ring_set new = *s;
1733 1734
	unsigned int r;

1735 1736 1737 1738
	s->mtu = nn->netdev->mtu;
	s->dcnt = nn->rxd_cnt;
	s->rings = nn->rx_rings;

1739
	for (r = 0; r < nn->num_rx_rings; r++)
1740
		nn->rx_rings[r].r_vec->rx_ring = &rings[r];
1741

1742 1743 1744 1745
	nn->netdev->mtu = new.mtu;
	nn->fl_bufsz = nfp_net_calc_fl_bufsz(nn, new.mtu);
	nn->rxd_cnt = new.dcnt;
	nn->rx_rings = new.rings;
1746 1747 1748
}

static void
1749
nfp_net_shadow_rx_rings_free(struct nfp_net *nn, struct nfp_net_ring_set *s)
1750
{
1751
	struct nfp_net_rx_ring *rings = s->rings;
1752 1753
	unsigned int r;

1754
	for (r = 0; r < nn->num_rx_rings; r++) {
1755 1756 1757 1758 1759 1760 1761
		nfp_net_rx_ring_bufs_free(nn, &rings[r]);
		nfp_net_rx_ring_free(&rings[r]);
	}

	kfree(rings);
}

1762 1763 1764
static int
nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
		       int idx)
1765
{
1766 1767
	struct msix_entry *entry = &nn->irq_entries[r_vec->irq_idx];
	int err;
1768

1769 1770 1771 1772 1773 1774
	if (idx < nn->num_tx_rings) {
		r_vec->tx_ring = &nn->tx_rings[idx];
		nfp_net_tx_ring_init(r_vec->tx_ring, r_vec, idx);
	} else {
		r_vec->tx_ring = NULL;
	}
1775

1776 1777 1778 1779 1780 1781
	if (idx < nn->num_rx_rings) {
		r_vec->rx_ring = &nn->rx_rings[idx];
		nfp_net_rx_ring_init(r_vec->rx_ring, r_vec, idx);
	} else {
		r_vec->rx_ring = NULL;
	}
1782

1783 1784 1785 1786 1787 1788 1789
	snprintf(r_vec->name, sizeof(r_vec->name),
		 "%s-rxtx-%d", nn->netdev->name, idx);
	err = request_irq(entry->vector, r_vec->handler, 0, r_vec->name, r_vec);
	if (err) {
		nn_err(nn, "Error requesting IRQ %d\n", entry->vector);
		return err;
	}
1790
	disable_irq(entry->vector);
1791

1792 1793 1794
	/* Setup NAPI */
	netif_napi_add(nn->netdev, &r_vec->napi,
		       nfp_net_poll, NAPI_POLL_WEIGHT);
1795

1796
	irq_set_affinity_hint(entry->vector, &r_vec->affinity_mask);
1797

1798
	nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, entry->vector, entry->entry);
1799

1800
	return 0;
1801 1802
}

1803 1804
static void
nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec)
1805
{
1806
	struct msix_entry *entry = &nn->irq_entries[r_vec->irq_idx];
1807 1808 1809

	irq_set_affinity_hint(entry->vector, NULL);
	netif_napi_del(&r_vec->napi);
1810
	free_irq(entry->vector, r_vec);
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
}

/**
 * nfp_net_rss_write_itbl() - Write RSS indirection table to device
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_rss_write_itbl(struct nfp_net *nn)
{
	int i;

	for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4)
		nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i,
			  get_unaligned_le32(nn->rss_itbl + i));
}

/**
 * nfp_net_rss_write_key() - Write RSS hash key to device
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_rss_write_key(struct nfp_net *nn)
{
	int i;

	for (i = 0; i < NFP_NET_CFG_RSS_KEY_SZ; i += 4)
		nn_writel(nn, NFP_NET_CFG_RSS_KEY + i,
			  get_unaligned_le32(nn->rss_key + i));
}

/**
 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_coalesce_write_cfg(struct nfp_net *nn)
{
	u8 i;
	u32 factor;
	u32 value;

	/* Compute factor used to convert coalesce '_usecs' parameters to
	 * ME timestamp ticks.  There are 16 ME clock cycles for each timestamp
	 * count.
	 */
	factor = nn->me_freq_mhz / 16;

	/* copy RX interrupt coalesce parameters */
	value = (nn->rx_coalesce_max_frames << 16) |
		(factor * nn->rx_coalesce_usecs);
1858
	for (i = 0; i < nn->num_rx_rings; i++)
1859 1860 1861 1862 1863
		nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value);

	/* copy TX interrupt coalesce parameters */
	value = (nn->tx_coalesce_max_frames << 16) |
		(factor * nn->tx_coalesce_usecs);
1864
	for (i = 0; i < nn->num_tx_rings; i++)
1865 1866 1867 1868
		nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value);
}

/**
1869
 * nfp_net_write_mac_addr() - Write mac address to the device control BAR
1870 1871
 * @nn:      NFP Net device to reconfigure
 *
1872 1873 1874
 * Writes the MAC address from the netdev to the device control BAR.  Does not
 * perform the required reconfig.  We do a bit of byte swapping dance because
 * firmware is LE.
1875
 */
1876
static void nfp_net_write_mac_addr(struct nfp_net *nn)
1877 1878 1879
{
	nn_writel(nn, NFP_NET_CFG_MACADDR + 0,
		  get_unaligned_be32(nn->netdev->dev_addr));
J
Jakub Kicinski 已提交
1880 1881
	nn_writew(nn, NFP_NET_CFG_MACADDR + 6,
		  get_unaligned_be16(nn->netdev->dev_addr + 4));
1882 1883
}

1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx)
{
	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0);

	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0);
}

1895 1896 1897 1898 1899 1900 1901
/**
 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_clear_config_and_disable(struct nfp_net *nn)
{
	u32 new_ctrl, update;
1902
	unsigned int r;
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
	int err;

	new_ctrl = nn->ctrl;
	new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE;
	update = NFP_NET_CFG_UPDATE_GEN;
	update |= NFP_NET_CFG_UPDATE_MSIX;
	update |= NFP_NET_CFG_UPDATE_RING;

	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
		new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;

	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, update);
1919
	if (err)
1920 1921
		nn_err(nn, "Could not disable device: %d\n", err);

1922
	for (r = 0; r < nn->num_rx_rings; r++)
1923
		nfp_net_rx_ring_reset(nn->r_vecs[r].rx_ring);
1924
	for (r = 0; r < nn->num_tx_rings; r++)
1925
		nfp_net_tx_ring_reset(nn, nn->r_vecs[r].tx_ring);
1926
	for (r = 0; r < nn->num_r_vecs; r++)
1927 1928
		nfp_net_vec_clear_ring_data(nn, r);

1929 1930 1931
	nn->ctrl = new_ctrl;
}

1932
static void
1933 1934
nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn,
			     struct nfp_net_rx_ring *rx_ring, unsigned int idx)
1935 1936
{
	/* Write the DMA address, size and MSI-X info to the device */
1937 1938 1939 1940
	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma);
	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt));
	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_idx);
}
1941

1942 1943 1944 1945 1946 1947 1948
static void
nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn,
			     struct nfp_net_tx_ring *tx_ring, unsigned int idx)
{
	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma);
	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt));
	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_idx);
1949 1950
}

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
static int __nfp_net_set_config_and_enable(struct nfp_net *nn)
{
	u32 new_ctrl, update = 0;
	unsigned int r;
	int err;

	new_ctrl = nn->ctrl;

	if (nn->cap & NFP_NET_CFG_CTRL_RSS) {
		nfp_net_rss_write_key(nn);
		nfp_net_rss_write_itbl(nn);
		nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg);
		update |= NFP_NET_CFG_UPDATE_RSS;
	}

	if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
		nfp_net_coalesce_write_cfg(nn);

		new_ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
		update |= NFP_NET_CFG_UPDATE_IRQMOD;
	}

1973 1974 1975 1976
	for (r = 0; r < nn->num_tx_rings; r++)
		nfp_net_tx_ring_hw_cfg_write(nn, &nn->tx_rings[r], r);
	for (r = 0; r < nn->num_rx_rings; r++)
		nfp_net_rx_ring_hw_cfg_write(nn, &nn->rx_rings[r], r);
1977 1978 1979 1980 1981 1982 1983

	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->num_tx_rings == 64 ?
		  0xffffffffffffffffULL : ((u64)1 << nn->num_tx_rings) - 1);

	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->num_rx_rings == 64 ?
		  0xffffffffffffffffULL : ((u64)1 << nn->num_rx_rings) - 1);

1984
	nfp_net_write_mac_addr(nn);
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

	nn_writel(nn, NFP_NET_CFG_MTU, nn->netdev->mtu);
	nn_writel(nn, NFP_NET_CFG_FLBUFSZ, nn->fl_bufsz);

	/* Enable device */
	new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
	update |= NFP_NET_CFG_UPDATE_GEN;
	update |= NFP_NET_CFG_UPDATE_MSIX;
	update |= NFP_NET_CFG_UPDATE_RING;
	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
		new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, update);

	nn->ctrl = new_ctrl;

2002
	for (r = 0; r < nn->num_rx_rings; r++)
2003 2004
		nfp_net_rx_ring_fill_freelist(nn->r_vecs[r].rx_ring);

2005 2006 2007 2008 2009 2010
	/* Since reconfiguration requests while NFP is down are ignored we
	 * have to wipe the entire VXLAN configuration and reinitialize it.
	 */
	if (nn->ctrl & NFP_NET_CFG_CTRL_VXLAN) {
		memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports));
		memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt));
2011
		udp_tunnel_get_rx_info(nn->netdev);
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
	}

	return err;
}

/**
 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP
 * @nn:      NFP Net device to reconfigure
 */
static int nfp_net_set_config_and_enable(struct nfp_net *nn)
{
	int err;

	err = __nfp_net_set_config_and_enable(nn);
	if (err)
		nfp_net_clear_config_and_disable(nn);

	return err;
}

/**
 * nfp_net_open_stack() - Start the device from stack's perspective
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_open_stack(struct nfp_net *nn)
{
	unsigned int r;

2040 2041 2042 2043
	for (r = 0; r < nn->num_r_vecs; r++) {
		napi_enable(&nn->r_vecs[r].napi);
		enable_irq(nn->irq_entries[nn->r_vecs[r].irq_idx].vector);
	}
2044 2045 2046

	netif_tx_wake_all_queues(nn->netdev);

2047
	enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2048 2049 2050
	nfp_net_read_link_status(nn);
}

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
static int nfp_net_netdev_open(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int err, r;

	if (nn->ctrl & NFP_NET_CFG_CTRL_ENABLE) {
		nn_err(nn, "Dev is already enabled: 0x%08x\n", nn->ctrl);
		return -EBUSY;
	}

	/* Step 1: Allocate resources for rings and the like
	 * - Request interrupts
	 * - Allocate RX and TX ring resources
	 * - Setup initial RSS table
	 */
	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn",
				      nn->exn_name, sizeof(nn->exn_name),
				      NFP_NET_IRQ_EXN_IDX, nn->exn_handler);
	if (err)
		return err;
2071 2072 2073 2074 2075
	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc",
				      nn->lsc_name, sizeof(nn->lsc_name),
				      NFP_NET_IRQ_LSC_IDX, nn->lsc_handler);
	if (err)
		goto err_free_exn;
2076
	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2077

2078 2079
	nn->rx_rings = kcalloc(nn->num_rx_rings, sizeof(*nn->rx_rings),
			       GFP_KERNEL);
2080 2081
	if (!nn->rx_rings) {
		err = -ENOMEM;
2082
		goto err_free_lsc;
2083
	}
2084 2085
	nn->tx_rings = kcalloc(nn->num_tx_rings, sizeof(*nn->tx_rings),
			       GFP_KERNEL);
2086 2087
	if (!nn->tx_rings) {
		err = -ENOMEM;
2088
		goto err_free_rx_rings;
2089
	}
2090

2091 2092 2093
	for (r = 0; r < nn->num_r_vecs; r++) {
		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
		if (err)
2094 2095 2096
			goto err_cleanup_vec_p;
	}
	for (r = 0; r < nn->num_tx_rings; r++) {
2097
		err = nfp_net_tx_ring_alloc(nn->r_vecs[r].tx_ring, nn->txd_cnt);
2098
		if (err)
2099 2100 2101
			goto err_free_tx_ring_p;
	}
	for (r = 0; r < nn->num_rx_rings; r++) {
2102
		err = nfp_net_rx_ring_alloc(nn->r_vecs[r].rx_ring,
2103
					    nn->fl_bufsz, nn->rxd_cnt);
2104
		if (err)
2105
			goto err_flush_free_rx_ring_p;
2106 2107 2108

		err = nfp_net_rx_ring_bufs_alloc(nn, nn->r_vecs[r].rx_ring);
		if (err)
2109
			goto err_free_rx_ring_p;
2110
	}
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126

	err = netif_set_real_num_tx_queues(netdev, nn->num_tx_rings);
	if (err)
		goto err_free_rings;

	err = netif_set_real_num_rx_queues(netdev, nn->num_rx_rings);
	if (err)
		goto err_free_rings;

	/* Step 2: Configure the NFP
	 * - Enable rings from 0 to tx_rings/rx_rings - 1.
	 * - Write MAC address (in case it changed)
	 * - Set the MTU
	 * - Set the Freelist buffer size
	 * - Enable the FW
	 */
2127
	err = nfp_net_set_config_and_enable(nn);
2128
	if (err)
2129
		goto err_free_rings;
2130 2131 2132 2133 2134 2135 2136

	/* Step 3: Enable for kernel
	 * - put some freelist descriptors on each RX ring
	 * - enable NAPI on each ring
	 * - enable all TX queues
	 * - set link state
	 */
2137
	nfp_net_open_stack(nn);
2138 2139 2140 2141

	return 0;

err_free_rings:
2142 2143
	r = nn->num_rx_rings;
err_flush_free_rx_ring_p:
2144
	while (r--) {
2145
		nfp_net_rx_ring_bufs_free(nn, nn->r_vecs[r].rx_ring);
2146
err_free_rx_ring_p:
2147
		nfp_net_rx_ring_free(nn->r_vecs[r].rx_ring);
2148 2149
	}
	r = nn->num_tx_rings;
2150
err_free_tx_ring_p:
2151
	while (r--)
2152
		nfp_net_tx_ring_free(nn->r_vecs[r].tx_ring);
2153
	r = nn->num_r_vecs;
2154
err_cleanup_vec_p:
2155
	while (r--)
2156
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2157 2158 2159 2160
	kfree(nn->tx_rings);
err_free_rx_rings:
	kfree(nn->rx_rings);
err_free_lsc:
2161
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2162 2163 2164 2165 2166 2167
err_free_exn:
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
	return err;
}

/**
2168 2169
 * nfp_net_close_stack() - Quiescent the stack (part of close)
 * @nn:	     NFP Net device to reconfigure
2170
 */
2171
static void nfp_net_close_stack(struct nfp_net *nn)
2172
{
2173
	unsigned int r;
2174

2175
	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2176
	netif_carrier_off(nn->netdev);
2177 2178
	nn->link_up = false;

2179 2180
	for (r = 0; r < nn->num_r_vecs; r++) {
		disable_irq(nn->irq_entries[nn->r_vecs[r].irq_idx].vector);
2181
		napi_disable(&nn->r_vecs[r].napi);
2182
	}
2183

2184 2185
	netif_tx_disable(nn->netdev);
}
2186

2187 2188 2189 2190 2191 2192 2193
/**
 * nfp_net_close_free_all() - Free all runtime resources
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_close_free_all(struct nfp_net *nn)
{
	unsigned int r;
2194

2195
	for (r = 0; r < nn->num_rx_rings; r++) {
2196
		nfp_net_rx_ring_bufs_free(nn, nn->r_vecs[r].rx_ring);
2197
		nfp_net_rx_ring_free(nn->r_vecs[r].rx_ring);
2198 2199
	}
	for (r = 0; r < nn->num_tx_rings; r++)
2200
		nfp_net_tx_ring_free(nn->r_vecs[r].tx_ring);
2201
	for (r = 0; r < nn->num_r_vecs; r++)
2202
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2203

2204 2205 2206
	kfree(nn->rx_rings);
	kfree(nn->tx_rings);

2207
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2208
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
}

/**
 * nfp_net_netdev_close() - Called when the device is downed
 * @netdev:      netdev structure
 */
static int nfp_net_netdev_close(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);

	if (!(nn->ctrl & NFP_NET_CFG_CTRL_ENABLE)) {
		nn_err(nn, "Dev is not up: 0x%08x\n", nn->ctrl);
		return 0;
	}

	/* Step 1: Disable RX and TX rings from the Linux kernel perspective
	 */
	nfp_net_close_stack(nn);

	/* Step 2: Tell NFP
	 */
	nfp_net_clear_config_and_disable(nn);

	/* Step 3: Free resources
	 */
	nfp_net_close_free_all(nn);
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259

	nn_dbg(nn, "%s down", netdev->name);
	return 0;
}

static void nfp_net_set_rx_mode(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	u32 new_ctrl;

	new_ctrl = nn->ctrl;

	if (netdev->flags & IFF_PROMISC) {
		if (nn->cap & NFP_NET_CFG_CTRL_PROMISC)
			new_ctrl |= NFP_NET_CFG_CTRL_PROMISC;
		else
			nn_warn(nn, "FW does not support promiscuous mode\n");
	} else {
		new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC;
	}

	if (new_ctrl == nn->ctrl)
		return;

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2260
	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN);
2261 2262 2263 2264

	nn->ctrl = new_ctrl;
}

2265 2266 2267 2268
static int
nfp_net_ring_swap_enable(struct nfp_net *nn,
			 struct nfp_net_ring_set *rx,
			 struct nfp_net_ring_set *tx)
2269
{
2270 2271 2272 2273
	if (rx)
		nfp_net_shadow_rx_rings_swap(nn, rx);
	if (tx)
		nfp_net_shadow_tx_rings_swap(nn, tx);
2274

2275 2276
	return __nfp_net_set_config_and_enable(nn);
}
2277

2278 2279 2280 2281 2282 2283 2284 2285 2286
static void
nfp_net_ring_reconfig_down(struct nfp_net *nn,
			   struct nfp_net_ring_set *rx,
			   struct nfp_net_ring_set *tx)
{
	nn->netdev->mtu = rx ? rx->mtu : nn->netdev->mtu;
	nn->fl_bufsz = nfp_net_calc_fl_bufsz(nn, nn->netdev->mtu);
	nn->rxd_cnt = rx ? rx->dcnt : nn->rxd_cnt;
	nn->txd_cnt = tx ? tx->dcnt : nn->txd_cnt;
2287 2288
}

2289 2290 2291
int
nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_ring_set *rx,
		      struct nfp_net_ring_set *tx)
2292 2293 2294 2295
{
	int err;

	if (!netif_running(nn->netdev)) {
2296
		nfp_net_ring_reconfig_down(nn, rx, tx);
2297 2298 2299 2300
		return 0;
	}

	/* Prepare new rings */
2301 2302
	if (rx) {
		if (!nfp_net_shadow_rx_rings_prepare(nn, rx))
2303 2304
			return -ENOMEM;
	}
2305 2306 2307 2308
	if (tx) {
		if (!nfp_net_shadow_tx_rings_prepare(nn, tx)) {
			err = -ENOMEM;
			goto err_free_rx;
2309 2310 2311 2312 2313 2314 2315
		}
	}

	/* Stop device, swap in new rings, try to start the firmware */
	nfp_net_close_stack(nn);
	nfp_net_clear_config_and_disable(nn);

2316
	err = nfp_net_ring_swap_enable(nn, rx, tx);
2317
	if (err) {
2318
		int err2;
2319

2320
		nfp_net_clear_config_and_disable(nn);
2321

2322 2323 2324
		/* Try with old configuration and old rings */
		err2 = nfp_net_ring_swap_enable(nn, rx, tx);
		if (err2)
2325
			nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n",
2326
			       err, err2);
2327 2328
	}

2329 2330 2331 2332
	if (rx)
		nfp_net_shadow_rx_rings_free(nn, rx);
	if (tx)
		nfp_net_shadow_tx_rings_free(nn, tx);
2333 2334 2335 2336

	nfp_net_open_stack(nn);

	return err;
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352

err_free_rx:
	if (rx)
		nfp_net_shadow_rx_rings_free(nn, rx);
	return err;
}

static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct nfp_net *nn = netdev_priv(netdev);
	struct nfp_net_ring_set rx = {
		.mtu = new_mtu,
		.dcnt = nn->rxd_cnt,
	};

	return nfp_net_ring_reconfig(nn, &rx, NULL);
2353 2354
}

2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
static struct rtnl_link_stats64 *nfp_net_stat64(struct net_device *netdev,
						struct rtnl_link_stats64 *stats)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int r;

	for (r = 0; r < nn->num_r_vecs; r++) {
		struct nfp_net_r_vector *r_vec = &nn->r_vecs[r];
		u64 data[3];
		unsigned int start;

		do {
			start = u64_stats_fetch_begin(&r_vec->rx_sync);
			data[0] = r_vec->rx_pkts;
			data[1] = r_vec->rx_bytes;
			data[2] = r_vec->rx_drops;
		} while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
		stats->rx_packets += data[0];
		stats->rx_bytes += data[1];
		stats->rx_dropped += data[2];

		do {
			start = u64_stats_fetch_begin(&r_vec->tx_sync);
			data[0] = r_vec->tx_pkts;
			data[1] = r_vec->tx_bytes;
			data[2] = r_vec->tx_errors;
		} while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
		stats->tx_packets += data[0];
		stats->tx_bytes += data[1];
		stats->tx_errors += data[2];
	}

	return stats;
}

2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
static bool nfp_net_ebpf_capable(struct nfp_net *nn)
{
	if (nn->cap & NFP_NET_CFG_CTRL_BPF &&
	    nn_readb(nn, NFP_NET_CFG_BPF_ABI) == NFP_NET_BPF_ABI)
		return true;
	return false;
}

static int
nfp_net_setup_tc(struct net_device *netdev, u32 handle, __be16 proto,
		 struct tc_to_netdev *tc)
{
	struct nfp_net *nn = netdev_priv(netdev);

	if (TC_H_MAJ(handle) != TC_H_MAJ(TC_H_INGRESS))
		return -ENOTSUPP;
	if (proto != htons(ETH_P_ALL))
		return -ENOTSUPP;

	if (tc->type == TC_SETUP_CLSBPF && nfp_net_ebpf_capable(nn))
		return nfp_net_bpf_offload(nn, handle, proto, tc->cls_bpf);

	return -EINVAL;
}

2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
static int nfp_net_set_features(struct net_device *netdev,
				netdev_features_t features)
{
	netdev_features_t changed = netdev->features ^ features;
	struct nfp_net *nn = netdev_priv(netdev);
	u32 new_ctrl;
	int err;

	/* Assume this is not called with features we have not advertised */

	new_ctrl = nn->ctrl;

	if (changed & NETIF_F_RXCSUM) {
		if (features & NETIF_F_RXCSUM)
			new_ctrl |= NFP_NET_CFG_CTRL_RXCSUM;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM;
	}

	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
		if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
			new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM;
	}

	if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
			new_ctrl |= NFP_NET_CFG_CTRL_LSO;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_LSO;
	}

	if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
		if (features & NETIF_F_HW_VLAN_CTAG_RX)
			new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN;
	}

	if (changed & NETIF_F_HW_VLAN_CTAG_TX) {
		if (features & NETIF_F_HW_VLAN_CTAG_TX)
			new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN;
	}

	if (changed & NETIF_F_SG) {
		if (features & NETIF_F_SG)
			new_ctrl |= NFP_NET_CFG_CTRL_GATHER;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER;
	}

2469 2470 2471 2472 2473
	if (changed & NETIF_F_HW_TC && nn->ctrl & NFP_NET_CFG_CTRL_BPF) {
		nn_err(nn, "Cannot disable HW TC offload while in use\n");
		return -EBUSY;
	}

2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
	nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n",
	       netdev->features, features, changed);

	if (new_ctrl == nn->ctrl)
		return 0;

	nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->ctrl, new_ctrl);
	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN);
	if (err)
		return err;

	nn->ctrl = new_ctrl;

	return 0;
}

static netdev_features_t
nfp_net_features_check(struct sk_buff *skb, struct net_device *dev,
		       netdev_features_t features)
{
	u8 l4_hdr;

	/* We can't do TSO over double tagged packets (802.1AD) */
	features &= vlan_features_check(skb, features);

	if (!skb->encapsulation)
		return features;

	/* Ensure that inner L4 header offset fits into TX descriptor field */
	if (skb_is_gso(skb)) {
		u32 hdrlen;

		hdrlen = skb_inner_transport_header(skb) - skb->data +
			inner_tcp_hdrlen(skb);

		if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ))
			features &= ~NETIF_F_GSO_MASK;
	}

	/* VXLAN/GRE check */
	switch (vlan_get_protocol(skb)) {
	case htons(ETH_P_IP):
		l4_hdr = ip_hdr(skb)->protocol;
		break;
	case htons(ETH_P_IPV6):
		l4_hdr = ipv6_hdr(skb)->nexthdr;
		break;
	default:
2523
		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2524 2525 2526 2527 2528 2529 2530 2531
	}

	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
	    skb->inner_protocol != htons(ETH_P_TEB) ||
	    (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) ||
	    (l4_hdr == IPPROTO_UDP &&
	     (skb_inner_mac_header(skb) - skb_transport_header(skb) !=
	      sizeof(struct udphdr) + sizeof(struct vxlanhdr))))
2532
		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557

	return features;
}

/**
 * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW
 * @nn:   NFP Net device to reconfigure
 * @idx:  Index into the port table where new port should be written
 * @port: UDP port to configure (pass zero to remove VXLAN port)
 */
static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port)
{
	int i;

	nn->vxlan_ports[idx] = port;

	if (!(nn->ctrl & NFP_NET_CFG_CTRL_VXLAN))
		return;

	BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1);
	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2)
		nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port),
			  be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 |
			  be16_to_cpu(nn->vxlan_ports[i]));

2558
	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN);
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
}

/**
 * nfp_net_find_vxlan_idx() - find table entry of the port or a free one
 * @nn:   NFP Network structure
 * @port: UDP port to look for
 *
 * Return: if the port is already in the table -- it's position;
 *	   if the port is not in the table -- free position to use;
 *	   if the table is full -- -ENOSPC.
 */
static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port)
{
	int i, free_idx = -ENOSPC;

	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) {
		if (nn->vxlan_ports[i] == port)
			return i;
		if (!nn->vxlan_usecnt[i])
			free_idx = i;
	}

	return free_idx;
}

static void nfp_net_add_vxlan_port(struct net_device *netdev,
2585
				   struct udp_tunnel_info *ti)
2586 2587 2588 2589
{
	struct nfp_net *nn = netdev_priv(netdev);
	int idx;

2590 2591 2592 2593
	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
		return;

	idx = nfp_net_find_vxlan_idx(nn, ti->port);
2594 2595 2596 2597
	if (idx == -ENOSPC)
		return;

	if (!nn->vxlan_usecnt[idx]++)
2598
		nfp_net_set_vxlan_port(nn, idx, ti->port);
2599 2600 2601
}

static void nfp_net_del_vxlan_port(struct net_device *netdev,
2602
				   struct udp_tunnel_info *ti)
2603 2604 2605 2606
{
	struct nfp_net *nn = netdev_priv(netdev);
	int idx;

2607 2608 2609 2610
	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
		return;

	idx = nfp_net_find_vxlan_idx(nn, ti->port);
2611
	if (idx == -ENOSPC || !nn->vxlan_usecnt[idx])
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
		return;

	if (!--nn->vxlan_usecnt[idx])
		nfp_net_set_vxlan_port(nn, idx, 0);
}

static const struct net_device_ops nfp_net_netdev_ops = {
	.ndo_open		= nfp_net_netdev_open,
	.ndo_stop		= nfp_net_netdev_close,
	.ndo_start_xmit		= nfp_net_tx,
	.ndo_get_stats64	= nfp_net_stat64,
2623
	.ndo_setup_tc		= nfp_net_setup_tc,
2624 2625 2626 2627 2628 2629
	.ndo_tx_timeout		= nfp_net_tx_timeout,
	.ndo_set_rx_mode	= nfp_net_set_rx_mode,
	.ndo_change_mtu		= nfp_net_change_mtu,
	.ndo_set_mac_address	= eth_mac_addr,
	.ndo_set_features	= nfp_net_set_features,
	.ndo_features_check	= nfp_net_features_check,
2630 2631
	.ndo_udp_tunnel_add	= nfp_net_add_vxlan_port,
	.ndo_udp_tunnel_del	= nfp_net_del_vxlan_port,
2632 2633 2634 2635 2636 2637 2638 2639
};

/**
 * nfp_net_info() - Print general info about the NIC
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_info(struct nfp_net *nn)
{
J
Jakub Kicinski 已提交
2640
	nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n",
2641 2642 2643 2644 2645 2646 2647
		nn->is_vf ? "VF " : "",
		nn->num_tx_rings, nn->max_tx_rings,
		nn->num_rx_rings, nn->max_rx_rings);
	nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n",
		nn->fw_ver.resv, nn->fw_ver.class,
		nn->fw_ver.major, nn->fw_ver.minor,
		nn->max_mtu);
2648
	nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
		nn->cap,
		nn->cap & NFP_NET_CFG_CTRL_PROMISC  ? "PROMISC "  : "",
		nn->cap & NFP_NET_CFG_CTRL_L2BC     ? "L2BCFILT " : "",
		nn->cap & NFP_NET_CFG_CTRL_L2MC     ? "L2MCFILT " : "",
		nn->cap & NFP_NET_CFG_CTRL_RXCSUM   ? "RXCSUM "   : "",
		nn->cap & NFP_NET_CFG_CTRL_TXCSUM   ? "TXCSUM "   : "",
		nn->cap & NFP_NET_CFG_CTRL_RXVLAN   ? "RXVLAN "   : "",
		nn->cap & NFP_NET_CFG_CTRL_TXVLAN   ? "TXVLAN "   : "",
		nn->cap & NFP_NET_CFG_CTRL_SCATTER  ? "SCATTER "  : "",
		nn->cap & NFP_NET_CFG_CTRL_GATHER   ? "GATHER "   : "",
		nn->cap & NFP_NET_CFG_CTRL_LSO      ? "TSO "      : "",
		nn->cap & NFP_NET_CFG_CTRL_RSS      ? "RSS "      : "",
		nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "",
		nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "",
		nn->cap & NFP_NET_CFG_CTRL_IRQMOD   ? "IRQMOD "   : "",
		nn->cap & NFP_NET_CFG_CTRL_VXLAN    ? "VXLAN "    : "",
2665 2666
		nn->cap & NFP_NET_CFG_CTRL_NVGRE    ? "NVGRE "	  : "",
		nfp_net_ebpf_capable(nn)            ? "BPF "	  : "");
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
}

/**
 * nfp_net_netdev_alloc() - Allocate netdev and related structure
 * @pdev:         PCI device
 * @max_tx_rings: Maximum number of TX rings supported by device
 * @max_rx_rings: Maximum number of RX rings supported by device
 *
 * This function allocates a netdev device and fills in the initial
 * part of the @struct nfp_net structure.
 *
 * Return: NFP Net device structure, or ERR_PTR on error.
 */
struct nfp_net *nfp_net_netdev_alloc(struct pci_dev *pdev,
2681 2682
				     unsigned int max_tx_rings,
				     unsigned int max_rx_rings)
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
{
	struct net_device *netdev;
	struct nfp_net *nn;

	netdev = alloc_etherdev_mqs(sizeof(struct nfp_net),
				    max_tx_rings, max_rx_rings);
	if (!netdev)
		return ERR_PTR(-ENOMEM);

	SET_NETDEV_DEV(netdev, &pdev->dev);
	nn = netdev_priv(netdev);

	nn->netdev = netdev;
	nn->pdev = pdev;

	nn->max_tx_rings = max_tx_rings;
	nn->max_rx_rings = max_rx_rings;

2701 2702 2703
	nn->num_tx_rings = min_t(unsigned int, max_tx_rings, num_online_cpus());
	nn->num_rx_rings = min_t(unsigned int, max_rx_rings,
				 netif_get_num_default_rss_queues());
2704

J
Jakub Kicinski 已提交
2705 2706 2707
	nn->num_r_vecs = max(nn->num_tx_rings, nn->num_rx_rings);
	nn->num_r_vecs = min_t(unsigned int, nn->num_r_vecs, num_online_cpus());

2708 2709 2710 2711
	nn->txd_cnt = NFP_NET_TX_DESCS_DEFAULT;
	nn->rxd_cnt = NFP_NET_RX_DESCS_DEFAULT;

	spin_lock_init(&nn->reconfig_lock);
2712
	spin_lock_init(&nn->rx_filter_lock);
2713 2714
	spin_lock_init(&nn->link_status_lock);

2715 2716
	setup_timer(&nn->reconfig_timer,
		    nfp_net_reconfig_timer, (unsigned long)nn);
2717 2718
	setup_timer(&nn->rx_filter_stats_timer,
		    nfp_net_filter_stats_timer, (unsigned long)nn);
2719

2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
	return nn;
}

/**
 * nfp_net_netdev_free() - Undo what @nfp_net_netdev_alloc() did
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_netdev_free(struct nfp_net *nn)
{
	free_netdev(nn->netdev);
}

/**
 * nfp_net_rss_init() - Set the initial RSS parameters
 * @nn:	     NFP Net device to reconfigure
 */
static void nfp_net_rss_init(struct nfp_net *nn)
{
	int i;

	netdev_rss_key_fill(nn->rss_key, NFP_NET_CFG_RSS_KEY_SZ);

	for (i = 0; i < sizeof(nn->rss_itbl); i++)
		nn->rss_itbl[i] =
			ethtool_rxfh_indir_default(i, nn->num_rx_rings);

	/* Enable IPv4/IPv6 TCP by default */
	nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP |
		      NFP_NET_CFG_RSS_IPV6_TCP |
		      NFP_NET_CFG_RSS_TOEPLITZ |
		      NFP_NET_CFG_RSS_MASK;
}

/**
 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters
 * @nn:	     NFP Net device to reconfigure
 */
static void nfp_net_irqmod_init(struct nfp_net *nn)
{
	nn->rx_coalesce_usecs      = 50;
	nn->rx_coalesce_max_frames = 64;
	nn->tx_coalesce_usecs      = 50;
	nn->tx_coalesce_max_frames = 64;
}

/**
 * nfp_net_netdev_init() - Initialise/finalise the netdev structure
 * @netdev:      netdev structure
 *
 * Return: 0 on success or negative errno on error.
 */
int nfp_net_netdev_init(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int err;

	/* Get some of the read-only fields from the BAR */
	nn->cap = nn_readl(nn, NFP_NET_CFG_CAP);
	nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU);

2780
	nfp_net_write_mac_addr(nn);
2781

2782 2783 2784 2785 2786 2787
	/* Determine RX packet/metadata boundary offset */
	if (nn->fw_ver.major >= 2)
		nn->rx_offset = nn_readl(nn, NFP_NET_CFG_RX_OFFSET);
	else
		nn->rx_offset = NFP_NET_RX_OFFSET;

2788 2789 2790 2791 2792
	/* Set default MTU and Freelist buffer size */
	if (nn->max_mtu < NFP_NET_DEFAULT_MTU)
		netdev->mtu = nn->max_mtu;
	else
		netdev->mtu = NFP_NET_DEFAULT_MTU;
2793
	nn->fl_bufsz = nfp_net_calc_fl_bufsz(nn, netdev->mtu);
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845

	/* Advertise/enable offloads based on capabilities
	 *
	 * Note: netdev->features show the currently enabled features
	 * and netdev->hw_features advertises which features are
	 * supported.  By default we enable most features.
	 */
	netdev->hw_features = NETIF_F_HIGHDMA;
	if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM) {
		netdev->hw_features |= NETIF_F_RXCSUM;
		nn->ctrl |= NFP_NET_CFG_CTRL_RXCSUM;
	}
	if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) {
		netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
		nn->ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
	}
	if (nn->cap & NFP_NET_CFG_CTRL_GATHER) {
		netdev->hw_features |= NETIF_F_SG;
		nn->ctrl |= NFP_NET_CFG_CTRL_GATHER;
	}
	if ((nn->cap & NFP_NET_CFG_CTRL_LSO) && nn->fw_ver.major > 2) {
		netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
		nn->ctrl |= NFP_NET_CFG_CTRL_LSO;
	}
	if (nn->cap & NFP_NET_CFG_CTRL_RSS) {
		netdev->hw_features |= NETIF_F_RXHASH;
		nfp_net_rss_init(nn);
		nn->ctrl |= NFP_NET_CFG_CTRL_RSS;
	}
	if (nn->cap & NFP_NET_CFG_CTRL_VXLAN &&
	    nn->cap & NFP_NET_CFG_CTRL_NVGRE) {
		if (nn->cap & NFP_NET_CFG_CTRL_LSO)
			netdev->hw_features |= NETIF_F_GSO_GRE |
					       NETIF_F_GSO_UDP_TUNNEL;
		nn->ctrl |= NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE;

		netdev->hw_enc_features = netdev->hw_features;
	}

	netdev->vlan_features = netdev->hw_features;

	if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) {
		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
		nn->ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
	}
	if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) {
		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
		nn->ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
	}

	netdev->features = netdev->hw_features;

2846 2847 2848
	if (nfp_net_ebpf_capable(nn))
		netdev->hw_features |= NETIF_F_HW_TC;

2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
	/* Advertise but disable TSO by default. */
	netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);

	/* Allow L2 Broadcast and Multicast through by default, if supported */
	if (nn->cap & NFP_NET_CFG_CTRL_L2BC)
		nn->ctrl |= NFP_NET_CFG_CTRL_L2BC;
	if (nn->cap & NFP_NET_CFG_CTRL_L2MC)
		nn->ctrl |= NFP_NET_CFG_CTRL_L2MC;

	/* Allow IRQ moderation, if supported */
	if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
		nfp_net_irqmod_init(nn);
		nn->ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
	}

	/* Stash the re-configuration queue away.  First odd queue in TX Bar */
	nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;

	/* Make sure the FW knows the netdev is supposed to be disabled here */
	nn_writel(nn, NFP_NET_CFG_CTRL, 0);
	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING |
				   NFP_NET_CFG_UPDATE_GEN);
	if (err)
		return err;

	/* Finalise the netdev setup */
	netdev->netdev_ops = &nfp_net_netdev_ops;
	netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000);
2879 2880 2881 2882 2883

	/* MTU range: 68 - hw-specific max */
	netdev->min_mtu = ETH_MIN_MTU;
	netdev->max_mtu = nn->max_mtu;

2884
	netif_carrier_off(netdev);
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899

	nfp_net_set_ethtool_ops(netdev);
	nfp_net_irqs_assign(netdev);

	return register_netdev(netdev);
}

/**
 * nfp_net_netdev_clean() - Undo what nfp_net_netdev_init() did.
 * @netdev:      netdev structure
 */
void nfp_net_netdev_clean(struct net_device *netdev)
{
	unregister_netdev(netdev);
}