ice_main.c 112.6 KB
Newer Older
1 2 3 4 5 6 7 8
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018, Intel Corporation. */

/* Intel(R) Ethernet Connection E800 Series Linux Driver */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include "ice.h"
9
#include "ice_lib.h"
10

11
#define DRV_VERSION	"0.7.2-k"
12
#define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
13
const char ice_drv_ver[] = DRV_VERSION;
14 15 16 17 18
static const char ice_driver_string[] = DRV_SUMMARY;
static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";

MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
MODULE_DESCRIPTION(DRV_SUMMARY);
19
MODULE_LICENSE("GPL v2");
20 21 22 23
MODULE_VERSION(DRV_VERSION);

static int debug = -1;
module_param(debug, int, 0644);
24 25 26 27 28
#ifndef CONFIG_DYNAMIC_DEBUG
MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
#else
MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
#endif /* !CONFIG_DYNAMIC_DEBUG */
29

30
static struct workqueue_struct *ice_wq;
31
static const struct net_device_ops ice_netdev_ops;
32

33 34
static void ice_pf_dis_all_vsi(struct ice_pf *pf);
static void ice_rebuild(struct ice_pf *pf);
35

36
static void ice_vsi_release_all(struct ice_pf *pf);
37 38
static void ice_update_vsi_stats(struct ice_vsi *vsi);
static void ice_update_pf_stats(struct ice_pf *pf);
39

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
/**
 * ice_get_tx_pending - returns number of Tx descriptors not processed
 * @ring: the ring of descriptors
 */
static u32 ice_get_tx_pending(struct ice_ring *ring)
{
	u32 head, tail;

	head = ring->next_to_clean;
	tail = readl(ring->tail);

	if (head != tail)
		return (head < tail) ?
			tail - head : (tail + ring->count - head);
	return 0;
}

/**
 * ice_check_for_hang_subtask - check for and recover hung queues
 * @pf: pointer to PF struct
 */
static void ice_check_for_hang_subtask(struct ice_pf *pf)
{
	struct ice_vsi *vsi = NULL;
	unsigned int i;
	u32 v, v_idx;
	int packets;

	ice_for_each_vsi(pf, v)
		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
			vsi = pf->vsi[v];
			break;
		}

	if (!vsi || test_bit(__ICE_DOWN, vsi->state))
		return;

	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
		return;

	for (i = 0; i < vsi->num_txq; i++) {
		struct ice_ring *tx_ring = vsi->tx_rings[i];

		if (tx_ring && tx_ring->desc) {
			int itr = ICE_ITR_NONE;

			/* If packet counter has not changed the queue is
			 * likely stalled, so force an interrupt for this
			 * queue.
			 *
			 * prev_pkt would be negative if there was no
			 * pending work.
			 */
			packets = tx_ring->stats.pkts & INT_MAX;
			if (tx_ring->tx_stats.prev_pkt == packets) {
				/* Trigger sw interrupt to revive the queue */
				v_idx = tx_ring->q_vector->v_idx;
				wr32(&vsi->back->hw,
98
				     GLINT_DYN_CTL(vsi->hw_base_vector + v_idx),
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
				     (itr << GLINT_DYN_CTL_ITR_INDX_S) |
				     GLINT_DYN_CTL_SWINT_TRIG_M |
				     GLINT_DYN_CTL_INTENA_MSK_M);
				continue;
			}

			/* Memory barrier between read of packet count and call
			 * to ice_get_tx_pending()
			 */
			smp_rmb();
			tx_ring->tx_stats.prev_pkt =
			    ice_get_tx_pending(tx_ring) ? packets : -1;
		}
	}
}

115
/**
116
 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
117
 * @netdev: the net device on which the sync is happening
118
 * @addr: MAC address to sync
119 120 121 122
 *
 * This is a callback function which is called by the in kernel device sync
 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
123
 * MAC filters from the hardware.
124 125 126 127 128 129 130 131 132 133 134 135 136
 */
static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
{
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct ice_vsi *vsi = np->vsi;

	if (ice_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr))
		return -EINVAL;

	return 0;
}

/**
137
 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
138
 * @netdev: the net device on which the unsync is happening
139
 * @addr: MAC address to unsync
140 141 142 143
 *
 * This is a callback function which is called by the in kernel device unsync
 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
144
 * delete the MAC filters from the hardware.
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
 */
static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
{
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct ice_vsi *vsi = np->vsi;

	if (ice_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr))
		return -EINVAL;

	return 0;
}

/**
 * ice_vsi_fltr_changed - check if filter state changed
 * @vsi: VSI to be checked
 *
 * returns true if filter state has changed, false otherwise.
 */
static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
{
	return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) ||
	       test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) ||
	       test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
}

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
/**
 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF
 * @vsi: the VSI being configured
 * @promisc_m: mask of promiscuous config bits
 * @set_promisc: enable or disable promisc flag request
 *
 */
static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc)
{
	struct ice_hw *hw = &vsi->back->hw;
	enum ice_status status = 0;

	if (vsi->type != ICE_VSI_PF)
		return 0;

	if (vsi->vlan_ena) {
		status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
						  set_promisc);
	} else {
		if (set_promisc)
			status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
						     0);
		else
			status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
						       0);
	}

	if (status)
		return -EIO;

	return 0;
}

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
/**
 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
 * @vsi: ptr to the VSI
 *
 * Push any outstanding VSI filter changes through the AdminQ.
 */
static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
{
	struct device *dev = &vsi->back->pdev->dev;
	struct net_device *netdev = vsi->netdev;
	bool promisc_forced_on = false;
	struct ice_pf *pf = vsi->back;
	struct ice_hw *hw = &pf->hw;
	enum ice_status status = 0;
	u32 changed_flags = 0;
218
	u8 promisc_m;
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
	int err = 0;

	if (!vsi->netdev)
		return -EINVAL;

	while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state))
		usleep_range(1000, 2000);

	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
	vsi->current_netdev_flags = vsi->netdev->flags;

	INIT_LIST_HEAD(&vsi->tmp_sync_list);
	INIT_LIST_HEAD(&vsi->tmp_unsync_list);

	if (ice_vsi_fltr_changed(vsi)) {
		clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
		clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
		clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);

		/* grab the netdev's addr_list_lock */
		netif_addr_lock_bh(netdev);
		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
			      ice_add_mac_to_unsync_list);
		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
			      ice_add_mac_to_unsync_list);
		/* our temp lists are populated. release lock */
		netif_addr_unlock_bh(netdev);
	}

248
	/* Remove MAC addresses in the unsync list */
249 250 251 252 253 254 255 256 257 258 259
	status = ice_remove_mac(hw, &vsi->tmp_unsync_list);
	ice_free_fltr_list(dev, &vsi->tmp_unsync_list);
	if (status) {
		netdev_err(netdev, "Failed to delete MAC filters\n");
		/* if we failed because of alloc failures, just bail */
		if (status == ICE_ERR_NO_MEMORY) {
			err = -ENOMEM;
			goto out;
		}
	}

260
	/* Add MAC addresses in the sync list */
261 262
	status = ice_add_mac(hw, &vsi->tmp_sync_list);
	ice_free_fltr_list(dev, &vsi->tmp_sync_list);
263 264 265 266 267
	/* If filter is added successfully or already exists, do not go into
	 * 'if' condition and report it as error. Instead continue processing
	 * rest of the function.
	 */
	if (status && status != ICE_ERR_ALREADY_EXISTS) {
268
		netdev_err(netdev, "Failed to add MAC filters\n");
269
		/* If there is no more space for new umac filters, VSI
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
		 * should go into promiscuous mode. There should be some
		 * space reserved for promiscuous filters.
		 */
		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
		    !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC,
				      vsi->state)) {
			promisc_forced_on = true;
			netdev_warn(netdev,
				    "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
				    vsi->vsi_num);
		} else {
			err = -EIO;
			goto out;
		}
	}
	/* check for changes in promiscuous modes */
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
	if (changed_flags & IFF_ALLMULTI) {
		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
			if (vsi->vlan_ena)
				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
			else
				promisc_m = ICE_MCAST_PROMISC_BITS;

			err = ice_cfg_promisc(vsi, promisc_m, true);
			if (err) {
				netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n",
					   vsi->vsi_num);
				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
				goto out_promisc;
			}
		} else if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
			if (vsi->vlan_ena)
				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
			else
				promisc_m = ICE_MCAST_PROMISC_BITS;

			err = ice_cfg_promisc(vsi, promisc_m, false);
			if (err) {
				netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n",
					   vsi->vsi_num);
				vsi->current_netdev_flags |= IFF_ALLMULTI;
				goto out_promisc;
			}
		}
	}
315 316 317 318 319

	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
	    test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) {
		clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
		if (vsi->current_netdev_flags & IFF_PROMISC) {
320
			/* Apply Tx filter rule to get traffic from VMs */
321
			status = ice_cfg_dflt_vsi(hw, vsi->idx, true,
322 323 324 325 326 327 328 329
						  ICE_FLTR_TX);
			if (status) {
				netdev_err(netdev, "Error setting default VSI %i tx rule\n",
					   vsi->vsi_num);
				vsi->current_netdev_flags &= ~IFF_PROMISC;
				err = -EIO;
				goto out_promisc;
			}
330
			/* Apply Rx filter rule to get traffic from wire */
331
			status = ice_cfg_dflt_vsi(hw, vsi->idx, true,
332 333 334 335 336 337 338 339 340
						  ICE_FLTR_RX);
			if (status) {
				netdev_err(netdev, "Error setting default VSI %i rx rule\n",
					   vsi->vsi_num);
				vsi->current_netdev_flags &= ~IFF_PROMISC;
				err = -EIO;
				goto out_promisc;
			}
		} else {
341
			/* Clear Tx filter rule to stop traffic from VMs */
342
			status = ice_cfg_dflt_vsi(hw, vsi->idx, false,
343 344 345 346 347 348 349 350
						  ICE_FLTR_TX);
			if (status) {
				netdev_err(netdev, "Error clearing default VSI %i tx rule\n",
					   vsi->vsi_num);
				vsi->current_netdev_flags |= IFF_PROMISC;
				err = -EIO;
				goto out_promisc;
			}
351
			/* Clear Rx filter to remove traffic from wire */
352
			status = ice_cfg_dflt_vsi(hw, vsi->idx, false,
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
						  ICE_FLTR_RX);
			if (status) {
				netdev_err(netdev, "Error clearing default VSI %i rx rule\n",
					   vsi->vsi_num);
				vsi->current_netdev_flags |= IFF_PROMISC;
				err = -EIO;
				goto out_promisc;
			}
		}
	}
	goto exit;

out_promisc:
	set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
	goto exit;
out:
	/* if something went wrong then set the changed flag so we try again */
	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
exit:
	clear_bit(__ICE_CFG_BUSY, vsi->state);
	return err;
}

/**
 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
 * @pf: board private structure
 */
static void ice_sync_fltr_subtask(struct ice_pf *pf)
{
	int v;

	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
		return;

	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);

390
	ice_for_each_vsi(pf, v)
391 392 393 394 395 396 397 398
		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
		    ice_vsi_sync_fltr(pf->vsi[v])) {
			/* come back and try again later */
			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
			break;
		}
}

399 400 401 402 403 404 405 406 407 408 409
/**
 * ice_prepare_for_reset - prep for the core to reset
 * @pf: board private structure
 *
 * Inform or close all dependent features in prep for reset.
 */
static void
ice_prepare_for_reset(struct ice_pf *pf)
{
	struct ice_hw *hw = &pf->hw;

410 411 412 413
	/* already prepared for reset */
	if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state))
		return;

414 415 416 417
	/* Notify VFs of impending reset */
	if (ice_check_sq_alive(hw, &hw->mailboxq))
		ice_vc_notify_reset(pf);

418 419 420
	/* disable the VSIs and their queues that are not already DOWN */
	ice_pf_dis_all_vsi(pf);

421 422 423
	if (hw->port_info)
		ice_sched_clear_port(hw->port_info);

424
	ice_shutdown_all_ctrlq(hw);
425 426

	set_bit(__ICE_PREPARED_FOR_RESET, pf->state);
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
}

/**
 * ice_do_reset - Initiate one of many types of resets
 * @pf: board private structure
 * @reset_type: reset type requested
 * before this function was called.
 */
static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
{
	struct device *dev = &pf->pdev->dev;
	struct ice_hw *hw = &pf->hw;

	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
	WARN_ON(in_interrupt());

443
	ice_prepare_for_reset(pf);
444 445 446 447 448

	/* trigger the reset */
	if (ice_reset(hw, reset_type)) {
		dev_err(dev, "reset %d failed\n", reset_type);
		set_bit(__ICE_RESET_FAILED, pf->state);
449
		clear_bit(__ICE_RESET_OICR_RECV, pf->state);
450
		clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
451 452 453
		clear_bit(__ICE_PFR_REQ, pf->state);
		clear_bit(__ICE_CORER_REQ, pf->state);
		clear_bit(__ICE_GLOBR_REQ, pf->state);
454 455 456
		return;
	}

457 458 459 460
	/* PFR is a bit of a special case because it doesn't result in an OICR
	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
	 * associated state bits.
	 */
461 462 463
	if (reset_type == ICE_RESET_PFR) {
		pf->pfr_count++;
		ice_rebuild(pf);
464
		clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
465
		clear_bit(__ICE_PFR_REQ, pf->state);
466
		ice_reset_all_vfs(pf, true);
467 468 469 470 471 472 473 474 475
	}
}

/**
 * ice_reset_subtask - Set up for resetting the device and driver
 * @pf: board private structure
 */
static void ice_reset_subtask(struct ice_pf *pf)
{
476
	enum ice_reset_req reset_type = ICE_RESET_INVAL;
477 478

	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
479 480
	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
	 * of reset is pending and sets bits in pf->state indicating the reset
481
	 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set
482 483 484 485 486
	 * prepare for pending reset if not already (for PF software-initiated
	 * global resets the software should already be prepared for it as
	 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated
	 * by firmware or software on other PFs, that bit is not set so prepare
	 * for the reset now), poll for reset done, rebuild and return.
487
	 */
488
	if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) {
489 490 491 492 493 494 495 496
		/* Perform the largest reset requested */
		if (test_and_clear_bit(__ICE_CORER_RECV, pf->state))
			reset_type = ICE_RESET_CORER;
		if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state))
			reset_type = ICE_RESET_GLOBR;
		/* return if no valid reset type requested */
		if (reset_type == ICE_RESET_INVAL)
			return;
497
		ice_prepare_for_reset(pf);
498 499

		/* make sure we are ready to rebuild */
500
		if (ice_check_reset(&pf->hw)) {
501
			set_bit(__ICE_RESET_FAILED, pf->state);
502 503 504
		} else {
			/* done with reset. start rebuild */
			pf->hw.reset_ongoing = false;
505
			ice_rebuild(pf);
506
			/* clear bit to resume normal operations, but
507
			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
508
			 */
509
			clear_bit(__ICE_RESET_OICR_RECV, pf->state);
510
			clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
511 512 513
			clear_bit(__ICE_PFR_REQ, pf->state);
			clear_bit(__ICE_CORER_REQ, pf->state);
			clear_bit(__ICE_GLOBR_REQ, pf->state);
514
			ice_reset_all_vfs(pf, true);
515
		}
516 517

		return;
518 519 520
	}

	/* No pending resets to finish processing. Check for new resets */
521
	if (test_bit(__ICE_PFR_REQ, pf->state))
522
		reset_type = ICE_RESET_PFR;
523
	if (test_bit(__ICE_CORER_REQ, pf->state))
524
		reset_type = ICE_RESET_CORER;
525
	if (test_bit(__ICE_GLOBR_REQ, pf->state))
526
		reset_type = ICE_RESET_GLOBR;
527 528 529
	/* If no valid reset type requested just return */
	if (reset_type == ICE_RESET_INVAL)
		return;
530

531
	/* reset if not already down or busy */
532 533 534 535 536 537
	if (!test_bit(__ICE_DOWN, pf->state) &&
	    !test_bit(__ICE_CFG_BUSY, pf->state)) {
		ice_do_reset(pf, reset_type);
	}
}

538 539 540 541 542
/**
 * ice_print_link_msg - print link up or down message
 * @vsi: the VSI whose link status is being queried
 * @isup: boolean for if the link is now up or down
 */
543
void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
{
	const char *speed;
	const char *fc;

	if (vsi->current_isup == isup)
		return;

	vsi->current_isup = isup;

	if (!isup) {
		netdev_info(vsi->netdev, "NIC Link is Down\n");
		return;
	}

	switch (vsi->port_info->phy.link_info.link_speed) {
	case ICE_AQ_LINK_SPEED_40GB:
		speed = "40 G";
		break;
	case ICE_AQ_LINK_SPEED_25GB:
		speed = "25 G";
		break;
	case ICE_AQ_LINK_SPEED_20GB:
		speed = "20 G";
		break;
	case ICE_AQ_LINK_SPEED_10GB:
		speed = "10 G";
		break;
	case ICE_AQ_LINK_SPEED_5GB:
		speed = "5 G";
		break;
	case ICE_AQ_LINK_SPEED_2500MB:
		speed = "2.5 G";
		break;
	case ICE_AQ_LINK_SPEED_1000MB:
		speed = "1 G";
		break;
	case ICE_AQ_LINK_SPEED_100MB:
		speed = "100 M";
		break;
	default:
		speed = "Unknown";
		break;
	}

	switch (vsi->port_info->fc.current_mode) {
	case ICE_FC_FULL:
		fc = "RX/TX";
		break;
	case ICE_FC_TX_PAUSE:
		fc = "TX";
		break;
	case ICE_FC_RX_PAUSE:
		fc = "RX";
		break;
598 599 600
	case ICE_FC_NONE:
		fc = "None";
		break;
601 602 603 604 605 606 607 608 609
	default:
		fc = "Unknown";
		break;
	}

	netdev_info(vsi->netdev, "NIC Link is up %sbps, Flow Control: %s\n",
		    speed, fc);
}

610
/**
611 612 613
 * ice_vsi_link_event - update the VSI's netdev
 * @vsi: the VSI on which the link event occurred
 * @link_up: whether or not the VSI needs to be set up or down
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
 */
static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
{
	if (!vsi || test_bit(__ICE_DOWN, vsi->state))
		return;

	if (vsi->type == ICE_VSI_PF) {
		if (!vsi->netdev) {
			dev_dbg(&vsi->back->pdev->dev,
				"vsi->netdev is not initialized!\n");
			return;
		}
		if (link_up) {
			netif_carrier_on(vsi->netdev);
			netif_tx_wake_all_queues(vsi->netdev);
		} else {
			netif_carrier_off(vsi->netdev);
			netif_tx_stop_all_queues(vsi->netdev);
		}
	}
}

/**
 * ice_link_event - process the link event
 * @pf: pf that the link event is associated with
 * @pi: port_info for the port that the link event is associated with
 *
 * Returns -EIO if ice_get_link_status() fails
 * Returns 0 on success
 */
static int
ice_link_event(struct ice_pf *pf, struct ice_port_info *pi)
{
	u8 new_link_speed, old_link_speed;
	struct ice_phy_info *phy_info;
	bool new_link_same_as_old;
	bool new_link, old_link;
	u8 lport;
	u16 v;

	phy_info = &pi->phy;
	phy_info->link_info_old = phy_info->link_info;
	/* Force ice_get_link_status() to update link info */
	phy_info->get_link_info = true;

	old_link = (phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
	old_link_speed = phy_info->link_info_old.link_speed;

	lport = pi->lport;
	if (ice_get_link_status(pi, &new_link)) {
		dev_dbg(&pf->pdev->dev,
			"Could not get link status for port %d\n", lport);
		return -EIO;
	}

	new_link_speed = phy_info->link_info.link_speed;

	new_link_same_as_old = (new_link == old_link &&
				new_link_speed == old_link_speed);

	ice_for_each_vsi(pf, v) {
		struct ice_vsi *vsi = pf->vsi[v];

		if (!vsi || !vsi->port_info)
			continue;

		if (new_link_same_as_old &&
		    (test_bit(__ICE_DOWN, vsi->state) ||
		    new_link == netif_carrier_ok(vsi->netdev)))
			continue;

		if (vsi->port_info->lport == lport) {
			ice_print_link_msg(vsi, new_link);
			ice_vsi_link_event(vsi, new_link);
		}
	}

691 692
	if (!new_link_same_as_old && pf->num_alloc_vfs)
		ice_vc_notify_link_state(pf);
693

694 695 696 697
	return 0;
}

/**
698 699
 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
 * @pf: board private structure
700
 */
701
static void ice_watchdog_subtask(struct ice_pf *pf)
702
{
703
	int i;
704

705 706 707 708
	/* if interface is down do nothing */
	if (test_bit(__ICE_DOWN, pf->state) ||
	    test_bit(__ICE_CFG_BUSY, pf->state))
		return;
709

710 711 712 713
	/* make sure we don't do these things too often */
	if (time_before(jiffies,
			pf->serv_tmr_prev + pf->serv_tmr_period))
		return;
714

715 716 717 718 719 720
	pf->serv_tmr_prev = jiffies;

	/* Update the stats for active netdevs so the network stack
	 * can look at updated numbers whenever it cares to
	 */
	ice_update_pf_stats(pf);
721
	ice_for_each_vsi(pf, i)
722 723
		if (pf->vsi[i] && pf->vsi[i]->netdev)
			ice_update_vsi_stats(pf->vsi[i]);
724 725
}

726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
/**
 * ice_init_link_events - enable/initialize link events
 * @pi: pointer to the port_info instance
 *
 * Returns -EIO on failure, 0 on success
 */
static int ice_init_link_events(struct ice_port_info *pi)
{
	u16 mask;

	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));

	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
		dev_dbg(ice_hw_to_dev(pi->hw),
			"Failed to set link event mask for port %d\n",
			pi->lport);
		return -EIO;
	}

	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
		dev_dbg(ice_hw_to_dev(pi->hw),
			"Failed to enable link events for port %d\n",
			pi->lport);
		return -EIO;
	}

	return 0;
}

/**
 * ice_handle_link_event - handle link event via ARQ
 * @pf: pf that the link event is associated with
 *
 * Return -EINVAL if port_info is null
 * Return status on success
 */
static int ice_handle_link_event(struct ice_pf *pf)
{
	struct ice_port_info *port_info;
	int status;

	port_info = pf->hw.port_info;
	if (!port_info)
		return -EINVAL;

	status = ice_link_event(pf, port_info);
	if (status)
		dev_dbg(&pf->pdev->dev,
			"Could not process link event, error %d\n", status);

	return status;
}

780 781 782 783 784 785 786 787 788 789 790 791 792 793
/**
 * __ice_clean_ctrlq - helper function to clean controlq rings
 * @pf: ptr to struct ice_pf
 * @q_type: specific Control queue type
 */
static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
{
	struct ice_rq_event_info event;
	struct ice_hw *hw = &pf->hw;
	struct ice_ctl_q_info *cq;
	u16 pending, i = 0;
	const char *qtype;
	u32 oldval, val;

794 795 796 797
	/* Do not clean control queue if/when PF reset fails */
	if (test_bit(__ICE_RESET_FAILED, pf->state))
		return 0;

798 799 800 801 802
	switch (q_type) {
	case ICE_CTL_Q_ADMIN:
		cq = &hw->adminq;
		qtype = "Admin";
		break;
803 804 805 806
	case ICE_CTL_Q_MAILBOX:
		cq = &hw->mailboxq;
		qtype = "Mailbox";
		break;
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
	default:
		dev_warn(&pf->pdev->dev, "Unknown control queue type 0x%x\n",
			 q_type);
		return 0;
	}

	/* check for error indications - PF_xx_AxQLEN register layout for
	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
	 */
	val = rd32(hw, cq->rq.len);
	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
		   PF_FW_ARQLEN_ARQCRIT_M)) {
		oldval = val;
		if (val & PF_FW_ARQLEN_ARQVFE_M)
			dev_dbg(&pf->pdev->dev,
				"%s Receive Queue VF Error detected\n", qtype);
		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
			dev_dbg(&pf->pdev->dev,
				"%s Receive Queue Overflow Error detected\n",
				qtype);
		}
		if (val & PF_FW_ARQLEN_ARQCRIT_M)
			dev_dbg(&pf->pdev->dev,
				"%s Receive Queue Critical Error detected\n",
				qtype);
		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
			 PF_FW_ARQLEN_ARQCRIT_M);
		if (oldval != val)
			wr32(hw, cq->rq.len, val);
	}

	val = rd32(hw, cq->sq.len);
	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
		   PF_FW_ATQLEN_ATQCRIT_M)) {
		oldval = val;
		if (val & PF_FW_ATQLEN_ATQVFE_M)
			dev_dbg(&pf->pdev->dev,
				"%s Send Queue VF Error detected\n", qtype);
		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
			dev_dbg(&pf->pdev->dev,
				"%s Send Queue Overflow Error detected\n",
				qtype);
		}
		if (val & PF_FW_ATQLEN_ATQCRIT_M)
			dev_dbg(&pf->pdev->dev,
				"%s Send Queue Critical Error detected\n",
				qtype);
		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
			 PF_FW_ATQLEN_ATQCRIT_M);
		if (oldval != val)
			wr32(hw, cq->sq.len, val);
	}

	event.buf_len = cq->rq_buf_size;
	event.msg_buf = devm_kzalloc(&pf->pdev->dev, event.buf_len,
				     GFP_KERNEL);
	if (!event.msg_buf)
		return 0;

	do {
		enum ice_status ret;
868
		u16 opcode;
869 870 871 872 873 874 875 876 877 878

		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
		if (ret == ICE_ERR_AQ_NO_WORK)
			break;
		if (ret) {
			dev_err(&pf->pdev->dev,
				"%s Receive Queue event error %d\n", qtype,
				ret);
			break;
		}
879 880 881 882

		opcode = le16_to_cpu(event.desc.opcode);

		switch (opcode) {
883 884 885 886 887
		case ice_aqc_opc_get_link_status:
			if (ice_handle_link_event(pf))
				dev_err(&pf->pdev->dev,
					"Could not handle link event\n");
			break;
888 889 890
		case ice_mbx_opc_send_msg_to_pf:
			ice_vc_process_vf_msg(pf, &event);
			break;
891 892 893
		case ice_aqc_opc_fw_logging:
			ice_output_fw_log(hw, &event.desc, event.msg_buf);
			break;
894 895 896 897 898 899
		default:
			dev_dbg(&pf->pdev->dev,
				"%s Receive Queue unknown event 0x%04x ignored\n",
				qtype, opcode);
			break;
		}
900 901 902 903 904 905 906
	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));

	devm_kfree(&pf->pdev->dev, event.msg_buf);

	return pending && (i == ICE_DFLT_IRQ_WORK);
}

907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
/**
 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
 * @hw: pointer to hardware info
 * @cq: control queue information
 *
 * returns true if there are pending messages in a queue, false if there aren't
 */
static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
	u16 ntu;

	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
	return cq->rq.next_to_clean != ntu;
}

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
/**
 * ice_clean_adminq_subtask - clean the AdminQ rings
 * @pf: board private structure
 */
static void ice_clean_adminq_subtask(struct ice_pf *pf)
{
	struct ice_hw *hw = &pf->hw;

	if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
		return;

	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
		return;

	clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);

938 939 940 941 942 943 944
	/* There might be a situation where new messages arrive to a control
	 * queue between processing the last message and clearing the
	 * EVENT_PENDING bit. So before exiting, check queue head again (using
	 * ice_ctrlq_pending) and process new messages if any.
	 */
	if (ice_ctrlq_pending(hw, &hw->adminq))
		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
945 946 947 948

	ice_flush(hw);
}

949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
/**
 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
 * @pf: board private structure
 */
static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
{
	struct ice_hw *hw = &pf->hw;

	if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state))
		return;

	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
		return;

	clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);

	if (ice_ctrlq_pending(hw, &hw->mailboxq))
		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);

	ice_flush(hw);
}

971 972 973 974 975 976 977 978
/**
 * ice_service_task_schedule - schedule the service task to wake up
 * @pf: board private structure
 *
 * If not already scheduled, this puts the task into the work queue.
 */
static void ice_service_task_schedule(struct ice_pf *pf)
{
979
	if (!test_bit(__ICE_SERVICE_DIS, pf->state) &&
980 981
	    !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) &&
	    !test_bit(__ICE_NEEDS_RESTART, pf->state))
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
		queue_work(ice_wq, &pf->serv_task);
}

/**
 * ice_service_task_complete - finish up the service task
 * @pf: board private structure
 */
static void ice_service_task_complete(struct ice_pf *pf)
{
	WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state));

	/* force memory (pf->state) to sync before next service task */
	smp_mb__before_atomic();
	clear_bit(__ICE_SERVICE_SCHED, pf->state);
}

998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
/**
 * ice_service_task_stop - stop service task and cancel works
 * @pf: board private structure
 */
static void ice_service_task_stop(struct ice_pf *pf)
{
	set_bit(__ICE_SERVICE_DIS, pf->state);

	if (pf->serv_tmr.function)
		del_timer_sync(&pf->serv_tmr);
	if (pf->serv_task.func)
		cancel_work_sync(&pf->serv_task);

	clear_bit(__ICE_SERVICE_SCHED, pf->state);
}

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
/**
 * ice_service_task_restart - restart service task and schedule works
 * @pf: board private structure
 *
 * This function is needed for suspend and resume works (e.g WoL scenario)
 */
static void ice_service_task_restart(struct ice_pf *pf)
{
	clear_bit(__ICE_SERVICE_DIS, pf->state);
	ice_service_task_schedule(pf);
}

1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
/**
 * ice_service_timer - timer callback to schedule service task
 * @t: pointer to timer_list
 */
static void ice_service_timer(struct timer_list *t)
{
	struct ice_pf *pf = from_timer(pf, t, serv_tmr);

	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
	ice_service_task_schedule(pf);
}

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
/**
 * ice_handle_mdd_event - handle malicious driver detect event
 * @pf: pointer to the PF structure
 *
 * Called from service task. OICR interrupt handler indicates MDD event
 */
static void ice_handle_mdd_event(struct ice_pf *pf)
{
	struct ice_hw *hw = &pf->hw;
	bool mdd_detected = false;
	u32 reg;
1049
	int i;
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138

	if (!test_bit(__ICE_MDD_EVENT_PENDING, pf->state))
		return;

	/* find what triggered the MDD event */
	reg = rd32(hw, GL_MDET_TX_PQM);
	if (reg & GL_MDET_TX_PQM_VALID_M) {
		u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
				GL_MDET_TX_PQM_PF_NUM_S;
		u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
				GL_MDET_TX_PQM_VF_NUM_S;
		u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
				GL_MDET_TX_PQM_MAL_TYPE_S;
		u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
				GL_MDET_TX_PQM_QNUM_S);

		if (netif_msg_tx_err(pf))
			dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
				 event, queue, pf_num, vf_num);
		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
		mdd_detected = true;
	}

	reg = rd32(hw, GL_MDET_TX_TCLAN);
	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
		u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
				GL_MDET_TX_TCLAN_PF_NUM_S;
		u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
				GL_MDET_TX_TCLAN_VF_NUM_S;
		u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
				GL_MDET_TX_TCLAN_MAL_TYPE_S;
		u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
				GL_MDET_TX_TCLAN_QNUM_S);

		if (netif_msg_rx_err(pf))
			dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
				 event, queue, pf_num, vf_num);
		wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
		mdd_detected = true;
	}

	reg = rd32(hw, GL_MDET_RX);
	if (reg & GL_MDET_RX_VALID_M) {
		u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
				GL_MDET_RX_PF_NUM_S;
		u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
				GL_MDET_RX_VF_NUM_S;
		u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
				GL_MDET_RX_MAL_TYPE_S;
		u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
				GL_MDET_RX_QNUM_S);

		if (netif_msg_rx_err(pf))
			dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
				 event, queue, pf_num, vf_num);
		wr32(hw, GL_MDET_RX, 0xffffffff);
		mdd_detected = true;
	}

	if (mdd_detected) {
		bool pf_mdd_detected = false;

		reg = rd32(hw, PF_MDET_TX_PQM);
		if (reg & PF_MDET_TX_PQM_VALID_M) {
			wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
			dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n");
			pf_mdd_detected = true;
		}

		reg = rd32(hw, PF_MDET_TX_TCLAN);
		if (reg & PF_MDET_TX_TCLAN_VALID_M) {
			wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
			dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n");
			pf_mdd_detected = true;
		}

		reg = rd32(hw, PF_MDET_RX);
		if (reg & PF_MDET_RX_VALID_M) {
			wr32(hw, PF_MDET_RX, 0xFFFF);
			dev_info(&pf->pdev->dev, "RX driver issue detected, PF reset issued\n");
			pf_mdd_detected = true;
		}
		/* Queue belongs to the PF initiate a reset */
		if (pf_mdd_detected) {
			set_bit(__ICE_NEEDS_RESTART, pf->state);
			ice_service_task_schedule(pf);
		}
	}

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
	/* see if one of the VFs needs to be reset */
	for (i = 0; i < pf->num_alloc_vfs && mdd_detected; i++) {
		struct ice_vf *vf = &pf->vf[i];

		reg = rd32(hw, VP_MDET_TX_PQM(i));
		if (reg & VP_MDET_TX_PQM_VALID_M) {
			wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
			vf->num_mdd_events++;
			dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n",
				 i);
		}

		reg = rd32(hw, VP_MDET_TX_TCLAN(i));
		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
			wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
			vf->num_mdd_events++;
			dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n",
				 i);
		}

		reg = rd32(hw, VP_MDET_TX_TDPU(i));
		if (reg & VP_MDET_TX_TDPU_VALID_M) {
			wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
			vf->num_mdd_events++;
			dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n",
				 i);
		}

		reg = rd32(hw, VP_MDET_RX(i));
		if (reg & VP_MDET_RX_VALID_M) {
			wr32(hw, VP_MDET_RX(i), 0xFFFF);
			vf->num_mdd_events++;
			dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n",
				 i);
		}

		if (vf->num_mdd_events > ICE_DFLT_NUM_MDD_EVENTS_ALLOWED) {
			dev_info(&pf->pdev->dev,
				 "Too many MDD events on VF %d, disabled\n", i);
			dev_info(&pf->pdev->dev,
				 "Use PF Control I/F to re-enable the VF\n");
			set_bit(ICE_VF_STATE_DIS, vf->vf_states);
		}
	}

1184 1185 1186 1187 1188 1189 1190 1191
	/* re-enable MDD interrupt cause */
	clear_bit(__ICE_MDD_EVENT_PENDING, pf->state);
	reg = rd32(hw, PFINT_OICR_ENA);
	reg |= PFINT_OICR_MAL_DETECT_M;
	wr32(hw, PFINT_OICR_ENA, reg);
	ice_flush(hw);
}

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
/**
 * ice_service_task - manage and run subtasks
 * @work: pointer to work_struct contained by the PF struct
 */
static void ice_service_task(struct work_struct *work)
{
	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
	unsigned long start_time = jiffies;

	/* subtasks */
1202 1203 1204 1205

	/* process reset requests first */
	ice_reset_subtask(pf);

1206
	/* bail if a reset/recovery cycle is pending or rebuild failed */
1207
	if (ice_is_reset_in_progress(pf->state) ||
1208 1209
	    test_bit(__ICE_SUSPENDED, pf->state) ||
	    test_bit(__ICE_NEEDS_RESTART, pf->state)) {
1210 1211 1212 1213
		ice_service_task_complete(pf);
		return;
	}

1214
	ice_check_for_hang_subtask(pf);
1215
	ice_sync_fltr_subtask(pf);
1216
	ice_handle_mdd_event(pf);
1217
	ice_process_vflr_event(pf);
1218
	ice_watchdog_subtask(pf);
1219
	ice_clean_adminq_subtask(pf);
1220
	ice_clean_mailboxq_subtask(pf);
1221 1222 1223 1224 1225 1226 1227 1228 1229

	/* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */
	ice_service_task_complete(pf);

	/* If the tasks have taken longer than one service timer period
	 * or there is more work to be done, reset the service timer to
	 * schedule the service task now.
	 */
	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
1230
	    test_bit(__ICE_MDD_EVENT_PENDING, pf->state) ||
1231
	    test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) ||
1232
	    test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
1233 1234 1235 1236
	    test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
		mod_timer(&pf->serv_tmr, jiffies);
}

1237 1238
/**
 * ice_set_ctrlq_len - helper function to set controlq length
1239
 * @hw: pointer to the HW instance
1240 1241 1242 1243 1244 1245 1246
 */
static void ice_set_ctrlq_len(struct ice_hw *hw)
{
	hw->adminq.num_rq_entries = ICE_AQ_LEN;
	hw->adminq.num_sq_entries = ICE_AQ_LEN;
	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
1247 1248 1249 1250
	hw->mailboxq.num_rq_entries = ICE_MBXQ_LEN;
	hw->mailboxq.num_sq_entries = ICE_MBXQ_LEN;
	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
1251 1252
}

1253 1254 1255 1256 1257 1258 1259 1260
/**
 * ice_irq_affinity_notify - Callback for affinity changes
 * @notify: context as to what irq was changed
 * @mask: the new affinity mask
 *
 * This is a callback function used by the irq_set_affinity_notifier function
 * so that we may register to receive changes to the irq affinity masks.
 */
1261 1262 1263
static void
ice_irq_affinity_notify(struct irq_affinity_notify *notify,
			const cpumask_t *mask)
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
{
	struct ice_q_vector *q_vector =
		container_of(notify, struct ice_q_vector, affinity_notify);

	cpumask_copy(&q_vector->affinity_mask, mask);
}

/**
 * ice_irq_affinity_release - Callback for affinity notifier release
 * @ref: internal core kernel usage
 *
 * This is a callback function used by the irq_set_affinity_notifier function
 * to inform the current notification subscriber that they will no longer
 * receive notifications.
 */
static void ice_irq_affinity_release(struct kref __always_unused *ref) {}

/**
 * ice_vsi_ena_irq - Enable IRQ for the given VSI
 * @vsi: the VSI being configured
 */
static int ice_vsi_ena_irq(struct ice_vsi *vsi)
{
	struct ice_pf *pf = vsi->back;
	struct ice_hw *hw = &pf->hw;

	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
		int i;

		for (i = 0; i < vsi->num_q_vectors; i++)
			ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
	}

	ice_flush(hw);
	return 0;
}

/**
 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
 * @vsi: the VSI being configured
 * @basename: name for the vector
 */
static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
{
	int q_vectors = vsi->num_q_vectors;
	struct ice_pf *pf = vsi->back;
1310
	int base = vsi->sw_base_vector;
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
	int rx_int_idx = 0;
	int tx_int_idx = 0;
	int vector, err;
	int irq_num;

	for (vector = 0; vector < q_vectors; vector++) {
		struct ice_q_vector *q_vector = vsi->q_vectors[vector];

		irq_num = pf->msix_entries[base + vector].vector;

		if (q_vector->tx.ring && q_vector->rx.ring) {
			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
			tx_int_idx++;
		} else if (q_vector->rx.ring) {
			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
				 "%s-%s-%d", basename, "rx", rx_int_idx++);
		} else if (q_vector->tx.ring) {
			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
				 "%s-%s-%d", basename, "tx", tx_int_idx++);
		} else {
			/* skip this unused q_vector */
			continue;
		}
1335 1336 1337
		err = devm_request_irq(&pf->pdev->dev, irq_num,
				       vsi->irq_handler, 0,
				       q_vector->name, q_vector);
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
		if (err) {
			netdev_err(vsi->netdev,
				   "MSIX request_irq failed, error: %d\n", err);
			goto free_q_irqs;
		}

		/* register for affinity change notifications */
		q_vector->affinity_notify.notify = ice_irq_affinity_notify;
		q_vector->affinity_notify.release = ice_irq_affinity_release;
		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);

		/* assign the mask for this irq */
		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
	}

	vsi->irqs_ready = true;
	return 0;

free_q_irqs:
	while (vector) {
		vector--;
		irq_num = pf->msix_entries[base + vector].vector,
		irq_set_affinity_notifier(irq_num, NULL);
		irq_set_affinity_hint(irq_num, NULL);
		devm_free_irq(&pf->pdev->dev, irq_num, &vsi->q_vectors[vector]);
	}
	return err;
}

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
/**
 * ice_ena_misc_vector - enable the non-queue interrupts
 * @pf: board private structure
 */
static void ice_ena_misc_vector(struct ice_pf *pf)
{
	struct ice_hw *hw = &pf->hw;
	u32 val;

	/* clear things first */
	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
	rd32(hw, PFINT_OICR);		/* read to clear */

1380
	val = (PFINT_OICR_ECC_ERR_M |
1381 1382 1383
	       PFINT_OICR_MAL_DETECT_M |
	       PFINT_OICR_GRST_M |
	       PFINT_OICR_PCI_EXCEPTION_M |
1384
	       PFINT_OICR_VFLR_M |
1385 1386
	       PFINT_OICR_HMC_ERR_M |
	       PFINT_OICR_PE_CRITERR_M);
1387 1388 1389 1390

	wr32(hw, PFINT_OICR_ENA, val);

	/* SW_ITR_IDX = 0, but don't change INTENA */
1391
	wr32(hw, GLINT_DYN_CTL(pf->hw_oicr_idx),
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
}

/**
 * ice_misc_intr - misc interrupt handler
 * @irq: interrupt number
 * @data: pointer to a q_vector
 */
static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
{
	struct ice_pf *pf = (struct ice_pf *)data;
	struct ice_hw *hw = &pf->hw;
	irqreturn_t ret = IRQ_NONE;
	u32 oicr, ena_mask;

	set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
1408
	set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1409 1410 1411 1412

	oicr = rd32(hw, PFINT_OICR);
	ena_mask = rd32(hw, PFINT_OICR_ENA);

1413 1414 1415 1416
	if (oicr & PFINT_OICR_MAL_DETECT_M) {
		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
		set_bit(__ICE_MDD_EVENT_PENDING, pf->state);
	}
1417 1418 1419 1420
	if (oicr & PFINT_OICR_VFLR_M) {
		ena_mask &= ~PFINT_OICR_VFLR_M;
		set_bit(__ICE_VFLR_EVENT_PENDING, pf->state);
	}
1421

1422 1423
	if (oicr & PFINT_OICR_GRST_M) {
		u32 reset;
1424

1425 1426 1427 1428 1429 1430 1431 1432 1433
		/* we have a reset warning */
		ena_mask &= ~PFINT_OICR_GRST_M;
		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
			GLGEN_RSTAT_RESET_TYPE_S;

		if (reset == ICE_RESET_CORER)
			pf->corer_count++;
		else if (reset == ICE_RESET_GLOBR)
			pf->globr_count++;
1434
		else if (reset == ICE_RESET_EMPR)
1435
			pf->empr_count++;
1436 1437 1438
		else
			dev_dbg(&pf->pdev->dev, "Invalid reset type %d\n",
				reset);
1439 1440 1441 1442 1443 1444

		/* If a reset cycle isn't already in progress, we set a bit in
		 * pf->state so that the service task can start a reset/rebuild.
		 * We also make note of which reset happened so that peer
		 * devices/drivers can be informed.
		 */
1445
		if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) {
1446 1447 1448 1449 1450 1451 1452
			if (reset == ICE_RESET_CORER)
				set_bit(__ICE_CORER_RECV, pf->state);
			else if (reset == ICE_RESET_GLOBR)
				set_bit(__ICE_GLOBR_RECV, pf->state);
			else
				set_bit(__ICE_EMPR_RECV, pf->state);

1453 1454 1455 1456 1457 1458
			/* There are couple of different bits at play here.
			 * hw->reset_ongoing indicates whether the hardware is
			 * in reset. This is set to true when a reset interrupt
			 * is received and set back to false after the driver
			 * has determined that the hardware is out of reset.
			 *
1459
			 * __ICE_RESET_OICR_RECV in pf->state indicates
1460 1461 1462 1463 1464 1465 1466
			 * that a post reset rebuild is required before the
			 * driver is operational again. This is set above.
			 *
			 * As this is the start of the reset/rebuild cycle, set
			 * both to indicate that.
			 */
			hw->reset_ongoing = true;
1467 1468 1469
		}
	}

1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
	if (oicr & PFINT_OICR_HMC_ERR_M) {
		ena_mask &= ~PFINT_OICR_HMC_ERR_M;
		dev_dbg(&pf->pdev->dev,
			"HMC Error interrupt - info 0x%x, data 0x%x\n",
			rd32(hw, PFHMC_ERRORINFO),
			rd32(hw, PFHMC_ERRORDATA));
	}

	/* Report and mask off any remaining unexpected interrupts */
	oicr &= ena_mask;
	if (oicr) {
		dev_dbg(&pf->pdev->dev, "unhandled interrupt oicr=0x%08x\n",
			oicr);
		/* If a critical error is pending there is no choice but to
		 * reset the device.
		 */
		if (oicr & (PFINT_OICR_PE_CRITERR_M |
			    PFINT_OICR_PCI_EXCEPTION_M |
1488
			    PFINT_OICR_ECC_ERR_M)) {
1489
			set_bit(__ICE_PFR_REQ, pf->state);
1490 1491
			ice_service_task_schedule(pf);
		}
1492 1493 1494 1495 1496 1497 1498 1499
		ena_mask &= ~oicr;
	}
	ret = IRQ_HANDLED;

	/* re-enable interrupt causes that are not handled during this pass */
	wr32(hw, PFINT_OICR_ENA, ena_mask);
	if (!test_bit(__ICE_DOWN, pf->state)) {
		ice_service_task_schedule(pf);
1500
		ice_irq_dynamic_ena(hw, NULL, NULL);
1501 1502 1503 1504 1505
	}

	return ret;
}

1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
/**
 * ice_dis_ctrlq_interrupts - disable control queue interrupts
 * @hw: pointer to HW structure
 */
static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
{
	/* disable Admin queue Interrupt causes */
	wr32(hw, PFINT_FW_CTL,
	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);

	/* disable Mailbox queue Interrupt causes */
	wr32(hw, PFINT_MBX_CTL,
	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);

	/* disable Control queue Interrupt causes */
	wr32(hw, PFINT_OICR_CTL,
	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);

	ice_flush(hw);
}

1527 1528 1529 1530 1531 1532
/**
 * ice_free_irq_msix_misc - Unroll misc vector setup
 * @pf: board private structure
 */
static void ice_free_irq_msix_misc(struct ice_pf *pf)
{
1533 1534 1535 1536
	struct ice_hw *hw = &pf->hw;

	ice_dis_ctrlq_interrupts(hw);

1537
	/* disable OICR interrupt */
1538 1539
	wr32(hw, PFINT_OICR_ENA, 0);
	ice_flush(hw);
1540 1541

	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags) && pf->msix_entries) {
1542
		synchronize_irq(pf->msix_entries[pf->sw_oicr_idx].vector);
1543
		devm_free_irq(&pf->pdev->dev,
1544
			      pf->msix_entries[pf->sw_oicr_idx].vector, pf);
1545 1546
	}

1547 1548 1549 1550
	pf->num_avail_sw_msix += 1;
	ice_free_res(pf->sw_irq_tracker, pf->sw_oicr_idx, ICE_RES_MISC_VEC_ID);
	pf->num_avail_hw_msix += 1;
	ice_free_res(pf->hw_irq_tracker, pf->hw_oicr_idx, ICE_RES_MISC_VEC_ID);
1551 1552
}

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
/**
 * ice_ena_ctrlq_interrupts - enable control queue interrupts
 * @hw: pointer to HW structure
 * @v_idx: HW vector index to associate the control queue interrupts with
 */
static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 v_idx)
{
	u32 val;

	val = ((v_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
	       PFINT_OICR_CTL_CAUSE_ENA_M);
	wr32(hw, PFINT_OICR_CTL, val);

	/* enable Admin queue Interrupt causes */
	val = ((v_idx & PFINT_FW_CTL_MSIX_INDX_M) |
	       PFINT_FW_CTL_CAUSE_ENA_M);
	wr32(hw, PFINT_FW_CTL, val);

	/* enable Mailbox queue Interrupt causes */
	val = ((v_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
	       PFINT_MBX_CTL_CAUSE_ENA_M);
	wr32(hw, PFINT_MBX_CTL, val);

	ice_flush(hw);
}

1579 1580 1581 1582 1583
/**
 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
 * @pf: board private structure
 *
 * This sets up the handler for MSIX 0, which is used to manage the
1584
 * non-queue interrupts, e.g. AdminQ and errors. This is not used
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
 * when in MSI or Legacy interrupt mode.
 */
static int ice_req_irq_msix_misc(struct ice_pf *pf)
{
	struct ice_hw *hw = &pf->hw;
	int oicr_idx, err = 0;

	if (!pf->int_name[0])
		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
			 dev_driver_string(&pf->pdev->dev),
			 dev_name(&pf->pdev->dev));

1597 1598 1599 1600
	/* Do not request IRQ but do enable OICR interrupt since settings are
	 * lost during reset. Note that this function is called only during
	 * rebuild path and not while reset is in progress.
	 */
1601
	if (ice_is_reset_in_progress(pf->state))
1602 1603
		goto skip_req_irq;

1604 1605
	/* reserve one vector in sw_irq_tracker for misc interrupts */
	oicr_idx = ice_get_res(pf, pf->sw_irq_tracker, 1, ICE_RES_MISC_VEC_ID);
1606 1607 1608
	if (oicr_idx < 0)
		return oicr_idx;

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
	pf->num_avail_sw_msix -= 1;
	pf->sw_oicr_idx = oicr_idx;

	/* reserve one vector in hw_irq_tracker for misc interrupts */
	oicr_idx = ice_get_res(pf, pf->hw_irq_tracker, 1, ICE_RES_MISC_VEC_ID);
	if (oicr_idx < 0) {
		ice_free_res(pf->sw_irq_tracker, 1, ICE_RES_MISC_VEC_ID);
		pf->num_avail_sw_msix += 1;
		return oicr_idx;
	}
	pf->num_avail_hw_msix -= 1;
	pf->hw_oicr_idx = oicr_idx;
1621 1622

	err = devm_request_irq(&pf->pdev->dev,
1623
			       pf->msix_entries[pf->sw_oicr_idx].vector,
1624 1625 1626 1627 1628
			       ice_misc_intr, 0, pf->int_name, pf);
	if (err) {
		dev_err(&pf->pdev->dev,
			"devm_request_irq for %s failed: %d\n",
			pf->int_name, err);
1629 1630 1631 1632
		ice_free_res(pf->sw_irq_tracker, 1, ICE_RES_MISC_VEC_ID);
		pf->num_avail_sw_msix += 1;
		ice_free_res(pf->hw_irq_tracker, 1, ICE_RES_MISC_VEC_ID);
		pf->num_avail_hw_msix += 1;
1633 1634 1635
		return err;
	}

1636
skip_req_irq:
1637 1638
	ice_ena_misc_vector(pf);

1639
	ice_ena_ctrlq_interrupts(hw, pf->hw_oicr_idx);
1640
	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->hw_oicr_idx),
1641
	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
1642 1643

	ice_flush(hw);
1644
	ice_irq_dynamic_ena(hw, NULL, NULL);
1645 1646 1647 1648

	return 0;
}

1649
/**
1650 1651
 * ice_napi_del - Remove NAPI handler for the VSI
 * @vsi: VSI for which NAPI handler is to be removed
1652
 */
1653
void ice_napi_del(struct ice_vsi *vsi)
1654
{
1655
	int v_idx;
1656

1657 1658
	if (!vsi->netdev)
		return;
1659

1660 1661
	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++)
		netif_napi_del(&vsi->q_vectors[v_idx]->napi);
1662 1663 1664
}

/**
1665 1666
 * ice_napi_add - register NAPI handler for the VSI
 * @vsi: VSI for which NAPI handler is to be registered
1667
 *
1668 1669 1670
 * This function is only called in the driver's load path. Registering the NAPI
 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
 * reset/rebuild, etc.)
1671
 */
1672
static void ice_napi_add(struct ice_vsi *vsi)
1673
{
1674
	int v_idx;
1675

1676
	if (!vsi->netdev)
1677 1678 1679
		return;

	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++)
1680 1681
		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
			       ice_napi_poll, NAPI_POLL_WEIGHT);
1682 1683 1684
}

/**
1685 1686
 * ice_cfg_netdev - Allocate, configure and register a netdev
 * @vsi: the VSI associated with the new netdev
1687 1688 1689 1690 1691
 *
 * Returns 0 on success, negative value on failure
 */
static int ice_cfg_netdev(struct ice_vsi *vsi)
{
1692 1693 1694 1695
	netdev_features_t csumo_features;
	netdev_features_t vlano_features;
	netdev_features_t dflt_features;
	netdev_features_t tso_features;
1696 1697 1698
	struct ice_netdev_priv *np;
	struct net_device *netdev;
	u8 mac_addr[ETH_ALEN];
1699
	int err;
1700

1701 1702
	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
				    vsi->alloc_rxq);
1703 1704 1705 1706 1707 1708 1709
	if (!netdev)
		return -ENOMEM;

	vsi->netdev = netdev;
	np = netdev_priv(netdev);
	np->vsi = vsi;

1710 1711 1712 1713 1714 1715
	dflt_features = NETIF_F_SG	|
			NETIF_F_HIGHDMA	|
			NETIF_F_RXHASH;

	csumo_features = NETIF_F_RXCSUM	  |
			 NETIF_F_IP_CSUM  |
1716
			 NETIF_F_SCTP_CRC |
1717 1718 1719 1720 1721 1722 1723 1724
			 NETIF_F_IPV6_CSUM;

	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
			 NETIF_F_HW_VLAN_CTAG_TX     |
			 NETIF_F_HW_VLAN_CTAG_RX;

	tso_features = NETIF_F_TSO;

1725
	/* set features that user can change */
1726 1727
	netdev->hw_features = dflt_features | csumo_features |
			      vlano_features | tso_features;
1728 1729 1730

	/* enable features */
	netdev->features |= netdev->hw_features;
1731 1732 1733 1734 1735
	/* encap and VLAN devices inherit default, csumo and tso features */
	netdev->hw_enc_features |= dflt_features | csumo_features |
				   tso_features;
	netdev->vlan_features |= dflt_features | csumo_features |
				 tso_features;
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746

	if (vsi->type == ICE_VSI_PF) {
		SET_NETDEV_DEV(netdev, &vsi->back->pdev->dev);
		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);

		ether_addr_copy(netdev->dev_addr, mac_addr);
		ether_addr_copy(netdev->perm_addr, mac_addr);
	}

	netdev->priv_flags |= IFF_UNICAST_FLT;

1747 1748 1749
	/* assign netdev_ops */
	netdev->netdev_ops = &ice_netdev_ops;

1750 1751 1752
	/* setup watchdog timeout value to be 5 second */
	netdev->watchdog_timeo = 5 * HZ;

1753 1754
	ice_set_ethtool_ops(netdev);

1755 1756 1757
	netdev->min_mtu = ETH_MIN_MTU;
	netdev->max_mtu = ICE_MAX_MTU;

1758 1759 1760
	err = register_netdev(vsi->netdev);
	if (err)
		return err;
1761

1762
	netif_carrier_off(vsi->netdev);
1763

1764 1765
	/* make sure transmit queues start off as stopped */
	netif_tx_stop_all_queues(vsi->netdev);
1766 1767 1768 1769

	return 0;
}

1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
/**
 * ice_fill_rss_lut - Fill the RSS lookup table with default values
 * @lut: Lookup table
 * @rss_table_size: Lookup table size
 * @rss_size: Range of queue number for hashing
 */
void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
{
	u16 i;

	for (i = 0; i < rss_table_size; i++)
		lut[i] = i % rss_size;
}

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
/**
 * ice_pf_vsi_setup - Set up a PF VSI
 * @pf: board private structure
 * @pi: pointer to the port_info instance
 *
 * Returns pointer to the successfully allocated VSI sw struct on success,
 * otherwise returns NULL on failure.
 */
static struct ice_vsi *
ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
{
	return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID);
}

1798
/**
1799
 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
1800 1801
 * @netdev: network interface to be adjusted
 * @proto: unused protocol
1802
 * @vid: VLAN ID to be added
1803
 *
1804
 * net_device_ops implementation for adding VLAN IDs
1805
 */
1806 1807 1808
static int
ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto,
		    u16 vid)
1809 1810 1811
{
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct ice_vsi *vsi = np->vsi;
1812
	int ret;
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822

	if (vid >= VLAN_N_VID) {
		netdev_err(netdev, "VLAN id requested %d is out of range %d\n",
			   vid, VLAN_N_VID);
		return -EINVAL;
	}

	if (vsi->info.pvid)
		return -EINVAL;

1823 1824
	/* Enable VLAN pruning when VLAN 0 is added */
	if (unlikely(!vid)) {
1825
		ret = ice_cfg_vlan_pruning(vsi, true, false);
1826 1827 1828 1829
		if (ret)
			return ret;
	}

1830
	/* Add all VLAN IDs including 0 to the switch filter. VLAN ID 0 is
1831 1832 1833
	 * needed to continue allowing all untagged packets since VLAN prune
	 * list is applied to all packets by the switch
	 */
1834 1835 1836 1837 1838 1839 1840
	ret = ice_vsi_add_vlan(vsi, vid);
	if (!ret) {
		vsi->vlan_ena = true;
		set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
	}

	return ret;
1841 1842 1843
}

/**
1844
 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
1845 1846
 * @netdev: network interface to be adjusted
 * @proto: unused protocol
1847
 * @vid: VLAN ID to be removed
1848
 *
1849
 * net_device_ops implementation for removing VLAN IDs
1850
 */
1851 1852 1853
static int
ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto,
		     u16 vid)
1854 1855 1856
{
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct ice_vsi *vsi = np->vsi;
1857
	int ret;
1858 1859 1860 1861

	if (vsi->info.pvid)
		return -EINVAL;

1862 1863
	/* Make sure ice_vsi_kill_vlan is successful before updating VLAN
	 * information
1864
	 */
1865 1866 1867
	ret = ice_vsi_kill_vlan(vsi, vid);
	if (ret)
		return ret;
1868

1869 1870
	/* Disable VLAN pruning when VLAN 0 is removed */
	if (unlikely(!vid))
1871
		ret = ice_cfg_vlan_pruning(vsi, false, false);
1872

1873 1874 1875
	vsi->vlan_ena = false;
	set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
	return ret;
1876 1877
}

1878 1879 1880 1881 1882 1883 1884 1885
/**
 * ice_setup_pf_sw - Setup the HW switch on startup or after reset
 * @pf: board private structure
 *
 * Returns 0 on success, negative value on failure
 */
static int ice_setup_pf_sw(struct ice_pf *pf)
{
1886 1887
	LIST_HEAD(tmp_add_list);
	u8 broadcast[ETH_ALEN];
1888 1889 1890
	struct ice_vsi *vsi;
	int status = 0;

1891
	if (ice_is_reset_in_progress(pf->state))
1892 1893 1894 1895 1896 1897
		return -EBUSY;

	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
	if (!vsi) {
		status = -ENOMEM;
		goto unroll_vsi_setup;
1898 1899
	}

1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
	status = ice_cfg_netdev(vsi);
	if (status) {
		status = -ENODEV;
		goto unroll_vsi_setup;
	}

	/* registering the NAPI handler requires both the queues and
	 * netdev to be created, which are done in ice_pf_vsi_setup()
	 * and ice_cfg_netdev() respectively
	 */
	ice_napi_add(vsi);

1912 1913
	/* To add a MAC filter, first add the MAC to a list and then
	 * pass the list to ice_add_mac.
1914
	 */
1915 1916

	 /* Add a unicast MAC filter so the VSI can get its packets */
1917 1918 1919
	status = ice_add_mac_to_list(vsi, &tmp_add_list,
				     vsi->port_info->mac.perm_addr);
	if (status)
1920
		goto unroll_napi_add;
1921 1922

	/* VSI needs to receive broadcast traffic, so add the broadcast
1923
	 * MAC address to the list as well.
1924 1925 1926 1927
	 */
	eth_broadcast_addr(broadcast);
	status = ice_add_mac_to_list(vsi, &tmp_add_list, broadcast);
	if (status)
1928
		goto free_mac_list;
1929 1930 1931 1932 1933 1934

	/* program MAC filters for entries in tmp_add_list */
	status = ice_add_mac(&pf->hw, &tmp_add_list);
	if (status) {
		dev_err(&pf->pdev->dev, "Could not add MAC filters\n");
		status = -ENOMEM;
1935
		goto free_mac_list;
1936 1937 1938 1939 1940
	}

	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
	return status;

1941
free_mac_list:
1942 1943
	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);

1944
unroll_napi_add:
1945
	if (vsi) {
1946
		ice_napi_del(vsi);
1947
		if (vsi->netdev) {
1948 1949
			if (vsi->netdev->reg_state == NETREG_REGISTERED)
				unregister_netdev(vsi->netdev);
1950 1951 1952
			free_netdev(vsi->netdev);
			vsi->netdev = NULL;
		}
1953
	}
1954

1955 1956 1957
unroll_vsi_setup:
	if (vsi) {
		ice_vsi_free_q_vectors(vsi);
1958 1959 1960 1961 1962 1963 1964 1965 1966
		ice_vsi_delete(vsi);
		ice_vsi_put_qs(vsi);
		pf->q_left_tx += vsi->alloc_txq;
		pf->q_left_rx += vsi->alloc_rxq;
		ice_vsi_clear(vsi);
	}
	return status;
}

1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
/**
 * ice_determine_q_usage - Calculate queue distribution
 * @pf: board private structure
 *
 * Return -ENOMEM if we don't get enough queues for all ports
 */
static void ice_determine_q_usage(struct ice_pf *pf)
{
	u16 q_left_tx, q_left_rx;

	q_left_tx = pf->hw.func_caps.common_cap.num_txq;
	q_left_rx = pf->hw.func_caps.common_cap.num_rxq;

1980
	pf->num_lan_tx = min_t(int, q_left_tx, num_online_cpus());
1981

1982
	/* only 1 Rx queue unless RSS is enabled */
1983 1984 1985 1986
	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags))
		pf->num_lan_rx = 1;
	else
		pf->num_lan_rx = min_t(int, q_left_rx, num_online_cpus());
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

	pf->q_left_tx = q_left_tx - pf->num_lan_tx;
	pf->q_left_rx = q_left_rx - pf->num_lan_rx;
}

/**
 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
 * @pf: board private structure to initialize
 */
static void ice_deinit_pf(struct ice_pf *pf)
{
1998
	ice_service_task_stop(pf);
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
	mutex_destroy(&pf->sw_mutex);
	mutex_destroy(&pf->avail_q_mutex);
}

/**
 * ice_init_pf - Initialize general software structures (struct ice_pf)
 * @pf: board private structure to initialize
 */
static void ice_init_pf(struct ice_pf *pf)
{
	bitmap_zero(pf->flags, ICE_PF_FLAGS_NBITS);
	set_bit(ICE_FLAG_MSIX_ENA, pf->flags);
2011 2012 2013 2014 2015 2016 2017 2018 2019
#ifdef CONFIG_PCI_IOV
	if (pf->hw.func_caps.common_cap.sr_iov_1_1) {
		struct ice_hw *hw = &pf->hw;

		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
		pf->num_vfs_supported = min_t(int, hw->func_caps.num_allocd_vfs,
					      ICE_MAX_VF_COUNT);
	}
#endif /* CONFIG_PCI_IOV */
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

	mutex_init(&pf->sw_mutex);
	mutex_init(&pf->avail_q_mutex);

	/* Clear avail_[t|r]x_qs bitmaps (set all to avail) */
	mutex_lock(&pf->avail_q_mutex);
	bitmap_zero(pf->avail_txqs, ICE_MAX_TXQS);
	bitmap_zero(pf->avail_rxqs, ICE_MAX_RXQS);
	mutex_unlock(&pf->avail_q_mutex);

2030 2031 2032
	if (pf->hw.func_caps.common_cap.rss_table_size)
		set_bit(ICE_FLAG_RSS_ENA, pf->flags);

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
	/* setup service timer and periodic service task */
	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
	pf->serv_tmr_period = HZ;
	INIT_WORK(&pf->serv_task, ice_service_task);
	clear_bit(__ICE_SERVICE_SCHED, pf->state);
}

/**
 * ice_ena_msix_range - Request a range of MSIX vectors from the OS
 * @pf: board private structure
 *
 * compute the number of MSIX vectors required (v_budget) and request from
 * the OS. Return the number of vectors reserved or negative on failure
 */
static int ice_ena_msix_range(struct ice_pf *pf)
{
	int v_left, v_actual, v_budget = 0;
	int needed, err, i;

	v_left = pf->hw.func_caps.common_cap.num_msix_vectors;

	/* reserve one vector for miscellaneous handler */
	needed = 1;
	v_budget += needed;
	v_left -= needed;

	/* reserve vectors for LAN traffic */
	pf->num_lan_msix = min_t(int, num_online_cpus(), v_left);
	v_budget += pf->num_lan_msix;
2062
	v_left -= pf->num_lan_msix;
2063 2064

	pf->msix_entries = devm_kcalloc(&pf->pdev->dev, v_budget,
2065
					sizeof(*pf->msix_entries), GFP_KERNEL);
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089

	if (!pf->msix_entries) {
		err = -ENOMEM;
		goto exit_err;
	}

	for (i = 0; i < v_budget; i++)
		pf->msix_entries[i].entry = i;

	/* actually reserve the vectors */
	v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
					 ICE_MIN_MSIX, v_budget);

	if (v_actual < 0) {
		dev_err(&pf->pdev->dev, "unable to reserve MSI-X vectors\n");
		err = v_actual;
		goto msix_err;
	}

	if (v_actual < v_budget) {
		dev_warn(&pf->pdev->dev,
			 "not enough vectors. requested = %d, obtained = %d\n",
			 v_budget, v_actual);
		if (v_actual >= (pf->num_lan_msix + 1)) {
2090 2091
			pf->num_avail_sw_msix = v_actual -
						(pf->num_lan_msix + 1);
2092 2093
		} else if (v_actual >= 2) {
			pf->num_lan_msix = 1;
2094
			pf->num_avail_sw_msix = v_actual - 2;
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
		} else {
			pci_disable_msix(pf->pdev);
			err = -ERANGE;
			goto msix_err;
		}
	}

	return v_actual;

msix_err:
	devm_kfree(&pf->pdev->dev, pf->msix_entries);
	goto exit_err;

exit_err:
	pf->num_lan_msix = 0;
	clear_bit(ICE_FLAG_MSIX_ENA, pf->flags);
	return err;
}

/**
 * ice_dis_msix - Disable MSI-X interrupt setup in OS
 * @pf: board private structure
 */
static void ice_dis_msix(struct ice_pf *pf)
{
	pci_disable_msix(pf->pdev);
	devm_kfree(&pf->pdev->dev, pf->msix_entries);
	pf->msix_entries = NULL;
	clear_bit(ICE_FLAG_MSIX_ENA, pf->flags);
}

2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
/**
 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
 * @pf: board private structure
 */
static void ice_clear_interrupt_scheme(struct ice_pf *pf)
{
	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
		ice_dis_msix(pf);

	if (pf->sw_irq_tracker) {
		devm_kfree(&pf->pdev->dev, pf->sw_irq_tracker);
		pf->sw_irq_tracker = NULL;
	}

	if (pf->hw_irq_tracker) {
		devm_kfree(&pf->pdev->dev, pf->hw_irq_tracker);
		pf->hw_irq_tracker = NULL;
	}
}

2146 2147 2148 2149 2150 2151
/**
 * ice_init_interrupt_scheme - Determine proper interrupt scheme
 * @pf: board private structure to initialize
 */
static int ice_init_interrupt_scheme(struct ice_pf *pf)
{
2152
	int vectors = 0, hw_vectors = 0;
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162

	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
		vectors = ice_ena_msix_range(pf);
	else
		return -ENODEV;

	if (vectors < 0)
		return vectors;

	/* set up vector assignment tracking */
2163 2164 2165
	pf->sw_irq_tracker =
		devm_kzalloc(&pf->pdev->dev, sizeof(*pf->sw_irq_tracker) +
			     (sizeof(u16) * vectors), GFP_KERNEL);
2166
	if (!pf->sw_irq_tracker) {
2167 2168 2169 2170
		ice_dis_msix(pf);
		return -ENOMEM;
	}

2171 2172 2173
	/* populate SW interrupts pool with number of OS granted IRQs. */
	pf->num_avail_sw_msix = vectors;
	pf->sw_irq_tracker->num_entries = vectors;
2174

2175 2176
	/* set up HW vector assignment tracking */
	hw_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
2177 2178 2179
	pf->hw_irq_tracker =
		devm_kzalloc(&pf->pdev->dev, sizeof(*pf->hw_irq_tracker) +
			     (sizeof(u16) * hw_vectors), GFP_KERNEL);
2180 2181 2182
	if (!pf->hw_irq_tracker) {
		ice_clear_interrupt_scheme(pf);
		return -ENOMEM;
2183
	}
2184 2185 2186 2187 2188 2189

	/* populate HW interrupts pool with number of HW supported irqs. */
	pf->num_avail_hw_msix = hw_vectors;
	pf->hw_irq_tracker->num_entries = hw_vectors;

	return 0;
2190 2191
}

B
Brett Creeley 已提交
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
/**
 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
 * @pf: pointer to the PF structure
 *
 * There is no error returned here because the driver should be able to handle
 * 128 Byte cache lines, so we only print a warning in case issues are seen,
 * specifically with Tx.
 */
static void ice_verify_cacheline_size(struct ice_pf *pf)
{
	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
		dev_warn(&pf->pdev->dev,
			 "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
			 ICE_CACHE_LINE_BYTES);
}

2208 2209 2210 2211 2212 2213 2214
/**
 * ice_probe - Device initialization routine
 * @pdev: PCI device information struct
 * @ent: entry in ice_pci_tbl
 *
 * Returns 0 on success, negative on failure
 */
2215 2216
static int
ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
2217
{
2218
	struct device *dev = &pdev->dev;
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
	struct ice_pf *pf;
	struct ice_hw *hw;
	int err;

	/* this driver uses devres, see Documentation/driver-model/devres.txt */
	err = pcim_enable_device(pdev);
	if (err)
		return err;

	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev));
	if (err) {
2230
		dev_err(dev, "BAR0 I/O map error %d\n", err);
2231 2232 2233
		return err;
	}

2234
	pf = devm_kzalloc(dev, sizeof(*pf), GFP_KERNEL);
2235 2236 2237 2238
	if (!pf)
		return -ENOMEM;

	/* set up for high or low dma */
2239
	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
2240
	if (err)
2241
		err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2242
	if (err) {
2243
		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
2244 2245 2246 2247 2248 2249 2250 2251 2252
		return err;
	}

	pci_enable_pcie_error_reporting(pdev);
	pci_set_master(pdev);

	pf->pdev = pdev;
	pci_set_drvdata(pdev, pf);
	set_bit(__ICE_DOWN, pf->state);
2253 2254
	/* Disable service task until DOWN bit is cleared */
	set_bit(__ICE_SERVICE_DIS, pf->state);
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265

	hw = &pf->hw;
	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
	hw->back = pf;
	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_device_id = pdev->subsystem_device;
	hw->bus.device = PCI_SLOT(pdev->devfn);
	hw->bus.func = PCI_FUNC(pdev->devfn);
2266 2267
	ice_set_ctrlq_len(hw);

2268 2269
	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);

2270 2271 2272 2273 2274
#ifndef CONFIG_DYNAMIC_DEBUG
	if (debug < -1)
		hw->debug_mask = debug;
#endif

2275 2276
	err = ice_init_hw(hw);
	if (err) {
2277
		dev_err(dev, "ice_init_hw failed: %d\n", err);
2278 2279 2280 2281
		err = -EIO;
		goto err_exit_unroll;
	}

2282
	dev_info(dev, "firmware %d.%d.%05d api %d.%d\n",
2283 2284 2285
		 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_build,
		 hw->api_maj_ver, hw->api_min_ver);

2286 2287 2288 2289
	ice_init_pf(pf);

	ice_determine_q_usage(pf);

2290
	pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
2291 2292 2293 2294 2295
	if (!pf->num_alloc_vsi) {
		err = -EIO;
		goto err_init_pf_unroll;
	}

2296 2297
	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
			       GFP_KERNEL);
2298 2299 2300 2301 2302 2303 2304
	if (!pf->vsi) {
		err = -ENOMEM;
		goto err_init_pf_unroll;
	}

	err = ice_init_interrupt_scheme(pf);
	if (err) {
2305
		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
2306 2307 2308 2309
		err = -EIO;
		goto err_init_interrupt_unroll;
	}

2310 2311 2312
	/* Driver is mostly up */
	clear_bit(__ICE_DOWN, pf->state);

2313 2314 2315 2316 2317 2318 2319 2320
	/* In case of MSIX we are going to setup the misc vector right here
	 * to handle admin queue events etc. In case of legacy and MSI
	 * the misc functionality and queue processing is combined in
	 * the same vector and that gets setup at open.
	 */
	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
		err = ice_req_irq_msix_misc(pf);
		if (err) {
2321
			dev_err(dev, "setup of misc vector failed: %d\n", err);
2322 2323 2324 2325 2326
			goto err_init_interrupt_unroll;
		}
	}

	/* create switch struct for the switch element created by FW on boot */
2327
	pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
2328 2329 2330 2331 2332
	if (!pf->first_sw) {
		err = -ENOMEM;
		goto err_msix_misc_unroll;
	}

2333 2334 2335 2336 2337
	if (hw->evb_veb)
		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
	else
		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;

2338 2339 2340 2341 2342
	pf->first_sw->pf = pf;

	/* record the sw_id available for later use */
	pf->first_sw->sw_id = hw->port_info->sw_id;

2343 2344
	err = ice_setup_pf_sw(pf);
	if (err) {
2345
		dev_err(dev, "probe failed due to setup pf switch:%d\n", err);
2346 2347
		goto err_alloc_sw_unroll;
	}
2348

2349
	clear_bit(__ICE_SERVICE_DIS, pf->state);
2350 2351 2352 2353

	/* since everything is good, start the service timer */
	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));

2354 2355 2356 2357 2358 2359
	err = ice_init_link_events(pf->hw.port_info);
	if (err) {
		dev_err(dev, "ice_init_link_events failed: %d\n", err);
		goto err_alloc_sw_unroll;
	}

B
Brett Creeley 已提交
2360 2361
	ice_verify_cacheline_size(pf);

2362
	return 0;
2363

2364
err_alloc_sw_unroll:
2365
	set_bit(__ICE_SERVICE_DIS, pf->state);
2366 2367
	set_bit(__ICE_DOWN, pf->state);
	devm_kfree(&pf->pdev->dev, pf->first_sw);
2368 2369 2370 2371
err_msix_misc_unroll:
	ice_free_irq_msix_misc(pf);
err_init_interrupt_unroll:
	ice_clear_interrupt_scheme(pf);
2372
	devm_kfree(dev, pf->vsi);
2373 2374 2375
err_init_pf_unroll:
	ice_deinit_pf(pf);
	ice_deinit_hw(hw);
2376 2377 2378
err_exit_unroll:
	pci_disable_pcie_error_reporting(pdev);
	return err;
2379 2380 2381 2382 2383 2384 2385 2386 2387
}

/**
 * ice_remove - Device removal routine
 * @pdev: PCI device information struct
 */
static void ice_remove(struct pci_dev *pdev)
{
	struct ice_pf *pf = pci_get_drvdata(pdev);
D
Dave Ertman 已提交
2388
	int i;
2389 2390 2391 2392

	if (!pf)
		return;

2393 2394 2395 2396 2397 2398
	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
		if (!ice_is_reset_in_progress(pf->state))
			break;
		msleep(100);
	}

2399
	set_bit(__ICE_DOWN, pf->state);
2400
	ice_service_task_stop(pf);
2401

2402 2403
	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags))
		ice_free_vfs(pf);
2404
	ice_vsi_release_all(pf);
2405
	ice_free_irq_msix_misc(pf);
D
Dave Ertman 已提交
2406 2407 2408 2409 2410
	ice_for_each_vsi(pf, i) {
		if (!pf->vsi[i])
			continue;
		ice_vsi_free_q_vectors(pf->vsi[i]);
	}
2411 2412
	ice_clear_interrupt_scheme(pf);
	ice_deinit_pf(pf);
2413
	ice_deinit_hw(&pf->hw);
2414 2415 2416
	pci_disable_pcie_error_reporting(pdev);
}

2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
/**
 * ice_pci_err_detected - warning that PCI error has been detected
 * @pdev: PCI device information struct
 * @err: the type of PCI error
 *
 * Called to warn that something happened on the PCI bus and the error handling
 * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
 */
static pci_ers_result_t
ice_pci_err_detected(struct pci_dev *pdev, enum pci_channel_state err)
{
	struct ice_pf *pf = pci_get_drvdata(pdev);

	if (!pf) {
		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
			__func__, err);
		return PCI_ERS_RESULT_DISCONNECT;
	}

	if (!test_bit(__ICE_SUSPENDED, pf->state)) {
		ice_service_task_stop(pf);

		if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
			set_bit(__ICE_PFR_REQ, pf->state);
			ice_prepare_for_reset(pf);
		}
	}

	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * ice_pci_err_slot_reset - a PCI slot reset has just happened
 * @pdev: PCI device information struct
 *
 * Called to determine if the driver can recover from the PCI slot reset by
 * using a register read to determine if the device is recoverable.
 */
static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
{
	struct ice_pf *pf = pci_get_drvdata(pdev);
	pci_ers_result_t result;
	int err;
	u32 reg;

	err = pci_enable_device_mem(pdev);
	if (err) {
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset, error %d\n",
			err);
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
		pci_save_state(pdev);
		pci_wake_from_d3(pdev, false);

		/* Check for life */
		reg = rd32(&pf->hw, GLGEN_RTRIG);
		if (!reg)
			result = PCI_ERS_RESULT_RECOVERED;
		else
			result = PCI_ERS_RESULT_DISCONNECT;
	}

	err = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (err)
		dev_dbg(&pdev->dev,
			"pci_cleanup_aer_uncorrect_error_status failed, error %d\n",
			err);
		/* non-fatal, continue */

	return result;
}

/**
 * ice_pci_err_resume - restart operations after PCI error recovery
 * @pdev: PCI device information struct
 *
 * Called to allow the driver to bring things back up after PCI error and/or
 * reset recovery have finished
 */
static void ice_pci_err_resume(struct pci_dev *pdev)
{
	struct ice_pf *pf = pci_get_drvdata(pdev);

	if (!pf) {
		dev_err(&pdev->dev,
			"%s failed, device is unrecoverable\n", __func__);
		return;
	}

	if (test_bit(__ICE_SUSPENDED, pf->state)) {
		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
			__func__);
		return;
	}

	ice_do_reset(pf, ICE_RESET_PFR);
	ice_service_task_restart(pf);
	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
}

/**
 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
 * @pdev: PCI device information struct
 */
static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
{
	struct ice_pf *pf = pci_get_drvdata(pdev);

	if (!test_bit(__ICE_SUSPENDED, pf->state)) {
		ice_service_task_stop(pf);

		if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
			set_bit(__ICE_PFR_REQ, pf->state);
			ice_prepare_for_reset(pf);
		}
	}
}

/**
 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
 * @pdev: PCI device information struct
 */
static void ice_pci_err_reset_done(struct pci_dev *pdev)
{
	ice_pci_err_resume(pdev);
}

2547 2548 2549 2550 2551 2552 2553 2554 2555
/* ice_pci_tbl - PCI Device ID Table
 *
 * Wildcard entries (PCI_ANY_ID) should come last
 * Last entry must be all 0s
 *
 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
 *   Class, Class Mask, private data (not used) }
 */
static const struct pci_device_id ice_pci_tbl[] = {
2556 2557 2558
	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
2559 2560 2561 2562 2563
	/* required last entry */
	{ 0, }
};
MODULE_DEVICE_TABLE(pci, ice_pci_tbl);

2564 2565 2566 2567 2568 2569 2570 2571
static const struct pci_error_handlers ice_pci_err_handler = {
	.error_detected = ice_pci_err_detected,
	.slot_reset = ice_pci_err_slot_reset,
	.reset_prepare = ice_pci_err_reset_prepare,
	.reset_done = ice_pci_err_reset_done,
	.resume = ice_pci_err_resume
};

2572 2573 2574 2575 2576
static struct pci_driver ice_driver = {
	.name = KBUILD_MODNAME,
	.id_table = ice_pci_tbl,
	.probe = ice_probe,
	.remove = ice_remove,
2577
	.sriov_configure = ice_sriov_configure,
2578
	.err_handler = &ice_pci_err_handler
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
};

/**
 * ice_module_init - Driver registration routine
 *
 * ice_module_init is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 */
static int __init ice_module_init(void)
{
	int status;

	pr_info("%s - version %s\n", ice_driver_string, ice_drv_ver);
	pr_info("%s\n", ice_copyright);

2594
	ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
2595 2596 2597 2598 2599
	if (!ice_wq) {
		pr_err("Failed to create workqueue\n");
		return -ENOMEM;
	}

2600
	status = pci_register_driver(&ice_driver);
2601
	if (status) {
2602
		pr_err("failed to register pci driver, err %d\n", status);
2603 2604
		destroy_workqueue(ice_wq);
	}
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618

	return status;
}
module_init(ice_module_init);

/**
 * ice_module_exit - Driver exit cleanup routine
 *
 * ice_module_exit is called just before the driver is removed
 * from memory.
 */
static void __exit ice_module_exit(void)
{
	pci_unregister_driver(&ice_driver);
2619
	destroy_workqueue(ice_wq);
2620 2621 2622
	pr_info("module unloaded\n");
}
module_exit(ice_module_exit);
2623

2624
/**
2625
 * ice_set_mac_address - NDO callback to set MAC address
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
 * @netdev: network interface device structure
 * @pi: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 */
static int ice_set_mac_address(struct net_device *netdev, void *pi)
{
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct ice_vsi *vsi = np->vsi;
	struct ice_pf *pf = vsi->back;
	struct ice_hw *hw = &pf->hw;
	struct sockaddr *addr = pi;
	enum ice_status status;
	LIST_HEAD(a_mac_list);
	LIST_HEAD(r_mac_list);
	u8 flags = 0;
	int err;
	u8 *mac;

	mac = (u8 *)addr->sa_data;

	if (!is_valid_ether_addr(mac))
		return -EADDRNOTAVAIL;

	if (ether_addr_equal(netdev->dev_addr, mac)) {
		netdev_warn(netdev, "already using mac %pM\n", mac);
		return 0;
	}

	if (test_bit(__ICE_DOWN, pf->state) ||
2656
	    ice_is_reset_in_progress(pf->state)) {
2657 2658 2659 2660 2661
		netdev_err(netdev, "can't set mac %pM. device not ready\n",
			   mac);
		return -EBUSY;
	}

2662 2663
	/* When we change the MAC address we also have to change the MAC address
	 * based filter rules that were created previously for the old MAC
2664 2665
	 * address. So first, we remove the old filter rule using ice_remove_mac
	 * and then create a new filter rule using ice_add_mac. Note that for
2666 2667
	 * both these operations, we first need to form a "list" of MAC
	 * addresses (even though in this case, we have only 1 MAC address to be
2668
	 * added/removed) and this done using ice_add_mac_to_list. Depending on
2669
	 * the ensuing operation this "list" of MAC addresses is either to be
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
	 * added or removed from the filter.
	 */
	err = ice_add_mac_to_list(vsi, &r_mac_list, netdev->dev_addr);
	if (err) {
		err = -EADDRNOTAVAIL;
		goto free_lists;
	}

	status = ice_remove_mac(hw, &r_mac_list);
	if (status) {
		err = -EADDRNOTAVAIL;
		goto free_lists;
	}

	err = ice_add_mac_to_list(vsi, &a_mac_list, mac);
	if (err) {
		err = -EADDRNOTAVAIL;
		goto free_lists;
	}

	status = ice_add_mac(hw, &a_mac_list);
	if (status) {
		err = -EADDRNOTAVAIL;
		goto free_lists;
	}

free_lists:
	/* free list entries */
	ice_free_fltr_list(&pf->pdev->dev, &r_mac_list);
	ice_free_fltr_list(&pf->pdev->dev, &a_mac_list);

	if (err) {
		netdev_err(netdev, "can't set mac %pM. filter update failed\n",
			   mac);
		return err;
	}

2707
	/* change the netdev's MAC address */
2708 2709 2710 2711
	memcpy(netdev->dev_addr, mac, netdev->addr_len);
	netdev_dbg(vsi->netdev, "updated mac address to %pM\n",
		   netdev->dev_addr);

2712
	/* write new MAC address to the firmware */
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
	status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
	if (status) {
		netdev_err(netdev, "can't set mac %pM. write to firmware failed.\n",
			   mac);
	}
	return 0;
}

/**
 * ice_set_rx_mode - NDO callback to set the netdev filters
 * @netdev: network interface device structure
 */
static void ice_set_rx_mode(struct net_device *netdev)
{
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct ice_vsi *vsi = np->vsi;

	if (!vsi)
		return;

	/* Set the flags to synchronize filters
	 * ndo_set_rx_mode may be triggered even without a change in netdev
	 * flags
	 */
	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);

	/* schedule our worker thread which will take care of
	 * applying the new filter changes
	 */
	ice_service_task_schedule(vsi->back);
}

/**
 * ice_fdb_add - add an entry to the hardware database
 * @ndm: the input from the stack
 * @tb: pointer to array of nladdr (unused)
 * @dev: the net device pointer
 * @addr: the MAC address entry being added
2754
 * @vid: VLAN ID
2755
 * @flags: instructions from stack about fdb operation
2756
 * @extack: netlink extended ack
2757
 */
2758 2759 2760 2761
static int
ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
	    struct net_device *dev, const unsigned char *addr, u16 vid,
	    u16 flags, struct netlink_ext_ack __always_unused *extack)
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
{
	int err;

	if (vid) {
		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
		return -EINVAL;
	}
	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
		netdev_err(dev, "FDB only supports static addresses\n");
		return -EINVAL;
	}

	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
		err = dev_uc_add_excl(dev, addr);
	else if (is_multicast_ether_addr(addr))
		err = dev_mc_add_excl(dev, addr);
	else
		err = -EINVAL;

	/* Only return duplicate errors if NLM_F_EXCL is set */
	if (err == -EEXIST && !(flags & NLM_F_EXCL))
		err = 0;

	return err;
}

/**
 * ice_fdb_del - delete an entry from the hardware database
 * @ndm: the input from the stack
 * @tb: pointer to array of nladdr (unused)
 * @dev: the net device pointer
 * @addr: the MAC address entry being added
2794
 * @vid: VLAN ID
2795
 */
2796 2797 2798 2799
static int
ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
	    struct net_device *dev, const unsigned char *addr,
	    __always_unused u16 vid)
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
{
	int err;

	if (ndm->ndm_state & NUD_PERMANENT) {
		netdev_err(dev, "FDB only supports static addresses\n");
		return -EINVAL;
	}

	if (is_unicast_ether_addr(addr))
		err = dev_uc_del(dev, addr);
	else if (is_multicast_ether_addr(addr))
		err = dev_mc_del(dev, addr);
	else
		err = -EINVAL;

	return err;
}

2818 2819 2820 2821 2822
/**
 * ice_set_features - set the netdev feature flags
 * @netdev: ptr to the netdev being adjusted
 * @features: the feature set that the stack is suggesting
 */
2823 2824
static int
ice_set_features(struct net_device *netdev, netdev_features_t features)
2825 2826 2827 2828 2829
{
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct ice_vsi *vsi = np->vsi;
	int ret = 0;

2830 2831 2832 2833 2834 2835
	if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
		ret = ice_vsi_manage_rss_lut(vsi, true);
	else if (!(features & NETIF_F_RXHASH) &&
		 netdev->features & NETIF_F_RXHASH)
		ret = ice_vsi_manage_rss_lut(vsi, false);

2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
	if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
		ret = ice_vsi_manage_vlan_stripping(vsi, true);
	else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
		 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
		ret = ice_vsi_manage_vlan_stripping(vsi, false);
	else if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
		 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
		ret = ice_vsi_manage_vlan_insertion(vsi);
	else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
		 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
		ret = ice_vsi_manage_vlan_insertion(vsi);

	return ret;
}

/**
2853 2854
 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI
 * @vsi: VSI to setup VLAN properties for
2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
 */
static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
{
	int ret = 0;

	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
		ret = ice_vsi_manage_vlan_stripping(vsi, true);
	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
		ret = ice_vsi_manage_vlan_insertion(vsi);

	return ret;
}

2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
/**
 * ice_vsi_cfg - Setup the VSI
 * @vsi: the VSI being configured
 *
 * Return 0 on success and negative value on error
 */
static int ice_vsi_cfg(struct ice_vsi *vsi)
{
	int err;

2878 2879
	if (vsi->netdev) {
		ice_set_rx_mode(vsi->netdev);
2880 2881 2882

		err = ice_vsi_vlan_setup(vsi);

2883 2884 2885
		if (err)
			return err;
	}
2886 2887

	err = ice_vsi_cfg_lan_txqs(vsi);
2888 2889 2890 2891 2892 2893
	if (!err)
		err = ice_vsi_cfg_rxqs(vsi);

	return err;
}

2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
/**
 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
 * @vsi: the VSI being configured
 */
static void ice_napi_enable_all(struct ice_vsi *vsi)
{
	int q_idx;

	if (!vsi->netdev)
		return;

2905 2906 2907 2908 2909 2910
	for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) {
		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];

		if (q_vector->rx.ring || q_vector->tx.ring)
			napi_enable(&q_vector->napi);
	}
2911 2912
}

2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
/**
 * ice_up_complete - Finish the last steps of bringing up a connection
 * @vsi: The VSI being configured
 *
 * Return 0 on success and negative value on error
 */
static int ice_up_complete(struct ice_vsi *vsi)
{
	struct ice_pf *pf = vsi->back;
	int err;

	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
		ice_vsi_cfg_msix(vsi);
	else
		return -ENOTSUPP;

	/* Enable only Rx rings, Tx rings were enabled by the FW when the
	 * Tx queue group list was configured and the context bits were
	 * programmed using ice_vsi_cfg_txqs
	 */
	err = ice_vsi_start_rx_rings(vsi);
	if (err)
		return err;

	clear_bit(__ICE_DOWN, vsi->state);
2938
	ice_napi_enable_all(vsi);
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
	ice_vsi_ena_irq(vsi);

	if (vsi->port_info &&
	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
	    vsi->netdev) {
		ice_print_link_msg(vsi, true);
		netif_tx_start_all_queues(vsi->netdev);
		netif_carrier_on(vsi->netdev);
	}

	ice_service_task_schedule(pf);

B
Bruce Allan 已提交
2951
	return 0;
2952 2953
}

2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
/**
 * ice_up - Bring the connection back up after being down
 * @vsi: VSI being configured
 */
int ice_up(struct ice_vsi *vsi)
{
	int err;

	err = ice_vsi_cfg(vsi);
	if (!err)
		err = ice_up_complete(vsi);

	return err;
}

/**
 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
 * @ring: Tx or Rx ring to read stats from
 * @pkts: packets stats counter
 * @bytes: bytes stats counter
 *
 * This function fetches stats from the ring considering the atomic operations
 * that needs to be performed to read u64 values in 32 bit machine.
 */
2978 2979
static void
ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes)
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
{
	unsigned int start;
	*pkts = 0;
	*bytes = 0;

	if (!ring)
		return;
	do {
		start = u64_stats_fetch_begin_irq(&ring->syncp);
		*pkts = ring->stats.pkts;
		*bytes = ring->stats.bytes;
	} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
}

/**
 * ice_update_vsi_ring_stats - Update VSI stats counters
 * @vsi: the VSI to be updated
 */
static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
{
	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
	struct ice_ring *ring;
	u64 pkts, bytes;
	int i;

	/* reset netdev stats */
	vsi_stats->tx_packets = 0;
	vsi_stats->tx_bytes = 0;
	vsi_stats->rx_packets = 0;
	vsi_stats->rx_bytes = 0;

	/* reset non-netdev (extended) stats */
	vsi->tx_restart = 0;
	vsi->tx_busy = 0;
	vsi->tx_linearize = 0;
	vsi->rx_buf_failed = 0;
	vsi->rx_page_failed = 0;

	rcu_read_lock();

	/* update Tx rings counters */
	ice_for_each_txq(vsi, i) {
		ring = READ_ONCE(vsi->tx_rings[i]);
		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
		vsi_stats->tx_packets += pkts;
		vsi_stats->tx_bytes += bytes;
		vsi->tx_restart += ring->tx_stats.restart_q;
		vsi->tx_busy += ring->tx_stats.tx_busy;
		vsi->tx_linearize += ring->tx_stats.tx_linearize;
	}

	/* update Rx rings counters */
	ice_for_each_rxq(vsi, i) {
		ring = READ_ONCE(vsi->rx_rings[i]);
		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
		vsi_stats->rx_packets += pkts;
		vsi_stats->rx_bytes += bytes;
		vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
		vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
	}

	rcu_read_unlock();
}

/**
 * ice_update_vsi_stats - Update VSI stats counters
 * @vsi: the VSI to be updated
 */
static void ice_update_vsi_stats(struct ice_vsi *vsi)
{
	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
	struct ice_eth_stats *cur_es = &vsi->eth_stats;
	struct ice_pf *pf = vsi->back;

	if (test_bit(__ICE_DOWN, vsi->state) ||
	    test_bit(__ICE_CFG_BUSY, pf->state))
		return;

	/* get stats as recorded by Tx/Rx rings */
	ice_update_vsi_ring_stats(vsi);

	/* get VSI stats as recorded by the hardware */
	ice_update_eth_stats(vsi);

	cur_ns->tx_errors = cur_es->tx_errors;
	cur_ns->rx_dropped = cur_es->rx_discards;
	cur_ns->tx_dropped = cur_es->tx_discards;
	cur_ns->multicast = cur_es->rx_multicast;

	/* update some more netdev stats if this is main VSI */
	if (vsi->type == ICE_VSI_PF) {
		cur_ns->rx_crc_errors = pf->stats.crc_errors;
		cur_ns->rx_errors = pf->stats.crc_errors +
				    pf->stats.illegal_bytes;
		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
	}
}

/**
 * ice_update_pf_stats - Update PF port stats counters
 * @pf: PF whose stats needs to be updated
 */
static void ice_update_pf_stats(struct ice_pf *pf)
{
	struct ice_hw_port_stats *prev_ps, *cur_ps;
	struct ice_hw *hw = &pf->hw;
	u8 pf_id;

	prev_ps = &pf->stats_prev;
	cur_ps = &pf->stats;
	pf_id = hw->pf_id;

	ice_stat_update40(hw, GLPRT_GORCH(pf_id), GLPRT_GORCL(pf_id),
			  pf->stat_prev_loaded, &prev_ps->eth.rx_bytes,
			  &cur_ps->eth.rx_bytes);

	ice_stat_update40(hw, GLPRT_UPRCH(pf_id), GLPRT_UPRCL(pf_id),
			  pf->stat_prev_loaded, &prev_ps->eth.rx_unicast,
			  &cur_ps->eth.rx_unicast);

	ice_stat_update40(hw, GLPRT_MPRCH(pf_id), GLPRT_MPRCL(pf_id),
			  pf->stat_prev_loaded, &prev_ps->eth.rx_multicast,
			  &cur_ps->eth.rx_multicast);

	ice_stat_update40(hw, GLPRT_BPRCH(pf_id), GLPRT_BPRCL(pf_id),
			  pf->stat_prev_loaded, &prev_ps->eth.rx_broadcast,
			  &cur_ps->eth.rx_broadcast);

	ice_stat_update40(hw, GLPRT_GOTCH(pf_id), GLPRT_GOTCL(pf_id),
			  pf->stat_prev_loaded, &prev_ps->eth.tx_bytes,
			  &cur_ps->eth.tx_bytes);

	ice_stat_update40(hw, GLPRT_UPTCH(pf_id), GLPRT_UPTCL(pf_id),
			  pf->stat_prev_loaded, &prev_ps->eth.tx_unicast,
			  &cur_ps->eth.tx_unicast);

	ice_stat_update40(hw, GLPRT_MPTCH(pf_id), GLPRT_MPTCL(pf_id),
			  pf->stat_prev_loaded, &prev_ps->eth.tx_multicast,
			  &cur_ps->eth.tx_multicast);

	ice_stat_update40(hw, GLPRT_BPTCH(pf_id), GLPRT_BPTCL(pf_id),
			  pf->stat_prev_loaded, &prev_ps->eth.tx_broadcast,
			  &cur_ps->eth.tx_broadcast);

	ice_stat_update32(hw, GLPRT_TDOLD(pf_id), pf->stat_prev_loaded,
			  &prev_ps->tx_dropped_link_down,
			  &cur_ps->tx_dropped_link_down);

	ice_stat_update40(hw, GLPRT_PRC64H(pf_id), GLPRT_PRC64L(pf_id),
			  pf->stat_prev_loaded, &prev_ps->rx_size_64,
			  &cur_ps->rx_size_64);

	ice_stat_update40(hw, GLPRT_PRC127H(pf_id), GLPRT_PRC127L(pf_id),
			  pf->stat_prev_loaded, &prev_ps->rx_size_127,
			  &cur_ps->rx_size_127);

	ice_stat_update40(hw, GLPRT_PRC255H(pf_id), GLPRT_PRC255L(pf_id),
			  pf->stat_prev_loaded, &prev_ps->rx_size_255,
			  &cur_ps->rx_size_255);

	ice_stat_update40(hw, GLPRT_PRC511H(pf_id), GLPRT_PRC511L(pf_id),
			  pf->stat_prev_loaded, &prev_ps->rx_size_511,
			  &cur_ps->rx_size_511);

	ice_stat_update40(hw, GLPRT_PRC1023H(pf_id),
			  GLPRT_PRC1023L(pf_id), pf->stat_prev_loaded,
			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);

	ice_stat_update40(hw, GLPRT_PRC1522H(pf_id),
			  GLPRT_PRC1522L(pf_id), pf->stat_prev_loaded,
			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);

	ice_stat_update40(hw, GLPRT_PRC9522H(pf_id),
			  GLPRT_PRC9522L(pf_id), pf->stat_prev_loaded,
			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);

	ice_stat_update40(hw, GLPRT_PTC64H(pf_id), GLPRT_PTC64L(pf_id),
			  pf->stat_prev_loaded, &prev_ps->tx_size_64,
			  &cur_ps->tx_size_64);

	ice_stat_update40(hw, GLPRT_PTC127H(pf_id), GLPRT_PTC127L(pf_id),
			  pf->stat_prev_loaded, &prev_ps->tx_size_127,
			  &cur_ps->tx_size_127);

	ice_stat_update40(hw, GLPRT_PTC255H(pf_id), GLPRT_PTC255L(pf_id),
			  pf->stat_prev_loaded, &prev_ps->tx_size_255,
			  &cur_ps->tx_size_255);

	ice_stat_update40(hw, GLPRT_PTC511H(pf_id), GLPRT_PTC511L(pf_id),
			  pf->stat_prev_loaded, &prev_ps->tx_size_511,
			  &cur_ps->tx_size_511);

	ice_stat_update40(hw, GLPRT_PTC1023H(pf_id),
			  GLPRT_PTC1023L(pf_id), pf->stat_prev_loaded,
			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);

	ice_stat_update40(hw, GLPRT_PTC1522H(pf_id),
			  GLPRT_PTC1522L(pf_id), pf->stat_prev_loaded,
			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);

	ice_stat_update40(hw, GLPRT_PTC9522H(pf_id),
			  GLPRT_PTC9522L(pf_id), pf->stat_prev_loaded,
			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);

	ice_stat_update32(hw, GLPRT_LXONRXC(pf_id), pf->stat_prev_loaded,
			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);

	ice_stat_update32(hw, GLPRT_LXOFFRXC(pf_id), pf->stat_prev_loaded,
			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);

	ice_stat_update32(hw, GLPRT_LXONTXC(pf_id), pf->stat_prev_loaded,
			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);

	ice_stat_update32(hw, GLPRT_LXOFFTXC(pf_id), pf->stat_prev_loaded,
			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);

	ice_stat_update32(hw, GLPRT_CRCERRS(pf_id), pf->stat_prev_loaded,
			  &prev_ps->crc_errors, &cur_ps->crc_errors);

	ice_stat_update32(hw, GLPRT_ILLERRC(pf_id), pf->stat_prev_loaded,
			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);

	ice_stat_update32(hw, GLPRT_MLFC(pf_id), pf->stat_prev_loaded,
			  &prev_ps->mac_local_faults,
			  &cur_ps->mac_local_faults);

	ice_stat_update32(hw, GLPRT_MRFC(pf_id), pf->stat_prev_loaded,
			  &prev_ps->mac_remote_faults,
			  &cur_ps->mac_remote_faults);

	ice_stat_update32(hw, GLPRT_RLEC(pf_id), pf->stat_prev_loaded,
			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);

	ice_stat_update32(hw, GLPRT_RUC(pf_id), pf->stat_prev_loaded,
			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);

	ice_stat_update32(hw, GLPRT_RFC(pf_id), pf->stat_prev_loaded,
			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);

	ice_stat_update32(hw, GLPRT_ROC(pf_id), pf->stat_prev_loaded,
			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);

	ice_stat_update32(hw, GLPRT_RJC(pf_id), pf->stat_prev_loaded,
			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);

	pf->stat_prev_loaded = true;
}

/**
 * ice_get_stats64 - get statistics for network device structure
 * @netdev: network interface device structure
 * @stats: main device statistics structure
 */
static
void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
{
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct rtnl_link_stats64 *vsi_stats;
	struct ice_vsi *vsi = np->vsi;

	vsi_stats = &vsi->net_stats;

	if (test_bit(__ICE_DOWN, vsi->state) || !vsi->num_txq || !vsi->num_rxq)
		return;
	/* netdev packet/byte stats come from ring counter. These are obtained
	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
	 */
	ice_update_vsi_ring_stats(vsi);
	stats->tx_packets = vsi_stats->tx_packets;
	stats->tx_bytes = vsi_stats->tx_bytes;
	stats->rx_packets = vsi_stats->rx_packets;
	stats->rx_bytes = vsi_stats->rx_bytes;

	/* The rest of the stats can be read from the hardware but instead we
	 * just return values that the watchdog task has already obtained from
	 * the hardware.
	 */
	stats->multicast = vsi_stats->multicast;
	stats->tx_errors = vsi_stats->tx_errors;
	stats->tx_dropped = vsi_stats->tx_dropped;
	stats->rx_errors = vsi_stats->rx_errors;
	stats->rx_dropped = vsi_stats->rx_dropped;
	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
	stats->rx_length_errors = vsi_stats->rx_length_errors;
}

3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
/**
 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
 * @vsi: VSI having NAPI disabled
 */
static void ice_napi_disable_all(struct ice_vsi *vsi)
{
	int q_idx;

	if (!vsi->netdev)
		return;

3277 3278 3279 3280 3281 3282
	for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) {
		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];

		if (q_vector->rx.ring || q_vector->tx.ring)
			napi_disable(&q_vector->napi);
	}
3283 3284
}

3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
/**
 * ice_force_phys_link_state - Force the physical link state
 * @vsi: VSI to force the physical link state to up/down
 * @link_up: true/false indicates to set the physical link to up/down
 *
 * Force the physical link state by getting the current PHY capabilities from
 * hardware and setting the PHY config based on the determined capabilities. If
 * link changes a link event will be triggered because both the Enable Automatic
 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
 *
 * Returns 0 on success, negative on failure
 */
static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
{
	struct ice_aqc_get_phy_caps_data *pcaps;
	struct ice_aqc_set_phy_cfg_data *cfg;
	struct ice_port_info *pi;
	struct device *dev;
	int retcode;

	if (!vsi || !vsi->port_info || !vsi->back)
		return -EINVAL;
	if (vsi->type != ICE_VSI_PF)
		return 0;

	dev = &vsi->back->pdev->dev;

	pi = vsi->port_info;

	pcaps = devm_kzalloc(dev, sizeof(*pcaps), GFP_KERNEL);
	if (!pcaps)
		return -ENOMEM;

	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
				      NULL);
	if (retcode) {
		dev_err(dev,
			"Failed to get phy capabilities, VSI %d error %d\n",
			vsi->vsi_num, retcode);
		retcode = -EIO;
		goto out;
	}

	/* No change in link */
	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
		goto out;

	cfg = devm_kzalloc(dev, sizeof(*cfg), GFP_KERNEL);
	if (!cfg) {
		retcode = -ENOMEM;
		goto out;
	}

	cfg->phy_type_low = pcaps->phy_type_low;
	cfg->phy_type_high = pcaps->phy_type_high;
	cfg->caps = pcaps->caps | ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
	cfg->low_power_ctrl = pcaps->low_power_ctrl;
	cfg->eee_cap = pcaps->eee_cap;
	cfg->eeer_value = pcaps->eeer_value;
	cfg->link_fec_opt = pcaps->link_fec_options;
	if (link_up)
		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
	else
		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;

	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi->lport, cfg, NULL);
	if (retcode) {
		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
			vsi->vsi_num, retcode);
		retcode = -EIO;
	}

	devm_kfree(dev, cfg);
out:
	devm_kfree(dev, pcaps);
	return retcode;
}

3364 3365 3366 3367
/**
 * ice_down - Shutdown the connection
 * @vsi: The VSI being stopped
 */
3368
int ice_down(struct ice_vsi *vsi)
3369
{
3370
	int i, tx_err, rx_err, link_err = 0;
3371 3372 3373 3374 3375 3376 3377 3378 3379 3380

	/* Caller of this function is expected to set the
	 * vsi->state __ICE_DOWN bit
	 */
	if (vsi->netdev) {
		netif_carrier_off(vsi->netdev);
		netif_tx_disable(vsi->netdev);
	}

	ice_vsi_dis_irq(vsi);
3381 3382

	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
	if (tx_err)
		netdev_err(vsi->netdev,
			   "Failed stop Tx rings, VSI %d error %d\n",
			   vsi->vsi_num, tx_err);

	rx_err = ice_vsi_stop_rx_rings(vsi);
	if (rx_err)
		netdev_err(vsi->netdev,
			   "Failed stop Rx rings, VSI %d error %d\n",
			   vsi->vsi_num, rx_err);

3394
	ice_napi_disable_all(vsi);
3395

3396 3397 3398 3399 3400 3401 3402
	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
		link_err = ice_force_phys_link_state(vsi, false);
		if (link_err)
			netdev_err(vsi->netdev,
				   "Failed to set physical link down, VSI %d error %d\n",
				   vsi->vsi_num, link_err);
	}
3403

3404 3405 3406 3407 3408 3409
	ice_for_each_txq(vsi, i)
		ice_clean_tx_ring(vsi->tx_rings[i]);

	ice_for_each_rxq(vsi, i)
		ice_clean_rx_ring(vsi->rx_rings[i]);

3410
	if (tx_err || rx_err || link_err) {
3411 3412
		netdev_err(vsi->netdev,
			   "Failed to close VSI 0x%04X on switch 0x%04X\n",
3413
			   vsi->vsi_num, vsi->vsw->sw_id);
3414 3415 3416 3417
		return -EIO;
	}

	return 0;
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427
}

/**
 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
 * @vsi: VSI having resources allocated
 *
 * Return 0 on success, negative on failure
 */
static int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
{
3428
	int i, err = 0;
3429 3430 3431 3432 3433 3434 3435 3436

	if (!vsi->num_txq) {
		dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Tx queues\n",
			vsi->vsi_num);
		return -EINVAL;
	}

	ice_for_each_txq(vsi, i) {
3437
		vsi->tx_rings[i]->netdev = vsi->netdev;
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
		err = ice_setup_tx_ring(vsi->tx_rings[i]);
		if (err)
			break;
	}

	return err;
}

/**
 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
 * @vsi: VSI having resources allocated
 *
 * Return 0 on success, negative on failure
 */
static int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
{
3454
	int i, err = 0;
3455 3456 3457 3458 3459 3460 3461 3462

	if (!vsi->num_rxq) {
		dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Rx queues\n",
			vsi->vsi_num);
		return -EINVAL;
	}

	ice_for_each_rxq(vsi, i) {
3463
		vsi->rx_rings[i]->netdev = vsi->netdev;
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
		err = ice_setup_rx_ring(vsi->rx_rings[i]);
		if (err)
			break;
	}

	return err;
}

/**
 * ice_vsi_req_irq - Request IRQ from the OS
 * @vsi: The VSI IRQ is being requested for
 * @basename: name for the vector
 *
 * Return 0 on success and a negative value on error
 */
static int ice_vsi_req_irq(struct ice_vsi *vsi, char *basename)
{
	struct ice_pf *pf = vsi->back;
	int err = -EINVAL;

	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
		err = ice_vsi_req_irq_msix(vsi, basename);

	return err;
}

/**
 * ice_vsi_open - Called when a network interface is made active
 * @vsi: the VSI to open
 *
 * Initialization of the VSI
 *
 * Returns 0 on success, negative value on error
 */
static int ice_vsi_open(struct ice_vsi *vsi)
{
	char int_name[ICE_INT_NAME_STR_LEN];
	struct ice_pf *pf = vsi->back;
	int err;

	/* allocate descriptors */
	err = ice_vsi_setup_tx_rings(vsi);
	if (err)
		goto err_setup_tx;

	err = ice_vsi_setup_rx_rings(vsi);
	if (err)
		goto err_setup_rx;

	err = ice_vsi_cfg(vsi);
	if (err)
		goto err_setup_rx;

	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
		 dev_driver_string(&pf->pdev->dev), vsi->netdev->name);
	err = ice_vsi_req_irq(vsi, int_name);
	if (err)
		goto err_setup_rx;

	/* Notify the stack of the actual queue counts. */
	err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
	if (err)
		goto err_set_qs;

	err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
	if (err)
		goto err_set_qs;

	err = ice_up_complete(vsi);
	if (err)
		goto err_up_complete;

	return 0;

err_up_complete:
	ice_down(vsi);
err_set_qs:
	ice_vsi_free_irq(vsi);
err_setup_rx:
	ice_vsi_free_rx_rings(vsi);
err_setup_tx:
	ice_vsi_free_tx_rings(vsi);

	return err;
}

3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
/**
 * ice_vsi_release_all - Delete all VSIs
 * @pf: PF from which all VSIs are being removed
 */
static void ice_vsi_release_all(struct ice_pf *pf)
{
	int err, i;

	if (!pf->vsi)
		return;

3561
	ice_for_each_vsi(pf, i) {
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
		if (!pf->vsi[i])
			continue;

		err = ice_vsi_release(pf->vsi[i]);
		if (err)
			dev_dbg(&pf->pdev->dev,
				"Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
				i, err, pf->vsi[i]->vsi_num);
	}
}

3573 3574 3575
/**
 * ice_dis_vsi - pause a VSI
 * @vsi: the VSI being paused
3576
 * @locked: is the rtnl_lock already held
3577
 */
3578
static void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
3579 3580 3581 3582 3583 3584
{
	if (test_bit(__ICE_DOWN, vsi->state))
		return;

	set_bit(__ICE_NEEDS_RESTART, vsi->state);

3585 3586
	if (vsi->type == ICE_VSI_PF && vsi->netdev) {
		if (netif_running(vsi->netdev)) {
3587 3588 3589 3590 3591 3592 3593
			if (!locked) {
				rtnl_lock();
				vsi->netdev->netdev_ops->ndo_stop(vsi->netdev);
				rtnl_unlock();
			} else {
				vsi->netdev->netdev_ops->ndo_stop(vsi->netdev);
			}
3594 3595 3596
		} else {
			ice_vsi_close(vsi);
		}
3597
	}
3598 3599 3600 3601 3602 3603
}

/**
 * ice_ena_vsi - resume a VSI
 * @vsi: the VSI being resume
 */
3604
static int ice_ena_vsi(struct ice_vsi *vsi)
3605
{
3606 3607
	int err = 0;

3608 3609 3610
	if (test_and_clear_bit(__ICE_NEEDS_RESTART, vsi->state) &&
	    vsi->netdev) {
		if (netif_running(vsi->netdev)) {
3611 3612 3613
			rtnl_lock();
			err = vsi->netdev->netdev_ops->ndo_open(vsi->netdev);
			rtnl_unlock();
3614 3615
		} else {
			err = ice_vsi_open(vsi);
3616
		}
3617
	}
3618

3619
	return err;
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
}

/**
 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
 * @pf: the PF
 */
static void ice_pf_dis_all_vsi(struct ice_pf *pf)
{
	int v;

	ice_for_each_vsi(pf, v)
		if (pf->vsi[v])
3632
			ice_dis_vsi(pf->vsi[v], false);
3633 3634 3635 3636 3637 3638
}

/**
 * ice_pf_ena_all_vsi - Resume all VSIs on a PF
 * @pf: the PF
 */
3639
static int ice_pf_ena_all_vsi(struct ice_pf *pf)
3640 3641 3642 3643 3644
{
	int v;

	ice_for_each_vsi(pf, v)
		if (pf->vsi[v])
3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
			if (ice_ena_vsi(pf->vsi[v]))
				return -EIO;

	return 0;
}

/**
 * ice_vsi_rebuild_all - rebuild all VSIs in pf
 * @pf: the PF
 */
static int ice_vsi_rebuild_all(struct ice_pf *pf)
{
	int i;

	/* loop through pf->vsi array and reinit the VSI if found */
3660
	ice_for_each_vsi(pf, i) {
3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
		int err;

		if (!pf->vsi[i])
			continue;

		err = ice_vsi_rebuild(pf->vsi[i]);
		if (err) {
			dev_err(&pf->pdev->dev,
				"VSI at index %d rebuild failed\n",
				pf->vsi[i]->idx);
			return err;
		}

		dev_info(&pf->pdev->dev,
			 "VSI at index %d rebuilt. vsi_num = 0x%x\n",
			 pf->vsi[i]->idx, pf->vsi[i]->vsi_num);
	}

	return 0;
3680 3681
}

3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
/**
 * ice_vsi_replay_all - replay all VSIs configuration in the PF
 * @pf: the PF
 */
static int ice_vsi_replay_all(struct ice_pf *pf)
{
	struct ice_hw *hw = &pf->hw;
	enum ice_status ret;
	int i;

	/* loop through pf->vsi array and replay the VSI if found */
3693
	ice_for_each_vsi(pf, i) {
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
		if (!pf->vsi[i])
			continue;

		ret = ice_replay_vsi(hw, pf->vsi[i]->idx);
		if (ret) {
			dev_err(&pf->pdev->dev,
				"VSI at index %d replay failed %d\n",
				pf->vsi[i]->idx, ret);
			return -EIO;
		}

		/* Re-map HW VSI number, using VSI handle that has been
		 * previously validated in ice_replay_vsi() call above
		 */
		pf->vsi[i]->vsi_num = ice_get_hw_vsi_num(hw, pf->vsi[i]->idx);

		dev_info(&pf->pdev->dev,
			 "VSI at index %d filter replayed successfully - vsi_num %i\n",
			 pf->vsi[i]->idx, pf->vsi[i]->vsi_num);
	}

	/* Clean up replay filter after successful re-configuration */
	ice_replay_post(hw);
	return 0;
}

3720 3721 3722 3723 3724 3725 3726 3727 3728
/**
 * ice_rebuild - rebuild after reset
 * @pf: pf to rebuild
 */
static void ice_rebuild(struct ice_pf *pf)
{
	struct device *dev = &pf->pdev->dev;
	struct ice_hw *hw = &pf->hw;
	enum ice_status ret;
3729
	int err, i;
3730 3731 3732 3733 3734 3735 3736 3737 3738

	if (test_bit(__ICE_DOWN, pf->state))
		goto clear_recovery;

	dev_dbg(dev, "rebuilding pf\n");

	ret = ice_init_all_ctrlq(hw);
	if (ret) {
		dev_err(dev, "control queues init failed %d\n", ret);
3739
		goto err_init_ctrlq;
3740 3741 3742 3743 3744
	}

	ret = ice_clear_pf_cfg(hw);
	if (ret) {
		dev_err(dev, "clear PF configuration failed %d\n", ret);
3745
		goto err_init_ctrlq;
3746 3747 3748 3749 3750 3751 3752
	}

	ice_clear_pxe_mode(hw);

	ret = ice_get_caps(hw);
	if (ret) {
		dev_err(dev, "ice_get_caps failed %d\n", ret);
3753
		goto err_init_ctrlq;
3754 3755
	}

3756 3757 3758 3759
	err = ice_sched_init_port(hw->port_info);
	if (err)
		goto err_sched_init_port;

3760 3761 3762 3763 3764 3765
	/* reset search_hint of irq_trackers to 0 since interrupts are
	 * reclaimed and could be allocated from beginning during VSI rebuild
	 */
	pf->sw_irq_tracker->search_hint = 0;
	pf->hw_irq_tracker->search_hint = 0;

3766
	err = ice_vsi_rebuild_all(pf);
3767
	if (err) {
3768 3769 3770 3771
		dev_err(dev, "ice_vsi_rebuild_all failed\n");
		goto err_vsi_rebuild;
	}

3772 3773 3774 3775
	err = ice_update_link_info(hw->port_info);
	if (err)
		dev_err(&pf->pdev->dev, "Get link status error %d\n", err);

3776 3777
	/* Replay all VSIs Configuration, including filters after reset */
	if (ice_vsi_replay_all(pf)) {
3778
		dev_err(&pf->pdev->dev,
3779
			"error replaying VSI configurations with switch filter rules\n");
3780
		goto err_vsi_rebuild;
3781 3782 3783 3784 3785 3786 3787
	}

	/* start misc vector */
	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
		err = ice_req_irq_msix_misc(pf);
		if (err) {
			dev_err(dev, "misc vector setup failed: %d\n", err);
3788
			goto err_vsi_rebuild;
3789 3790 3791 3792
		}
	}

	/* restart the VSIs that were rebuilt and running before the reset */
3793 3794 3795 3796 3797 3798 3799 3800
	err = ice_pf_ena_all_vsi(pf);
	if (err) {
		dev_err(&pf->pdev->dev, "error enabling VSIs\n");
		/* no need to disable VSIs in tear down path in ice_rebuild()
		 * since its already taken care in ice_vsi_open()
		 */
		goto err_vsi_rebuild;
	}
3801

3802
	ice_for_each_vsi(pf, i) {
3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
		bool link_up;

		if (!pf->vsi[i] || pf->vsi[i]->type != ICE_VSI_PF)
			continue;
		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
		if (link_up) {
			netif_carrier_on(pf->vsi[i]->netdev);
			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
		} else {
			netif_carrier_off(pf->vsi[i]->netdev);
			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
		}
	}

3817 3818
	/* if we get here, reset flow is successful */
	clear_bit(__ICE_RESET_FAILED, pf->state);
3819 3820
	return;

3821 3822 3823 3824 3825
err_vsi_rebuild:
	ice_vsi_release_all(pf);
err_sched_init_port:
	ice_sched_cleanup_all(hw);
err_init_ctrlq:
3826 3827 3828
	ice_shutdown_all_ctrlq(hw);
	set_bit(__ICE_RESET_FAILED, pf->state);
clear_recovery:
3829 3830 3831
	/* set this bit in PF state to control service task scheduling */
	set_bit(__ICE_NEEDS_RESTART, pf->state);
	dev_err(dev, "Rebuild failed, unload and reload driver\n");
3832 3833
}

3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
/**
 * ice_change_mtu - NDO callback to change the MTU
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 */
static int ice_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct ice_vsi *vsi = np->vsi;
	struct ice_pf *pf = vsi->back;
	u8 count = 0;

	if (new_mtu == netdev->mtu) {
3849
		netdev_warn(netdev, "mtu is already %u\n", netdev->mtu);
3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863
		return 0;
	}

	if (new_mtu < netdev->min_mtu) {
		netdev_err(netdev, "new mtu invalid. min_mtu is %d\n",
			   netdev->min_mtu);
		return -EINVAL;
	} else if (new_mtu > netdev->max_mtu) {
		netdev_err(netdev, "new mtu invalid. max_mtu is %d\n",
			   netdev->min_mtu);
		return -EINVAL;
	}
	/* if a reset is in progress, wait for some time for it to complete */
	do {
3864
		if (ice_is_reset_in_progress(pf->state)) {
3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
			count++;
			usleep_range(1000, 2000);
		} else {
			break;
		}

	} while (count < 100);

	if (count == 100) {
		netdev_err(netdev, "can't change mtu. Device is busy\n");
		return -EBUSY;
	}

	netdev->mtu = new_mtu;

	/* if VSI is up, bring it down and then back up */
	if (!test_and_set_bit(__ICE_DOWN, vsi->state)) {
		int err;

		err = ice_down(vsi);
		if (err) {
			netdev_err(netdev, "change mtu if_up err %d\n", err);
			return err;
		}

		err = ice_up(vsi);
		if (err) {
			netdev_err(netdev, "change mtu if_up err %d\n", err);
			return err;
		}
	}

	netdev_dbg(netdev, "changed mtu to %d\n", new_mtu);
	return 0;
}

3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
/**
 * ice_set_rss - Set RSS keys and lut
 * @vsi: Pointer to VSI structure
 * @seed: RSS hash seed
 * @lut: Lookup table
 * @lut_size: Lookup table size
 *
 * Returns 0 on success, negative on failure
 */
int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
{
	struct ice_pf *pf = vsi->back;
	struct ice_hw *hw = &pf->hw;
	enum ice_status status;

	if (seed) {
		struct ice_aqc_get_set_rss_keys *buf =
				  (struct ice_aqc_get_set_rss_keys *)seed;

3920
		status = ice_aq_set_rss_key(hw, vsi->idx, buf);
3921 3922 3923 3924 3925 3926 3927 3928 3929 3930

		if (status) {
			dev_err(&pf->pdev->dev,
				"Cannot set RSS key, err %d aq_err %d\n",
				status, hw->adminq.rq_last_status);
			return -EIO;
		}
	}

	if (lut) {
3931 3932
		status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
					    lut, lut_size);
3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962
		if (status) {
			dev_err(&pf->pdev->dev,
				"Cannot set RSS lut, err %d aq_err %d\n",
				status, hw->adminq.rq_last_status);
			return -EIO;
		}
	}

	return 0;
}

/**
 * ice_get_rss - Get RSS keys and lut
 * @vsi: Pointer to VSI structure
 * @seed: Buffer to store the keys
 * @lut: Buffer to store the lookup table entries
 * @lut_size: Size of buffer to store the lookup table entries
 *
 * Returns 0 on success, negative on failure
 */
int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
{
	struct ice_pf *pf = vsi->back;
	struct ice_hw *hw = &pf->hw;
	enum ice_status status;

	if (seed) {
		struct ice_aqc_get_set_rss_keys *buf =
				  (struct ice_aqc_get_set_rss_keys *)seed;

3963
		status = ice_aq_get_rss_key(hw, vsi->idx, buf);
3964 3965 3966 3967 3968 3969 3970 3971 3972
		if (status) {
			dev_err(&pf->pdev->dev,
				"Cannot get RSS key, err %d aq_err %d\n",
				status, hw->adminq.rq_last_status);
			return -EIO;
		}
	}

	if (lut) {
3973 3974
		status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
					    lut, lut_size);
3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
		if (status) {
			dev_err(&pf->pdev->dev,
				"Cannot get RSS lut, err %d aq_err %d\n",
				status, hw->adminq.rq_last_status);
			return -EIO;
		}
	}

	return 0;
}

3986 3987 3988
/**
 * ice_bridge_getlink - Get the hardware bridge mode
 * @skb: skb buff
3989
 * @pid: process ID
3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
 * @seq: RTNL message seq
 * @dev: the netdev being configured
 * @filter_mask: filter mask passed in
 * @nlflags: netlink flags passed in
 *
 * Return the bridge mode (VEB/VEPA)
 */
static int
ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
		   struct net_device *dev, u32 filter_mask, int nlflags)
{
	struct ice_netdev_priv *np = netdev_priv(dev);
	struct ice_vsi *vsi = np->vsi;
	struct ice_pf *pf = vsi->back;
	u16 bmode;

	bmode = pf->first_sw->bridge_mode;

	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
				       filter_mask, NULL);
}

/**
 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
 * @vsi: Pointer to VSI structure
 * @bmode: Hardware bridge mode (VEB/VEPA)
 *
 * Returns 0 on success, negative on failure
 */
static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
{
	struct device *dev = &vsi->back->pdev->dev;
	struct ice_aqc_vsi_props *vsi_props;
	struct ice_hw *hw = &vsi->back->hw;
4024
	struct ice_vsi_ctx *ctxt;
4025
	enum ice_status status;
4026
	int ret = 0;
4027 4028

	vsi_props = &vsi->info;
4029 4030 4031 4032 4033 4034

	ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
	if (!ctxt)
		return -ENOMEM;

	ctxt->info = vsi->info;
4035 4036 4037

	if (bmode == BRIDGE_MODE_VEB)
		/* change from VEPA to VEB mode */
4038
		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
4039 4040
	else
		/* change from VEB to VEPA mode */
4041 4042
		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
4043

4044
	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4045 4046 4047
	if (status) {
		dev_err(dev, "update VSI for bridge mode failed, bmode = %d err %d aq_err %d\n",
			bmode, status, hw->adminq.sq_last_status);
4048 4049
		ret = -EIO;
		goto out;
4050 4051
	}
	/* Update sw flags for book keeping */
4052
	vsi_props->sw_flags = ctxt->info.sw_flags;
4053

4054 4055 4056
out:
	devm_kfree(dev, ctxt);
	return ret;
4057 4058 4059 4060 4061 4062 4063
}

/**
 * ice_bridge_setlink - Set the hardware bridge mode
 * @dev: the netdev being configured
 * @nlh: RTNL message
 * @flags: bridge setlink flags
P
Petr Machata 已提交
4064
 * @extack: netlink extended ack
4065 4066 4067 4068 4069 4070 4071 4072
 *
 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
 * not already set for all VSIs connected to this switch. And also update the
 * unicast switch filter rules for the corresponding switch of the netdev.
 */
static int
ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
4073 4074
		   u16 __always_unused flags,
		   struct netlink_ext_ack __always_unused *extack)
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115
{
	struct ice_netdev_priv *np = netdev_priv(dev);
	struct ice_pf *pf = np->vsi->back;
	struct nlattr *attr, *br_spec;
	struct ice_hw *hw = &pf->hw;
	enum ice_status status;
	struct ice_sw *pf_sw;
	int rem, v, err = 0;

	pf_sw = pf->first_sw;
	/* find the attribute in the netlink message */
	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);

	nla_for_each_nested(attr, br_spec, rem) {
		__u16 mode;

		if (nla_type(attr) != IFLA_BRIDGE_MODE)
			continue;
		mode = nla_get_u16(attr);
		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
			return -EINVAL;
		/* Continue  if bridge mode is not being flipped */
		if (mode == pf_sw->bridge_mode)
			continue;
		/* Iterates through the PF VSI list and update the loopback
		 * mode of the VSI
		 */
		ice_for_each_vsi(pf, v) {
			if (!pf->vsi[v])
				continue;
			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
			if (err)
				return err;
		}

		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
		/* Update the unicast switch filter rules for the corresponding
		 * switch of the netdev
		 */
		status = ice_update_sw_rule_bridge_mode(hw);
		if (status) {
4116
			netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %d\n",
4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
				   mode, status, hw->adminq.sq_last_status);
			/* revert hw->evb_veb */
			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
			return -EIO;
		}

		pf_sw->bridge_mode = mode;
	}

	return 0;
}

4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139
/**
 * ice_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 */
static void ice_tx_timeout(struct net_device *netdev)
{
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct ice_ring *tx_ring = NULL;
	struct ice_vsi *vsi = np->vsi;
	struct ice_pf *pf = vsi->back;
	int hung_queue = -1;
4140
	u32 i;
4141 4142 4143

	pf->tx_timeout_count++;

B
Bruce Allan 已提交
4144
	/* find the stopped queue the same way dev_watchdog() does */
4145 4146
	for (i = 0; i < netdev->num_tx_queues; i++) {
		unsigned long trans_start;
B
Bruce Allan 已提交
4147
		struct netdev_queue *q;
4148 4149 4150 4151 4152

		q = netdev_get_tx_queue(netdev, i);
		trans_start = q->trans_start;
		if (netif_xmit_stopped(q) &&
		    time_after(jiffies,
B
Bruce Allan 已提交
4153
			       trans_start + netdev->watchdog_timeo)) {
4154 4155 4156 4157 4158
			hung_queue = i;
			break;
		}
	}

B
Bruce Allan 已提交
4159
	if (i == netdev->num_tx_queues)
4160
		netdev_info(netdev, "tx_timeout: no netdev hung queue found\n");
B
Bruce Allan 已提交
4161
	else
4162
		/* now that we have an index, find the tx_ring struct */
B
Bruce Allan 已提交
4163 4164 4165
		for (i = 0; i < vsi->num_txq; i++)
			if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
				if (hung_queue == vsi->tx_rings[i]->q_index) {
4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179
					tx_ring = vsi->tx_rings[i];
					break;
				}

	/* Reset recovery level if enough time has elapsed after last timeout.
	 * Also ensure no new reset action happens before next timeout period.
	 */
	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
		pf->tx_timeout_recovery_level = 1;
	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
				       netdev->watchdog_timeo)))
		return;

	if (tx_ring) {
4180 4181 4182 4183 4184
		struct ice_hw *hw = &pf->hw;
		u32 head, val = 0;

		head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[hung_queue])) &
			QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
4185 4186
		/* Read interrupt register */
		if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
4187
			val = rd32(hw,
4188
				   GLINT_DYN_CTL(tx_ring->q_vector->v_idx +
B
Bruce Allan 已提交
4189
						 tx_ring->vsi->hw_base_vector));
4190

4191
		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %d, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
4192
			    vsi->vsi_num, hung_queue, tx_ring->next_to_clean,
4193
			    head, tx_ring->next_to_use, val);
4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213
	}

	pf->tx_timeout_last_recovery = jiffies;
	netdev_info(netdev, "tx_timeout recovery level %d, hung_queue %d\n",
		    pf->tx_timeout_recovery_level, hung_queue);

	switch (pf->tx_timeout_recovery_level) {
	case 1:
		set_bit(__ICE_PFR_REQ, pf->state);
		break;
	case 2:
		set_bit(__ICE_CORER_REQ, pf->state);
		break;
	case 3:
		set_bit(__ICE_GLOBR_REQ, pf->state);
		break;
	default:
		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
		set_bit(__ICE_DOWN, pf->state);
		set_bit(__ICE_NEEDS_RESTART, vsi->state);
4214
		set_bit(__ICE_SERVICE_DIS, pf->state);
4215 4216 4217 4218 4219 4220 4221
		break;
	}

	ice_service_task_schedule(pf);
	pf->tx_timeout_recovery_level++;
}

4222 4223 4224 4225 4226
/**
 * ice_open - Called when a network interface becomes active
 * @netdev: network interface device structure
 *
 * The open entry point is called when a network interface is made
4227
 * active by the system (IFF_UP). At this point all resources needed
4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the netdev watchdog is enabled,
 * and the stack is notified that the interface is ready.
 *
 * Returns 0 on success, negative value on failure
 */
static int ice_open(struct net_device *netdev)
{
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct ice_vsi *vsi = np->vsi;
	int err;

4240 4241 4242 4243 4244
	if (test_bit(__ICE_NEEDS_RESTART, vsi->back->state)) {
		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
		return -EIO;
	}

4245 4246
	netif_carrier_off(netdev);

4247 4248 4249 4250 4251 4252
	err = ice_force_phys_link_state(vsi, true);
	if (err) {
		netdev_err(netdev,
			   "Failed to set physical link up, error %d\n", err);
		return err;
	}
4253

4254
	err = ice_vsi_open(vsi);
4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265
	if (err)
		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
			   vsi->vsi_num, vsi->vsw->sw_id);
	return err;
}

/**
 * ice_stop - Disables a network interface
 * @netdev: network interface device structure
 *
 * The stop entry point is called when an interface is de-activated by the OS,
4266
 * and the netdevice enters the DOWN state. The hardware is still under the
4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
 * driver's control, but the netdev interface is disabled.
 *
 * Returns success only - not allowed to fail
 */
static int ice_stop(struct net_device *netdev)
{
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct ice_vsi *vsi = np->vsi;

	ice_vsi_close(vsi);

	return 0;
}

4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
/**
 * ice_features_check - Validate encapsulated packet conforms to limits
 * @skb: skb buffer
 * @netdev: This port's netdev
 * @features: Offload features that the stack believes apply
 */
static netdev_features_t
ice_features_check(struct sk_buff *skb,
		   struct net_device __always_unused *netdev,
		   netdev_features_t features)
{
	size_t len;

	/* No point in doing any of this if neither checksum nor GSO are
4295
	 * being requested for this frame. We can rule out both by just
4296 4297 4298 4299 4300 4301
	 * checking for CHECKSUM_PARTIAL
	 */
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return features;

	/* We cannot support GSO if the MSS is going to be less than
4302
	 * 64 bytes. If it is then we need to drop support for GSO.
4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330
	 */
	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
		features &= ~NETIF_F_GSO_MASK;

	len = skb_network_header(skb) - skb->data;
	if (len & ~(ICE_TXD_MACLEN_MAX))
		goto out_rm_features;

	len = skb_transport_header(skb) - skb_network_header(skb);
	if (len & ~(ICE_TXD_IPLEN_MAX))
		goto out_rm_features;

	if (skb->encapsulation) {
		len = skb_inner_network_header(skb) - skb_transport_header(skb);
		if (len & ~(ICE_TXD_L4LEN_MAX))
			goto out_rm_features;

		len = skb_inner_transport_header(skb) -
		      skb_inner_network_header(skb);
		if (len & ~(ICE_TXD_IPLEN_MAX))
			goto out_rm_features;
	}

	return features;
out_rm_features:
	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
}

4331 4332 4333
static const struct net_device_ops ice_netdev_ops = {
	.ndo_open = ice_open,
	.ndo_stop = ice_stop,
4334
	.ndo_start_xmit = ice_start_xmit,
4335 4336 4337 4338 4339
	.ndo_features_check = ice_features_check,
	.ndo_set_rx_mode = ice_set_rx_mode,
	.ndo_set_mac_address = ice_set_mac_address,
	.ndo_validate_addr = eth_validate_addr,
	.ndo_change_mtu = ice_change_mtu,
4340
	.ndo_get_stats64 = ice_get_stats64,
4341 4342 4343 4344 4345 4346
	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
	.ndo_set_vf_mac = ice_set_vf_mac,
	.ndo_get_vf_config = ice_get_vf_cfg,
	.ndo_set_vf_trust = ice_set_vf_trust,
	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
	.ndo_set_vf_link_state = ice_set_vf_link_state,
4347 4348 4349
	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
	.ndo_set_features = ice_set_features,
4350 4351
	.ndo_bridge_getlink = ice_bridge_getlink,
	.ndo_bridge_setlink = ice_bridge_setlink,
4352 4353
	.ndo_fdb_add = ice_fdb_add,
	.ndo_fdb_del = ice_fdb_del,
4354
	.ndo_tx_timeout = ice_tx_timeout,
4355
};