ice_main.c 100.8 KB
Newer Older
1 2 3 4 5 6 7 8
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018, Intel Corporation. */

/* Intel(R) Ethernet Connection E800 Series Linux Driver */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include "ice.h"
9
#include "ice_lib.h"
10

11
#define DRV_VERSION	"0.7.2-k"
12
#define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
13
const char ice_drv_ver[] = DRV_VERSION;
14 15 16 17 18
static const char ice_driver_string[] = DRV_SUMMARY;
static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";

MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
MODULE_DESCRIPTION(DRV_SUMMARY);
19
MODULE_LICENSE("GPL v2");
20 21 22 23
MODULE_VERSION(DRV_VERSION);

static int debug = -1;
module_param(debug, int, 0644);
24 25 26 27 28
#ifndef CONFIG_DYNAMIC_DEBUG
MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
#else
MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
#endif /* !CONFIG_DYNAMIC_DEBUG */
29

30
static struct workqueue_struct *ice_wq;
31
static const struct net_device_ops ice_netdev_ops;
32

33 34
static void ice_pf_dis_all_vsi(struct ice_pf *pf);
static void ice_rebuild(struct ice_pf *pf);
35

36
static void ice_vsi_release_all(struct ice_pf *pf);
37 38
static void ice_update_vsi_stats(struct ice_vsi *vsi);
static void ice_update_pf_stats(struct ice_pf *pf);
39

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
/**
 * ice_get_tx_pending - returns number of Tx descriptors not processed
 * @ring: the ring of descriptors
 */
static u32 ice_get_tx_pending(struct ice_ring *ring)
{
	u32 head, tail;

	head = ring->next_to_clean;
	tail = readl(ring->tail);

	if (head != tail)
		return (head < tail) ?
			tail - head : (tail + ring->count - head);
	return 0;
}

/**
 * ice_check_for_hang_subtask - check for and recover hung queues
 * @pf: pointer to PF struct
 */
static void ice_check_for_hang_subtask(struct ice_pf *pf)
{
	struct ice_vsi *vsi = NULL;
	unsigned int i;
	u32 v, v_idx;
	int packets;

	ice_for_each_vsi(pf, v)
		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
			vsi = pf->vsi[v];
			break;
		}

	if (!vsi || test_bit(__ICE_DOWN, vsi->state))
		return;

	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
		return;

	for (i = 0; i < vsi->num_txq; i++) {
		struct ice_ring *tx_ring = vsi->tx_rings[i];

		if (tx_ring && tx_ring->desc) {
			int itr = ICE_ITR_NONE;

			/* If packet counter has not changed the queue is
			 * likely stalled, so force an interrupt for this
			 * queue.
			 *
			 * prev_pkt would be negative if there was no
			 * pending work.
			 */
			packets = tx_ring->stats.pkts & INT_MAX;
			if (tx_ring->tx_stats.prev_pkt == packets) {
				/* Trigger sw interrupt to revive the queue */
				v_idx = tx_ring->q_vector->v_idx;
				wr32(&vsi->back->hw,
98
				     GLINT_DYN_CTL(vsi->hw_base_vector + v_idx),
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
				     (itr << GLINT_DYN_CTL_ITR_INDX_S) |
				     GLINT_DYN_CTL_SWINT_TRIG_M |
				     GLINT_DYN_CTL_INTENA_MSK_M);
				continue;
			}

			/* Memory barrier between read of packet count and call
			 * to ice_get_tx_pending()
			 */
			smp_rmb();
			tx_ring->tx_stats.prev_pkt =
			    ice_get_tx_pending(tx_ring) ? packets : -1;
		}
	}
}

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
/**
 * ice_add_mac_to_sync_list - creates list of mac addresses to be synced
 * @netdev: the net device on which the sync is happening
 * @addr: mac address to sync
 *
 * This is a callback function which is called by the in kernel device sync
 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
 * mac filters from the hardware.
 */
static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
{
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct ice_vsi *vsi = np->vsi;

	if (ice_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr))
		return -EINVAL;

	return 0;
}

/**
 * ice_add_mac_to_unsync_list - creates list of mac addresses to be unsynced
 * @netdev: the net device on which the unsync is happening
 * @addr: mac address to unsync
 *
 * This is a callback function which is called by the in kernel device unsync
 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
 * delete the mac filters from the hardware.
 */
static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
{
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct ice_vsi *vsi = np->vsi;

	if (ice_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr))
		return -EINVAL;

	return 0;
}

/**
 * ice_vsi_fltr_changed - check if filter state changed
 * @vsi: VSI to be checked
 *
 * returns true if filter state has changed, false otherwise.
 */
static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
{
	return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) ||
	       test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) ||
	       test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
}

/**
 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
 * @vsi: ptr to the VSI
 *
 * Push any outstanding VSI filter changes through the AdminQ.
 */
static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
{
	struct device *dev = &vsi->back->pdev->dev;
	struct net_device *netdev = vsi->netdev;
	bool promisc_forced_on = false;
	struct ice_pf *pf = vsi->back;
	struct ice_hw *hw = &pf->hw;
	enum ice_status status = 0;
	u32 changed_flags = 0;
	int err = 0;

	if (!vsi->netdev)
		return -EINVAL;

	while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state))
		usleep_range(1000, 2000);

	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
	vsi->current_netdev_flags = vsi->netdev->flags;

	INIT_LIST_HEAD(&vsi->tmp_sync_list);
	INIT_LIST_HEAD(&vsi->tmp_unsync_list);

	if (ice_vsi_fltr_changed(vsi)) {
		clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
		clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
		clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);

		/* grab the netdev's addr_list_lock */
		netif_addr_lock_bh(netdev);
		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
			      ice_add_mac_to_unsync_list);
		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
			      ice_add_mac_to_unsync_list);
		/* our temp lists are populated. release lock */
		netif_addr_unlock_bh(netdev);
	}

	/* Remove mac addresses in the unsync list */
	status = ice_remove_mac(hw, &vsi->tmp_unsync_list);
	ice_free_fltr_list(dev, &vsi->tmp_unsync_list);
	if (status) {
		netdev_err(netdev, "Failed to delete MAC filters\n");
		/* if we failed because of alloc failures, just bail */
		if (status == ICE_ERR_NO_MEMORY) {
			err = -ENOMEM;
			goto out;
		}
	}

	/* Add mac addresses in the sync list */
	status = ice_add_mac(hw, &vsi->tmp_sync_list);
	ice_free_fltr_list(dev, &vsi->tmp_sync_list);
	if (status) {
		netdev_err(netdev, "Failed to add MAC filters\n");
		/* If there is no more space for new umac filters, vsi
		 * should go into promiscuous mode. There should be some
		 * space reserved for promiscuous filters.
		 */
		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
		    !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC,
				      vsi->state)) {
			promisc_forced_on = true;
			netdev_warn(netdev,
				    "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
				    vsi->vsi_num);
		} else {
			err = -EIO;
			goto out;
		}
	}
	/* check for changes in promiscuous modes */
	if (changed_flags & IFF_ALLMULTI)
		netdev_warn(netdev, "Unsupported configuration\n");

	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
	    test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) {
		clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
		if (vsi->current_netdev_flags & IFF_PROMISC) {
			/* Apply TX filter rule to get traffic from VMs */
256
			status = ice_cfg_dflt_vsi(hw, vsi->idx, true,
257 258 259 260 261 262 263 264 265
						  ICE_FLTR_TX);
			if (status) {
				netdev_err(netdev, "Error setting default VSI %i tx rule\n",
					   vsi->vsi_num);
				vsi->current_netdev_flags &= ~IFF_PROMISC;
				err = -EIO;
				goto out_promisc;
			}
			/* Apply RX filter rule to get traffic from wire */
266
			status = ice_cfg_dflt_vsi(hw, vsi->idx, true,
267 268 269 270 271 272 273 274 275 276
						  ICE_FLTR_RX);
			if (status) {
				netdev_err(netdev, "Error setting default VSI %i rx rule\n",
					   vsi->vsi_num);
				vsi->current_netdev_flags &= ~IFF_PROMISC;
				err = -EIO;
				goto out_promisc;
			}
		} else {
			/* Clear TX filter rule to stop traffic from VMs */
277
			status = ice_cfg_dflt_vsi(hw, vsi->idx, false,
278 279 280 281 282 283 284 285
						  ICE_FLTR_TX);
			if (status) {
				netdev_err(netdev, "Error clearing default VSI %i tx rule\n",
					   vsi->vsi_num);
				vsi->current_netdev_flags |= IFF_PROMISC;
				err = -EIO;
				goto out_promisc;
			}
286 287
			/* Clear RX filter to remove traffic from wire */
			status = ice_cfg_dflt_vsi(hw, vsi->idx, false,
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
						  ICE_FLTR_RX);
			if (status) {
				netdev_err(netdev, "Error clearing default VSI %i rx rule\n",
					   vsi->vsi_num);
				vsi->current_netdev_flags |= IFF_PROMISC;
				err = -EIO;
				goto out_promisc;
			}
		}
	}
	goto exit;

out_promisc:
	set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
	goto exit;
out:
	/* if something went wrong then set the changed flag so we try again */
	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
exit:
	clear_bit(__ICE_CFG_BUSY, vsi->state);
	return err;
}

/**
 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
 * @pf: board private structure
 */
static void ice_sync_fltr_subtask(struct ice_pf *pf)
{
	int v;

	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
		return;

	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);

	for (v = 0; v < pf->num_alloc_vsi; v++)
		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
		    ice_vsi_sync_fltr(pf->vsi[v])) {
			/* come back and try again later */
			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
			break;
		}
}

334 335 336 337 338 339 340 341 342 343 344
/**
 * ice_prepare_for_reset - prep for the core to reset
 * @pf: board private structure
 *
 * Inform or close all dependent features in prep for reset.
 */
static void
ice_prepare_for_reset(struct ice_pf *pf)
{
	struct ice_hw *hw = &pf->hw;

345 346 347 348
	/* Notify VFs of impending reset */
	if (ice_check_sq_alive(hw, &hw->mailboxq))
		ice_vc_notify_reset(pf);

349 350 351 352
	/* disable the VSIs and their queues that are not already DOWN */
	ice_pf_dis_all_vsi(pf);

	ice_shutdown_all_ctrlq(hw);
353 354

	set_bit(__ICE_PREPARED_FOR_RESET, pf->state);
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
}

/**
 * ice_do_reset - Initiate one of many types of resets
 * @pf: board private structure
 * @reset_type: reset type requested
 * before this function was called.
 */
static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
{
	struct device *dev = &pf->pdev->dev;
	struct ice_hw *hw = &pf->hw;

	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
	WARN_ON(in_interrupt());

371
	ice_prepare_for_reset(pf);
372 373 374 375 376

	/* trigger the reset */
	if (ice_reset(hw, reset_type)) {
		dev_err(dev, "reset %d failed\n", reset_type);
		set_bit(__ICE_RESET_FAILED, pf->state);
377
		clear_bit(__ICE_RESET_OICR_RECV, pf->state);
378
		clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
379 380 381
		clear_bit(__ICE_PFR_REQ, pf->state);
		clear_bit(__ICE_CORER_REQ, pf->state);
		clear_bit(__ICE_GLOBR_REQ, pf->state);
382 383 384
		return;
	}

385 386 387 388
	/* PFR is a bit of a special case because it doesn't result in an OICR
	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
	 * associated state bits.
	 */
389 390 391
	if (reset_type == ICE_RESET_PFR) {
		pf->pfr_count++;
		ice_rebuild(pf);
392
		clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
393
		clear_bit(__ICE_PFR_REQ, pf->state);
394 395 396 397 398 399 400 401 402
	}
}

/**
 * ice_reset_subtask - Set up for resetting the device and driver
 * @pf: board private structure
 */
static void ice_reset_subtask(struct ice_pf *pf)
{
403
	enum ice_reset_req reset_type = ICE_RESET_INVAL;
404 405

	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
406 407
	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
	 * of reset is pending and sets bits in pf->state indicating the reset
408
	 * type and __ICE_RESET_OICR_RECV.  So, if the latter bit is set
409 410 411 412 413
	 * prepare for pending reset if not already (for PF software-initiated
	 * global resets the software should already be prepared for it as
	 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated
	 * by firmware or software on other PFs, that bit is not set so prepare
	 * for the reset now), poll for reset done, rebuild and return.
414
	 */
415
	if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) {
416 417
		clear_bit(__ICE_GLOBR_RECV, pf->state);
		clear_bit(__ICE_CORER_RECV, pf->state);
418 419
		if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state))
			ice_prepare_for_reset(pf);
420 421

		/* make sure we are ready to rebuild */
422
		if (ice_check_reset(&pf->hw)) {
423
			set_bit(__ICE_RESET_FAILED, pf->state);
424 425 426
		} else {
			/* done with reset. start rebuild */
			pf->hw.reset_ongoing = false;
427
			ice_rebuild(pf);
428 429 430
			/* clear bit to resume normal operations, but
			 * ICE_NEEDS_RESTART bit is set incase rebuild failed
			 */
431
			clear_bit(__ICE_RESET_OICR_RECV, pf->state);
432
			clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
433 434 435
			clear_bit(__ICE_PFR_REQ, pf->state);
			clear_bit(__ICE_CORER_REQ, pf->state);
			clear_bit(__ICE_GLOBR_REQ, pf->state);
436
		}
437 438

		return;
439 440 441
	}

	/* No pending resets to finish processing. Check for new resets */
442
	if (test_bit(__ICE_PFR_REQ, pf->state))
443
		reset_type = ICE_RESET_PFR;
444
	if (test_bit(__ICE_CORER_REQ, pf->state))
445
		reset_type = ICE_RESET_CORER;
446
	if (test_bit(__ICE_GLOBR_REQ, pf->state))
447
		reset_type = ICE_RESET_GLOBR;
448 449 450
	/* If no valid reset type requested just return */
	if (reset_type == ICE_RESET_INVAL)
		return;
451

452
	/* reset if not already down or busy */
453 454 455 456 457 458
	if (!test_bit(__ICE_DOWN, pf->state) &&
	    !test_bit(__ICE_CFG_BUSY, pf->state)) {
		ice_do_reset(pf, reset_type);
	}
}

459 460 461 462 463
/**
 * ice_print_link_msg - print link up or down message
 * @vsi: the VSI whose link status is being queried
 * @isup: boolean for if the link is now up or down
 */
464
void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
{
	const char *speed;
	const char *fc;

	if (vsi->current_isup == isup)
		return;

	vsi->current_isup = isup;

	if (!isup) {
		netdev_info(vsi->netdev, "NIC Link is Down\n");
		return;
	}

	switch (vsi->port_info->phy.link_info.link_speed) {
	case ICE_AQ_LINK_SPEED_40GB:
		speed = "40 G";
		break;
	case ICE_AQ_LINK_SPEED_25GB:
		speed = "25 G";
		break;
	case ICE_AQ_LINK_SPEED_20GB:
		speed = "20 G";
		break;
	case ICE_AQ_LINK_SPEED_10GB:
		speed = "10 G";
		break;
	case ICE_AQ_LINK_SPEED_5GB:
		speed = "5 G";
		break;
	case ICE_AQ_LINK_SPEED_2500MB:
		speed = "2.5 G";
		break;
	case ICE_AQ_LINK_SPEED_1000MB:
		speed = "1 G";
		break;
	case ICE_AQ_LINK_SPEED_100MB:
		speed = "100 M";
		break;
	default:
		speed = "Unknown";
		break;
	}

	switch (vsi->port_info->fc.current_mode) {
	case ICE_FC_FULL:
		fc = "RX/TX";
		break;
	case ICE_FC_TX_PAUSE:
		fc = "TX";
		break;
	case ICE_FC_RX_PAUSE:
		fc = "RX";
		break;
	default:
		fc = "Unknown";
		break;
	}

	netdev_info(vsi->netdev, "NIC Link is up %sbps, Flow Control: %s\n",
		    speed, fc);
}

528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
/**
 * ice_vsi_link_event - update the vsi's netdev
 * @vsi: the vsi on which the link event occurred
 * @link_up: whether or not the vsi needs to be set up or down
 */
static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
{
	if (!vsi || test_bit(__ICE_DOWN, vsi->state))
		return;

	if (vsi->type == ICE_VSI_PF) {
		if (!vsi->netdev) {
			dev_dbg(&vsi->back->pdev->dev,
				"vsi->netdev is not initialized!\n");
			return;
		}
		if (link_up) {
			netif_carrier_on(vsi->netdev);
			netif_tx_wake_all_queues(vsi->netdev);
		} else {
			netif_carrier_off(vsi->netdev);
			netif_tx_stop_all_queues(vsi->netdev);
		}
	}
}

/**
 * ice_link_event - process the link event
 * @pf: pf that the link event is associated with
 * @pi: port_info for the port that the link event is associated with
 *
 * Returns -EIO if ice_get_link_status() fails
 * Returns 0 on success
 */
static int
ice_link_event(struct ice_pf *pf, struct ice_port_info *pi)
{
	u8 new_link_speed, old_link_speed;
	struct ice_phy_info *phy_info;
	bool new_link_same_as_old;
	bool new_link, old_link;
	u8 lport;
	u16 v;

	phy_info = &pi->phy;
	phy_info->link_info_old = phy_info->link_info;
	/* Force ice_get_link_status() to update link info */
	phy_info->get_link_info = true;

	old_link = (phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
	old_link_speed = phy_info->link_info_old.link_speed;

	lport = pi->lport;
	if (ice_get_link_status(pi, &new_link)) {
		dev_dbg(&pf->pdev->dev,
			"Could not get link status for port %d\n", lport);
		return -EIO;
	}

	new_link_speed = phy_info->link_info.link_speed;

	new_link_same_as_old = (new_link == old_link &&
				new_link_speed == old_link_speed);

	ice_for_each_vsi(pf, v) {
		struct ice_vsi *vsi = pf->vsi[v];

		if (!vsi || !vsi->port_info)
			continue;

		if (new_link_same_as_old &&
		    (test_bit(__ICE_DOWN, vsi->state) ||
		    new_link == netif_carrier_ok(vsi->netdev)))
			continue;

		if (vsi->port_info->lport == lport) {
			ice_print_link_msg(vsi, new_link);
			ice_vsi_link_event(vsi, new_link);
		}
	}

609 610
	ice_vc_notify_link_state(pf);

611 612 613 614
	return 0;
}

/**
615 616
 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
 * @pf: board private structure
617
 */
618
static void ice_watchdog_subtask(struct ice_pf *pf)
619
{
620
	int i;
621

622 623 624 625
	/* if interface is down do nothing */
	if (test_bit(__ICE_DOWN, pf->state) ||
	    test_bit(__ICE_CFG_BUSY, pf->state))
		return;
626

627 628 629 630
	/* make sure we don't do these things too often */
	if (time_before(jiffies,
			pf->serv_tmr_prev + pf->serv_tmr_period))
		return;
631

632 633 634 635 636 637 638 639 640 641 642 643
	pf->serv_tmr_prev = jiffies;

	if (ice_link_event(pf, pf->hw.port_info))
		dev_dbg(&pf->pdev->dev, "ice_link_event failed\n");

	/* Update the stats for active netdevs so the network stack
	 * can look at updated numbers whenever it cares to
	 */
	ice_update_pf_stats(pf);
	for (i = 0; i < pf->num_alloc_vsi; i++)
		if (pf->vsi[i] && pf->vsi[i]->netdev)
			ice_update_vsi_stats(pf->vsi[i]);
644 645
}

646 647 648 649 650 651 652 653 654 655 656 657 658 659
/**
 * __ice_clean_ctrlq - helper function to clean controlq rings
 * @pf: ptr to struct ice_pf
 * @q_type: specific Control queue type
 */
static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
{
	struct ice_rq_event_info event;
	struct ice_hw *hw = &pf->hw;
	struct ice_ctl_q_info *cq;
	u16 pending, i = 0;
	const char *qtype;
	u32 oldval, val;

660 661 662 663
	/* Do not clean control queue if/when PF reset fails */
	if (test_bit(__ICE_RESET_FAILED, pf->state))
		return 0;

664 665 666 667 668
	switch (q_type) {
	case ICE_CTL_Q_ADMIN:
		cq = &hw->adminq;
		qtype = "Admin";
		break;
669 670 671 672
	case ICE_CTL_Q_MAILBOX:
		cq = &hw->mailboxq;
		qtype = "Mailbox";
		break;
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
	default:
		dev_warn(&pf->pdev->dev, "Unknown control queue type 0x%x\n",
			 q_type);
		return 0;
	}

	/* check for error indications - PF_xx_AxQLEN register layout for
	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
	 */
	val = rd32(hw, cq->rq.len);
	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
		   PF_FW_ARQLEN_ARQCRIT_M)) {
		oldval = val;
		if (val & PF_FW_ARQLEN_ARQVFE_M)
			dev_dbg(&pf->pdev->dev,
				"%s Receive Queue VF Error detected\n", qtype);
		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
			dev_dbg(&pf->pdev->dev,
				"%s Receive Queue Overflow Error detected\n",
				qtype);
		}
		if (val & PF_FW_ARQLEN_ARQCRIT_M)
			dev_dbg(&pf->pdev->dev,
				"%s Receive Queue Critical Error detected\n",
				qtype);
		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
			 PF_FW_ARQLEN_ARQCRIT_M);
		if (oldval != val)
			wr32(hw, cq->rq.len, val);
	}

	val = rd32(hw, cq->sq.len);
	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
		   PF_FW_ATQLEN_ATQCRIT_M)) {
		oldval = val;
		if (val & PF_FW_ATQLEN_ATQVFE_M)
			dev_dbg(&pf->pdev->dev,
				"%s Send Queue VF Error detected\n", qtype);
		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
			dev_dbg(&pf->pdev->dev,
				"%s Send Queue Overflow Error detected\n",
				qtype);
		}
		if (val & PF_FW_ATQLEN_ATQCRIT_M)
			dev_dbg(&pf->pdev->dev,
				"%s Send Queue Critical Error detected\n",
				qtype);
		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
			 PF_FW_ATQLEN_ATQCRIT_M);
		if (oldval != val)
			wr32(hw, cq->sq.len, val);
	}

	event.buf_len = cq->rq_buf_size;
	event.msg_buf = devm_kzalloc(&pf->pdev->dev, event.buf_len,
				     GFP_KERNEL);
	if (!event.msg_buf)
		return 0;

	do {
		enum ice_status ret;
734
		u16 opcode;
735 736 737 738 739 740 741 742 743 744

		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
		if (ret == ICE_ERR_AQ_NO_WORK)
			break;
		if (ret) {
			dev_err(&pf->pdev->dev,
				"%s Receive Queue event error %d\n", qtype,
				ret);
			break;
		}
745 746 747 748

		opcode = le16_to_cpu(event.desc.opcode);

		switch (opcode) {
749 750 751
		case ice_mbx_opc_send_msg_to_pf:
			ice_vc_process_vf_msg(pf, &event);
			break;
752 753 754
		case ice_aqc_opc_fw_logging:
			ice_output_fw_log(hw, &event.desc, event.msg_buf);
			break;
755 756 757 758 759 760
		default:
			dev_dbg(&pf->pdev->dev,
				"%s Receive Queue unknown event 0x%04x ignored\n",
				qtype, opcode);
			break;
		}
761 762 763 764 765 766 767
	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));

	devm_kfree(&pf->pdev->dev, event.msg_buf);

	return pending && (i == ICE_DFLT_IRQ_WORK);
}

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
/**
 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
 * @hw: pointer to hardware info
 * @cq: control queue information
 *
 * returns true if there are pending messages in a queue, false if there aren't
 */
static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
	u16 ntu;

	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
	return cq->rq.next_to_clean != ntu;
}

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
/**
 * ice_clean_adminq_subtask - clean the AdminQ rings
 * @pf: board private structure
 */
static void ice_clean_adminq_subtask(struct ice_pf *pf)
{
	struct ice_hw *hw = &pf->hw;

	if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
		return;

	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
		return;

	clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);

799 800 801 802 803 804 805
	/* There might be a situation where new messages arrive to a control
	 * queue between processing the last message and clearing the
	 * EVENT_PENDING bit. So before exiting, check queue head again (using
	 * ice_ctrlq_pending) and process new messages if any.
	 */
	if (ice_ctrlq_pending(hw, &hw->adminq))
		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
806 807 808 809

	ice_flush(hw);
}

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
/**
 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
 * @pf: board private structure
 */
static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
{
	struct ice_hw *hw = &pf->hw;

	if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state))
		return;

	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
		return;

	clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);

	if (ice_ctrlq_pending(hw, &hw->mailboxq))
		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);

	ice_flush(hw);
}

832 833 834 835 836 837 838 839
/**
 * ice_service_task_schedule - schedule the service task to wake up
 * @pf: board private structure
 *
 * If not already scheduled, this puts the task into the work queue.
 */
static void ice_service_task_schedule(struct ice_pf *pf)
{
840
	if (!test_bit(__ICE_SERVICE_DIS, pf->state) &&
841 842
	    !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) &&
	    !test_bit(__ICE_NEEDS_RESTART, pf->state))
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
		queue_work(ice_wq, &pf->serv_task);
}

/**
 * ice_service_task_complete - finish up the service task
 * @pf: board private structure
 */
static void ice_service_task_complete(struct ice_pf *pf)
{
	WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state));

	/* force memory (pf->state) to sync before next service task */
	smp_mb__before_atomic();
	clear_bit(__ICE_SERVICE_SCHED, pf->state);
}

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
/**
 * ice_service_task_stop - stop service task and cancel works
 * @pf: board private structure
 */
static void ice_service_task_stop(struct ice_pf *pf)
{
	set_bit(__ICE_SERVICE_DIS, pf->state);

	if (pf->serv_tmr.function)
		del_timer_sync(&pf->serv_tmr);
	if (pf->serv_task.func)
		cancel_work_sync(&pf->serv_task);

	clear_bit(__ICE_SERVICE_SCHED, pf->state);
}

875 876 877 878 879 880 881 882 883 884 885 886
/**
 * ice_service_timer - timer callback to schedule service task
 * @t: pointer to timer_list
 */
static void ice_service_timer(struct timer_list *t)
{
	struct ice_pf *pf = from_timer(pf, t, serv_tmr);

	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
	ice_service_task_schedule(pf);
}

887 888 889 890 891 892 893 894 895 896 897
/**
 * ice_handle_mdd_event - handle malicious driver detect event
 * @pf: pointer to the PF structure
 *
 * Called from service task. OICR interrupt handler indicates MDD event
 */
static void ice_handle_mdd_event(struct ice_pf *pf)
{
	struct ice_hw *hw = &pf->hw;
	bool mdd_detected = false;
	u32 reg;
898
	int i;
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987

	if (!test_bit(__ICE_MDD_EVENT_PENDING, pf->state))
		return;

	/* find what triggered the MDD event */
	reg = rd32(hw, GL_MDET_TX_PQM);
	if (reg & GL_MDET_TX_PQM_VALID_M) {
		u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
				GL_MDET_TX_PQM_PF_NUM_S;
		u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
				GL_MDET_TX_PQM_VF_NUM_S;
		u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
				GL_MDET_TX_PQM_MAL_TYPE_S;
		u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
				GL_MDET_TX_PQM_QNUM_S);

		if (netif_msg_tx_err(pf))
			dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
				 event, queue, pf_num, vf_num);
		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
		mdd_detected = true;
	}

	reg = rd32(hw, GL_MDET_TX_TCLAN);
	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
		u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
				GL_MDET_TX_TCLAN_PF_NUM_S;
		u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
				GL_MDET_TX_TCLAN_VF_NUM_S;
		u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
				GL_MDET_TX_TCLAN_MAL_TYPE_S;
		u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
				GL_MDET_TX_TCLAN_QNUM_S);

		if (netif_msg_rx_err(pf))
			dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
				 event, queue, pf_num, vf_num);
		wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
		mdd_detected = true;
	}

	reg = rd32(hw, GL_MDET_RX);
	if (reg & GL_MDET_RX_VALID_M) {
		u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
				GL_MDET_RX_PF_NUM_S;
		u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
				GL_MDET_RX_VF_NUM_S;
		u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
				GL_MDET_RX_MAL_TYPE_S;
		u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
				GL_MDET_RX_QNUM_S);

		if (netif_msg_rx_err(pf))
			dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
				 event, queue, pf_num, vf_num);
		wr32(hw, GL_MDET_RX, 0xffffffff);
		mdd_detected = true;
	}

	if (mdd_detected) {
		bool pf_mdd_detected = false;

		reg = rd32(hw, PF_MDET_TX_PQM);
		if (reg & PF_MDET_TX_PQM_VALID_M) {
			wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
			dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n");
			pf_mdd_detected = true;
		}

		reg = rd32(hw, PF_MDET_TX_TCLAN);
		if (reg & PF_MDET_TX_TCLAN_VALID_M) {
			wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
			dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n");
			pf_mdd_detected = true;
		}

		reg = rd32(hw, PF_MDET_RX);
		if (reg & PF_MDET_RX_VALID_M) {
			wr32(hw, PF_MDET_RX, 0xFFFF);
			dev_info(&pf->pdev->dev, "RX driver issue detected, PF reset issued\n");
			pf_mdd_detected = true;
		}
		/* Queue belongs to the PF initiate a reset */
		if (pf_mdd_detected) {
			set_bit(__ICE_NEEDS_RESTART, pf->state);
			ice_service_task_schedule(pf);
		}
	}

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	/* see if one of the VFs needs to be reset */
	for (i = 0; i < pf->num_alloc_vfs && mdd_detected; i++) {
		struct ice_vf *vf = &pf->vf[i];

		reg = rd32(hw, VP_MDET_TX_PQM(i));
		if (reg & VP_MDET_TX_PQM_VALID_M) {
			wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
			vf->num_mdd_events++;
			dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n",
				 i);
		}

		reg = rd32(hw, VP_MDET_TX_TCLAN(i));
		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
			wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
			vf->num_mdd_events++;
			dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n",
				 i);
		}

		reg = rd32(hw, VP_MDET_TX_TDPU(i));
		if (reg & VP_MDET_TX_TDPU_VALID_M) {
			wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
			vf->num_mdd_events++;
			dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n",
				 i);
		}

		reg = rd32(hw, VP_MDET_RX(i));
		if (reg & VP_MDET_RX_VALID_M) {
			wr32(hw, VP_MDET_RX(i), 0xFFFF);
			vf->num_mdd_events++;
			dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n",
				 i);
		}

		if (vf->num_mdd_events > ICE_DFLT_NUM_MDD_EVENTS_ALLOWED) {
			dev_info(&pf->pdev->dev,
				 "Too many MDD events on VF %d, disabled\n", i);
			dev_info(&pf->pdev->dev,
				 "Use PF Control I/F to re-enable the VF\n");
			set_bit(ICE_VF_STATE_DIS, vf->vf_states);
		}
	}

1033 1034 1035 1036 1037 1038 1039 1040
	/* re-enable MDD interrupt cause */
	clear_bit(__ICE_MDD_EVENT_PENDING, pf->state);
	reg = rd32(hw, PFINT_OICR_ENA);
	reg |= PFINT_OICR_MAL_DETECT_M;
	wr32(hw, PFINT_OICR_ENA, reg);
	ice_flush(hw);
}

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
/**
 * ice_service_task - manage and run subtasks
 * @work: pointer to work_struct contained by the PF struct
 */
static void ice_service_task(struct work_struct *work)
{
	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
	unsigned long start_time = jiffies;

	/* subtasks */
1051 1052 1053 1054

	/* process reset requests first */
	ice_reset_subtask(pf);

1055
	/* bail if a reset/recovery cycle is pending or rebuild failed */
1056
	if (ice_is_reset_in_progress(pf->state) ||
1057 1058
	    test_bit(__ICE_SUSPENDED, pf->state) ||
	    test_bit(__ICE_NEEDS_RESTART, pf->state)) {
1059 1060 1061 1062
		ice_service_task_complete(pf);
		return;
	}

1063
	ice_check_for_hang_subtask(pf);
1064
	ice_sync_fltr_subtask(pf);
1065
	ice_handle_mdd_event(pf);
1066
	ice_process_vflr_event(pf);
1067
	ice_watchdog_subtask(pf);
1068
	ice_clean_adminq_subtask(pf);
1069
	ice_clean_mailboxq_subtask(pf);
1070 1071 1072 1073 1074 1075 1076 1077 1078

	/* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */
	ice_service_task_complete(pf);

	/* If the tasks have taken longer than one service timer period
	 * or there is more work to be done, reset the service timer to
	 * schedule the service task now.
	 */
	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
1079
	    test_bit(__ICE_MDD_EVENT_PENDING, pf->state) ||
1080
	    test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) ||
1081
	    test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
1082 1083 1084 1085
	    test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
		mod_timer(&pf->serv_tmr, jiffies);
}

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
/**
 * ice_set_ctrlq_len - helper function to set controlq length
 * @hw: pointer to the hw instance
 */
static void ice_set_ctrlq_len(struct ice_hw *hw)
{
	hw->adminq.num_rq_entries = ICE_AQ_LEN;
	hw->adminq.num_sq_entries = ICE_AQ_LEN;
	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
1096 1097 1098 1099
	hw->mailboxq.num_rq_entries = ICE_MBXQ_LEN;
	hw->mailboxq.num_sq_entries = ICE_MBXQ_LEN;
	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
1100 1101
}

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
/**
 * ice_irq_affinity_notify - Callback for affinity changes
 * @notify: context as to what irq was changed
 * @mask: the new affinity mask
 *
 * This is a callback function used by the irq_set_affinity_notifier function
 * so that we may register to receive changes to the irq affinity masks.
 */
static void ice_irq_affinity_notify(struct irq_affinity_notify *notify,
				    const cpumask_t *mask)
{
	struct ice_q_vector *q_vector =
		container_of(notify, struct ice_q_vector, affinity_notify);

	cpumask_copy(&q_vector->affinity_mask, mask);
}

/**
 * ice_irq_affinity_release - Callback for affinity notifier release
 * @ref: internal core kernel usage
 *
 * This is a callback function used by the irq_set_affinity_notifier function
 * to inform the current notification subscriber that they will no longer
 * receive notifications.
 */
static void ice_irq_affinity_release(struct kref __always_unused *ref) {}

/**
 * ice_vsi_ena_irq - Enable IRQ for the given VSI
 * @vsi: the VSI being configured
 */
static int ice_vsi_ena_irq(struct ice_vsi *vsi)
{
	struct ice_pf *pf = vsi->back;
	struct ice_hw *hw = &pf->hw;

	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
		int i;

		for (i = 0; i < vsi->num_q_vectors; i++)
			ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
	}

	ice_flush(hw);
	return 0;
}

/**
 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
 * @vsi: the VSI being configured
 * @basename: name for the vector
 */
static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
{
	int q_vectors = vsi->num_q_vectors;
	struct ice_pf *pf = vsi->back;
1158
	int base = vsi->sw_base_vector;
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
	int rx_int_idx = 0;
	int tx_int_idx = 0;
	int vector, err;
	int irq_num;

	for (vector = 0; vector < q_vectors; vector++) {
		struct ice_q_vector *q_vector = vsi->q_vectors[vector];

		irq_num = pf->msix_entries[base + vector].vector;

		if (q_vector->tx.ring && q_vector->rx.ring) {
			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
			tx_int_idx++;
		} else if (q_vector->rx.ring) {
			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
				 "%s-%s-%d", basename, "rx", rx_int_idx++);
		} else if (q_vector->tx.ring) {
			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
				 "%s-%s-%d", basename, "tx", tx_int_idx++);
		} else {
			/* skip this unused q_vector */
			continue;
		}
		err = devm_request_irq(&pf->pdev->dev,
				       pf->msix_entries[base + vector].vector,
				       vsi->irq_handler, 0, q_vector->name,
				       q_vector);
		if (err) {
			netdev_err(vsi->netdev,
				   "MSIX request_irq failed, error: %d\n", err);
			goto free_q_irqs;
		}

		/* register for affinity change notifications */
		q_vector->affinity_notify.notify = ice_irq_affinity_notify;
		q_vector->affinity_notify.release = ice_irq_affinity_release;
		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);

		/* assign the mask for this irq */
		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
	}

	vsi->irqs_ready = true;
	return 0;

free_q_irqs:
	while (vector) {
		vector--;
		irq_num = pf->msix_entries[base + vector].vector,
		irq_set_affinity_notifier(irq_num, NULL);
		irq_set_affinity_hint(irq_num, NULL);
		devm_free_irq(&pf->pdev->dev, irq_num, &vsi->q_vectors[vector]);
	}
	return err;
}

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
/**
 * ice_ena_misc_vector - enable the non-queue interrupts
 * @pf: board private structure
 */
static void ice_ena_misc_vector(struct ice_pf *pf)
{
	struct ice_hw *hw = &pf->hw;
	u32 val;

	/* clear things first */
	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
	rd32(hw, PFINT_OICR);		/* read to clear */

1229
	val = (PFINT_OICR_ECC_ERR_M |
1230 1231 1232
	       PFINT_OICR_MAL_DETECT_M |
	       PFINT_OICR_GRST_M |
	       PFINT_OICR_PCI_EXCEPTION_M |
1233
	       PFINT_OICR_VFLR_M |
1234 1235
	       PFINT_OICR_HMC_ERR_M |
	       PFINT_OICR_PE_CRITERR_M);
1236 1237 1238 1239

	wr32(hw, PFINT_OICR_ENA, val);

	/* SW_ITR_IDX = 0, but don't change INTENA */
1240
	wr32(hw, GLINT_DYN_CTL(pf->hw_oicr_idx),
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
}

/**
 * ice_misc_intr - misc interrupt handler
 * @irq: interrupt number
 * @data: pointer to a q_vector
 */
static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
{
	struct ice_pf *pf = (struct ice_pf *)data;
	struct ice_hw *hw = &pf->hw;
	irqreturn_t ret = IRQ_NONE;
	u32 oicr, ena_mask;

	set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
1257
	set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1258 1259 1260 1261

	oicr = rd32(hw, PFINT_OICR);
	ena_mask = rd32(hw, PFINT_OICR_ENA);

1262 1263 1264 1265
	if (oicr & PFINT_OICR_MAL_DETECT_M) {
		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
		set_bit(__ICE_MDD_EVENT_PENDING, pf->state);
	}
1266 1267 1268 1269
	if (oicr & PFINT_OICR_VFLR_M) {
		ena_mask &= ~PFINT_OICR_VFLR_M;
		set_bit(__ICE_VFLR_EVENT_PENDING, pf->state);
	}
1270

1271 1272
	if (oicr & PFINT_OICR_GRST_M) {
		u32 reset;
1273

1274 1275 1276 1277 1278 1279 1280 1281 1282
		/* we have a reset warning */
		ena_mask &= ~PFINT_OICR_GRST_M;
		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
			GLGEN_RSTAT_RESET_TYPE_S;

		if (reset == ICE_RESET_CORER)
			pf->corer_count++;
		else if (reset == ICE_RESET_GLOBR)
			pf->globr_count++;
1283
		else if (reset == ICE_RESET_EMPR)
1284
			pf->empr_count++;
1285 1286 1287
		else
			dev_dbg(&pf->pdev->dev, "Invalid reset type %d\n",
				reset);
1288 1289 1290 1291 1292 1293

		/* If a reset cycle isn't already in progress, we set a bit in
		 * pf->state so that the service task can start a reset/rebuild.
		 * We also make note of which reset happened so that peer
		 * devices/drivers can be informed.
		 */
1294
		if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) {
1295 1296 1297 1298 1299 1300 1301
			if (reset == ICE_RESET_CORER)
				set_bit(__ICE_CORER_RECV, pf->state);
			else if (reset == ICE_RESET_GLOBR)
				set_bit(__ICE_GLOBR_RECV, pf->state);
			else
				set_bit(__ICE_EMPR_RECV, pf->state);

1302 1303 1304 1305 1306 1307
			/* There are couple of different bits at play here.
			 * hw->reset_ongoing indicates whether the hardware is
			 * in reset. This is set to true when a reset interrupt
			 * is received and set back to false after the driver
			 * has determined that the hardware is out of reset.
			 *
1308
			 * __ICE_RESET_OICR_RECV in pf->state indicates
1309 1310 1311 1312 1313 1314 1315
			 * that a post reset rebuild is required before the
			 * driver is operational again. This is set above.
			 *
			 * As this is the start of the reset/rebuild cycle, set
			 * both to indicate that.
			 */
			hw->reset_ongoing = true;
1316 1317 1318
		}
	}

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
	if (oicr & PFINT_OICR_HMC_ERR_M) {
		ena_mask &= ~PFINT_OICR_HMC_ERR_M;
		dev_dbg(&pf->pdev->dev,
			"HMC Error interrupt - info 0x%x, data 0x%x\n",
			rd32(hw, PFHMC_ERRORINFO),
			rd32(hw, PFHMC_ERRORDATA));
	}

	/* Report and mask off any remaining unexpected interrupts */
	oicr &= ena_mask;
	if (oicr) {
		dev_dbg(&pf->pdev->dev, "unhandled interrupt oicr=0x%08x\n",
			oicr);
		/* If a critical error is pending there is no choice but to
		 * reset the device.
		 */
		if (oicr & (PFINT_OICR_PE_CRITERR_M |
			    PFINT_OICR_PCI_EXCEPTION_M |
1337
			    PFINT_OICR_ECC_ERR_M)) {
1338
			set_bit(__ICE_PFR_REQ, pf->state);
1339 1340
			ice_service_task_schedule(pf);
		}
1341 1342 1343 1344 1345 1346 1347 1348
		ena_mask &= ~oicr;
	}
	ret = IRQ_HANDLED;

	/* re-enable interrupt causes that are not handled during this pass */
	wr32(hw, PFINT_OICR_ENA, ena_mask);
	if (!test_bit(__ICE_DOWN, pf->state)) {
		ice_service_task_schedule(pf);
1349
		ice_irq_dynamic_ena(hw, NULL, NULL);
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
	}

	return ret;
}

/**
 * ice_free_irq_msix_misc - Unroll misc vector setup
 * @pf: board private structure
 */
static void ice_free_irq_msix_misc(struct ice_pf *pf)
{
	/* disable OICR interrupt */
	wr32(&pf->hw, PFINT_OICR_ENA, 0);
	ice_flush(&pf->hw);

	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags) && pf->msix_entries) {
1366
		synchronize_irq(pf->msix_entries[pf->sw_oicr_idx].vector);
1367
		devm_free_irq(&pf->pdev->dev,
1368
			      pf->msix_entries[pf->sw_oicr_idx].vector, pf);
1369 1370
	}

1371 1372 1373 1374
	pf->num_avail_sw_msix += 1;
	ice_free_res(pf->sw_irq_tracker, pf->sw_oicr_idx, ICE_RES_MISC_VEC_ID);
	pf->num_avail_hw_msix += 1;
	ice_free_res(pf->hw_irq_tracker, pf->hw_oicr_idx, ICE_RES_MISC_VEC_ID);
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
}

/**
 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
 * @pf: board private structure
 *
 * This sets up the handler for MSIX 0, which is used to manage the
 * non-queue interrupts, e.g. AdminQ and errors.  This is not used
 * when in MSI or Legacy interrupt mode.
 */
static int ice_req_irq_msix_misc(struct ice_pf *pf)
{
	struct ice_hw *hw = &pf->hw;
	int oicr_idx, err = 0;
	u8 itr_gran;
	u32 val;

	if (!pf->int_name[0])
		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
			 dev_driver_string(&pf->pdev->dev),
			 dev_name(&pf->pdev->dev));

1397 1398 1399 1400
	/* Do not request IRQ but do enable OICR interrupt since settings are
	 * lost during reset. Note that this function is called only during
	 * rebuild path and not while reset is in progress.
	 */
1401
	if (ice_is_reset_in_progress(pf->state))
1402 1403
		goto skip_req_irq;

1404 1405
	/* reserve one vector in sw_irq_tracker for misc interrupts */
	oicr_idx = ice_get_res(pf, pf->sw_irq_tracker, 1, ICE_RES_MISC_VEC_ID);
1406 1407 1408
	if (oicr_idx < 0)
		return oicr_idx;

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
	pf->num_avail_sw_msix -= 1;
	pf->sw_oicr_idx = oicr_idx;

	/* reserve one vector in hw_irq_tracker for misc interrupts */
	oicr_idx = ice_get_res(pf, pf->hw_irq_tracker, 1, ICE_RES_MISC_VEC_ID);
	if (oicr_idx < 0) {
		ice_free_res(pf->sw_irq_tracker, 1, ICE_RES_MISC_VEC_ID);
		pf->num_avail_sw_msix += 1;
		return oicr_idx;
	}
	pf->num_avail_hw_msix -= 1;
	pf->hw_oicr_idx = oicr_idx;
1421 1422

	err = devm_request_irq(&pf->pdev->dev,
1423
			       pf->msix_entries[pf->sw_oicr_idx].vector,
1424 1425 1426 1427 1428
			       ice_misc_intr, 0, pf->int_name, pf);
	if (err) {
		dev_err(&pf->pdev->dev,
			"devm_request_irq for %s failed: %d\n",
			pf->int_name, err);
1429 1430 1431 1432
		ice_free_res(pf->sw_irq_tracker, 1, ICE_RES_MISC_VEC_ID);
		pf->num_avail_sw_msix += 1;
		ice_free_res(pf->hw_irq_tracker, 1, ICE_RES_MISC_VEC_ID);
		pf->num_avail_hw_msix += 1;
1433 1434 1435
		return err;
	}

1436
skip_req_irq:
1437 1438
	ice_ena_misc_vector(pf);

1439
	val = ((pf->hw_oicr_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
1440
	       PFINT_OICR_CTL_CAUSE_ENA_M);
1441 1442 1443
	wr32(hw, PFINT_OICR_CTL, val);

	/* This enables Admin queue Interrupt causes */
1444
	val = ((pf->hw_oicr_idx & PFINT_FW_CTL_MSIX_INDX_M) |
1445
	       PFINT_FW_CTL_CAUSE_ENA_M);
1446 1447
	wr32(hw, PFINT_FW_CTL, val);

1448 1449 1450 1451 1452
	/* This enables Mailbox queue Interrupt causes */
	val = ((pf->hw_oicr_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
	       PFINT_MBX_CTL_CAUSE_ENA_M);
	wr32(hw, PFINT_MBX_CTL, val);

1453
	itr_gran = hw->itr_gran;
1454

1455
	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->hw_oicr_idx),
1456 1457 1458
	     ITR_TO_REG(ICE_ITR_8K, itr_gran));

	ice_flush(hw);
1459
	ice_irq_dynamic_ena(hw, NULL, NULL);
1460 1461 1462 1463

	return 0;
}

1464
/**
1465 1466
 * ice_napi_del - Remove NAPI handler for the VSI
 * @vsi: VSI for which NAPI handler is to be removed
1467
 */
1468
static void ice_napi_del(struct ice_vsi *vsi)
1469
{
1470
	int v_idx;
1471

1472 1473
	if (!vsi->netdev)
		return;
1474

1475 1476
	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++)
		netif_napi_del(&vsi->q_vectors[v_idx]->napi);
1477 1478 1479
}

/**
1480 1481
 * ice_napi_add - register NAPI handler for the VSI
 * @vsi: VSI for which NAPI handler is to be registered
1482
 *
1483 1484 1485
 * This function is only called in the driver's load path. Registering the NAPI
 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
 * reset/rebuild, etc.)
1486
 */
1487
static void ice_napi_add(struct ice_vsi *vsi)
1488
{
1489
	int v_idx;
1490

1491
	if (!vsi->netdev)
1492 1493 1494
		return;

	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++)
1495 1496
		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
			       ice_napi_poll, NAPI_POLL_WEIGHT);
1497 1498 1499
}

/**
1500 1501
 * ice_cfg_netdev - Allocate, configure and register a netdev
 * @vsi: the VSI associated with the new netdev
1502 1503 1504 1505 1506
 *
 * Returns 0 on success, negative value on failure
 */
static int ice_cfg_netdev(struct ice_vsi *vsi)
{
1507 1508 1509 1510
	netdev_features_t csumo_features;
	netdev_features_t vlano_features;
	netdev_features_t dflt_features;
	netdev_features_t tso_features;
1511 1512 1513
	struct ice_netdev_priv *np;
	struct net_device *netdev;
	u8 mac_addr[ETH_ALEN];
1514
	int err;
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524

	netdev = alloc_etherdev_mqs(sizeof(struct ice_netdev_priv),
				    vsi->alloc_txq, vsi->alloc_rxq);
	if (!netdev)
		return -ENOMEM;

	vsi->netdev = netdev;
	np = netdev_priv(netdev);
	np->vsi = vsi;

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
	dflt_features = NETIF_F_SG	|
			NETIF_F_HIGHDMA	|
			NETIF_F_RXHASH;

	csumo_features = NETIF_F_RXCSUM	  |
			 NETIF_F_IP_CSUM  |
			 NETIF_F_IPV6_CSUM;

	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
			 NETIF_F_HW_VLAN_CTAG_TX     |
			 NETIF_F_HW_VLAN_CTAG_RX;

	tso_features = NETIF_F_TSO;

1539
	/* set features that user can change */
1540 1541
	netdev->hw_features = dflt_features | csumo_features |
			      vlano_features | tso_features;
1542 1543 1544

	/* enable features */
	netdev->features |= netdev->hw_features;
1545 1546 1547 1548 1549
	/* encap and VLAN devices inherit default, csumo and tso features */
	netdev->hw_enc_features |= dflt_features | csumo_features |
				   tso_features;
	netdev->vlan_features |= dflt_features | csumo_features |
				 tso_features;
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560

	if (vsi->type == ICE_VSI_PF) {
		SET_NETDEV_DEV(netdev, &vsi->back->pdev->dev);
		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);

		ether_addr_copy(netdev->dev_addr, mac_addr);
		ether_addr_copy(netdev->perm_addr, mac_addr);
	}

	netdev->priv_flags |= IFF_UNICAST_FLT;

1561 1562 1563
	/* assign netdev_ops */
	netdev->netdev_ops = &ice_netdev_ops;

1564 1565 1566
	/* setup watchdog timeout value to be 5 second */
	netdev->watchdog_timeo = 5 * HZ;

1567 1568
	ice_set_ethtool_ops(netdev);

1569 1570 1571
	netdev->min_mtu = ETH_MIN_MTU;
	netdev->max_mtu = ICE_MAX_MTU;

1572 1573 1574
	err = register_netdev(vsi->netdev);
	if (err)
		return err;
1575

1576
	netif_carrier_off(vsi->netdev);
1577

1578 1579
	/* make sure transmit queues start off as stopped */
	netif_tx_stop_all_queues(vsi->netdev);
1580 1581 1582 1583

	return 0;
}

1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
/**
 * ice_fill_rss_lut - Fill the RSS lookup table with default values
 * @lut: Lookup table
 * @rss_table_size: Lookup table size
 * @rss_size: Range of queue number for hashing
 */
void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
{
	u16 i;

	for (i = 0; i < rss_table_size; i++)
		lut[i] = i % rss_size;
}

1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
/**
 * ice_pf_vsi_setup - Set up a PF VSI
 * @pf: board private structure
 * @pi: pointer to the port_info instance
 *
 * Returns pointer to the successfully allocated VSI sw struct on success,
 * otherwise returns NULL on failure.
 */
static struct ice_vsi *
ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
{
	return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID);
}

1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
/**
 * ice_vlan_rx_add_vid - Add a vlan id filter to HW offload
 * @netdev: network interface to be adjusted
 * @proto: unused protocol
 * @vid: vlan id to be added
 *
 * net_device_ops implementation for adding vlan ids
 */
static int ice_vlan_rx_add_vid(struct net_device *netdev,
			       __always_unused __be16 proto, u16 vid)
{
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct ice_vsi *vsi = np->vsi;

	if (vid >= VLAN_N_VID) {
		netdev_err(netdev, "VLAN id requested %d is out of range %d\n",
			   vid, VLAN_N_VID);
		return -EINVAL;
	}

	if (vsi->info.pvid)
		return -EINVAL;

1635 1636
	/* Enable VLAN pruning when VLAN 0 is added */
	if (unlikely(!vid)) {
1637 1638
		int ret = ice_cfg_vlan_pruning(vsi, true);

1639 1640 1641 1642
		if (ret)
			return ret;
	}

1643 1644 1645 1646
	/* Add all VLAN ids including 0 to the switch filter. VLAN id 0 is
	 * needed to continue allowing all untagged packets since VLAN prune
	 * list is applied to all packets by the switch
	 */
1647
	return ice_vsi_add_vlan(vsi, vid);
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
}

/**
 * ice_vlan_rx_kill_vid - Remove a vlan id filter from HW offload
 * @netdev: network interface to be adjusted
 * @proto: unused protocol
 * @vid: vlan id to be removed
 *
 * net_device_ops implementation for removing vlan ids
 */
static int ice_vlan_rx_kill_vid(struct net_device *netdev,
				__always_unused __be16 proto, u16 vid)
{
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct ice_vsi *vsi = np->vsi;
1663
	int status;
1664 1665 1666 1667

	if (vsi->info.pvid)
		return -EINVAL;

1668 1669
	/* Make sure ice_vsi_kill_vlan is successful before updating VLAN
	 * information
1670
	 */
1671 1672 1673
	status = ice_vsi_kill_vlan(vsi, vid);
	if (status)
		return status;
1674

1675 1676 1677 1678 1679
	/* Disable VLAN pruning when VLAN 0 is removed */
	if (unlikely(!vid))
		status = ice_cfg_vlan_pruning(vsi, false);

	return status;
1680 1681
}

1682 1683 1684 1685 1686 1687 1688 1689
/**
 * ice_setup_pf_sw - Setup the HW switch on startup or after reset
 * @pf: board private structure
 *
 * Returns 0 on success, negative value on failure
 */
static int ice_setup_pf_sw(struct ice_pf *pf)
{
1690 1691
	LIST_HEAD(tmp_add_list);
	u8 broadcast[ETH_ALEN];
1692 1693 1694
	struct ice_vsi *vsi;
	int status = 0;

1695
	if (ice_is_reset_in_progress(pf->state))
1696 1697 1698 1699 1700 1701
		return -EBUSY;

	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
	if (!vsi) {
		status = -ENOMEM;
		goto unroll_vsi_setup;
1702 1703
	}

1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
	status = ice_cfg_netdev(vsi);
	if (status) {
		status = -ENODEV;
		goto unroll_vsi_setup;
	}

	/* registering the NAPI handler requires both the queues and
	 * netdev to be created, which are done in ice_pf_vsi_setup()
	 * and ice_cfg_netdev() respectively
	 */
	ice_napi_add(vsi);

1716 1717
	/* To add a MAC filter, first add the MAC to a list and then
	 * pass the list to ice_add_mac.
1718
	 */
1719 1720

	 /* Add a unicast MAC filter so the VSI can get its packets */
1721 1722 1723
	status = ice_add_mac_to_list(vsi, &tmp_add_list,
				     vsi->port_info->mac.perm_addr);
	if (status)
1724
		goto unroll_napi_add;
1725 1726

	/* VSI needs to receive broadcast traffic, so add the broadcast
1727
	 * MAC address to the list as well.
1728 1729 1730 1731
	 */
	eth_broadcast_addr(broadcast);
	status = ice_add_mac_to_list(vsi, &tmp_add_list, broadcast);
	if (status)
1732
		goto free_mac_list;
1733 1734 1735 1736 1737 1738

	/* program MAC filters for entries in tmp_add_list */
	status = ice_add_mac(&pf->hw, &tmp_add_list);
	if (status) {
		dev_err(&pf->pdev->dev, "Could not add MAC filters\n");
		status = -ENOMEM;
1739
		goto free_mac_list;
1740 1741 1742 1743 1744
	}

	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
	return status;

1745
free_mac_list:
1746 1747
	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);

1748
unroll_napi_add:
1749
	if (vsi) {
1750
		ice_napi_del(vsi);
1751
		if (vsi->netdev) {
1752 1753
			if (vsi->netdev->reg_state == NETREG_REGISTERED)
				unregister_netdev(vsi->netdev);
1754 1755 1756
			free_netdev(vsi->netdev);
			vsi->netdev = NULL;
		}
1757
	}
1758

1759 1760 1761
unroll_vsi_setup:
	if (vsi) {
		ice_vsi_free_q_vectors(vsi);
1762 1763 1764 1765 1766 1767 1768 1769 1770
		ice_vsi_delete(vsi);
		ice_vsi_put_qs(vsi);
		pf->q_left_tx += vsi->alloc_txq;
		pf->q_left_rx += vsi->alloc_rxq;
		ice_vsi_clear(vsi);
	}
	return status;
}

1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
/**
 * ice_determine_q_usage - Calculate queue distribution
 * @pf: board private structure
 *
 * Return -ENOMEM if we don't get enough queues for all ports
 */
static void ice_determine_q_usage(struct ice_pf *pf)
{
	u16 q_left_tx, q_left_rx;

	q_left_tx = pf->hw.func_caps.common_cap.num_txq;
	q_left_rx = pf->hw.func_caps.common_cap.num_rxq;

1784
	pf->num_lan_tx = min_t(int, q_left_tx, num_online_cpus());
1785 1786 1787 1788 1789 1790

	/* only 1 rx queue unless RSS is enabled */
	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags))
		pf->num_lan_rx = 1;
	else
		pf->num_lan_rx = min_t(int, q_left_rx, num_online_cpus());
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801

	pf->q_left_tx = q_left_tx - pf->num_lan_tx;
	pf->q_left_rx = q_left_rx - pf->num_lan_rx;
}

/**
 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
 * @pf: board private structure to initialize
 */
static void ice_deinit_pf(struct ice_pf *pf)
{
1802
	ice_service_task_stop(pf);
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
	mutex_destroy(&pf->sw_mutex);
	mutex_destroy(&pf->avail_q_mutex);
}

/**
 * ice_init_pf - Initialize general software structures (struct ice_pf)
 * @pf: board private structure to initialize
 */
static void ice_init_pf(struct ice_pf *pf)
{
	bitmap_zero(pf->flags, ICE_PF_FLAGS_NBITS);
	set_bit(ICE_FLAG_MSIX_ENA, pf->flags);
1815 1816 1817 1818 1819 1820 1821 1822 1823
#ifdef CONFIG_PCI_IOV
	if (pf->hw.func_caps.common_cap.sr_iov_1_1) {
		struct ice_hw *hw = &pf->hw;

		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
		pf->num_vfs_supported = min_t(int, hw->func_caps.num_allocd_vfs,
					      ICE_MAX_VF_COUNT);
	}
#endif /* CONFIG_PCI_IOV */
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833

	mutex_init(&pf->sw_mutex);
	mutex_init(&pf->avail_q_mutex);

	/* Clear avail_[t|r]x_qs bitmaps (set all to avail) */
	mutex_lock(&pf->avail_q_mutex);
	bitmap_zero(pf->avail_txqs, ICE_MAX_TXQS);
	bitmap_zero(pf->avail_rxqs, ICE_MAX_RXQS);
	mutex_unlock(&pf->avail_q_mutex);

1834 1835 1836
	if (pf->hw.func_caps.common_cap.rss_table_size)
		set_bit(ICE_FLAG_RSS_ENA, pf->flags);

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
	/* setup service timer and periodic service task */
	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
	pf->serv_tmr_period = HZ;
	INIT_WORK(&pf->serv_task, ice_service_task);
	clear_bit(__ICE_SERVICE_SCHED, pf->state);
}

/**
 * ice_ena_msix_range - Request a range of MSIX vectors from the OS
 * @pf: board private structure
 *
 * compute the number of MSIX vectors required (v_budget) and request from
 * the OS. Return the number of vectors reserved or negative on failure
 */
static int ice_ena_msix_range(struct ice_pf *pf)
{
	int v_left, v_actual, v_budget = 0;
	int needed, err, i;

	v_left = pf->hw.func_caps.common_cap.num_msix_vectors;

	/* reserve one vector for miscellaneous handler */
	needed = 1;
	v_budget += needed;
	v_left -= needed;

	/* reserve vectors for LAN traffic */
	pf->num_lan_msix = min_t(int, num_online_cpus(), v_left);
	v_budget += pf->num_lan_msix;
1866
	v_left -= pf->num_lan_msix;
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893

	pf->msix_entries = devm_kcalloc(&pf->pdev->dev, v_budget,
					sizeof(struct msix_entry), GFP_KERNEL);

	if (!pf->msix_entries) {
		err = -ENOMEM;
		goto exit_err;
	}

	for (i = 0; i < v_budget; i++)
		pf->msix_entries[i].entry = i;

	/* actually reserve the vectors */
	v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
					 ICE_MIN_MSIX, v_budget);

	if (v_actual < 0) {
		dev_err(&pf->pdev->dev, "unable to reserve MSI-X vectors\n");
		err = v_actual;
		goto msix_err;
	}

	if (v_actual < v_budget) {
		dev_warn(&pf->pdev->dev,
			 "not enough vectors. requested = %d, obtained = %d\n",
			 v_budget, v_actual);
		if (v_actual >= (pf->num_lan_msix + 1)) {
1894 1895
			pf->num_avail_sw_msix = v_actual -
						(pf->num_lan_msix + 1);
1896 1897
		} else if (v_actual >= 2) {
			pf->num_lan_msix = 1;
1898
			pf->num_avail_sw_msix = v_actual - 2;
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
		} else {
			pci_disable_msix(pf->pdev);
			err = -ERANGE;
			goto msix_err;
		}
	}

	return v_actual;

msix_err:
	devm_kfree(&pf->pdev->dev, pf->msix_entries);
	goto exit_err;

exit_err:
	pf->num_lan_msix = 0;
	clear_bit(ICE_FLAG_MSIX_ENA, pf->flags);
	return err;
}

/**
 * ice_dis_msix - Disable MSI-X interrupt setup in OS
 * @pf: board private structure
 */
static void ice_dis_msix(struct ice_pf *pf)
{
	pci_disable_msix(pf->pdev);
	devm_kfree(&pf->pdev->dev, pf->msix_entries);
	pf->msix_entries = NULL;
	clear_bit(ICE_FLAG_MSIX_ENA, pf->flags);
}

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
/**
 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
 * @pf: board private structure
 */
static void ice_clear_interrupt_scheme(struct ice_pf *pf)
{
	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
		ice_dis_msix(pf);

	if (pf->sw_irq_tracker) {
		devm_kfree(&pf->pdev->dev, pf->sw_irq_tracker);
		pf->sw_irq_tracker = NULL;
	}

	if (pf->hw_irq_tracker) {
		devm_kfree(&pf->pdev->dev, pf->hw_irq_tracker);
		pf->hw_irq_tracker = NULL;
	}
}

1950 1951 1952 1953 1954 1955
/**
 * ice_init_interrupt_scheme - Determine proper interrupt scheme
 * @pf: board private structure to initialize
 */
static int ice_init_interrupt_scheme(struct ice_pf *pf)
{
1956
	int vectors = 0, hw_vectors = 0;
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
	ssize_t size;

	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
		vectors = ice_ena_msix_range(pf);
	else
		return -ENODEV;

	if (vectors < 0)
		return vectors;

	/* set up vector assignment tracking */
	size = sizeof(struct ice_res_tracker) + (sizeof(u16) * vectors);

1970 1971
	pf->sw_irq_tracker = devm_kzalloc(&pf->pdev->dev, size, GFP_KERNEL);
	if (!pf->sw_irq_tracker) {
1972 1973 1974 1975
		ice_dis_msix(pf);
		return -ENOMEM;
	}

1976 1977 1978
	/* populate SW interrupts pool with number of OS granted IRQs. */
	pf->num_avail_sw_msix = vectors;
	pf->sw_irq_tracker->num_entries = vectors;
1979

1980 1981 1982
	/* set up HW vector assignment tracking */
	hw_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
	size = sizeof(struct ice_res_tracker) + (sizeof(u16) * hw_vectors);
1983

1984 1985 1986 1987
	pf->hw_irq_tracker = devm_kzalloc(&pf->pdev->dev, size, GFP_KERNEL);
	if (!pf->hw_irq_tracker) {
		ice_clear_interrupt_scheme(pf);
		return -ENOMEM;
1988
	}
1989 1990 1991 1992 1993 1994

	/* populate HW interrupts pool with number of HW supported irqs. */
	pf->num_avail_hw_msix = hw_vectors;
	pf->hw_irq_tracker->num_entries = hw_vectors;

	return 0;
1995 1996
}

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
/**
 * ice_probe - Device initialization routine
 * @pdev: PCI device information struct
 * @ent: entry in ice_pci_tbl
 *
 * Returns 0 on success, negative on failure
 */
static int ice_probe(struct pci_dev *pdev,
		     const struct pci_device_id __always_unused *ent)
{
	struct ice_pf *pf;
	struct ice_hw *hw;
	int err;

	/* this driver uses devres, see Documentation/driver-model/devres.txt */
	err = pcim_enable_device(pdev);
	if (err)
		return err;

	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev));
	if (err) {
2018
		dev_err(&pdev->dev, "BAR0 I/O map error %d\n", err);
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
		return err;
	}

	pf = devm_kzalloc(&pdev->dev, sizeof(*pf), GFP_KERNEL);
	if (!pf)
		return -ENOMEM;

	/* set up for high or low dma */
	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
	if (err)
		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
	if (err) {
		dev_err(&pdev->dev, "DMA configuration failed: 0x%x\n", err);
		return err;
	}

	pci_enable_pcie_error_reporting(pdev);
	pci_set_master(pdev);

	pf->pdev = pdev;
	pci_set_drvdata(pdev, pf);
	set_bit(__ICE_DOWN, pf->state);
2041 2042
	/* Disable service task until DOWN bit is cleared */
	set_bit(__ICE_SERVICE_DIS, pf->state);
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053

	hw = &pf->hw;
	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
	hw->back = pf;
	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_device_id = pdev->subsystem_device;
	hw->bus.device = PCI_SLOT(pdev->devfn);
	hw->bus.func = PCI_FUNC(pdev->devfn);
2054 2055
	ice_set_ctrlq_len(hw);

2056 2057
	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);

2058 2059 2060 2061 2062
#ifndef CONFIG_DYNAMIC_DEBUG
	if (debug < -1)
		hw->debug_mask = debug;
#endif

2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
	err = ice_init_hw(hw);
	if (err) {
		dev_err(&pdev->dev, "ice_init_hw failed: %d\n", err);
		err = -EIO;
		goto err_exit_unroll;
	}

	dev_info(&pdev->dev, "firmware %d.%d.%05d api %d.%d\n",
		 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_build,
		 hw->api_maj_ver, hw->api_min_ver);

2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
	ice_init_pf(pf);

	ice_determine_q_usage(pf);

	pf->num_alloc_vsi = min_t(u16, ICE_MAX_VSI_ALLOC,
				  hw->func_caps.guaranteed_num_vsi);
	if (!pf->num_alloc_vsi) {
		err = -EIO;
		goto err_init_pf_unroll;
	}

	pf->vsi = devm_kcalloc(&pdev->dev, pf->num_alloc_vsi,
			       sizeof(struct ice_vsi *), GFP_KERNEL);
	if (!pf->vsi) {
		err = -ENOMEM;
		goto err_init_pf_unroll;
	}

	err = ice_init_interrupt_scheme(pf);
	if (err) {
		dev_err(&pdev->dev,
			"ice_init_interrupt_scheme failed: %d\n", err);
		err = -EIO;
		goto err_init_interrupt_unroll;
	}

2100 2101 2102
	/* Driver is mostly up */
	clear_bit(__ICE_DOWN, pf->state);

2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
	/* In case of MSIX we are going to setup the misc vector right here
	 * to handle admin queue events etc. In case of legacy and MSI
	 * the misc functionality and queue processing is combined in
	 * the same vector and that gets setup at open.
	 */
	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
		err = ice_req_irq_msix_misc(pf);
		if (err) {
			dev_err(&pdev->dev,
				"setup of misc vector failed: %d\n", err);
			goto err_init_interrupt_unroll;
		}
	}

	/* create switch struct for the switch element created by FW on boot */
	pf->first_sw = devm_kzalloc(&pdev->dev, sizeof(struct ice_sw),
				    GFP_KERNEL);
	if (!pf->first_sw) {
		err = -ENOMEM;
		goto err_msix_misc_unroll;
	}

2125 2126 2127 2128 2129
	if (hw->evb_veb)
		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
	else
		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;

2130 2131 2132 2133 2134
	pf->first_sw->pf = pf;

	/* record the sw_id available for later use */
	pf->first_sw->sw_id = hw->port_info->sw_id;

2135 2136 2137 2138 2139 2140
	err = ice_setup_pf_sw(pf);
	if (err) {
		dev_err(&pdev->dev,
			"probe failed due to setup pf switch:%d\n", err);
		goto err_alloc_sw_unroll;
	}
2141

2142
	clear_bit(__ICE_SERVICE_DIS, pf->state);
2143 2144 2145 2146

	/* since everything is good, start the service timer */
	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));

2147
	return 0;
2148

2149
err_alloc_sw_unroll:
2150
	set_bit(__ICE_SERVICE_DIS, pf->state);
2151 2152
	set_bit(__ICE_DOWN, pf->state);
	devm_kfree(&pf->pdev->dev, pf->first_sw);
2153 2154 2155 2156 2157 2158 2159 2160
err_msix_misc_unroll:
	ice_free_irq_msix_misc(pf);
err_init_interrupt_unroll:
	ice_clear_interrupt_scheme(pf);
	devm_kfree(&pdev->dev, pf->vsi);
err_init_pf_unroll:
	ice_deinit_pf(pf);
	ice_deinit_hw(hw);
2161 2162 2163
err_exit_unroll:
	pci_disable_pcie_error_reporting(pdev);
	return err;
2164 2165 2166 2167 2168 2169 2170 2171 2172
}

/**
 * ice_remove - Device removal routine
 * @pdev: PCI device information struct
 */
static void ice_remove(struct pci_dev *pdev)
{
	struct ice_pf *pf = pci_get_drvdata(pdev);
D
Dave Ertman 已提交
2173
	int i;
2174 2175 2176 2177

	if (!pf)
		return;

2178 2179 2180 2181 2182 2183
	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
		if (!ice_is_reset_in_progress(pf->state))
			break;
		msleep(100);
	}

2184
	set_bit(__ICE_DOWN, pf->state);
2185
	ice_service_task_stop(pf);
2186

2187 2188
	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags))
		ice_free_vfs(pf);
2189
	ice_vsi_release_all(pf);
2190
	ice_free_irq_msix_misc(pf);
D
Dave Ertman 已提交
2191 2192 2193 2194 2195
	ice_for_each_vsi(pf, i) {
		if (!pf->vsi[i])
			continue;
		ice_vsi_free_q_vectors(pf->vsi[i]);
	}
2196 2197
	ice_clear_interrupt_scheme(pf);
	ice_deinit_pf(pf);
2198
	ice_deinit_hw(&pf->hw);
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
	pci_disable_pcie_error_reporting(pdev);
}

/* ice_pci_tbl - PCI Device ID Table
 *
 * Wildcard entries (PCI_ANY_ID) should come last
 * Last entry must be all 0s
 *
 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
 *   Class, Class Mask, private data (not used) }
 */
static const struct pci_device_id ice_pci_tbl[] = {
2211 2212 2213
	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
	/* required last entry */
	{ 0, }
};
MODULE_DEVICE_TABLE(pci, ice_pci_tbl);

static struct pci_driver ice_driver = {
	.name = KBUILD_MODNAME,
	.id_table = ice_pci_tbl,
	.probe = ice_probe,
	.remove = ice_remove,
2224
	.sriov_configure = ice_sriov_configure,
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
};

/**
 * ice_module_init - Driver registration routine
 *
 * ice_module_init is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 */
static int __init ice_module_init(void)
{
	int status;

	pr_info("%s - version %s\n", ice_driver_string, ice_drv_ver);
	pr_info("%s\n", ice_copyright);

2240
	ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
2241 2242 2243 2244 2245
	if (!ice_wq) {
		pr_err("Failed to create workqueue\n");
		return -ENOMEM;
	}

2246
	status = pci_register_driver(&ice_driver);
2247
	if (status) {
2248
		pr_err("failed to register pci driver, err %d\n", status);
2249 2250
		destroy_workqueue(ice_wq);
	}
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264

	return status;
}
module_init(ice_module_init);

/**
 * ice_module_exit - Driver exit cleanup routine
 *
 * ice_module_exit is called just before the driver is removed
 * from memory.
 */
static void __exit ice_module_exit(void)
{
	pci_unregister_driver(&ice_driver);
2265
	destroy_workqueue(ice_wq);
2266 2267 2268
	pr_info("module unloaded\n");
}
module_exit(ice_module_exit);
2269

2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
/**
 * ice_set_mac_address - NDO callback to set mac address
 * @netdev: network interface device structure
 * @pi: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 */
static int ice_set_mac_address(struct net_device *netdev, void *pi)
{
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct ice_vsi *vsi = np->vsi;
	struct ice_pf *pf = vsi->back;
	struct ice_hw *hw = &pf->hw;
	struct sockaddr *addr = pi;
	enum ice_status status;
	LIST_HEAD(a_mac_list);
	LIST_HEAD(r_mac_list);
	u8 flags = 0;
	int err;
	u8 *mac;

	mac = (u8 *)addr->sa_data;

	if (!is_valid_ether_addr(mac))
		return -EADDRNOTAVAIL;

	if (ether_addr_equal(netdev->dev_addr, mac)) {
		netdev_warn(netdev, "already using mac %pM\n", mac);
		return 0;
	}

	if (test_bit(__ICE_DOWN, pf->state) ||
2302
	    ice_is_reset_in_progress(pf->state)) {
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
		netdev_err(netdev, "can't set mac %pM. device not ready\n",
			   mac);
		return -EBUSY;
	}

	/* When we change the mac address we also have to change the mac address
	 * based filter rules that were created previously for the old mac
	 * address. So first, we remove the old filter rule using ice_remove_mac
	 * and then create a new filter rule using ice_add_mac. Note that for
	 * both these operations, we first need to form a "list" of mac
	 * addresses (even though in this case, we have only 1 mac address to be
	 * added/removed) and this done using ice_add_mac_to_list. Depending on
	 * the ensuing operation this "list" of mac addresses is either to be
	 * added or removed from the filter.
	 */
	err = ice_add_mac_to_list(vsi, &r_mac_list, netdev->dev_addr);
	if (err) {
		err = -EADDRNOTAVAIL;
		goto free_lists;
	}

	status = ice_remove_mac(hw, &r_mac_list);
	if (status) {
		err = -EADDRNOTAVAIL;
		goto free_lists;
	}

	err = ice_add_mac_to_list(vsi, &a_mac_list, mac);
	if (err) {
		err = -EADDRNOTAVAIL;
		goto free_lists;
	}

	status = ice_add_mac(hw, &a_mac_list);
	if (status) {
		err = -EADDRNOTAVAIL;
		goto free_lists;
	}

free_lists:
	/* free list entries */
	ice_free_fltr_list(&pf->pdev->dev, &r_mac_list);
	ice_free_fltr_list(&pf->pdev->dev, &a_mac_list);

	if (err) {
		netdev_err(netdev, "can't set mac %pM. filter update failed\n",
			   mac);
		return err;
	}

	/* change the netdev's mac address */
	memcpy(netdev->dev_addr, mac, netdev->addr_len);
	netdev_dbg(vsi->netdev, "updated mac address to %pM\n",
		   netdev->dev_addr);

	/* write new mac address to the firmware */
	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
	status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
	if (status) {
		netdev_err(netdev, "can't set mac %pM. write to firmware failed.\n",
			   mac);
	}
	return 0;
}

/**
 * ice_set_rx_mode - NDO callback to set the netdev filters
 * @netdev: network interface device structure
 */
static void ice_set_rx_mode(struct net_device *netdev)
{
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct ice_vsi *vsi = np->vsi;

	if (!vsi)
		return;

	/* Set the flags to synchronize filters
	 * ndo_set_rx_mode may be triggered even without a change in netdev
	 * flags
	 */
	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);

	/* schedule our worker thread which will take care of
	 * applying the new filter changes
	 */
	ice_service_task_schedule(vsi->back);
}

/**
 * ice_fdb_add - add an entry to the hardware database
 * @ndm: the input from the stack
 * @tb: pointer to array of nladdr (unused)
 * @dev: the net device pointer
 * @addr: the MAC address entry being added
 * @vid: VLAN id
 * @flags: instructions from stack about fdb operation
 */
static int ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
		       struct net_device *dev, const unsigned char *addr,
		       u16 vid, u16 flags)
{
	int err;

	if (vid) {
		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
		return -EINVAL;
	}
	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
		netdev_err(dev, "FDB only supports static addresses\n");
		return -EINVAL;
	}

	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
		err = dev_uc_add_excl(dev, addr);
	else if (is_multicast_ether_addr(addr))
		err = dev_mc_add_excl(dev, addr);
	else
		err = -EINVAL;

	/* Only return duplicate errors if NLM_F_EXCL is set */
	if (err == -EEXIST && !(flags & NLM_F_EXCL))
		err = 0;

	return err;
}

/**
 * ice_fdb_del - delete an entry from the hardware database
 * @ndm: the input from the stack
 * @tb: pointer to array of nladdr (unused)
 * @dev: the net device pointer
 * @addr: the MAC address entry being added
 * @vid: VLAN id
 */
static int ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
		       struct net_device *dev, const unsigned char *addr,
		       __always_unused u16 vid)
{
	int err;

	if (ndm->ndm_state & NUD_PERMANENT) {
		netdev_err(dev, "FDB only supports static addresses\n");
		return -EINVAL;
	}

	if (is_unicast_ether_addr(addr))
		err = dev_uc_del(dev, addr);
	else if (is_multicast_ether_addr(addr))
		err = dev_mc_del(dev, addr);
	else
		err = -EINVAL;

	return err;
}

2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
/**
 * ice_set_features - set the netdev feature flags
 * @netdev: ptr to the netdev being adjusted
 * @features: the feature set that the stack is suggesting
 */
static int ice_set_features(struct net_device *netdev,
			    netdev_features_t features)
{
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct ice_vsi *vsi = np->vsi;
	int ret = 0;

2473 2474 2475 2476 2477 2478
	if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
		ret = ice_vsi_manage_rss_lut(vsi, true);
	else if (!(features & NETIF_F_RXHASH) &&
		 netdev->features & NETIF_F_RXHASH)
		ret = ice_vsi_manage_rss_lut(vsi, false);

2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
	if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
		ret = ice_vsi_manage_vlan_stripping(vsi, true);
	else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
		 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
		ret = ice_vsi_manage_vlan_stripping(vsi, false);
	else if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
		 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
		ret = ice_vsi_manage_vlan_insertion(vsi);
	else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
		 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
		ret = ice_vsi_manage_vlan_insertion(vsi);

	return ret;
}

/**
 * ice_vsi_vlan_setup - Setup vlan offload properties on a VSI
 * @vsi: VSI to setup vlan properties for
 */
static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
{
	int ret = 0;

	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
		ret = ice_vsi_manage_vlan_stripping(vsi, true);
	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
		ret = ice_vsi_manage_vlan_insertion(vsi);

	return ret;
}

2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
/**
 * ice_vsi_cfg - Setup the VSI
 * @vsi: the VSI being configured
 *
 * Return 0 on success and negative value on error
 */
static int ice_vsi_cfg(struct ice_vsi *vsi)
{
	int err;

2521 2522
	if (vsi->netdev) {
		ice_set_rx_mode(vsi->netdev);
2523 2524 2525

		err = ice_vsi_vlan_setup(vsi);

2526 2527 2528
		if (err)
			return err;
	}
2529

2530 2531 2532 2533 2534 2535 2536
	err = ice_vsi_cfg_txqs(vsi);
	if (!err)
		err = ice_vsi_cfg_rxqs(vsi);

	return err;
}

2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
/**
 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
 * @vsi: the VSI being configured
 */
static void ice_napi_enable_all(struct ice_vsi *vsi)
{
	int q_idx;

	if (!vsi->netdev)
		return;

	for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++)
		napi_enable(&vsi->q_vectors[q_idx]->napi);
}

2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
/**
 * ice_up_complete - Finish the last steps of bringing up a connection
 * @vsi: The VSI being configured
 *
 * Return 0 on success and negative value on error
 */
static int ice_up_complete(struct ice_vsi *vsi)
{
	struct ice_pf *pf = vsi->back;
	int err;

	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
		ice_vsi_cfg_msix(vsi);
	else
		return -ENOTSUPP;

	/* Enable only Rx rings, Tx rings were enabled by the FW when the
	 * Tx queue group list was configured and the context bits were
	 * programmed using ice_vsi_cfg_txqs
	 */
	err = ice_vsi_start_rx_rings(vsi);
	if (err)
		return err;

	clear_bit(__ICE_DOWN, vsi->state);
2577
	ice_napi_enable_all(vsi);
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
	ice_vsi_ena_irq(vsi);

	if (vsi->port_info &&
	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
	    vsi->netdev) {
		ice_print_link_msg(vsi, true);
		netif_tx_start_all_queues(vsi->netdev);
		netif_carrier_on(vsi->netdev);
	}

	ice_service_task_schedule(pf);

	return err;
}

2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
/**
 * ice_up - Bring the connection back up after being down
 * @vsi: VSI being configured
 */
int ice_up(struct ice_vsi *vsi)
{
	int err;

	err = ice_vsi_cfg(vsi);
	if (!err)
		err = ice_up_complete(vsi);

	return err;
}

/**
 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
 * @ring: Tx or Rx ring to read stats from
 * @pkts: packets stats counter
 * @bytes: bytes stats counter
 *
 * This function fetches stats from the ring considering the atomic operations
 * that needs to be performed to read u64 values in 32 bit machine.
 */
static void ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts,
					 u64 *bytes)
{
	unsigned int start;
	*pkts = 0;
	*bytes = 0;

	if (!ring)
		return;
	do {
		start = u64_stats_fetch_begin_irq(&ring->syncp);
		*pkts = ring->stats.pkts;
		*bytes = ring->stats.bytes;
	} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
}

/**
 * ice_update_vsi_ring_stats - Update VSI stats counters
 * @vsi: the VSI to be updated
 */
static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
{
	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
	struct ice_ring *ring;
	u64 pkts, bytes;
	int i;

	/* reset netdev stats */
	vsi_stats->tx_packets = 0;
	vsi_stats->tx_bytes = 0;
	vsi_stats->rx_packets = 0;
	vsi_stats->rx_bytes = 0;

	/* reset non-netdev (extended) stats */
	vsi->tx_restart = 0;
	vsi->tx_busy = 0;
	vsi->tx_linearize = 0;
	vsi->rx_buf_failed = 0;
	vsi->rx_page_failed = 0;

	rcu_read_lock();

	/* update Tx rings counters */
	ice_for_each_txq(vsi, i) {
		ring = READ_ONCE(vsi->tx_rings[i]);
		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
		vsi_stats->tx_packets += pkts;
		vsi_stats->tx_bytes += bytes;
		vsi->tx_restart += ring->tx_stats.restart_q;
		vsi->tx_busy += ring->tx_stats.tx_busy;
		vsi->tx_linearize += ring->tx_stats.tx_linearize;
	}

	/* update Rx rings counters */
	ice_for_each_rxq(vsi, i) {
		ring = READ_ONCE(vsi->rx_rings[i]);
		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
		vsi_stats->rx_packets += pkts;
		vsi_stats->rx_bytes += bytes;
		vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
		vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
	}

	rcu_read_unlock();
}

/**
 * ice_update_vsi_stats - Update VSI stats counters
 * @vsi: the VSI to be updated
 */
static void ice_update_vsi_stats(struct ice_vsi *vsi)
{
	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
	struct ice_eth_stats *cur_es = &vsi->eth_stats;
	struct ice_pf *pf = vsi->back;

	if (test_bit(__ICE_DOWN, vsi->state) ||
	    test_bit(__ICE_CFG_BUSY, pf->state))
		return;

	/* get stats as recorded by Tx/Rx rings */
	ice_update_vsi_ring_stats(vsi);

	/* get VSI stats as recorded by the hardware */
	ice_update_eth_stats(vsi);

	cur_ns->tx_errors = cur_es->tx_errors;
	cur_ns->rx_dropped = cur_es->rx_discards;
	cur_ns->tx_dropped = cur_es->tx_discards;
	cur_ns->multicast = cur_es->rx_multicast;

	/* update some more netdev stats if this is main VSI */
	if (vsi->type == ICE_VSI_PF) {
		cur_ns->rx_crc_errors = pf->stats.crc_errors;
		cur_ns->rx_errors = pf->stats.crc_errors +
				    pf->stats.illegal_bytes;
		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
	}
}

/**
 * ice_update_pf_stats - Update PF port stats counters
 * @pf: PF whose stats needs to be updated
 */
static void ice_update_pf_stats(struct ice_pf *pf)
{
	struct ice_hw_port_stats *prev_ps, *cur_ps;
	struct ice_hw *hw = &pf->hw;
	u8 pf_id;

	prev_ps = &pf->stats_prev;
	cur_ps = &pf->stats;
	pf_id = hw->pf_id;

	ice_stat_update40(hw, GLPRT_GORCH(pf_id), GLPRT_GORCL(pf_id),
			  pf->stat_prev_loaded, &prev_ps->eth.rx_bytes,
			  &cur_ps->eth.rx_bytes);

	ice_stat_update40(hw, GLPRT_UPRCH(pf_id), GLPRT_UPRCL(pf_id),
			  pf->stat_prev_loaded, &prev_ps->eth.rx_unicast,
			  &cur_ps->eth.rx_unicast);

	ice_stat_update40(hw, GLPRT_MPRCH(pf_id), GLPRT_MPRCL(pf_id),
			  pf->stat_prev_loaded, &prev_ps->eth.rx_multicast,
			  &cur_ps->eth.rx_multicast);

	ice_stat_update40(hw, GLPRT_BPRCH(pf_id), GLPRT_BPRCL(pf_id),
			  pf->stat_prev_loaded, &prev_ps->eth.rx_broadcast,
			  &cur_ps->eth.rx_broadcast);

	ice_stat_update40(hw, GLPRT_GOTCH(pf_id), GLPRT_GOTCL(pf_id),
			  pf->stat_prev_loaded, &prev_ps->eth.tx_bytes,
			  &cur_ps->eth.tx_bytes);

	ice_stat_update40(hw, GLPRT_UPTCH(pf_id), GLPRT_UPTCL(pf_id),
			  pf->stat_prev_loaded, &prev_ps->eth.tx_unicast,
			  &cur_ps->eth.tx_unicast);

	ice_stat_update40(hw, GLPRT_MPTCH(pf_id), GLPRT_MPTCL(pf_id),
			  pf->stat_prev_loaded, &prev_ps->eth.tx_multicast,
			  &cur_ps->eth.tx_multicast);

	ice_stat_update40(hw, GLPRT_BPTCH(pf_id), GLPRT_BPTCL(pf_id),
			  pf->stat_prev_loaded, &prev_ps->eth.tx_broadcast,
			  &cur_ps->eth.tx_broadcast);

	ice_stat_update32(hw, GLPRT_TDOLD(pf_id), pf->stat_prev_loaded,
			  &prev_ps->tx_dropped_link_down,
			  &cur_ps->tx_dropped_link_down);

	ice_stat_update40(hw, GLPRT_PRC64H(pf_id), GLPRT_PRC64L(pf_id),
			  pf->stat_prev_loaded, &prev_ps->rx_size_64,
			  &cur_ps->rx_size_64);

	ice_stat_update40(hw, GLPRT_PRC127H(pf_id), GLPRT_PRC127L(pf_id),
			  pf->stat_prev_loaded, &prev_ps->rx_size_127,
			  &cur_ps->rx_size_127);

	ice_stat_update40(hw, GLPRT_PRC255H(pf_id), GLPRT_PRC255L(pf_id),
			  pf->stat_prev_loaded, &prev_ps->rx_size_255,
			  &cur_ps->rx_size_255);

	ice_stat_update40(hw, GLPRT_PRC511H(pf_id), GLPRT_PRC511L(pf_id),
			  pf->stat_prev_loaded, &prev_ps->rx_size_511,
			  &cur_ps->rx_size_511);

	ice_stat_update40(hw, GLPRT_PRC1023H(pf_id),
			  GLPRT_PRC1023L(pf_id), pf->stat_prev_loaded,
			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);

	ice_stat_update40(hw, GLPRT_PRC1522H(pf_id),
			  GLPRT_PRC1522L(pf_id), pf->stat_prev_loaded,
			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);

	ice_stat_update40(hw, GLPRT_PRC9522H(pf_id),
			  GLPRT_PRC9522L(pf_id), pf->stat_prev_loaded,
			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);

	ice_stat_update40(hw, GLPRT_PTC64H(pf_id), GLPRT_PTC64L(pf_id),
			  pf->stat_prev_loaded, &prev_ps->tx_size_64,
			  &cur_ps->tx_size_64);

	ice_stat_update40(hw, GLPRT_PTC127H(pf_id), GLPRT_PTC127L(pf_id),
			  pf->stat_prev_loaded, &prev_ps->tx_size_127,
			  &cur_ps->tx_size_127);

	ice_stat_update40(hw, GLPRT_PTC255H(pf_id), GLPRT_PTC255L(pf_id),
			  pf->stat_prev_loaded, &prev_ps->tx_size_255,
			  &cur_ps->tx_size_255);

	ice_stat_update40(hw, GLPRT_PTC511H(pf_id), GLPRT_PTC511L(pf_id),
			  pf->stat_prev_loaded, &prev_ps->tx_size_511,
			  &cur_ps->tx_size_511);

	ice_stat_update40(hw, GLPRT_PTC1023H(pf_id),
			  GLPRT_PTC1023L(pf_id), pf->stat_prev_loaded,
			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);

	ice_stat_update40(hw, GLPRT_PTC1522H(pf_id),
			  GLPRT_PTC1522L(pf_id), pf->stat_prev_loaded,
			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);

	ice_stat_update40(hw, GLPRT_PTC9522H(pf_id),
			  GLPRT_PTC9522L(pf_id), pf->stat_prev_loaded,
			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);

	ice_stat_update32(hw, GLPRT_LXONRXC(pf_id), pf->stat_prev_loaded,
			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);

	ice_stat_update32(hw, GLPRT_LXOFFRXC(pf_id), pf->stat_prev_loaded,
			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);

	ice_stat_update32(hw, GLPRT_LXONTXC(pf_id), pf->stat_prev_loaded,
			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);

	ice_stat_update32(hw, GLPRT_LXOFFTXC(pf_id), pf->stat_prev_loaded,
			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);

	ice_stat_update32(hw, GLPRT_CRCERRS(pf_id), pf->stat_prev_loaded,
			  &prev_ps->crc_errors, &cur_ps->crc_errors);

	ice_stat_update32(hw, GLPRT_ILLERRC(pf_id), pf->stat_prev_loaded,
			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);

	ice_stat_update32(hw, GLPRT_MLFC(pf_id), pf->stat_prev_loaded,
			  &prev_ps->mac_local_faults,
			  &cur_ps->mac_local_faults);

	ice_stat_update32(hw, GLPRT_MRFC(pf_id), pf->stat_prev_loaded,
			  &prev_ps->mac_remote_faults,
			  &cur_ps->mac_remote_faults);

	ice_stat_update32(hw, GLPRT_RLEC(pf_id), pf->stat_prev_loaded,
			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);

	ice_stat_update32(hw, GLPRT_RUC(pf_id), pf->stat_prev_loaded,
			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);

	ice_stat_update32(hw, GLPRT_RFC(pf_id), pf->stat_prev_loaded,
			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);

	ice_stat_update32(hw, GLPRT_ROC(pf_id), pf->stat_prev_loaded,
			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);

	ice_stat_update32(hw, GLPRT_RJC(pf_id), pf->stat_prev_loaded,
			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);

	pf->stat_prev_loaded = true;
}

/**
 * ice_get_stats64 - get statistics for network device structure
 * @netdev: network interface device structure
 * @stats: main device statistics structure
 */
static
void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
{
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct rtnl_link_stats64 *vsi_stats;
	struct ice_vsi *vsi = np->vsi;

	vsi_stats = &vsi->net_stats;

	if (test_bit(__ICE_DOWN, vsi->state) || !vsi->num_txq || !vsi->num_rxq)
		return;
	/* netdev packet/byte stats come from ring counter. These are obtained
	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
	 */
	ice_update_vsi_ring_stats(vsi);
	stats->tx_packets = vsi_stats->tx_packets;
	stats->tx_bytes = vsi_stats->tx_bytes;
	stats->rx_packets = vsi_stats->rx_packets;
	stats->rx_bytes = vsi_stats->rx_bytes;

	/* The rest of the stats can be read from the hardware but instead we
	 * just return values that the watchdog task has already obtained from
	 * the hardware.
	 */
	stats->multicast = vsi_stats->multicast;
	stats->tx_errors = vsi_stats->tx_errors;
	stats->tx_dropped = vsi_stats->tx_dropped;
	stats->rx_errors = vsi_stats->rx_errors;
	stats->rx_dropped = vsi_stats->rx_dropped;
	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
	stats->rx_length_errors = vsi_stats->rx_length_errors;
}

2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
/**
 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
 * @vsi: VSI having NAPI disabled
 */
static void ice_napi_disable_all(struct ice_vsi *vsi)
{
	int q_idx;

	if (!vsi->netdev)
		return;

	for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++)
		napi_disable(&vsi->q_vectors[q_idx]->napi);
}

2920 2921 2922 2923
/**
 * ice_down - Shutdown the connection
 * @vsi: The VSI being stopped
 */
2924
int ice_down(struct ice_vsi *vsi)
2925
{
2926
	int i, tx_err, rx_err;
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936

	/* Caller of this function is expected to set the
	 * vsi->state __ICE_DOWN bit
	 */
	if (vsi->netdev) {
		netif_carrier_off(vsi->netdev);
		netif_tx_disable(vsi->netdev);
	}

	ice_vsi_dis_irq(vsi);
2937
	tx_err = ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0);
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
	if (tx_err)
		netdev_err(vsi->netdev,
			   "Failed stop Tx rings, VSI %d error %d\n",
			   vsi->vsi_num, tx_err);

	rx_err = ice_vsi_stop_rx_rings(vsi);
	if (rx_err)
		netdev_err(vsi->netdev,
			   "Failed stop Rx rings, VSI %d error %d\n",
			   vsi->vsi_num, rx_err);

2949
	ice_napi_disable_all(vsi);
2950 2951 2952 2953 2954 2955 2956

	ice_for_each_txq(vsi, i)
		ice_clean_tx_ring(vsi->tx_rings[i]);

	ice_for_each_rxq(vsi, i)
		ice_clean_rx_ring(vsi->rx_rings[i]);

2957 2958 2959
	if (tx_err || rx_err) {
		netdev_err(vsi->netdev,
			   "Failed to close VSI 0x%04X on switch 0x%04X\n",
2960
			   vsi->vsi_num, vsi->vsw->sw_id);
2961 2962 2963 2964
		return -EIO;
	}

	return 0;
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
}

/**
 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
 * @vsi: VSI having resources allocated
 *
 * Return 0 on success, negative on failure
 */
static int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
{
2975
	int i, err = 0;
2976 2977 2978 2979 2980 2981 2982 2983

	if (!vsi->num_txq) {
		dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Tx queues\n",
			vsi->vsi_num);
		return -EINVAL;
	}

	ice_for_each_txq(vsi, i) {
2984
		vsi->tx_rings[i]->netdev = vsi->netdev;
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
		err = ice_setup_tx_ring(vsi->tx_rings[i]);
		if (err)
			break;
	}

	return err;
}

/**
 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
 * @vsi: VSI having resources allocated
 *
 * Return 0 on success, negative on failure
 */
static int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
{
3001
	int i, err = 0;
3002 3003 3004 3005 3006 3007 3008 3009

	if (!vsi->num_rxq) {
		dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Rx queues\n",
			vsi->vsi_num);
		return -EINVAL;
	}

	ice_for_each_rxq(vsi, i) {
3010
		vsi->rx_rings[i]->netdev = vsi->netdev;
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
		err = ice_setup_rx_ring(vsi->rx_rings[i]);
		if (err)
			break;
	}

	return err;
}

/**
 * ice_vsi_req_irq - Request IRQ from the OS
 * @vsi: The VSI IRQ is being requested for
 * @basename: name for the vector
 *
 * Return 0 on success and a negative value on error
 */
static int ice_vsi_req_irq(struct ice_vsi *vsi, char *basename)
{
	struct ice_pf *pf = vsi->back;
	int err = -EINVAL;

	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
		err = ice_vsi_req_irq_msix(vsi, basename);

	return err;
}

/**
 * ice_vsi_open - Called when a network interface is made active
 * @vsi: the VSI to open
 *
 * Initialization of the VSI
 *
 * Returns 0 on success, negative value on error
 */
static int ice_vsi_open(struct ice_vsi *vsi)
{
	char int_name[ICE_INT_NAME_STR_LEN];
	struct ice_pf *pf = vsi->back;
	int err;

	/* allocate descriptors */
	err = ice_vsi_setup_tx_rings(vsi);
	if (err)
		goto err_setup_tx;

	err = ice_vsi_setup_rx_rings(vsi);
	if (err)
		goto err_setup_rx;

	err = ice_vsi_cfg(vsi);
	if (err)
		goto err_setup_rx;

	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
		 dev_driver_string(&pf->pdev->dev), vsi->netdev->name);
	err = ice_vsi_req_irq(vsi, int_name);
	if (err)
		goto err_setup_rx;

	/* Notify the stack of the actual queue counts. */
	err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
	if (err)
		goto err_set_qs;

	err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
	if (err)
		goto err_set_qs;

	err = ice_up_complete(vsi);
	if (err)
		goto err_up_complete;

	return 0;

err_up_complete:
	ice_down(vsi);
err_set_qs:
	ice_vsi_free_irq(vsi);
err_setup_rx:
	ice_vsi_free_rx_rings(vsi);
err_setup_tx:
	ice_vsi_free_tx_rings(vsi);

	return err;
}

3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
/**
 * ice_vsi_release_all - Delete all VSIs
 * @pf: PF from which all VSIs are being removed
 */
static void ice_vsi_release_all(struct ice_pf *pf)
{
	int err, i;

	if (!pf->vsi)
		return;

	for (i = 0; i < pf->num_alloc_vsi; i++) {
		if (!pf->vsi[i])
			continue;

		err = ice_vsi_release(pf->vsi[i]);
		if (err)
			dev_dbg(&pf->pdev->dev,
				"Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
				i, err, pf->vsi[i]->vsi_num);
	}
}

3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
/**
 * ice_dis_vsi - pause a VSI
 * @vsi: the VSI being paused
 */
static void ice_dis_vsi(struct ice_vsi *vsi)
{
	if (test_bit(__ICE_DOWN, vsi->state))
		return;

	set_bit(__ICE_NEEDS_RESTART, vsi->state);

3131 3132 3133 3134 3135 3136 3137 3138
	if (vsi->type == ICE_VSI_PF && vsi->netdev) {
		if (netif_running(vsi->netdev)) {
			rtnl_lock();
			vsi->netdev->netdev_ops->ndo_stop(vsi->netdev);
			rtnl_unlock();
		} else {
			ice_vsi_close(vsi);
		}
3139
	}
3140 3141 3142 3143 3144 3145
}

/**
 * ice_ena_vsi - resume a VSI
 * @vsi: the VSI being resume
 */
3146
static int ice_ena_vsi(struct ice_vsi *vsi)
3147
{
3148 3149
	int err = 0;

3150 3151 3152
	if (test_and_clear_bit(__ICE_NEEDS_RESTART, vsi->state) &&
	    vsi->netdev) {
		if (netif_running(vsi->netdev)) {
3153 3154 3155
			rtnl_lock();
			err = vsi->netdev->netdev_ops->ndo_open(vsi->netdev);
			rtnl_unlock();
3156 3157
		} else {
			err = ice_vsi_open(vsi);
3158
		}
3159
	}
3160

3161
	return err;
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
}

/**
 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
 * @pf: the PF
 */
static void ice_pf_dis_all_vsi(struct ice_pf *pf)
{
	int v;

	ice_for_each_vsi(pf, v)
		if (pf->vsi[v])
			ice_dis_vsi(pf->vsi[v]);
}

/**
 * ice_pf_ena_all_vsi - Resume all VSIs on a PF
 * @pf: the PF
 */
3181
static int ice_pf_ena_all_vsi(struct ice_pf *pf)
3182 3183 3184 3185 3186
{
	int v;

	ice_for_each_vsi(pf, v)
		if (pf->vsi[v])
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
			if (ice_ena_vsi(pf->vsi[v]))
				return -EIO;

	return 0;
}

/**
 * ice_vsi_rebuild_all - rebuild all VSIs in pf
 * @pf: the PF
 */
static int ice_vsi_rebuild_all(struct ice_pf *pf)
{
	int i;

	/* loop through pf->vsi array and reinit the VSI if found */
	for (i = 0; i < pf->num_alloc_vsi; i++) {
		int err;

		if (!pf->vsi[i])
			continue;

3208 3209 3210 3211
		/* VF VSI rebuild isn't supported yet */
		if (pf->vsi[i]->type == ICE_VSI_VF)
			continue;

3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
		err = ice_vsi_rebuild(pf->vsi[i]);
		if (err) {
			dev_err(&pf->pdev->dev,
				"VSI at index %d rebuild failed\n",
				pf->vsi[i]->idx);
			return err;
		}

		dev_info(&pf->pdev->dev,
			 "VSI at index %d rebuilt. vsi_num = 0x%x\n",
			 pf->vsi[i]->idx, pf->vsi[i]->vsi_num);
	}

	return 0;
3226 3227
}

3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
/**
 * ice_vsi_replay_all - replay all VSIs configuration in the PF
 * @pf: the PF
 */
static int ice_vsi_replay_all(struct ice_pf *pf)
{
	struct ice_hw *hw = &pf->hw;
	enum ice_status ret;
	int i;

	/* loop through pf->vsi array and replay the VSI if found */
	for (i = 0; i < pf->num_alloc_vsi; i++) {
		if (!pf->vsi[i])
			continue;

		ret = ice_replay_vsi(hw, pf->vsi[i]->idx);
		if (ret) {
			dev_err(&pf->pdev->dev,
				"VSI at index %d replay failed %d\n",
				pf->vsi[i]->idx, ret);
			return -EIO;
		}

		/* Re-map HW VSI number, using VSI handle that has been
		 * previously validated in ice_replay_vsi() call above
		 */
		pf->vsi[i]->vsi_num = ice_get_hw_vsi_num(hw, pf->vsi[i]->idx);

		dev_info(&pf->pdev->dev,
			 "VSI at index %d filter replayed successfully - vsi_num %i\n",
			 pf->vsi[i]->idx, pf->vsi[i]->vsi_num);
	}

	/* Clean up replay filter after successful re-configuration */
	ice_replay_post(hw);
	return 0;
}

3266 3267 3268 3269 3270 3271 3272 3273 3274
/**
 * ice_rebuild - rebuild after reset
 * @pf: pf to rebuild
 */
static void ice_rebuild(struct ice_pf *pf)
{
	struct device *dev = &pf->pdev->dev;
	struct ice_hw *hw = &pf->hw;
	enum ice_status ret;
3275
	int err, i;
3276 3277 3278 3279 3280 3281 3282 3283 3284

	if (test_bit(__ICE_DOWN, pf->state))
		goto clear_recovery;

	dev_dbg(dev, "rebuilding pf\n");

	ret = ice_init_all_ctrlq(hw);
	if (ret) {
		dev_err(dev, "control queues init failed %d\n", ret);
3285
		goto err_init_ctrlq;
3286 3287 3288 3289 3290
	}

	ret = ice_clear_pf_cfg(hw);
	if (ret) {
		dev_err(dev, "clear PF configuration failed %d\n", ret);
3291
		goto err_init_ctrlq;
3292 3293 3294 3295 3296 3297 3298
	}

	ice_clear_pxe_mode(hw);

	ret = ice_get_caps(hw);
	if (ret) {
		dev_err(dev, "ice_get_caps failed %d\n", ret);
3299
		goto err_init_ctrlq;
3300 3301
	}

3302 3303 3304 3305
	err = ice_sched_init_port(hw->port_info);
	if (err)
		goto err_sched_init_port;

3306 3307 3308 3309 3310 3311
	/* reset search_hint of irq_trackers to 0 since interrupts are
	 * reclaimed and could be allocated from beginning during VSI rebuild
	 */
	pf->sw_irq_tracker->search_hint = 0;
	pf->hw_irq_tracker->search_hint = 0;

3312
	err = ice_vsi_rebuild_all(pf);
3313
	if (err) {
3314 3315 3316 3317
		dev_err(dev, "ice_vsi_rebuild_all failed\n");
		goto err_vsi_rebuild;
	}

3318 3319 3320 3321
	err = ice_update_link_info(hw->port_info);
	if (err)
		dev_err(&pf->pdev->dev, "Get link status error %d\n", err);

3322 3323
	/* Replay all VSIs Configuration, including filters after reset */
	if (ice_vsi_replay_all(pf)) {
3324
		dev_err(&pf->pdev->dev,
3325
			"error replaying VSI configurations with switch filter rules\n");
3326
		goto err_vsi_rebuild;
3327 3328 3329 3330 3331 3332 3333
	}

	/* start misc vector */
	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
		err = ice_req_irq_msix_misc(pf);
		if (err) {
			dev_err(dev, "misc vector setup failed: %d\n", err);
3334
			goto err_vsi_rebuild;
3335 3336 3337 3338
		}
	}

	/* restart the VSIs that were rebuilt and running before the reset */
3339 3340 3341 3342 3343 3344 3345 3346
	err = ice_pf_ena_all_vsi(pf);
	if (err) {
		dev_err(&pf->pdev->dev, "error enabling VSIs\n");
		/* no need to disable VSIs in tear down path in ice_rebuild()
		 * since its already taken care in ice_vsi_open()
		 */
		goto err_vsi_rebuild;
	}
3347

3348
	ice_reset_all_vfs(pf, true);
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364

	for (i = 0; i < pf->num_alloc_vsi; i++) {
		bool link_up;

		if (!pf->vsi[i] || pf->vsi[i]->type != ICE_VSI_PF)
			continue;
		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
		if (link_up) {
			netif_carrier_on(pf->vsi[i]->netdev);
			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
		} else {
			netif_carrier_off(pf->vsi[i]->netdev);
			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
		}
	}

3365 3366
	/* if we get here, reset flow is successful */
	clear_bit(__ICE_RESET_FAILED, pf->state);
3367 3368
	return;

3369 3370 3371 3372 3373
err_vsi_rebuild:
	ice_vsi_release_all(pf);
err_sched_init_port:
	ice_sched_cleanup_all(hw);
err_init_ctrlq:
3374 3375 3376
	ice_shutdown_all_ctrlq(hw);
	set_bit(__ICE_RESET_FAILED, pf->state);
clear_recovery:
3377 3378 3379
	/* set this bit in PF state to control service task scheduling */
	set_bit(__ICE_NEEDS_RESTART, pf->state);
	dev_err(dev, "Rebuild failed, unload and reload driver\n");
3380 3381
}

3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
/**
 * ice_change_mtu - NDO callback to change the MTU
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 */
static int ice_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct ice_vsi *vsi = np->vsi;
	struct ice_pf *pf = vsi->back;
	u8 count = 0;

	if (new_mtu == netdev->mtu) {
3397
		netdev_warn(netdev, "mtu is already %u\n", netdev->mtu);
3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
		return 0;
	}

	if (new_mtu < netdev->min_mtu) {
		netdev_err(netdev, "new mtu invalid. min_mtu is %d\n",
			   netdev->min_mtu);
		return -EINVAL;
	} else if (new_mtu > netdev->max_mtu) {
		netdev_err(netdev, "new mtu invalid. max_mtu is %d\n",
			   netdev->min_mtu);
		return -EINVAL;
	}
	/* if a reset is in progress, wait for some time for it to complete */
	do {
3412
		if (ice_is_reset_in_progress(pf->state)) {
3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
			count++;
			usleep_range(1000, 2000);
		} else {
			break;
		}

	} while (count < 100);

	if (count == 100) {
		netdev_err(netdev, "can't change mtu. Device is busy\n");
		return -EBUSY;
	}

	netdev->mtu = new_mtu;

	/* if VSI is up, bring it down and then back up */
	if (!test_and_set_bit(__ICE_DOWN, vsi->state)) {
		int err;

		err = ice_down(vsi);
		if (err) {
			netdev_err(netdev, "change mtu if_up err %d\n", err);
			return err;
		}

		err = ice_up(vsi);
		if (err) {
			netdev_err(netdev, "change mtu if_up err %d\n", err);
			return err;
		}
	}

	netdev_dbg(netdev, "changed mtu to %d\n", new_mtu);
	return 0;
}

3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
/**
 * ice_set_rss - Set RSS keys and lut
 * @vsi: Pointer to VSI structure
 * @seed: RSS hash seed
 * @lut: Lookup table
 * @lut_size: Lookup table size
 *
 * Returns 0 on success, negative on failure
 */
int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
{
	struct ice_pf *pf = vsi->back;
	struct ice_hw *hw = &pf->hw;
	enum ice_status status;

	if (seed) {
		struct ice_aqc_get_set_rss_keys *buf =
				  (struct ice_aqc_get_set_rss_keys *)seed;

3468
		status = ice_aq_set_rss_key(hw, vsi->idx, buf);
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478

		if (status) {
			dev_err(&pf->pdev->dev,
				"Cannot set RSS key, err %d aq_err %d\n",
				status, hw->adminq.rq_last_status);
			return -EIO;
		}
	}

	if (lut) {
3479 3480
		status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
					    lut, lut_size);
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
		if (status) {
			dev_err(&pf->pdev->dev,
				"Cannot set RSS lut, err %d aq_err %d\n",
				status, hw->adminq.rq_last_status);
			return -EIO;
		}
	}

	return 0;
}

/**
 * ice_get_rss - Get RSS keys and lut
 * @vsi: Pointer to VSI structure
 * @seed: Buffer to store the keys
 * @lut: Buffer to store the lookup table entries
 * @lut_size: Size of buffer to store the lookup table entries
 *
 * Returns 0 on success, negative on failure
 */
int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
{
	struct ice_pf *pf = vsi->back;
	struct ice_hw *hw = &pf->hw;
	enum ice_status status;

	if (seed) {
		struct ice_aqc_get_set_rss_keys *buf =
				  (struct ice_aqc_get_set_rss_keys *)seed;

3511
		status = ice_aq_get_rss_key(hw, vsi->idx, buf);
3512 3513 3514 3515 3516 3517 3518 3519 3520
		if (status) {
			dev_err(&pf->pdev->dev,
				"Cannot get RSS key, err %d aq_err %d\n",
				status, hw->adminq.rq_last_status);
			return -EIO;
		}
	}

	if (lut) {
3521 3522
		status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
					    lut, lut_size);
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
		if (status) {
			dev_err(&pf->pdev->dev,
				"Cannot get RSS lut, err %d aq_err %d\n",
				status, hw->adminq.rq_last_status);
			return -EIO;
		}
	}

	return 0;
}

3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
/**
 * ice_bridge_getlink - Get the hardware bridge mode
 * @skb: skb buff
 * @pid: process id
 * @seq: RTNL message seq
 * @dev: the netdev being configured
 * @filter_mask: filter mask passed in
 * @nlflags: netlink flags passed in
 *
 * Return the bridge mode (VEB/VEPA)
 */
static int
ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
		   struct net_device *dev, u32 filter_mask, int nlflags)
{
	struct ice_netdev_priv *np = netdev_priv(dev);
	struct ice_vsi *vsi = np->vsi;
	struct ice_pf *pf = vsi->back;
	u16 bmode;

	bmode = pf->first_sw->bridge_mode;

	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
				       filter_mask, NULL);
}

/**
 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
 * @vsi: Pointer to VSI structure
 * @bmode: Hardware bridge mode (VEB/VEPA)
 *
 * Returns 0 on success, negative on failure
 */
static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
{
	struct device *dev = &vsi->back->pdev->dev;
	struct ice_aqc_vsi_props *vsi_props;
	struct ice_hw *hw = &vsi->back->hw;
	struct ice_vsi_ctx ctxt = { 0 };
	enum ice_status status;

	vsi_props = &vsi->info;
	ctxt.info = vsi->info;

	if (bmode == BRIDGE_MODE_VEB)
		/* change from VEPA to VEB mode */
		ctxt.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
	else
		/* change from VEB to VEPA mode */
		ctxt.info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
	ctxt.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
3585 3586

	status = ice_update_vsi(hw, vsi->idx, &ctxt, NULL);
3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
	if (status) {
		dev_err(dev, "update VSI for bridge mode failed, bmode = %d err %d aq_err %d\n",
			bmode, status, hw->adminq.sq_last_status);
		return -EIO;
	}
	/* Update sw flags for book keeping */
	vsi_props->sw_flags = ctxt.info.sw_flags;

	return 0;
}

/**
 * ice_bridge_setlink - Set the hardware bridge mode
 * @dev: the netdev being configured
 * @nlh: RTNL message
 * @flags: bridge setlink flags
 *
 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
 * not already set for all VSIs connected to this switch. And also update the
 * unicast switch filter rules for the corresponding switch of the netdev.
 */
static int
ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
		   u16 __always_unused flags)
{
	struct ice_netdev_priv *np = netdev_priv(dev);
	struct ice_pf *pf = np->vsi->back;
	struct nlattr *attr, *br_spec;
	struct ice_hw *hw = &pf->hw;
	enum ice_status status;
	struct ice_sw *pf_sw;
	int rem, v, err = 0;

	pf_sw = pf->first_sw;
	/* find the attribute in the netlink message */
	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);

	nla_for_each_nested(attr, br_spec, rem) {
		__u16 mode;

		if (nla_type(attr) != IFLA_BRIDGE_MODE)
			continue;
		mode = nla_get_u16(attr);
		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
			return -EINVAL;
		/* Continue  if bridge mode is not being flipped */
		if (mode == pf_sw->bridge_mode)
			continue;
		/* Iterates through the PF VSI list and update the loopback
		 * mode of the VSI
		 */
		ice_for_each_vsi(pf, v) {
			if (!pf->vsi[v])
				continue;
			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
			if (err)
				return err;
		}

		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
		/* Update the unicast switch filter rules for the corresponding
		 * switch of the netdev
		 */
		status = ice_update_sw_rule_bridge_mode(hw);
		if (status) {
			netdev_err(dev, "update SW_RULE for bridge mode failed,  = %d err %d aq_err %d\n",
				   mode, status, hw->adminq.sq_last_status);
			/* revert hw->evb_veb */
			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
			return -EIO;
		}

		pf_sw->bridge_mode = mode;
	}

	return 0;
}

3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
/**
 * ice_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 */
static void ice_tx_timeout(struct net_device *netdev)
{
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct ice_ring *tx_ring = NULL;
	struct ice_vsi *vsi = np->vsi;
	struct ice_pf *pf = vsi->back;
	u32 head, val = 0, i;
	int hung_queue = -1;

	pf->tx_timeout_count++;

	/* find the stopped queue the same way the stack does */
	for (i = 0; i < netdev->num_tx_queues; i++) {
		struct netdev_queue *q;
		unsigned long trans_start;

		q = netdev_get_tx_queue(netdev, i);
		trans_start = q->trans_start;
		if (netif_xmit_stopped(q) &&
		    time_after(jiffies,
			       (trans_start + netdev->watchdog_timeo))) {
			hung_queue = i;
			break;
		}
	}

	if (i == netdev->num_tx_queues) {
		netdev_info(netdev, "tx_timeout: no netdev hung queue found\n");
	} else {
		/* now that we have an index, find the tx_ring struct */
		for (i = 0; i < vsi->num_txq; i++) {
			if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) {
				if (hung_queue ==
				    vsi->tx_rings[i]->q_index) {
					tx_ring = vsi->tx_rings[i];
					break;
				}
			}
		}
	}

	/* Reset recovery level if enough time has elapsed after last timeout.
	 * Also ensure no new reset action happens before next timeout period.
	 */
	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
		pf->tx_timeout_recovery_level = 1;
	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
				       netdev->watchdog_timeo)))
		return;

	if (tx_ring) {
		head = tx_ring->next_to_clean;
		/* Read interrupt register */
		if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
			val = rd32(&pf->hw,
				   GLINT_DYN_CTL(tx_ring->q_vector->v_idx +
3726
					tx_ring->vsi->hw_base_vector));
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751

		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %d, NTC: 0x%x, HWB: 0x%x, NTU: 0x%x, TAIL: 0x%x, INT: 0x%x\n",
			    vsi->vsi_num, hung_queue, tx_ring->next_to_clean,
			    head, tx_ring->next_to_use,
			    readl(tx_ring->tail), val);
	}

	pf->tx_timeout_last_recovery = jiffies;
	netdev_info(netdev, "tx_timeout recovery level %d, hung_queue %d\n",
		    pf->tx_timeout_recovery_level, hung_queue);

	switch (pf->tx_timeout_recovery_level) {
	case 1:
		set_bit(__ICE_PFR_REQ, pf->state);
		break;
	case 2:
		set_bit(__ICE_CORER_REQ, pf->state);
		break;
	case 3:
		set_bit(__ICE_GLOBR_REQ, pf->state);
		break;
	default:
		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
		set_bit(__ICE_DOWN, pf->state);
		set_bit(__ICE_NEEDS_RESTART, vsi->state);
3752
		set_bit(__ICE_SERVICE_DIS, pf->state);
3753 3754 3755 3756 3757 3758 3759
		break;
	}

	ice_service_task_schedule(pf);
	pf->tx_timeout_recovery_level++;
}

3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
/**
 * ice_open - Called when a network interface becomes active
 * @netdev: network interface device structure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the netdev watchdog is enabled,
 * and the stack is notified that the interface is ready.
 *
 * Returns 0 on success, negative value on failure
 */
static int ice_open(struct net_device *netdev)
{
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct ice_vsi *vsi = np->vsi;
	int err;

3778 3779 3780 3781 3782
	if (test_bit(__ICE_NEEDS_RESTART, vsi->back->state)) {
		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
		return -EIO;
	}

3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812
	netif_carrier_off(netdev);

	err = ice_vsi_open(vsi);

	if (err)
		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
			   vsi->vsi_num, vsi->vsw->sw_id);
	return err;
}

/**
 * ice_stop - Disables a network interface
 * @netdev: network interface device structure
 *
 * The stop entry point is called when an interface is de-activated by the OS,
 * and the netdevice enters the DOWN state.  The hardware is still under the
 * driver's control, but the netdev interface is disabled.
 *
 * Returns success only - not allowed to fail
 */
static int ice_stop(struct net_device *netdev)
{
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct ice_vsi *vsi = np->vsi;

	ice_vsi_close(vsi);

	return 0;
}

3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862
/**
 * ice_features_check - Validate encapsulated packet conforms to limits
 * @skb: skb buffer
 * @netdev: This port's netdev
 * @features: Offload features that the stack believes apply
 */
static netdev_features_t
ice_features_check(struct sk_buff *skb,
		   struct net_device __always_unused *netdev,
		   netdev_features_t features)
{
	size_t len;

	/* No point in doing any of this if neither checksum nor GSO are
	 * being requested for this frame.  We can rule out both by just
	 * checking for CHECKSUM_PARTIAL
	 */
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return features;

	/* We cannot support GSO if the MSS is going to be less than
	 * 64 bytes.  If it is then we need to drop support for GSO.
	 */
	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
		features &= ~NETIF_F_GSO_MASK;

	len = skb_network_header(skb) - skb->data;
	if (len & ~(ICE_TXD_MACLEN_MAX))
		goto out_rm_features;

	len = skb_transport_header(skb) - skb_network_header(skb);
	if (len & ~(ICE_TXD_IPLEN_MAX))
		goto out_rm_features;

	if (skb->encapsulation) {
		len = skb_inner_network_header(skb) - skb_transport_header(skb);
		if (len & ~(ICE_TXD_L4LEN_MAX))
			goto out_rm_features;

		len = skb_inner_transport_header(skb) -
		      skb_inner_network_header(skb);
		if (len & ~(ICE_TXD_IPLEN_MAX))
			goto out_rm_features;
	}

	return features;
out_rm_features:
	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
}

3863 3864 3865
static const struct net_device_ops ice_netdev_ops = {
	.ndo_open = ice_open,
	.ndo_stop = ice_stop,
3866
	.ndo_start_xmit = ice_start_xmit,
3867 3868 3869 3870 3871
	.ndo_features_check = ice_features_check,
	.ndo_set_rx_mode = ice_set_rx_mode,
	.ndo_set_mac_address = ice_set_mac_address,
	.ndo_validate_addr = eth_validate_addr,
	.ndo_change_mtu = ice_change_mtu,
3872
	.ndo_get_stats64 = ice_get_stats64,
3873 3874 3875 3876 3877 3878
	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
	.ndo_set_vf_mac = ice_set_vf_mac,
	.ndo_get_vf_config = ice_get_vf_cfg,
	.ndo_set_vf_trust = ice_set_vf_trust,
	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
	.ndo_set_vf_link_state = ice_set_vf_link_state,
3879 3880 3881
	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
	.ndo_set_features = ice_set_features,
3882 3883
	.ndo_bridge_getlink = ice_bridge_getlink,
	.ndo_bridge_setlink = ice_bridge_setlink,
3884 3885
	.ndo_fdb_add = ice_fdb_add,
	.ndo_fdb_del = ice_fdb_del,
3886
	.ndo_tx_timeout = ice_tx_timeout,
3887
};