inode.c 140.2 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
18
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 20 21 22
 */

#include <linux/fs.h>
#include <linux/time.h>
23
#include <linux/jbd2.h>
24 25 26 27 28 29
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
30
#include <linux/pagevec.h>
31
#include <linux/mpage.h>
32
#include <linux/namei.h>
33 34
#include <linux/uio.h>
#include <linux/bio.h>
35
#include <linux/workqueue.h>
36
#include <linux/kernel.h>
37
#include <linux/printk.h>
38
#include <linux/slab.h>
39
#include <linux/ratelimit.h>
40

41
#include "ext4_jbd2.h"
42 43
#include "xattr.h"
#include "acl.h"
44
#include "truncate.h"
45

46 47
#include <trace/events/ext4.h>

48 49
#define MPAGE_DA_EXTENT_TAIL 0x01

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
			      struct ext4_inode_info *ei)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	__u16 csum_lo;
	__u16 csum_hi = 0;
	__u32 csum;

	csum_lo = raw->i_checksum_lo;
	raw->i_checksum_lo = 0;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
		csum_hi = raw->i_checksum_hi;
		raw->i_checksum_hi = 0;
	}

	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
			   EXT4_INODE_SIZE(inode->i_sb));

	raw->i_checksum_lo = csum_lo;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = csum_hi;

	return csum;
}

static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
				  struct ext4_inode_info *ei)
{
	__u32 provided, calculated;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return 1;

	provided = le16_to_cpu(raw->i_checksum_lo);
	calculated = ext4_inode_csum(inode, raw, ei);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
	else
		calculated &= 0xFFFF;

	return provided == calculated;
}

static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
				struct ext4_inode_info *ei)
{
	__u32 csum;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return;

	csum = ext4_inode_csum(inode, raw, ei);
	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
}

117 118 119
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
120
	trace_ext4_begin_ordered_truncate(inode, new_size);
121 122 123 124 125 126 127 128 129 130 131
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
132 133
}

134
static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 136
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
E
Eric Sandeen 已提交
137 138 139
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags);
140

141 142 143
/*
 * Test whether an inode is a fast symlink.
 */
144
static int ext4_inode_is_fast_symlink(struct inode *inode)
145
{
146
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
147 148 149 150 151 152 153 154 155 156
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
157
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158
				 int nblocks)
159
{
160 161 162
	int ret;

	/*
163
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164 165 166 167
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
168
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
169
	jbd_debug(2, "restarting handle %p\n", handle);
170
	up_write(&EXT4_I(inode)->i_data_sem);
171
	ret = ext4_journal_restart(handle, nblocks);
172
	down_write(&EXT4_I(inode)->i_data_sem);
173
	ext4_discard_preallocations(inode);
174 175

	return ret;
176 177 178 179 180
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
181
void ext4_evict_inode(struct inode *inode)
182 183
{
	handle_t *handle;
184
	int err;
185

186
	trace_ext4_evict_inode(inode);
187 188 189

	ext4_ioend_wait(inode);

A
Al Viro 已提交
190
	if (inode->i_nlink) {
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
		/*
		 * When journalling data dirty buffers are tracked only in the
		 * journal. So although mm thinks everything is clean and
		 * ready for reaping the inode might still have some pages to
		 * write in the running transaction or waiting to be
		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
		 * (via truncate_inode_pages()) to discard these buffers can
		 * cause data loss. Also even if we did not discard these
		 * buffers, we would have no way to find them after the inode
		 * is reaped and thus user could see stale data if he tries to
		 * read them before the transaction is checkpointed. So be
		 * careful and force everything to disk here... We use
		 * ei->i_datasync_tid to store the newest transaction
		 * containing inode's data.
		 *
		 * Note that directories do not have this problem because they
		 * don't use page cache.
		 */
		if (ext4_should_journal_data(inode) &&
		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;

			jbd2_log_start_commit(journal, commit_tid);
			jbd2_log_wait_commit(journal, commit_tid);
			filemap_write_and_wait(&inode->i_data);
		}
A
Al Viro 已提交
218 219 220 221
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

222
	if (!is_bad_inode(inode))
223
		dquot_initialize(inode);
224

225 226
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
227 228 229 230 231
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

232 233 234 235 236
	/*
	 * Protect us against freezing - iput() caller didn't have to have any
	 * protection against it
	 */
	sb_start_intwrite(inode->i_sb);
237 238
	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
				    ext4_blocks_for_truncate(inode)+3);
239
	if (IS_ERR(handle)) {
240
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
241 242 243 244 245
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
246
		ext4_orphan_del(NULL, inode);
247
		sb_end_intwrite(inode->i_sb);
248 249 250 251
		goto no_delete;
	}

	if (IS_SYNC(inode))
252
		ext4_handle_sync(handle);
253
	inode->i_size = 0;
254 255
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
256
		ext4_warning(inode->i_sb,
257 258 259
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
260
	if (inode->i_blocks)
261
		ext4_truncate(inode);
262 263 264 265 266 267 268

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
269
	if (!ext4_handle_has_enough_credits(handle, 3)) {
270 271 272 273
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
274
			ext4_warning(inode->i_sb,
275 276 277
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
278
			ext4_orphan_del(NULL, inode);
279
			sb_end_intwrite(inode->i_sb);
280 281 282 283
			goto no_delete;
		}
	}

284
	/*
285
	 * Kill off the orphan record which ext4_truncate created.
286
	 * AKPM: I think this can be inside the above `if'.
287
	 * Note that ext4_orphan_del() has to be able to cope with the
288
	 * deletion of a non-existent orphan - this is because we don't
289
	 * know if ext4_truncate() actually created an orphan record.
290 291
	 * (Well, we could do this if we need to, but heck - it works)
	 */
292 293
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
294 295 296 297 298 299 300 301

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
302
	if (ext4_mark_inode_dirty(handle, inode))
303
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
304
		ext4_clear_inode(inode);
305
	else
306 307
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
308
	sb_end_intwrite(inode->i_sb);
309 310
	return;
no_delete:
A
Al Viro 已提交
311
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
312 313
}

314 315
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
316
{
317
	return &EXT4_I(inode)->i_reserved_quota;
318
}
319
#endif
320

321 322
/*
 * Calculate the number of metadata blocks need to reserve
323
 * to allocate a block located at @lblock
324
 */
325
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
326
{
327
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
328
		return ext4_ext_calc_metadata_amount(inode, lblock);
329

330
	return ext4_ind_calc_metadata_amount(inode, lblock);
331 332
}

333 334 335 336
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
337 338
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
339 340
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
341 342 343
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
344
	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
345
	if (unlikely(used > ei->i_reserved_data_blocks)) {
346
		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
347
			 "with only %d reserved data blocks",
348 349 350 351 352
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
353

354
	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
355 356 357 358 359 360
		ext4_warning(inode->i_sb, "ino %lu, allocated %d "
			"with only %d reserved metadata blocks "
			"(releasing %d blocks with reserved %d data blocks)",
			inode->i_ino, ei->i_allocated_meta_blocks,
			     ei->i_reserved_meta_blocks, used,
			     ei->i_reserved_data_blocks);
361 362 363 364
		WARN_ON(1);
		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
	}

365 366 367
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
368
	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
369
			   used + ei->i_allocated_meta_blocks);
370
	ei->i_allocated_meta_blocks = 0;
371

372 373 374 375 376 377
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
378
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
379
				   ei->i_reserved_meta_blocks);
380
		ei->i_reserved_meta_blocks = 0;
381
		ei->i_da_metadata_calc_len = 0;
382
	}
383
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
384

385 386
	/* Update quota subsystem for data blocks */
	if (quota_claim)
387
		dquot_claim_block(inode, EXT4_C2B(sbi, used));
388
	else {
389 390 391
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
392
		 * not re-claim the quota for fallocated blocks.
393
		 */
394
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
395
	}
396 397 398 399 400 401

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
402 403
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
404
		ext4_discard_preallocations(inode);
405 406
}

407
static int __check_block_validity(struct inode *inode, const char *func,
408 409
				unsigned int line,
				struct ext4_map_blocks *map)
410
{
411 412
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
413 414 415 416
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
417 418 419 420 421
		return -EIO;
	}
	return 0;
}

422
#define check_block_validity(inode, map)	\
423
	__check_block_validity((inode), __func__, __LINE__, (map))
424

425
/*
426 427
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
461 462 463 464 465 466 467 468 469
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
470 471 472 473 474
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
475 476
			if (num >= max_pages) {
				done = 1;
477
				break;
478
			}
479 480 481 482 483 484
		}
		pagevec_release(&pvec);
	}
	return num;
}

485
/*
486
 * The ext4_map_blocks() function tries to look up the requested blocks,
487
 * and returns if the blocks are already mapped.
488 489 490 491 492
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
493 494
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
495 496 497 498 499 500 501 502
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
503
 * that case, buffer head is unmapped
504 505 506
 *
 * It returns the error in case of allocation failure.
 */
507 508
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
509 510
{
	int retval;
511

512 513 514 515
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
516
	/*
517 518
	 * Try to see if we can get the block without requesting a new
	 * file system block.
519
	 */
520 521
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		down_read((&EXT4_I(inode)->i_data_sem));
522
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
523 524
		retval = ext4_ext_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
525
	} else {
526 527
		retval = ext4_ind_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
528
	}
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
	if (retval > 0) {
		int ret;
		unsigned long long status;

		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
		    ext4_find_delalloc_range(inode, map->m_lblk,
					     map->m_lblk + map->m_len - 1))
			status |= EXTENT_STATUS_DELAYED;
		ret = ext4_es_insert_extent(inode, map->m_lblk,
					    map->m_len, map->m_pblk, status);
		if (ret < 0)
			retval = ret;
	}
544 545
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		up_read((&EXT4_I(inode)->i_data_sem));
546

547
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
548
		int ret = check_block_validity(inode, map);
549 550 551 552
		if (ret != 0)
			return ret;
	}

553
	/* If it is only a block(s) look up */
554
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
555 556 557 558 559 560
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
561
	 * ext4_ext_get_block() returns the create = 0
562 563
	 * with buffer head unmapped.
	 */
564
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
565 566
		return retval;

567
	/*
568 569
	 * Here we clear m_flags because after allocating an new extent,
	 * it will be set again.
570
	 */
571
	map->m_flags &= ~EXT4_MAP_FLAGS;
572

573
	/*
574 575 576 577
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
578 579
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
580 581 582 583 584 585 586

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
587
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
588
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
589 590 591 592
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
593
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
594
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
595
	} else {
596
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
597

598
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
599 600 601 602 603
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
604
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
605
		}
606

607 608 609 610 611 612 613
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
614
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
615 616
			ext4_da_update_reserve_space(inode, retval, 1);
	}
617
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
618
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
619

620 621 622 623 624 625 626 627 628 629 630 631 632 633
	if (retval > 0) {
		int ret;
		unsigned long long status;

		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
		    ext4_find_delalloc_range(inode, map->m_lblk,
					     map->m_lblk + map->m_len - 1))
			status |= EXTENT_STATUS_DELAYED;
		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
					    map->m_pblk, status);
		if (ret < 0)
			retval = ret;
634 635
	}

636
	up_write((&EXT4_I(inode)->i_data_sem));
637
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
638
		int ret = check_block_validity(inode, map);
639 640 641
		if (ret != 0)
			return ret;
	}
642 643 644
	return retval;
}

645 646 647
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

648 649
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
650
{
651
	handle_t *handle = ext4_journal_current_handle();
652
	struct ext4_map_blocks map;
J
Jan Kara 已提交
653
	int ret = 0, started = 0;
654
	int dio_credits;
655

T
Tao Ma 已提交
656 657 658
	if (ext4_has_inline_data(inode))
		return -ERANGE;

659 660 661
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

662
	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
J
Jan Kara 已提交
663
		/* Direct IO write... */
664 665 666
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
667 668
		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
					    dio_credits);
J
Jan Kara 已提交
669
		if (IS_ERR(handle)) {
670
			ret = PTR_ERR(handle);
671
			return ret;
672
		}
J
Jan Kara 已提交
673
		started = 1;
674 675
	}

676
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
677
	if (ret > 0) {
678 679 680
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
681
		ret = 0;
682
	}
J
Jan Kara 已提交
683 684
	if (started)
		ext4_journal_stop(handle);
685 686 687
	return ret;
}

688 689 690 691 692 693 694
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

695 696 697
/*
 * `handle' can be NULL if create is zero
 */
698
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
699
				ext4_lblk_t block, int create, int *errp)
700
{
701 702
	struct ext4_map_blocks map;
	struct buffer_head *bh;
703 704 705 706
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

707 708 709 710
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
711

712 713 714
	/* ensure we send some value back into *errp */
	*errp = 0;

715 716
	if (create && err == 0)
		err = -ENOSPC;	/* should never happen */
717 718 719 720 721 722
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
723
	if (unlikely(!bh)) {
724
		*errp = -ENOMEM;
725
		return NULL;
726
	}
727 728 729
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
730

731 732 733 734 735 736 737 738 739 740 741 742 743
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
744
		}
745 746 747 748 749 750 751
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
752
	}
753 754 755 756 757 758
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
759 760
}

761
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
762
			       ext4_lblk_t block, int create, int *err)
763
{
764
	struct buffer_head *bh;
765

766
	bh = ext4_getblk(handle, inode, block, create, err);
767 768 769 770
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
771
	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
772 773 774 775 776 777 778 779
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

780 781 782 783 784 785 786
int ext4_walk_page_buffers(handle_t *handle,
			   struct buffer_head *head,
			   unsigned from,
			   unsigned to,
			   int *partial,
			   int (*fn)(handle_t *handle,
				     struct buffer_head *bh))
787 788 789 790 791 792 793
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

794 795
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
796
	     block_start = block_end, bh = next) {
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
814
 * close off a transaction and start a new one between the ext4_get_block()
815
 * and the commit_write().  So doing the jbd2_journal_start at the start of
816 817
 * prepare_write() is the right place.
 *
818 819 820 821
 * Also, this function can nest inside ext4_writepage().  In that case, we
 * *know* that ext4_writepage() has generated enough buffer credits to do the
 * whole page.  So we won't block on the journal in that case, which is good,
 * because the caller may be PF_MEMALLOC.
822
 *
823
 * By accident, ext4 can be reentered when a transaction is open via
824 825 826 827 828 829
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
830
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
831 832 833 834
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
835 836
int do_journal_get_write_access(handle_t *handle,
				struct buffer_head *bh)
837
{
838 839 840
	int dirty = buffer_dirty(bh);
	int ret;

841 842
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
843
	/*
C
Christoph Hellwig 已提交
844
	 * __block_write_begin() could have dirtied some buffers. Clean
845 846
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
847
	 * by __block_write_begin() isn't a real problem here as we clear
848 849 850 851 852 853 854 855 856
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
857 858
}

859 860
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
861
static int ext4_write_begin(struct file *file, struct address_space *mapping,
862 863
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
864
{
865
	struct inode *inode = mapping->host;
866
	int ret, needed_blocks;
867 868
	handle_t *handle;
	int retries = 0;
869
	struct page *page;
870
	pgoff_t index;
871
	unsigned from, to;
N
Nick Piggin 已提交
872

873
	trace_ext4_write_begin(inode, pos, len, flags);
874 875 876 877 878
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
879
	index = pos >> PAGE_CACHE_SHIFT;
880 881
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
882

883 884 885 886
	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
						    flags, pagep);
		if (ret < 0)
887 888 889
			return ret;
		if (ret == 1)
			return 0;
890 891
	}

892 893 894 895 896 897 898 899 900 901 902 903 904 905
	/*
	 * grab_cache_page_write_begin() can take a long time if the
	 * system is thrashing due to memory pressure, or if the page
	 * is being written back.  So grab it first before we start
	 * the transaction handle.  This also allows us to allocate
	 * the page (if needed) without using GFP_NOFS.
	 */
retry_grab:
	page = grab_cache_page_write_begin(mapping, index, flags);
	if (!page)
		return -ENOMEM;
	unlock_page(page);

retry_journal:
906
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
907
	if (IS_ERR(handle)) {
908 909
		page_cache_release(page);
		return PTR_ERR(handle);
910
	}
911

912 913 914 915 916
	lock_page(page);
	if (page->mapping != mapping) {
		/* The page got truncated from under us */
		unlock_page(page);
		page_cache_release(page);
917
		ext4_journal_stop(handle);
918
		goto retry_grab;
919
	}
920
	wait_on_page_writeback(page);
921

922
	if (ext4_should_dioread_nolock(inode))
923
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
924
	else
925
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
926 927

	if (!ret && ext4_should_journal_data(inode)) {
928 929 930
		ret = ext4_walk_page_buffers(handle, page_buffers(page),
					     from, to, NULL,
					     do_journal_get_write_access);
931
	}
N
Nick Piggin 已提交
932 933

	if (ret) {
934
		unlock_page(page);
935
		/*
936
		 * __block_write_begin may have instantiated a few blocks
937 938
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
939 940 941
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
942
		 */
943
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
944 945 946 947
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
948
			ext4_truncate_failed_write(inode);
949
			/*
950
			 * If truncate failed early the inode might
951 952 953 954 955 956 957
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
958

959 960 961 962 963 964 965
		if (ret == -ENOSPC &&
		    ext4_should_retry_alloc(inode->i_sb, &retries))
			goto retry_journal;
		page_cache_release(page);
		return ret;
	}
	*pagep = page;
966 967 968
	return ret;
}

N
Nick Piggin 已提交
969 970
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
971 972 973 974
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
975
	return ext4_handle_dirty_metadata(handle, NULL, bh);
976 977
}

978
static int ext4_generic_write_end(struct file *file,
979 980 981
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
982 983 984 985 986
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

987 988 989 990 991 992
	if (ext4_has_inline_data(inode))
		copied = ext4_write_inline_data_end(inode, pos, len,
						    copied, page);
	else
		copied = block_write_end(file, mapping, pos,
					 len, copied, page, fsdata);
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1029 1030 1031 1032
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1033
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1034 1035
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1036
static int ext4_ordered_write_end(struct file *file,
1037 1038 1039
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1040
{
1041
	handle_t *handle = ext4_journal_current_handle();
1042
	struct inode *inode = mapping->host;
1043 1044
	int ret = 0, ret2;

1045
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1046
	ret = ext4_jbd2_file_inode(handle, inode);
1047 1048

	if (ret == 0) {
1049
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1050
							page, fsdata);
1051
		copied = ret2;
1052
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1053 1054 1055 1056 1057
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1058 1059
		if (ret2 < 0)
			ret = ret2;
1060 1061 1062
	} else {
		unlock_page(page);
		page_cache_release(page);
1063
	}
1064

1065
	ret2 = ext4_journal_stop(handle);
1066 1067
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1068

1069
	if (pos + len > inode->i_size) {
1070
		ext4_truncate_failed_write(inode);
1071
		/*
1072
		 * If truncate failed early the inode might still be
1073 1074 1075 1076 1077 1078 1079 1080
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1081
	return ret ? ret : copied;
1082 1083
}

N
Nick Piggin 已提交
1084
static int ext4_writeback_write_end(struct file *file,
1085 1086 1087
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1088
{
1089
	handle_t *handle = ext4_journal_current_handle();
1090
	struct inode *inode = mapping->host;
1091 1092
	int ret = 0, ret2;

1093
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1094
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1095
							page, fsdata);
1096
	copied = ret2;
1097
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1098 1099 1100 1101 1102 1103
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1104 1105
	if (ret2 < 0)
		ret = ret2;
1106

1107
	ret2 = ext4_journal_stop(handle);
1108 1109
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1110

1111
	if (pos + len > inode->i_size) {
1112
		ext4_truncate_failed_write(inode);
1113
		/*
1114
		 * If truncate failed early the inode might still be
1115 1116 1117 1118 1119 1120 1121
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1122
	return ret ? ret : copied;
1123 1124
}

N
Nick Piggin 已提交
1125
static int ext4_journalled_write_end(struct file *file,
1126 1127 1128
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1129
{
1130
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1131
	struct inode *inode = mapping->host;
1132 1133
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1134
	unsigned from, to;
1135
	loff_t new_i_size;
1136

1137
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1138 1139 1140
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

1141 1142
	BUG_ON(!ext4_handle_valid(handle));

1143 1144 1145 1146 1147 1148 1149 1150 1151
	if (ext4_has_inline_data(inode))
		copied = ext4_write_inline_data_end(inode, pos, len,
						    copied, page);
	else {
		if (copied < len) {
			if (!PageUptodate(page))
				copied = 0;
			page_zero_new_buffers(page, from+copied, to);
		}
1152

1153 1154 1155 1156 1157
		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
					     to, &partial, write_end_fn);
		if (!partial)
			SetPageUptodate(page);
	}
1158 1159
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1160
		i_size_write(inode, pos+copied);
1161
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1162
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1163 1164
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1165
		ret2 = ext4_mark_inode_dirty(handle, inode);
1166 1167 1168
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1169

1170
	unlock_page(page);
1171
	page_cache_release(page);
1172
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1173 1174 1175 1176 1177 1178
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1179
	ret2 = ext4_journal_stop(handle);
1180 1181
	if (!ret)
		ret = ret2;
1182
	if (pos + len > inode->i_size) {
1183
		ext4_truncate_failed_write(inode);
1184
		/*
1185
		 * If truncate failed early the inode might still be
1186 1187 1188 1189 1190 1191
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1192 1193

	return ret ? ret : copied;
1194
}
1195

1196
/*
1197
 * Reserve a single cluster located at lblock
1198
 */
1199
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1200
{
A
Aneesh Kumar K.V 已提交
1201
	int retries = 0;
1202
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1203
	struct ext4_inode_info *ei = EXT4_I(inode);
1204
	unsigned int md_needed;
1205
	int ret;
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
	ext4_lblk_t save_last_lblock;
	int save_len;

	/*
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
	 */
	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
	if (ret)
		return ret;
1217 1218 1219 1220 1221 1222

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1223
repeat:
1224
	spin_lock(&ei->i_block_reservation_lock);
1225 1226 1227 1228 1229 1230
	/*
	 * ext4_calc_metadata_amount() has side effects, which we have
	 * to be prepared undo if we fail to claim space.
	 */
	save_len = ei->i_da_metadata_calc_len;
	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1231 1232
	md_needed = EXT4_NUM_B2C(sbi,
				 ext4_calc_metadata_amount(inode, lblock));
1233
	trace_ext4_da_reserve_space(inode, md_needed);
1234

1235 1236 1237 1238
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1239
	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1240 1241 1242
		ei->i_da_metadata_calc_len = save_len;
		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
		spin_unlock(&ei->i_block_reservation_lock);
A
Aneesh Kumar K.V 已提交
1243 1244 1245 1246
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1247
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1248 1249
		return -ENOSPC;
	}
1250
	ei->i_reserved_data_blocks++;
1251 1252
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1253

1254 1255 1256
	return 0;       /* success */
}

1257
static void ext4_da_release_space(struct inode *inode, int to_free)
1258 1259
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1260
	struct ext4_inode_info *ei = EXT4_I(inode);
1261

1262 1263 1264
	if (!to_free)
		return;		/* Nothing to release, exit */

1265
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1266

L
Li Zefan 已提交
1267
	trace_ext4_da_release_space(inode, to_free);
1268
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1269
		/*
1270 1271 1272 1273
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1274
		 */
1275
		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1276
			 "ino %lu, to_free %d with only %d reserved "
1277
			 "data blocks", inode->i_ino, to_free,
1278 1279 1280
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1281
	}
1282
	ei->i_reserved_data_blocks -= to_free;
1283

1284 1285 1286 1287 1288
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
1289 1290
		 * Note that in case of bigalloc, i_reserved_meta_blocks,
		 * i_reserved_data_blocks, etc. refer to number of clusters.
1291
		 */
1292
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1293
				   ei->i_reserved_meta_blocks);
1294
		ei->i_reserved_meta_blocks = 0;
1295
		ei->i_da_metadata_calc_len = 0;
1296
	}
1297

1298
	/* update fs dirty data blocks counter */
1299
	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1300 1301

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1302

1303
	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1304 1305 1306
}

static void ext4_da_page_release_reservation(struct page *page,
1307
					     unsigned long offset)
1308 1309 1310 1311
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;
1312 1313 1314
	struct inode *inode = page->mapping->host;
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int num_clusters;
1315
	ext4_fsblk_t lblk;
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1328

1329 1330 1331 1332 1333
	if (to_release) {
		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
		ext4_es_remove_extent(inode, lblk, to_release);
	}

1334 1335 1336 1337 1338 1339 1340
	/* If we have released all the blocks belonging to a cluster, then we
	 * need to release the reserved space for that cluster. */
	num_clusters = EXT4_NUM_B2C(sbi, to_release);
	while (num_clusters > 0) {
		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
			((num_clusters - 1) << sbi->s_cluster_bits);
		if (sbi->s_cluster_ratio == 1 ||
1341
		    !ext4_find_delalloc_cluster(inode, lblk))
1342 1343 1344 1345
			ext4_da_release_space(inode, 1);

		num_clusters--;
	}
1346
}
1347

1348 1349 1350 1351 1352 1353
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1354
 * them with writepage() call back
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
1365 1366
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
1367
{
1368 1369 1370 1371 1372
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1373
	loff_t size = i_size_read(inode);
1374 1375
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
1376
	sector_t pblock = 0, cur_logical = 0;
1377
	struct ext4_io_submit io_submit;
1378 1379

	BUG_ON(mpd->next_page <= mpd->first_page);
1380
	memset(&io_submit, 0, sizeof(io_submit));
1381 1382 1383
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1384
	 * If we look at mpd->b_blocknr we would only be looking
1385 1386
	 * at the currently mapped buffer_heads.
	 */
1387 1388 1389
	index = mpd->first_page;
	end = mpd->next_page - 1;

1390
	pagevec_init(&pvec, 0);
1391
	while (index <= end) {
1392
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1393 1394 1395
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
1396
			int skip_page = 0;
1397 1398
			struct page *page = pvec.pages[i];

1399 1400 1401
			index = page->index;
			if (index > end)
				break;
1402 1403 1404 1405 1406

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
1407 1408 1409 1410 1411 1412
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
1413 1414 1415 1416 1417
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1418 1419
			bh = page_bufs = page_buffers(page);
			block_start = 0;
1420
			do {
1421 1422 1423
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
1424 1425 1426 1427
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
1428 1429 1430 1431 1432 1433 1434
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
1435

1436 1437 1438 1439 1440
				/*
				 * skip page if block allocation undone and
				 * block is dirty
				 */
				if (ext4_bh_delay_or_unwritten(NULL, bh))
1441
					skip_page = 1;
1442 1443
				bh = bh->b_this_page;
				block_start += bh->b_size;
1444 1445
				cur_logical++;
				pblock++;
1446 1447
			} while (bh != page_bufs);

1448 1449 1450 1451
			if (skip_page) {
				unlock_page(page);
				continue;
			}
1452

1453
			clear_page_dirty_for_io(page);
1454 1455
			err = ext4_bio_write_page(&io_submit, page, len,
						  mpd->wbc);
1456
			if (!err)
1457
				mpd->pages_written++;
1458 1459 1460 1461 1462 1463 1464 1465 1466
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
1467
	ext4_io_submit(&io_submit);
1468 1469 1470
	return ret;
}

1471
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1472 1473 1474 1475 1476 1477
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1478
	ext4_lblk_t start, last;
1479

1480 1481
	index = mpd->first_page;
	end   = mpd->next_page - 1;
1482 1483 1484 1485 1486

	start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	ext4_es_remove_extent(inode, start, last - start + 1);

1487
	pagevec_init(&pvec, 0);
1488 1489 1490 1491 1492 1493
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
1494
			if (page->index > end)
1495 1496 1497 1498 1499 1500 1501
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
1502 1503
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
1504 1505 1506 1507
	}
	return;
}

1508 1509 1510
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1511 1512 1513
	struct super_block *sb = inode->i_sb;

	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1514 1515
	       EXT4_C2B(EXT4_SB(inode->i_sb),
			ext4_count_free_clusters(inode->i_sb)));
1516 1517
	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1518 1519
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1520
	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1521 1522
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1523 1524 1525 1526
	ext4_msg(sb, KERN_CRIT, "Block reservation details");
	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
		 EXT4_I(inode)->i_reserved_data_blocks);
	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1527
	       EXT4_I(inode)->i_reserved_meta_blocks);
1528 1529 1530
	return;
}

1531
/*
1532 1533
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
1534
 *
1535
 * @mpd - bh describing space
1536 1537 1538 1539
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1540
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1541
{
1542
	int err, blks, get_blocks_flags;
1543
	struct ext4_map_blocks map, *mapp = NULL;
1544 1545 1546 1547
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
1548 1549

	/*
1550 1551
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
1552
	 */
1553 1554 1555 1556 1557
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
1558 1559 1560 1561

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

1562
	/*
1563
	 * Call ext4_map_blocks() to allocate any delayed allocation
1564 1565 1566 1567 1568 1569 1570 1571
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
1572
	 * want to change *many* call functions, so ext4_map_blocks()
1573
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1574 1575 1576 1577 1578
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
1579
	 */
1580 1581
	map.m_lblk = next;
	map.m_len = max_blocks;
1582
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1583 1584
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1585
	if (mpd->b_state & (1 << BH_Delay))
1586 1587
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

1588
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1589
	if (blks < 0) {
1590 1591
		struct super_block *sb = mpd->inode->i_sb;

1592
		err = blks;
1593
		/*
1594
		 * If get block returns EAGAIN or ENOSPC and there
1595 1596
		 * appears to be free blocks we will just let
		 * mpage_da_submit_io() unlock all of the pages.
1597 1598
		 */
		if (err == -EAGAIN)
1599
			goto submit_io;
1600

1601
		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1602
			mpd->retval = err;
1603
			goto submit_io;
1604 1605
		}

1606
		/*
1607 1608 1609 1610 1611
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
1612
		 */
1613 1614 1615 1616 1617 1618 1619 1620
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
1621
				"This should not happen!! Data will be lost");
1622 1623
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
1624
		}
1625
		/* invalidate all the pages */
1626
		ext4_da_block_invalidatepages(mpd);
1627 1628 1629

		/* Mark this page range as having been completed */
		mpd->io_done = 1;
1630
		return;
1631
	}
1632 1633
	BUG_ON(blks == 0);

1634
	mapp = &map;
1635 1636 1637
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
1638

1639 1640
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
1641 1642 1643
	}

	/*
1644
	 * Update on-disk size along with block allocation.
1645 1646 1647 1648 1649 1650
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
1651 1652 1653 1654 1655
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
1656 1657
	}

1658
submit_io:
1659
	mpage_da_submit_io(mpd, mapp);
1660
	mpd->io_done = 1;
1661 1662
}

1663 1664
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
1665 1666 1667 1668 1669 1670

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
1671
 * @b_state - b_state of the buffer head added
1672 1673 1674
 *
 * the function is used to collect contig. blocks in same state
 */
1675
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1676
				   unsigned long b_state)
1677 1678
{
	sector_t next;
1679 1680
	int blkbits = mpd->inode->i_blkbits;
	int nrblocks = mpd->b_size >> blkbits;
1681

1682 1683 1684 1685
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
1686
	 * ext4_map_blocks() multiple times in a loop
1687
	 */
1688
	if (nrblocks >= (8*1024*1024 >> blkbits))
1689 1690
		goto flush_it;

1691 1692
	/* check if the reserved journal credits might overflow */
	if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		}
	}
1703 1704 1705
	/*
	 * First block in the extent
	 */
1706 1707
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
1708
		mpd->b_size = 1 << blkbits;
1709
		mpd->b_state = b_state & BH_FLAGS;
1710 1711 1712
		return;
	}

1713
	next = mpd->b_blocknr + nrblocks;
1714 1715 1716
	/*
	 * Can we merge the block to our big extent?
	 */
1717
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1718
		mpd->b_size += 1 << blkbits;
1719 1720 1721
		return;
	}

1722
flush_it:
1723 1724 1725 1726
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
1727
	mpage_da_map_and_submit(mpd);
1728
	return;
1729 1730
}

1731
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1732
{
1733
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1734 1735
}

1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
/*
 * This function is grabs code from the very beginning of
 * ext4_map_blocks, but assumes that the caller is from delayed write
 * time. This function looks up the requested blocks and sets the
 * buffer delay bit under the protection of i_data_sem.
 */
static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
			      struct ext4_map_blocks *map,
			      struct buffer_head *bh)
{
	int retval;
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;

	map->m_flags = 0;
	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, map->m_len,
		  (unsigned long) map->m_lblk);
	/*
	 * Try to see if we can get the block without requesting a new
	 * file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
	if (ext4_has_inline_data(inode)) {
		/*
		 * We will soon create blocks for this page, and let
		 * us pretend as if the blocks aren't allocated yet.
		 * In case of clusters, we have to handle the work
		 * of mapping from cluster so that the reserved space
		 * is calculated properly.
		 */
		if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
		    ext4_find_delalloc_cluster(inode, map->m_lblk))
			map->m_flags |= EXT4_MAP_FROM_CLUSTER;
		retval = 0;
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1774 1775 1776 1777 1778
		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
	else
		retval = ext4_ind_map_blocks(NULL, inode, map, 0);

	if (retval == 0) {
1779
		int ret;
1780 1781 1782 1783 1784 1785 1786
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
		/* If the block was allocated from previously allocated cluster,
		 * then we dont need to reserve it again. */
		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1787 1788
			ret = ext4_da_reserve_space(inode, iblock);
			if (ret) {
1789
				/* not enough space to reserve */
1790
				retval = ret;
1791
				goto out_unlock;
1792
			}
1793 1794
		}

1795 1796 1797 1798
		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
					    ~0, EXTENT_STATUS_DELAYED);
		if (ret) {
			retval = ret;
1799
			goto out_unlock;
1800
		}
1801

1802 1803 1804 1805 1806 1807 1808 1809
		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
		 * and it should not appear on the bh->b_state.
		 */
		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;

		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
	} else if (retval > 0) {
		int ret;
		unsigned long long status;

		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
					    map->m_pblk, status);
		if (ret != 0)
			retval = ret;
1820 1821 1822 1823 1824 1825 1826 1827
	}

out_unlock:
	up_read((&EXT4_I(inode)->i_data_sem));

	return retval;
}

1828
/*
1829 1830 1831
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
1832 1833 1834 1835 1836 1837 1838
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
1839
 */
1840 1841
int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int create)
1842
{
1843
	struct ext4_map_blocks map;
1844 1845 1846
	int ret = 0;

	BUG_ON(create == 0);
1847 1848 1849 1850
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
1851 1852 1853 1854 1855 1856

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
1857 1858
	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
	if (ret <= 0)
1859
		return ret;
1860

1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
1872
		set_buffer_mapped(bh);
1873 1874
	}
	return 0;
1875
}
1876

1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
1894
	struct buffer_head *page_bufs = NULL;
1895
	handle_t *handle = NULL;
1896 1897 1898
	int ret = 0, err = 0;
	int inline_data = ext4_has_inline_data(inode);
	struct buffer_head *inode_bh = NULL;
1899

1900
	ClearPageChecked(page);
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916

	if (inline_data) {
		BUG_ON(page->index != 0);
		BUG_ON(len > ext4_get_max_inline_size(inode));
		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
		if (inode_bh == NULL)
			goto out;
	} else {
		page_bufs = page_buffers(page);
		if (!page_bufs) {
			BUG();
			goto out;
		}
		ext4_walk_page_buffers(handle, page_bufs, 0, len,
				       NULL, bget_one);
	}
1917 1918 1919 1920
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

1921 1922
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
				    ext4_writepage_trans_blocks(inode));
1923 1924 1925 1926 1927
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

1928 1929
	BUG_ON(!ext4_handle_valid(handle));

1930 1931
	if (inline_data) {
		ret = ext4_journal_get_write_access(handle, inode_bh);
1932

1933 1934 1935 1936 1937 1938 1939 1940 1941
		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);

	} else {
		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
					     do_journal_get_write_access);

		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
					     write_end_fn);
	}
1942 1943
	if (ret == 0)
		ret = err;
1944
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1945 1946 1947 1948
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

1949 1950 1951
	if (!ext4_has_inline_data(inode))
		ext4_walk_page_buffers(handle, page_bufs, 0, len,
				       NULL, bput_one);
1952
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1953
out:
1954
	brelse(inode_bh);
1955 1956 1957
	return ret;
}

1958
/*
1959 1960 1961 1962
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
L
Lucas De Marchi 已提交
1963
 * we are writing back data modified via mmap(), no one guarantees in which
1964 1965 1966 1967
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
1968 1969 1970
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
1971
 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1972
 *   - grab_page_cache when doing write_begin (have journal handle)
1973 1974 1975 1976 1977 1978 1979 1980 1981
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
1982
 * but other buffer_heads would be unmapped but dirty (dirty done via the
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1998
 */
1999
static int ext4_writepage(struct page *page,
2000
			  struct writeback_control *wbc)
2001
{
2002
	int ret = 0;
2003
	loff_t size;
2004
	unsigned int len;
2005
	struct buffer_head *page_bufs = NULL;
2006
	struct inode *inode = page->mapping->host;
2007
	struct ext4_io_submit io_submit;
2008

L
Lukas Czerner 已提交
2009
	trace_ext4_writepage(page);
2010 2011 2012 2013 2014
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2015

T
Theodore Ts'o 已提交
2016
	page_bufs = page_buffers(page);
2017 2018 2019 2020 2021 2022 2023
	/*
	 * We cannot do block allocation or other extent handling in this
	 * function. If there are buffers needing that, we have to redirty
	 * the page. But we may reach here when we do a journal commit via
	 * journal_submit_inode_data_buffers() and in that case we must write
	 * allocated buffers to achieve data=ordered mode guarantees.
	 */
2024 2025
	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
				   ext4_bh_delay_or_unwritten)) {
2026
		redirty_page_for_writepage(wbc, page);
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
		if (current->flags & PF_MEMALLOC) {
			/*
			 * For memory cleaning there's no point in writing only
			 * some buffers. So just bail out. Warn if we came here
			 * from direct reclaim.
			 */
			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
							== PF_MEMALLOC);
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
2038
	}
2039

2040
	if (PageChecked(page) && ext4_should_journal_data(inode))
2041 2042 2043 2044
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
2045
		return __ext4_journalled_writepage(page, len);
2046

2047 2048 2049
	memset(&io_submit, 0, sizeof(io_submit));
	ret = ext4_bio_write_page(&io_submit, page, len, wbc);
	ext4_io_submit(&io_submit);
2050 2051 2052
	return ret;
}

2053
/*
2054
 * This is called via ext4_da_writepages() to
L
Lucas De Marchi 已提交
2055
 * calculate the total number of credits to reserve to fit
2056 2057 2058
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2059
 */
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2071
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2072 2073 2074 2075 2076
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2077

2078 2079
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
2080
 * address space and accumulate pages that need writing, and call
2081 2082
 * mpage_da_map_and_submit to map a single contiguous memory region
 * and then write them.
2083
 */
2084 2085
static int write_cache_pages_da(handle_t *handle,
				struct address_space *mapping,
2086
				struct writeback_control *wbc,
2087 2088
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
2089
{
2090
	struct buffer_head	*bh, *head;
2091
	struct inode		*inode = mapping->host;
2092 2093 2094 2095 2096 2097
	struct pagevec		pvec;
	unsigned int		nr_pages;
	sector_t		logical;
	pgoff_t			index, end;
	long			nr_to_write = wbc->nr_to_write;
	int			i, tag, ret = 0;
2098

2099 2100 2101
	memset(mpd, 0, sizeof(struct mpage_da_data));
	mpd->wbc = wbc;
	mpd->inode = inode;
2102 2103 2104 2105
	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2106
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2107 2108 2109 2110
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2111
	*done_index = index;
2112
	while (index <= end) {
2113
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2114 2115
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
2116
			return 0;
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
2128 2129
			if (page->index > end)
				goto out;
2130

2131 2132
			*done_index = page->index + 1;

2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
			/*
			 * If we can't merge this page, and we have
			 * accumulated an contiguous region, write it
			 */
			if ((mpd->next_page != page->index) &&
			    (mpd->next_page != mpd->first_page)) {
				mpage_da_map_and_submit(mpd);
				goto ret_extent_tail;
			}

2143 2144 2145
			lock_page(page);

			/*
2146 2147 2148 2149 2150 2151
			 * If the page is no longer dirty, or its
			 * mapping no longer corresponds to inode we
			 * are writing (which means it has been
			 * truncated or invalidated), or the page is
			 * already under writeback and we are not
			 * doing a data integrity writeback, skip the page
2152
			 */
2153 2154 2155 2156
			if (!PageDirty(page) ||
			    (PageWriteback(page) &&
			     (wbc->sync_mode == WB_SYNC_NONE)) ||
			    unlikely(page->mapping != mapping)) {
2157 2158 2159 2160
				unlock_page(page);
				continue;
			}

2161
			wait_on_page_writeback(page);
2162 2163
			BUG_ON(PageWriteback(page));

2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
			/*
			 * If we have inline data and arrive here, it means that
			 * we will soon create the block for the 1st page, so
			 * we'd better clear the inline data here.
			 */
			if (ext4_has_inline_data(inode)) {
				BUG_ON(ext4_test_inode_state(inode,
						EXT4_STATE_MAY_INLINE_DATA));
				ext4_destroy_inline_data(handle, inode);
			}

2175
			if (mpd->next_page != page->index)
2176 2177 2178 2179 2180
				mpd->first_page = page->index;
			mpd->next_page = page->index + 1;
			logical = (sector_t) page->index <<
				(PAGE_CACHE_SHIFT - inode->i_blkbits);

2181 2182 2183 2184 2185
			/* Add all dirty buffers to mpd */
			head = page_buffers(page);
			bh = head;
			do {
				BUG_ON(buffer_locked(bh));
2186
				/*
2187 2188 2189
				 * We need to try to allocate unmapped blocks
				 * in the same page.  Otherwise we won't make
				 * progress with the page in ext4_writepage
2190
				 */
2191 2192 2193 2194 2195 2196 2197
				if (ext4_bh_delay_or_unwritten(NULL, bh)) {
					mpage_add_bh_to_extent(mpd, logical,
							       bh->b_state);
					if (mpd->io_done)
						goto ret_extent_tail;
				} else if (buffer_dirty(bh) &&
					   buffer_mapped(bh)) {
2198
					/*
2199 2200 2201 2202 2203 2204 2205
					 * mapped dirty buffer. We need to
					 * update the b_state because we look
					 * at b_state in mpage_da_map_blocks.
					 * We don't update b_size because if we
					 * find an unmapped buffer_head later
					 * we need to use the b_state flag of
					 * that buffer_head.
2206
					 */
2207 2208 2209 2210 2211 2212
					if (mpd->b_size == 0)
						mpd->b_state =
							bh->b_state & BH_FLAGS;
				}
				logical++;
			} while ((bh = bh->b_this_page) != head);
2213 2214 2215 2216

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
2217
				    wbc->sync_mode == WB_SYNC_NONE)
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
2228
					goto out;
2229 2230 2231 2232 2233
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2234 2235 2236
	return 0;
ret_extent_tail:
	ret = MPAGE_DA_EXTENT_TAIL;
2237 2238 2239
out:
	pagevec_release(&pvec);
	cond_resched();
2240 2241 2242 2243
	return ret;
}


2244
static int ext4_da_writepages(struct address_space *mapping,
2245
			      struct writeback_control *wbc)
2246
{
2247 2248
	pgoff_t	index;
	int range_whole = 0;
2249
	handle_t *handle = NULL;
2250
	struct mpage_da_data mpd;
2251
	struct inode *inode = mapping->host;
2252
	int pages_written = 0;
2253
	unsigned int max_pages;
2254
	int range_cyclic, cycled = 1, io_done = 0;
2255 2256
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2257
	loff_t range_start = wbc->range_start;
2258
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2259
	pgoff_t done_index = 0;
2260
	pgoff_t end;
S
Shaohua Li 已提交
2261
	struct blk_plug plug;
2262

2263
	trace_ext4_da_writepages(inode, wbc);
2264

2265 2266 2267 2268 2269
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2270
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2271
		return 0;
2272 2273 2274 2275 2276

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2277
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2278 2279 2280 2281 2282
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2283
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2284 2285
		return -EROFS;

2286 2287
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2288

2289 2290
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2291
		index = mapping->writeback_index;
2292 2293 2294 2295 2296
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2297 2298
		end = -1;
	} else {
2299
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2300 2301
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2302

2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2320 2321 2322 2323 2324 2325
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2336
retry:
2337
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2338 2339
		tag_pages_for_writeback(mapping, index, end);

S
Shaohua Li 已提交
2340
	blk_start_plug(&plug);
2341
	while (!ret && wbc->nr_to_write > 0) {
2342 2343 2344 2345 2346 2347 2348 2349

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2350
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2351

2352
		/* start a new transaction*/
2353 2354
		handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
					    needed_blocks);
2355 2356
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2357
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2358
			       "%ld pages, ino %lu; err %d", __func__,
2359
				wbc->nr_to_write, inode->i_ino, ret);
2360
			blk_finish_plug(&plug);
2361 2362
			goto out_writepages;
		}
2363 2364

		/*
2365
		 * Now call write_cache_pages_da() to find the next
2366
		 * contiguous region of logical blocks that need
2367
		 * blocks to be allocated by ext4 and submit them.
2368
		 */
2369 2370
		ret = write_cache_pages_da(handle, mapping,
					   wbc, &mpd, &done_index);
2371
		/*
2372
		 * If we have a contiguous extent of pages and we
2373 2374 2375 2376
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2377
			mpage_da_map_and_submit(&mpd);
2378 2379
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2380
		trace_ext4_da_write_pages(inode, &mpd);
2381
		wbc->nr_to_write -= mpd.pages_written;
2382

2383
		ext4_journal_stop(handle);
2384

2385
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2386 2387 2388 2389
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2390
			jbd2_journal_force_commit_nested(sbi->s_journal);
2391 2392
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2393
			/*
2394 2395 2396
			 * Got one extent now try with rest of the pages.
			 * If mpd.retval is set -EIO, journal is aborted.
			 * So we don't need to write any more.
2397
			 */
2398
			pages_written += mpd.pages_written;
2399
			ret = mpd.retval;
2400
			io_done = 1;
2401
		} else if (wbc->nr_to_write)
2402 2403 2404 2405 2406 2407
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2408
	}
S
Shaohua Li 已提交
2409
	blk_finish_plug(&plug);
2410 2411 2412 2413 2414 2415 2416
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2417 2418

	/* Update index */
2419
	wbc->range_cyclic = range_cyclic;
2420 2421 2422 2423 2424
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
2425
		mapping->writeback_index = done_index;
2426

2427
out_writepages:
2428
	wbc->nr_to_write -= nr_to_writebump;
2429
	wbc->range_start = range_start;
2430
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2431
	return ret;
2432 2433
}

2434 2435 2436 2437 2438 2439 2440 2441
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2442
	 * counters can get slightly wrong with percpu_counter_batch getting
2443 2444 2445 2446
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
2447 2448 2449
	free_blocks  = EXT4_C2B(sbi,
		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
	/*
	 * Start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
	    !writeback_in_progress(sb->s_bdi) &&
	    down_read_trylock(&sb->s_umount)) {
		writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
		up_read(&sb->s_umount);
	}

2460
	if (2 * free_blocks < 3 * dirty_blocks ||
2461
		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2462
		/*
2463 2464
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
2465 2466 2467 2468 2469 2470
		 */
		return 1;
	}
	return 0;
}

2471
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2472 2473
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
2474
{
2475
	int ret, retries = 0;
2476 2477 2478 2479 2480 2481
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
2482 2483 2484 2485 2486 2487 2488

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2489
	trace_ext4_da_write_begin(inode, pos, len, flags);
2490 2491 2492 2493 2494 2495

	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
		ret = ext4_da_write_inline_data_begin(mapping, inode,
						      pos, len, flags,
						      pagep, fsdata);
		if (ret < 0)
2496 2497 2498
			return ret;
		if (ret == 1)
			return 0;
2499 2500
	}

2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
	/*
	 * grab_cache_page_write_begin() can take a long time if the
	 * system is thrashing due to memory pressure, or if the page
	 * is being written back.  So grab it first before we start
	 * the transaction handle.  This also allows us to allocate
	 * the page (if needed) without using GFP_NOFS.
	 */
retry_grab:
	page = grab_cache_page_write_begin(mapping, index, flags);
	if (!page)
		return -ENOMEM;
	unlock_page(page);

2514 2515 2516 2517 2518 2519
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
2520
retry_journal:
2521
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2522
	if (IS_ERR(handle)) {
2523 2524
		page_cache_release(page);
		return PTR_ERR(handle);
2525 2526
	}

2527 2528 2529 2530 2531
	lock_page(page);
	if (page->mapping != mapping) {
		/* The page got truncated from under us */
		unlock_page(page);
		page_cache_release(page);
2532
		ext4_journal_stop(handle);
2533
		goto retry_grab;
2534
	}
2535 2536
	/* In case writeback began while the page was unlocked */
	wait_on_page_writeback(page);
2537

2538
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2539 2540 2541
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
2542 2543 2544 2545 2546 2547
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
2548
			ext4_truncate_failed_write(inode);
2549 2550 2551 2552 2553 2554 2555

		if (ret == -ENOSPC &&
		    ext4_should_retry_alloc(inode->i_sb, &retries))
			goto retry_journal;

		page_cache_release(page);
		return ret;
2556 2557
	}

2558
	*pagep = page;
2559 2560 2561
	return ret;
}

2562 2563 2564 2565 2566
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
2567
					    unsigned long offset)
2568 2569 2570 2571 2572 2573 2574 2575 2576
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2577
	for (i = 0; i < idx; i++)
2578 2579
		bh = bh->b_this_page;

2580
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2581 2582 2583 2584
		return 0;
	return 1;
}

2585
static int ext4_da_write_end(struct file *file,
2586 2587 2588
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
2589 2590 2591 2592 2593
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2594
	unsigned long start, end;
2595 2596 2597
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2598 2599
		switch (ext4_inode_journal_mode(inode)) {
		case EXT4_INODE_ORDERED_DATA_MODE:
2600 2601
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2602
		case EXT4_INODE_WRITEBACK_DATA_MODE:
2603 2604
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2605
		default:
2606 2607 2608
			BUG();
		}
	}
2609

2610
	trace_ext4_da_write_end(inode, pos, len, copied);
2611
	start = pos & (PAGE_CACHE_SIZE - 1);
2612
	end = start + copied - 1;
2613 2614 2615 2616 2617 2618 2619

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */
	new_i_size = pos + copied;
2620
	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2621 2622
		if (ext4_has_inline_data(inode) ||
		    ext4_da_should_update_i_disksize(page, end)) {
2623
			down_write(&EXT4_I(inode)->i_data_sem);
2624
			if (new_i_size > EXT4_I(inode)->i_disksize)
2625 2626
				EXT4_I(inode)->i_disksize = new_i_size;
			up_write(&EXT4_I(inode)->i_data_sem);
2627 2628 2629 2630 2631
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2632
		}
2633
	}
2634 2635 2636 2637 2638 2639 2640 2641

	if (write_mode != CONVERT_INLINE_DATA &&
	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
	    ext4_has_inline_data(inode))
		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
						     page);
	else
		ret2 = generic_write_end(file, mapping, pos, len, copied,
2642
							page, fsdata);
2643

2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2663
	ext4_da_page_release_reservation(page, offset);
2664 2665 2666 2667 2668 2669 2670

out:
	ext4_invalidatepage(page, offset);

	return;
}

2671 2672 2673 2674 2675
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
2676 2677
	trace_ext4_alloc_da_blocks(inode);

2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
2688
	 *
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
2701
	 * the pages by calling redirty_page_for_writepage() but that
2702 2703
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
L
Lucas De Marchi 已提交
2704
	 * simplifying them because we wouldn't actually intend to
2705 2706 2707
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
2708
	 *
2709 2710 2711 2712 2713 2714
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
2715

2716 2717 2718 2719 2720
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2721
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2722 2723 2724 2725 2726 2727 2728 2729
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2730
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2731 2732 2733 2734 2735
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

T
Tao Ma 已提交
2736 2737 2738 2739 2740 2741
	/*
	 * We can get here for an inline file via the FIBMAP ioctl
	 */
	if (ext4_has_inline_data(inode))
		return 0;

2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2752 2753
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2765
		 * NB. EXT4_STATE_JDATA is not set on files other than
2766 2767 2768 2769 2770 2771
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2772
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2773
		journal = EXT4_JOURNAL(inode);
2774 2775 2776
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2777 2778 2779 2780 2781

		if (err)
			return 0;
	}

2782
	return generic_block_bmap(mapping, block, ext4_get_block);
2783 2784
}

2785
static int ext4_readpage(struct file *file, struct page *page)
2786
{
T
Tao Ma 已提交
2787 2788 2789
	int ret = -EAGAIN;
	struct inode *inode = page->mapping->host;

2790
	trace_ext4_readpage(page);
T
Tao Ma 已提交
2791 2792 2793 2794 2795 2796 2797 2798

	if (ext4_has_inline_data(inode))
		ret = ext4_readpage_inline(inode, page);

	if (ret == -EAGAIN)
		return mpage_readpage(page, ext4_get_block);

	return ret;
2799 2800 2801
}

static int
2802
ext4_readpages(struct file *file, struct address_space *mapping,
2803 2804
		struct list_head *pages, unsigned nr_pages)
{
T
Tao Ma 已提交
2805 2806 2807 2808 2809 2810
	struct inode *inode = mapping->host;

	/* If the file has inline data, no need to do readpages. */
	if (ext4_has_inline_data(inode))
		return 0;

2811
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2812 2813
}

2814
static void ext4_invalidatepage(struct page *page, unsigned long offset)
2815
{
2816 2817
	trace_ext4_invalidatepage(page, offset);

2818 2819 2820 2821 2822 2823
	/* No journalling happens on data buffers when this function is used */
	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));

	block_invalidatepage(page, offset);
}

2824 2825
static int __ext4_journalled_invalidatepage(struct page *page,
					    unsigned long offset)
2826 2827 2828 2829 2830
{
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);

	trace_ext4_journalled_invalidatepage(page, offset);

2831 2832 2833 2834 2835 2836
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

2837 2838 2839 2840 2841 2842 2843 2844
	return jbd2_journal_invalidatepage(journal, page, offset);
}

/* Wrapper for aops... */
static void ext4_journalled_invalidatepage(struct page *page,
					   unsigned long offset)
{
	WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
2845 2846
}

2847
static int ext4_releasepage(struct page *page, gfp_t wait)
2848
{
2849
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2850

2851 2852
	trace_ext4_releasepage(page);

2853 2854 2855
	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
2856 2857 2858 2859
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
2860 2861
}

2862 2863 2864 2865 2866
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
2867
int ext4_get_block_write(struct inode *inode, sector_t iblock,
2868 2869
		   struct buffer_head *bh_result, int create)
{
2870
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2871
		   inode->i_ino, create);
2872 2873
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2874 2875
}

2876
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2877
		   struct buffer_head *bh_result, int create)
2878
{
2879 2880 2881 2882
	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
		   inode->i_ino, create);
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_NO_LOCK);
2883 2884
}

2885
static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2886 2887
			    ssize_t size, void *private, int ret,
			    bool is_async)
2888
{
2889
	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2890 2891
        ext4_io_end_t *io_end = iocb->private;

2892 2893
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
2894
		goto out;
2895

2896
	ext_debug("ext4_end_io_dio(): io_end 0x%p "
2897
		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2898 2899 2900
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

2901 2902
	iocb->private = NULL;

2903
	/* if not aio dio with unwritten extents, just free io and return */
2904
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2905
		ext4_free_io_end(io_end);
2906
out:
2907
		inode_dio_done(inode);
2908 2909 2910
		if (is_async)
			aio_complete(iocb, ret, 0);
		return;
2911 2912
	}

2913 2914
	io_end->offset = offset;
	io_end->size = size;
2915 2916 2917 2918
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
2919

2920
	ext4_add_complete_io(io_end);
2921
}
2922

2923 2924 2925 2926 2927
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
2928
 * For holes, we fallocate those blocks, mark them as uninitialized
2929
 * If those blocks were preallocated, we mark sure they are split, but
2930
 * still keep the range to write as uninitialized.
2931
 *
2932
 * The unwritten extents will be converted to written when DIO is completed.
2933
 * For async direct IO, since the IO may still pending when return, we
L
Lucas De Marchi 已提交
2934
 * set up an end_io call back function, which will do the conversion
2935
 * when async direct IO completed.
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);
2950 2951 2952
	int overwrite = 0;
	get_block_t *get_block_func = NULL;
	int dio_flags = 0;
2953
	loff_t final_size = offset + count;
2954

2955 2956 2957
	/* Use the old path for reads and writes beyond i_size. */
	if (rw != WRITE || final_size > inode->i_size)
		return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2958

2959
	BUG_ON(iocb->private == NULL);
2960

2961 2962
	/* If we do a overwrite dio, i_mutex locking can be released */
	overwrite = *((int *)iocb->private);
2963

2964 2965 2966 2967 2968
	if (overwrite) {
		atomic_inc(&inode->i_dio_count);
		down_read(&EXT4_I(inode)->i_data_sem);
		mutex_unlock(&inode->i_mutex);
	}
2969

2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
	/*
	 * We could direct write to holes and fallocate.
	 *
	 * Allocated blocks to fill the hole are marked as
	 * uninitialized to prevent parallel buffered read to expose
	 * the stale data before DIO complete the data IO.
	 *
	 * As to previously fallocated extents, ext4 get_block will
	 * just simply mark the buffer mapped but still keep the
	 * extents uninitialized.
	 *
	 * For non AIO case, we will convert those unwritten extents
	 * to written after return back from blockdev_direct_IO.
	 *
	 * For async DIO, the conversion needs to be deferred when the
	 * IO is completed. The ext4 end_io callback function will be
	 * called to take care of the conversion work.  Here for async
	 * case, we allocate an io_end structure to hook to the iocb.
	 */
	iocb->private = NULL;
	ext4_inode_aio_set(inode, NULL);
	if (!is_sync_kiocb(iocb)) {
		ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
		if (!io_end) {
			ret = -ENOMEM;
			goto retake_lock;
2996
		}
2997 2998
		io_end->flag |= EXT4_IO_END_DIRECT;
		iocb->private = io_end;
2999
		/*
3000 3001 3002 3003
		 * we save the io structure for current async direct
		 * IO, so that later ext4_map_blocks() could flag the
		 * io structure whether there is a unwritten extents
		 * needs to be converted when IO is completed.
3004
		 */
3005 3006
		ext4_inode_aio_set(inode, io_end);
	}
3007

3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
	if (overwrite) {
		get_block_func = ext4_get_block_write_nolock;
	} else {
		get_block_func = ext4_get_block_write;
		dio_flags = DIO_LOCKING;
	}
	ret = __blockdev_direct_IO(rw, iocb, inode,
				   inode->i_sb->s_bdev, iov,
				   offset, nr_segs,
				   get_block_func,
				   ext4_end_io_dio,
				   NULL,
				   dio_flags);

	if (iocb->private)
		ext4_inode_aio_set(inode, NULL);
	/*
	 * The io_end structure takes a reference to the inode, that
	 * structure needs to be destroyed and the reference to the
	 * inode need to be dropped, when IO is complete, even with 0
	 * byte write, or failed.
	 *
	 * In the successful AIO DIO case, the io_end structure will
	 * be destroyed and the reference to the inode will be dropped
	 * after the end_io call back function is called.
	 *
	 * In the case there is 0 byte write, or error case, since VFS
	 * direct IO won't invoke the end_io call back function, we
	 * need to free the end_io structure here.
	 */
	if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
		ext4_free_io_end(iocb->private);
		iocb->private = NULL;
	} else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
		int err;
		/*
		 * for non AIO case, since the IO is already
		 * completed, we could do the conversion right here
		 */
		err = ext4_convert_unwritten_extents(inode,
						     offset, ret);
		if (err < 0)
			ret = err;
		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
	}
3054

3055 3056 3057 3058 3059 3060
retake_lock:
	/* take i_mutex locking again if we do a ovewrite dio */
	if (overwrite) {
		inode_dio_done(inode);
		up_read(&EXT4_I(inode)->i_data_sem);
		mutex_lock(&inode->i_mutex);
3061
	}
3062

3063
	return ret;
3064 3065 3066 3067 3068 3069 3070 3071
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3072
	ssize_t ret;
3073

3074 3075 3076 3077 3078 3079
	/*
	 * If we are doing data journalling we don't support O_DIRECT
	 */
	if (ext4_should_journal_data(inode))
		return 0;

T
Tao Ma 已提交
3080 3081 3082 3083
	/* Let buffer I/O handle the inline data case. */
	if (ext4_has_inline_data(inode))
		return 0;

3084
	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3085
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3086 3087 3088 3089 3090 3091
		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
	else
		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
	trace_ext4_direct_IO_exit(inode, offset,
				iov_length(iov, nr_segs), rw, ret);
	return ret;
3092 3093
}

3094
/*
3095
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3107
static int ext4_journalled_set_page_dirty(struct page *page)
3108 3109 3110 3111 3112
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3113
static const struct address_space_operations ext4_ordered_aops = {
3114 3115
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3116
	.writepage		= ext4_writepage,
3117 3118 3119 3120 3121 3122 3123 3124
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3125
	.error_remove_page	= generic_error_remove_page,
3126 3127
};

3128
static const struct address_space_operations ext4_writeback_aops = {
3129 3130
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3131
	.writepage		= ext4_writepage,
3132 3133 3134 3135 3136 3137 3138 3139
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3140
	.error_remove_page	= generic_error_remove_page,
3141 3142
};

3143
static const struct address_space_operations ext4_journalled_aops = {
3144 3145
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3146
	.writepage		= ext4_writepage,
3147 3148 3149 3150
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
3151
	.invalidatepage		= ext4_journalled_invalidatepage,
3152
	.releasepage		= ext4_releasepage,
3153
	.direct_IO		= ext4_direct_IO,
3154
	.is_partially_uptodate  = block_is_partially_uptodate,
3155
	.error_remove_page	= generic_error_remove_page,
3156 3157
};

3158
static const struct address_space_operations ext4_da_aops = {
3159 3160
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3161
	.writepage		= ext4_writepage,
3162 3163 3164 3165 3166 3167 3168 3169 3170
	.writepages		= ext4_da_writepages,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3171
	.error_remove_page	= generic_error_remove_page,
3172 3173
};

3174
void ext4_set_aops(struct inode *inode)
3175
{
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
	switch (ext4_inode_journal_mode(inode)) {
	case EXT4_INODE_ORDERED_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_ordered_aops;
		break;
	case EXT4_INODE_WRITEBACK_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_writeback_aops;
		break;
	case EXT4_INODE_JOURNAL_DATA_MODE:
3190
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3191 3192 3193 3194
		break;
	default:
		BUG();
	}
3195 3196
}

3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216

/*
 * ext4_discard_partial_page_buffers()
 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
 * This function finds and locks the page containing the offset
 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
 * Calling functions that already have the page locked should call
 * ext4_discard_partial_page_buffers_no_lock directly.
 */
int ext4_discard_partial_page_buffers(handle_t *handle,
		struct address_space *mapping, loff_t from,
		loff_t length, int flags)
{
	struct inode *inode = mapping->host;
	struct page *page;
	int err = 0;

	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
	if (!page)
3217
		return -ENOMEM;
3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245

	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
		from, length, flags);

	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * ext4_discard_partial_page_buffers_no_lock()
 * Zeros a page range of length 'length' starting from offset 'from'.
 * Buffer heads that correspond to the block aligned regions of the
 * zeroed range will be unmapped.  Unblock aligned regions
 * will have the corresponding buffer head mapped if needed so that
 * that region of the page can be updated with the partial zero out.
 *
 * This function assumes that the page has already been  locked.  The
 * The range to be discarded must be contained with in the given page.
 * If the specified range exceeds the end of the page it will be shortened
 * to the end of the page that corresponds to 'from'.  This function is
 * appropriate for updating a page and it buffer heads to be unmapped and
 * zeroed for blocks that have been either released, or are going to be
 * released.
 *
 * handle: The journal handle
 * inode:  The files inode
 * page:   A locked page that contains the offset "from"
3246
 * from:   The starting byte offset (from the beginning of the file)
3247 3248 3249 3250 3251 3252 3253
 *         to begin discarding
 * len:    The length of bytes to discard
 * flags:  Optional flags that may be used:
 *
 *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
 *         Only zero the regions of the page whose buffer heads
 *         have already been unmapped.  This flag is appropriate
3254
 *         for updating the contents of a page whose blocks may
3255 3256 3257
 *         have already been released, and we only want to zero
 *         out the regions that correspond to those released blocks.
 *
3258
 * Returns zero on success or negative on failure.
3259
 */
E
Eric Sandeen 已提交
3260
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags)
{
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
	unsigned int blocksize, max, pos;
	ext4_lblk_t iblock;
	struct buffer_head *bh;
	int err = 0;

	blocksize = inode->i_sb->s_blocksize;
	max = PAGE_CACHE_SIZE - offset;

	if (index != page->index)
		return -EINVAL;

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the page
	 */
	if (length > max || length < 0)
		length = max;

	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

3286 3287
	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	pos = offset;
	while (pos < offset + length) {
3300 3301
		unsigned int end_of_block, range_to_discard;

3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
		err = 0;

		/* The length of space left to zero and unmap */
		range_to_discard = offset + length - pos;

		/* The length of space until the end of the block */
		end_of_block = blocksize - (pos & (blocksize-1));

		/*
		 * Do not unmap or zero past end of block
		 * for this buffer head
		 */
		if (range_to_discard > end_of_block)
			range_to_discard = end_of_block;


		/*
		 * Skip this buffer head if we are only zeroing unampped
		 * regions of the page
		 */
		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
			buffer_mapped(bh))
				goto next;

		/* If the range is block aligned, unmap */
		if (range_to_discard == blocksize) {
			clear_buffer_dirty(bh);
			bh->b_bdev = NULL;
			clear_buffer_mapped(bh);
			clear_buffer_req(bh);
			clear_buffer_new(bh);
			clear_buffer_delay(bh);
			clear_buffer_unwritten(bh);
			clear_buffer_uptodate(bh);
			zero_user(page, pos, range_to_discard);
			BUFFER_TRACE(bh, "Buffer discarded");
			goto next;
		}

		/*
		 * If this block is not completely contained in the range
		 * to be discarded, then it is not going to be released. Because
		 * we need to keep this block, we need to make sure this part
		 * of the page is uptodate before we modify it by writeing
		 * partial zeros on it.
		 */
		if (!buffer_mapped(bh)) {
			/*
			 * Buffer head must be mapped before we can read
			 * from the block
			 */
			BUFFER_TRACE(bh, "unmapped");
			ext4_get_block(inode, iblock, bh, 0);
			/* unmapped? It's a hole - nothing to do */
			if (!buffer_mapped(bh)) {
				BUFFER_TRACE(bh, "still unmapped");
				goto next;
			}
		}

		/* Ok, it's mapped. Make sure it's up-to-date */
		if (PageUptodate(page))
			set_buffer_uptodate(bh);

		if (!buffer_uptodate(bh)) {
			err = -EIO;
			ll_rw_block(READ, 1, &bh);
			wait_on_buffer(bh);
			/* Uhhuh. Read error. Complain and punt.*/
			if (!buffer_uptodate(bh))
				goto next;
		}

		if (ext4_should_journal_data(inode)) {
			BUFFER_TRACE(bh, "get write access");
			err = ext4_journal_get_write_access(handle, bh);
			if (err)
				goto next;
		}

		zero_user(page, pos, range_to_discard);

		err = 0;
		if (ext4_should_journal_data(inode)) {
			err = ext4_handle_dirty_metadata(handle, inode, bh);
3387
		} else
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
			mark_buffer_dirty(bh);

		BUFFER_TRACE(bh, "Partial buffer zeroed");
next:
		bh = bh->b_this_page;
		iblock++;
		pos += range_to_discard;
	}

	return err;
}

3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
int ext4_can_truncate(struct inode *inode)
{
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3411 3412 3413 3414 3415 3416 3417 3418
/*
 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 * associated with the given offset and length
 *
 * @inode:  File inode
 * @offset: The offset where the hole will begin
 * @len:    The length of the hole
 *
3419
 * Returns: 0 on success or negative on failure
3420 3421 3422 3423 3424 3425
 */

int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	if (!S_ISREG(inode->i_mode))
3426
		return -EOPNOTSUPP;
3427

3428 3429
	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
		return ext4_ind_punch_hole(file, offset, length);
3430

3431 3432
	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
		/* TODO: Add support for bigalloc file systems */
3433
		return -EOPNOTSUPP;
3434 3435
	}

3436 3437
	trace_ext4_punch_hole(inode, offset, length);

3438 3439 3440
	return ext4_ext_punch_hole(file, offset, length);
}

3441
/*
3442
 * ext4_truncate()
3443
 *
3444 3445
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3446 3447
 * simultaneously on behalf of the same inode.
 *
3448
 * As we work through the truncate and commit bits of it to the journal there
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3462
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3463
 * that this inode's truncate did not complete and it will again call
3464 3465
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3466
 * that's fine - as long as they are linked from the inode, the post-crash
3467
 * ext4_truncate() run will find them and release them.
3468
 */
3469
void ext4_truncate(struct inode *inode)
3470
{
3471 3472
	trace_ext4_truncate_enter(inode);

3473
	if (!ext4_can_truncate(inode))
3474 3475
		return;

3476
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3477

3478
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3479
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3480

3481 3482 3483 3484 3485 3486 3487 3488
	if (ext4_has_inline_data(inode)) {
		int has_inline = 1;

		ext4_inline_data_truncate(inode, &has_inline);
		if (has_inline)
			return;
	}

3489
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3490
		ext4_ext_truncate(inode);
3491 3492
	else
		ext4_ind_truncate(inode);
3493

3494
	trace_ext4_truncate_exit(inode);
3495 3496 3497
}

/*
3498
 * ext4_get_inode_loc returns with an extra refcount against the inode's
3499 3500 3501 3502
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
3503 3504
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
3505
{
3506 3507 3508 3509 3510 3511
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
3512
	iloc->bh = NULL;
3513 3514
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
3515

3516 3517 3518
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
3519 3520
		return -EIO;

3521 3522 3523
	/*
	 * Figure out the offset within the block group inode table
	 */
3524
	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3525 3526 3527 3528 3529 3530
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
3531
	if (unlikely(!bh))
3532
		return -ENOMEM;
3533 3534
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
3535 3536 3537 3538 3539 3540 3541 3542 3543 3544

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
3558
			int i, start;
3559

3560
			start = inode_offset & ~(inodes_per_block - 1);
3561

3562 3563
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3564
			if (unlikely(!bitmap_bh))
3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
3576
			for (i = start; i < start + inodes_per_block; i++) {
3577 3578
				if (i == inode_offset)
					continue;
3579
				if (ext4_test_bit(i, bitmap_bh->b_data))
3580 3581 3582
					break;
			}
			brelse(bitmap_bh);
3583
			if (i == start + inodes_per_block) {
3584 3585 3586 3587 3588 3589 3590 3591 3592
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
3593 3594 3595 3596 3597 3598 3599 3600 3601
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
3602
			/* s_inode_readahead_blks is always a power of 2 */
3603 3604 3605 3606 3607
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
3608
			if (ext4_has_group_desc_csum(sb))
3609
				num -= ext4_itable_unused_count(sb, gdp);
3610 3611 3612 3613 3614 3615 3616
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

3617 3618 3619 3620 3621
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
3622
		trace_ext4_load_inode(inode);
3623 3624
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
3625
		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3626 3627
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
3628 3629
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
3630 3631 3632 3633 3634 3635 3636 3637 3638
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

3639
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3640 3641
{
	/* We have all inode data except xattrs in memory here. */
3642
	return __ext4_get_inode_loc(inode, iloc,
3643
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3644 3645
}

3646
void ext4_set_inode_flags(struct inode *inode)
3647
{
3648
	unsigned int flags = EXT4_I(inode)->i_flags;
3649 3650

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3651
	if (flags & EXT4_SYNC_FL)
3652
		inode->i_flags |= S_SYNC;
3653
	if (flags & EXT4_APPEND_FL)
3654
		inode->i_flags |= S_APPEND;
3655
	if (flags & EXT4_IMMUTABLE_FL)
3656
		inode->i_flags |= S_IMMUTABLE;
3657
	if (flags & EXT4_NOATIME_FL)
3658
		inode->i_flags |= S_NOATIME;
3659
	if (flags & EXT4_DIRSYNC_FL)
3660 3661 3662
		inode->i_flags |= S_DIRSYNC;
}

3663 3664 3665
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3686
}
3687

3688
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3689
				  struct ext4_inode_info *ei)
3690 3691
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
3692 3693
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
3694 3695 3696 3697 3698 3699

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
3700
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
3701 3702 3703 3704 3705
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
3706 3707 3708 3709
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
3710

3711 3712 3713 3714 3715 3716
static inline void ext4_iget_extra_inode(struct inode *inode,
					 struct ext4_inode *raw_inode,
					 struct ext4_inode_info *ei)
{
	__le32 *magic = (void *)raw_inode +
			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3717
	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3718
		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3719
		ext4_find_inline_data_nolock(inode);
3720 3721
	} else
		EXT4_I(inode)->i_inline_off = 0;
3722 3723
}

3724
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3725
{
3726 3727
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
3728 3729
	struct ext4_inode_info *ei;
	struct inode *inode;
3730
	journal_t *journal = EXT4_SB(sb)->s_journal;
3731
	long ret;
3732
	int block;
3733 3734
	uid_t i_uid;
	gid_t i_gid;
3735

3736 3737 3738 3739 3740 3741 3742
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
3743
	iloc.bh = NULL;
3744

3745 3746
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
3747
		goto bad_inode;
3748
	raw_inode = ext4_raw_inode(&iloc);
3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781

	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
		    EXT4_INODE_SIZE(inode->i_sb)) {
			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
				EXT4_INODE_SIZE(inode->i_sb));
			ret = -EIO;
			goto bad_inode;
		}
	} else
		ei->i_extra_isize = 0;

	/* Precompute checksum seed for inode metadata */
	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
		__u32 csum;
		__le32 inum = cpu_to_le32(inode->i_ino);
		__le32 gen = raw_inode->i_generation;
		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
				   sizeof(inum));
		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
					      sizeof(gen));
	}

	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
		EXT4_ERROR_INODE(inode, "checksum invalid");
		ret = -EIO;
		goto bad_inode;
	}

3782
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3783 3784
	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3785
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3786 3787
		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3788
	}
3789 3790
	i_uid_write(inode, i_uid);
	i_gid_write(inode, i_gid);
M
Miklos Szeredi 已提交
3791
	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3792

3793
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3794
	ei->i_inline_off = 0;
3795 3796 3797 3798 3799 3800 3801 3802 3803
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
3804
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3805
			/* this inode is deleted */
3806
			ret = -ESTALE;
3807 3808 3809 3810 3811 3812 3813 3814
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3815
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3816
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3817
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
3818 3819
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3820
	inode->i_size = ext4_isize(raw_inode);
3821
	ei->i_disksize = inode->i_size;
3822 3823 3824
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
3825 3826
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
3827
	ei->i_last_alloc_group = ~0;
3828 3829 3830 3831
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
3832
	for (block = 0; block < EXT4_N_BLOCKS; block++)
3833 3834 3835
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

3847
		read_lock(&journal->j_state_lock);
3848 3849 3850 3851 3852 3853 3854 3855
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
3856
		read_unlock(&journal->j_state_lock);
3857 3858 3859 3860
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

3861
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3862 3863
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
3864 3865
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
3866
		} else {
3867
			ext4_iget_extra_inode(inode, raw_inode, ei);
3868
		}
3869
	}
3870

K
Kalpak Shah 已提交
3871 3872 3873 3874 3875
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

3876 3877 3878 3879 3880 3881 3882
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

3883
	ret = 0;
3884
	if (ei->i_file_acl &&
3885
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3886 3887
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
3888 3889
		ret = -EIO;
		goto bad_inode;
3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902
	} else if (!ext4_has_inline_data(inode)) {
		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
			    (S_ISLNK(inode->i_mode) &&
			     !ext4_inode_is_fast_symlink(inode))))
				/* Validate extent which is part of inode */
				ret = ext4_ext_check_inode(inode);
		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
			   (S_ISLNK(inode->i_mode) &&
			    !ext4_inode_is_fast_symlink(inode))) {
			/* Validate block references which are part of inode */
			ret = ext4_ind_check_inode(inode);
		}
3903
	}
3904
	if (ret)
3905
		goto bad_inode;
3906

3907
	if (S_ISREG(inode->i_mode)) {
3908 3909 3910
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
3911
	} else if (S_ISDIR(inode->i_mode)) {
3912 3913
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
3914
	} else if (S_ISLNK(inode->i_mode)) {
3915
		if (ext4_inode_is_fast_symlink(inode)) {
3916
			inode->i_op = &ext4_fast_symlink_inode_operations;
3917 3918 3919
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
3920 3921
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
3922
		}
3923 3924
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3925
		inode->i_op = &ext4_special_inode_operations;
3926 3927 3928 3929 3930 3931
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3932 3933
	} else {
		ret = -EIO;
3934
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3935
		goto bad_inode;
3936
	}
3937
	brelse(iloc.bh);
3938
	ext4_set_inode_flags(inode);
3939 3940
	unlock_new_inode(inode);
	return inode;
3941 3942

bad_inode:
3943
	brelse(iloc.bh);
3944 3945
	iget_failed(inode);
	return ERR_PTR(ret);
3946 3947
}

3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
3958
		 * i_blocks can be represented in a 32 bit variable
3959 3960
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3961
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3962
		raw_inode->i_blocks_high = 0;
3963
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3964 3965 3966 3967 3968 3969
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
3970 3971 3972 3973
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3974
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3975
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3976
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3977
	} else {
3978
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
3979 3980 3981 3982
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3983
	}
3984
	return 0;
3985 3986
}

3987 3988 3989 3990 3991 3992 3993
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
3994
static int ext4_do_update_inode(handle_t *handle,
3995
				struct inode *inode,
3996
				struct ext4_iloc *iloc)
3997
{
3998 3999
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
4000 4001
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;
4002
	int need_datasync = 0;
4003 4004
	uid_t i_uid;
	gid_t i_gid;
4005 4006 4007

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
4008
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4009
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4010

4011
	ext4_get_inode_flags(ei);
4012
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4013 4014
	i_uid = i_uid_read(inode);
	i_gid = i_gid_read(inode);
4015
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4016 4017
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4018 4019 4020 4021
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
4022
		if (!ei->i_dtime) {
4023
			raw_inode->i_uid_high =
4024
				cpu_to_le16(high_16_bits(i_uid));
4025
			raw_inode->i_gid_high =
4026
				cpu_to_le16(high_16_bits(i_gid));
4027 4028 4029 4030 4031
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
4032 4033
		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4034 4035 4036 4037
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4038 4039 4040 4041 4042 4043

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4044 4045
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4046
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4047
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4048 4049
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4050 4051
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4052
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4053 4054 4055 4056
	if (ei->i_disksize != ext4_isize(raw_inode)) {
		ext4_isize_set(raw_inode, ei->i_disksize);
		need_datasync = 1;
	}
4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4072
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4073
			ext4_handle_sync(handle);
4074
			err = ext4_handle_dirty_super(handle, sb);
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4089
	} else if (!ext4_has_inline_data(inode)) {
4090 4091
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
4092
	}
4093

4094 4095 4096 4097 4098
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4099
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4100 4101
	}

4102 4103
	ext4_inode_csum_set(inode, raw_inode, ei);

4104
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4105
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4106 4107
	if (!err)
		err = rc;
4108
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4109

4110
	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4111
out_brelse:
4112
	brelse(bh);
4113
	ext4_std_error(inode->i_sb, err);
4114 4115 4116 4117
	return err;
}

/*
4118
 * ext4_write_inode()
4119 4120 4121 4122 4123
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
4124
 *   transaction to commit.
4125 4126 4127 4128 4129 4130 4131 4132 4133 4134
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4135
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4152
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4153
{
4154 4155
	int err;

4156 4157 4158
	if (current->flags & PF_MEMALLOC)
		return 0;

4159 4160 4161 4162 4163 4164
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
4165

4166
		if (wbc->sync_mode != WB_SYNC_ALL)
4167 4168 4169 4170 4171
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
4172

4173
		err = __ext4_get_inode_loc(inode, &iloc, 0);
4174 4175
		if (err)
			return err;
4176
		if (wbc->sync_mode == WB_SYNC_ALL)
4177 4178
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4179 4180
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
4181 4182
			err = -EIO;
		}
4183
		brelse(iloc.bh);
4184 4185
	}
	return err;
4186 4187
}

4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
/*
 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
 * buffers that are attached to a page stradding i_size and are undergoing
 * commit. In that case we have to wait for commit to finish and try again.
 */
static void ext4_wait_for_tail_page_commit(struct inode *inode)
{
	struct page *page;
	unsigned offset;
	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
	tid_t commit_tid = 0;
	int ret;

	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
	/*
	 * All buffers in the last page remain valid? Then there's nothing to
	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
	 * blocksize case
	 */
	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
		return;
	while (1) {
		page = find_lock_page(inode->i_mapping,
				      inode->i_size >> PAGE_CACHE_SHIFT);
		if (!page)
			return;
		ret = __ext4_journalled_invalidatepage(page, offset);
		unlock_page(page);
		page_cache_release(page);
		if (ret != -EBUSY)
			return;
		commit_tid = 0;
		read_lock(&journal->j_state_lock);
		if (journal->j_committing_transaction)
			commit_tid = journal->j_committing_transaction->t_tid;
		read_unlock(&journal->j_state_lock);
		if (commit_tid)
			jbd2_log_wait_commit(journal, commit_tid);
	}
}

4229
/*
4230
 * ext4_setattr()
4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4244 4245 4246 4247 4248 4249 4250 4251
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4252
 */
4253
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4254 4255 4256
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
4257
	int orphan = 0;
4258 4259 4260 4261 4262 4263
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

4264
	if (is_quota_modification(inode, attr))
4265
		dquot_initialize(inode);
4266 4267
	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4268 4269 4270 4271
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
4272 4273 4274
		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4275 4276 4277 4278
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4279
		error = dquot_transfer(inode, attr);
4280
		if (error) {
4281
			ext4_journal_stop(handle);
4282 4283 4284 4285 4286 4287 4288 4289
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4290 4291
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4292 4293
	}

4294
	if (attr->ia_valid & ATTR_SIZE) {
4295

4296
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4297 4298
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

4299 4300
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
4301 4302 4303
		}
	}

4304
	if (S_ISREG(inode->i_mode) &&
4305
	    attr->ia_valid & ATTR_SIZE &&
4306
	    (attr->ia_size < inode->i_size)) {
4307 4308
		handle_t *handle;

4309
		handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4310 4311 4312 4313
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4314 4315 4316 4317
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
4318 4319
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4320 4321
		if (!error)
			error = rc;
4322
		ext4_journal_stop(handle);
4323 4324 4325 4326 4327 4328

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
4329 4330
				handle = ext4_journal_start(inode,
							    EXT4_HT_INODE, 3);
4331 4332 4333 4334 4335
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
4336
				orphan = 0;
4337 4338 4339 4340
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4341 4342
	}

4343
	if (attr->ia_valid & ATTR_SIZE) {
4344 4345 4346 4347 4348 4349 4350 4351 4352
		if (attr->ia_size != inode->i_size) {
			loff_t oldsize = inode->i_size;

			i_size_write(inode, attr->ia_size);
			/*
			 * Blocks are going to be removed from the inode. Wait
			 * for dio in flight.  Temporarily disable
			 * dioread_nolock to prevent livelock.
			 */
4353
			if (orphan) {
4354 4355 4356 4357 4358 4359
				if (!ext4_should_journal_data(inode)) {
					ext4_inode_block_unlocked_dio(inode);
					inode_dio_wait(inode);
					ext4_inode_resume_unlocked_dio(inode);
				} else
					ext4_wait_for_tail_page_commit(inode);
4360
			}
4361 4362 4363 4364 4365
			/*
			 * Truncate pagecache after we've waited for commit
			 * in data=journal mode to make pages freeable.
			 */
			truncate_pagecache(inode, oldsize, inode->i_size);
4366
		}
4367
		ext4_truncate(inode);
4368
	}
4369

C
Christoph Hellwig 已提交
4370 4371 4372 4373 4374 4375 4376 4377 4378
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
4379
	if (orphan && inode->i_nlink)
4380
		ext4_orphan_del(NULL, inode);
4381 4382

	if (!rc && (ia_valid & ATTR_MODE))
4383
		rc = ext4_acl_chmod(inode);
4384 4385

err_out:
4386
	ext4_std_error(inode->i_sb, error);
4387 4388 4389 4390 4391
	if (!error)
		error = rc;
	return error;
}

4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
4411 4412
	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
				EXT4_I(inode)->i_reserved_data_blocks);
4413 4414 4415 4416

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4417

4418 4419
static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
4420
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4421
		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4422
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4423
}
4424

4425
/*
4426 4427 4428
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4429
 *
4430
 * If datablocks are discontiguous, they are possible to spread over
4431
 * different block groups too. If they are contiguous, with flexbg,
4432
 * they could still across block group boundary.
4433
 *
4434 4435
 * Also account for superblock, inode, quota and xattr blocks
 */
4436
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4437
{
4438 4439
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
4466 4467
	if (groups > ngroups)
		groups = ngroups;
4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
L
Lucas De Marchi 已提交
4481
 * Calculate the total number of credits to reserve to fit
4482 4483
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4484
 *
4485
 * This could be called via ext4_write_begin()
4486
 *
4487
 * We need to consider the worse case, when
4488
 * one new block per extent.
4489
 */
A
Alex Tomas 已提交
4490
int ext4_writepage_trans_blocks(struct inode *inode)
4491
{
4492
	int bpp = ext4_journal_blocks_per_page(inode);
4493 4494
	int ret;

4495
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4496

4497
	/* Account for data blocks for journalled mode */
4498
	if (ext4_should_journal_data(inode))
4499
		ret += bpp;
4500 4501
	return ret;
}
4502 4503 4504 4505 4506

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
4507
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4508 4509 4510 4511 4512 4513 4514 4515 4516
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4517
/*
4518
 * The caller must have previously called ext4_reserve_inode_write().
4519 4520
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4521
int ext4_mark_iloc_dirty(handle_t *handle,
4522
			 struct inode *inode, struct ext4_iloc *iloc)
4523 4524 4525
{
	int err = 0;

4526
	if (IS_I_VERSION(inode))
4527 4528
		inode_inc_iversion(inode);

4529 4530 4531
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4532
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4533
	err = ext4_do_update_inode(handle, inode, iloc);
4534 4535 4536 4537 4538 4539 4540 4541 4542 4543
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4544 4545
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4546
{
4547 4548 4549 4550 4551 4552 4553 4554 4555
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
4556 4557
		}
	}
4558
	ext4_std_error(inode->i_sb, err);
4559 4560 4561
	return err;
}

4562 4563 4564 4565
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4566 4567 4568 4569
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
4582 4583
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 */
4608
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4609
{
4610
	struct ext4_iloc iloc;
4611 4612 4613
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
4614 4615

	might_sleep();
4616
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4617
	err = ext4_reserve_inode_write(handle, inode, &iloc);
4618 4619
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4620
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
4634 4635
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
4636 4637
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4638
					ext4_warning(inode->i_sb,
4639 4640 4641
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
4642 4643
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
4644 4645 4646 4647
				}
			}
		}
	}
4648
	if (!err)
4649
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4650 4651 4652 4653
	return err;
}

/*
4654
 * ext4_dirty_inode() is called from __mark_inode_dirty()
4655 4656 4657 4658 4659
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
4660
 * Also, dquot_alloc_block() will always dirty the inode when blocks
4661 4662 4663 4664 4665 4666
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
4667
void ext4_dirty_inode(struct inode *inode, int flags)
4668 4669 4670
{
	handle_t *handle;

4671
	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4672 4673
	if (IS_ERR(handle))
		goto out;
4674 4675 4676

	ext4_mark_inode_dirty(handle, inode);

4677
	ext4_journal_stop(handle);
4678 4679 4680 4681 4682 4683 4684 4685
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
4686
 * ext4_reserve_inode_write, this leaves behind no bh reference and
4687 4688 4689
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
4690
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4691
{
4692
	struct ext4_iloc iloc;
4693 4694 4695

	int err = 0;
	if (handle) {
4696
		err = ext4_get_inode_loc(inode, &iloc);
4697 4698
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
4699
			err = jbd2_journal_get_write_access(handle, iloc.bh);
4700
			if (!err)
4701
				err = ext4_handle_dirty_metadata(handle,
4702
								 NULL,
4703
								 iloc.bh);
4704 4705 4706
			brelse(iloc.bh);
		}
	}
4707
	ext4_std_error(inode->i_sb, err);
4708 4709 4710 4711
	return err;
}
#endif

4712
int ext4_change_inode_journal_flag(struct inode *inode, int val)
4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

4728
	journal = EXT4_JOURNAL(inode);
4729 4730
	if (!journal)
		return 0;
4731
	if (is_journal_aborted(journal))
4732
		return -EROFS;
4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
	/* We have to allocate physical blocks for delalloc blocks
	 * before flushing journal. otherwise delalloc blocks can not
	 * be allocated any more. even more truncate on delalloc blocks
	 * could trigger BUG by flushing delalloc blocks in journal.
	 * There is no delalloc block in non-journal data mode.
	 */
	if (val && test_opt(inode->i_sb, DELALLOC)) {
		err = ext4_alloc_da_blocks(inode);
		if (err < 0)
			return err;
	}
4744

4745 4746 4747 4748
	/* Wait for all existing dio workers */
	ext4_inode_block_unlocked_dio(inode);
	inode_dio_wait(inode);

4749
	jbd2_journal_lock_updates(journal);
4750 4751 4752 4753 4754 4755 4756 4757 4758 4759

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
4760
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4761 4762
	else {
		jbd2_journal_flush(journal);
4763
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4764
	}
4765
	ext4_set_aops(inode);
4766

4767
	jbd2_journal_unlock_updates(journal);
4768
	ext4_inode_resume_unlocked_dio(inode);
4769 4770 4771

	/* Finally we can mark the inode as dirty. */

4772
	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4773 4774 4775
	if (IS_ERR(handle))
		return PTR_ERR(handle);

4776
	err = ext4_mark_inode_dirty(handle, inode);
4777
	ext4_handle_sync(handle);
4778 4779
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
4780 4781 4782

	return err;
}
4783 4784 4785 4786 4787 4788

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

4789
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4790
{
4791
	struct page *page = vmf->page;
4792 4793
	loff_t size;
	unsigned long len;
4794
	int ret;
4795 4796 4797
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;
4798 4799 4800
	handle_t *handle;
	get_block_t *get_block;
	int retries = 0;
4801

4802
	sb_start_pagefault(inode->i_sb);
4803
	file_update_time(vma->vm_file);
4804 4805 4806 4807 4808 4809 4810 4811 4812 4813
	/* Delalloc case is easy... */
	if (test_opt(inode->i_sb, DELALLOC) &&
	    !ext4_should_journal_data(inode) &&
	    !ext4_nonda_switch(inode->i_sb)) {
		do {
			ret = __block_page_mkwrite(vma, vmf,
						   ext4_da_get_block_prep);
		} while (ret == -ENOSPC &&
		       ext4_should_retry_alloc(inode->i_sb, &retries));
		goto out_ret;
4814
	}
4815 4816

	lock_page(page);
4817 4818 4819 4820 4821 4822
	size = i_size_read(inode);
	/* Page got truncated from under us? */
	if (page->mapping != mapping || page_offset(page) > size) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
4823
	}
4824 4825 4826 4827 4828

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
4829
	/*
4830 4831
	 * Return if we have all the buffers mapped. This avoids the need to do
	 * journal_start/journal_stop which can block and take a long time
4832
	 */
4833
	if (page_has_buffers(page)) {
4834 4835 4836
		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
					    0, len, NULL,
					    ext4_bh_unmapped)) {
4837 4838 4839 4840
			/* Wait so that we don't change page under IO */
			wait_on_page_writeback(page);
			ret = VM_FAULT_LOCKED;
			goto out;
4841
		}
4842
	}
4843
	unlock_page(page);
4844 4845 4846 4847 4848 4849
	/* OK, we need to fill the hole... */
	if (ext4_should_dioread_nolock(inode))
		get_block = ext4_get_block_write;
	else
		get_block = ext4_get_block;
retry_alloc:
4850 4851
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
				    ext4_writepage_trans_blocks(inode));
4852
	if (IS_ERR(handle)) {
4853
		ret = VM_FAULT_SIGBUS;
4854 4855 4856 4857
		goto out;
	}
	ret = __block_page_mkwrite(vma, vmf, get_block);
	if (!ret && ext4_should_journal_data(inode)) {
4858
		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
4859 4860 4861
			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
			unlock_page(page);
			ret = VM_FAULT_SIGBUS;
4862
			ext4_journal_stop(handle);
4863 4864 4865 4866 4867 4868 4869 4870 4871 4872
			goto out;
		}
		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
	}
	ext4_journal_stop(handle);
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry_alloc;
out_ret:
	ret = block_page_mkwrite_return(ret);
out:
4873
	sb_end_pagefault(inode->i_sb);
4874 4875
	return ret;
}