inode.c 139.8 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
18
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 20 21 22
 */

#include <linux/fs.h>
#include <linux/time.h>
23
#include <linux/jbd2.h>
24 25 26 27 28 29
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
30
#include <linux/pagevec.h>
31
#include <linux/mpage.h>
32
#include <linux/namei.h>
33 34
#include <linux/uio.h>
#include <linux/bio.h>
35
#include <linux/workqueue.h>
36
#include <linux/kernel.h>
37
#include <linux/printk.h>
38
#include <linux/slab.h>
39
#include <linux/ratelimit.h>
40

41
#include "ext4_jbd2.h"
42 43
#include "xattr.h"
#include "acl.h"
44
#include "truncate.h"
45

46 47
#include <trace/events/ext4.h>

48 49
#define MPAGE_DA_EXTENT_TAIL 0x01

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
			      struct ext4_inode_info *ei)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	__u16 csum_lo;
	__u16 csum_hi = 0;
	__u32 csum;

	csum_lo = raw->i_checksum_lo;
	raw->i_checksum_lo = 0;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
		csum_hi = raw->i_checksum_hi;
		raw->i_checksum_hi = 0;
	}

	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
			   EXT4_INODE_SIZE(inode->i_sb));

	raw->i_checksum_lo = csum_lo;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = csum_hi;

	return csum;
}

static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
				  struct ext4_inode_info *ei)
{
	__u32 provided, calculated;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return 1;

	provided = le16_to_cpu(raw->i_checksum_lo);
	calculated = ext4_inode_csum(inode, raw, ei);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
	else
		calculated &= 0xFFFF;

	return provided == calculated;
}

static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
				struct ext4_inode_info *ei)
{
	__u32 csum;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return;

	csum = ext4_inode_csum(inode, raw, ei);
	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
}

117 118 119
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
120
	trace_ext4_begin_ordered_truncate(inode, new_size);
121 122 123 124 125 126 127 128 129 130 131
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
132 133
}

134
static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 136
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
E
Eric Sandeen 已提交
137 138 139
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags);
140

141 142 143
/*
 * Test whether an inode is a fast symlink.
 */
144
static int ext4_inode_is_fast_symlink(struct inode *inode)
145
{
146
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
147 148 149 150 151 152 153 154 155 156
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
157
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158
				 int nblocks)
159
{
160 161 162
	int ret;

	/*
163
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164 165 166 167
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
168
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
169
	jbd_debug(2, "restarting handle %p\n", handle);
170
	up_write(&EXT4_I(inode)->i_data_sem);
171
	ret = ext4_journal_restart(handle, nblocks);
172
	down_write(&EXT4_I(inode)->i_data_sem);
173
	ext4_discard_preallocations(inode);
174 175

	return ret;
176 177 178 179 180
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
181
void ext4_evict_inode(struct inode *inode)
182 183
{
	handle_t *handle;
184
	int err;
185

186
	trace_ext4_evict_inode(inode);
187 188 189

	ext4_ioend_wait(inode);

A
Al Viro 已提交
190
	if (inode->i_nlink) {
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
		/*
		 * When journalling data dirty buffers are tracked only in the
		 * journal. So although mm thinks everything is clean and
		 * ready for reaping the inode might still have some pages to
		 * write in the running transaction or waiting to be
		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
		 * (via truncate_inode_pages()) to discard these buffers can
		 * cause data loss. Also even if we did not discard these
		 * buffers, we would have no way to find them after the inode
		 * is reaped and thus user could see stale data if he tries to
		 * read them before the transaction is checkpointed. So be
		 * careful and force everything to disk here... We use
		 * ei->i_datasync_tid to store the newest transaction
		 * containing inode's data.
		 *
		 * Note that directories do not have this problem because they
		 * don't use page cache.
		 */
		if (ext4_should_journal_data(inode) &&
		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;

			jbd2_log_start_commit(journal, commit_tid);
			jbd2_log_wait_commit(journal, commit_tid);
			filemap_write_and_wait(&inode->i_data);
		}
A
Al Viro 已提交
218 219 220 221
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

222
	if (!is_bad_inode(inode))
223
		dquot_initialize(inode);
224

225 226
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
227 228 229 230 231
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

232 233 234 235 236
	/*
	 * Protect us against freezing - iput() caller didn't have to have any
	 * protection against it
	 */
	sb_start_intwrite(inode->i_sb);
237 238
	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
				    ext4_blocks_for_truncate(inode)+3);
239
	if (IS_ERR(handle)) {
240
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
241 242 243 244 245
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
246
		ext4_orphan_del(NULL, inode);
247
		sb_end_intwrite(inode->i_sb);
248 249 250 251
		goto no_delete;
	}

	if (IS_SYNC(inode))
252
		ext4_handle_sync(handle);
253
	inode->i_size = 0;
254 255
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
256
		ext4_warning(inode->i_sb,
257 258 259
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
260
	if (inode->i_blocks)
261
		ext4_truncate(inode);
262 263 264 265 266 267 268

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
269
	if (!ext4_handle_has_enough_credits(handle, 3)) {
270 271 272 273
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
274
			ext4_warning(inode->i_sb,
275 276 277
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
278
			ext4_orphan_del(NULL, inode);
279
			sb_end_intwrite(inode->i_sb);
280 281 282 283
			goto no_delete;
		}
	}

284
	/*
285
	 * Kill off the orphan record which ext4_truncate created.
286
	 * AKPM: I think this can be inside the above `if'.
287
	 * Note that ext4_orphan_del() has to be able to cope with the
288
	 * deletion of a non-existent orphan - this is because we don't
289
	 * know if ext4_truncate() actually created an orphan record.
290 291
	 * (Well, we could do this if we need to, but heck - it works)
	 */
292 293
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
294 295 296 297 298 299 300 301

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
302
	if (ext4_mark_inode_dirty(handle, inode))
303
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
304
		ext4_clear_inode(inode);
305
	else
306 307
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
308
	sb_end_intwrite(inode->i_sb);
309 310
	return;
no_delete:
A
Al Viro 已提交
311
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
312 313
}

314 315
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
316
{
317
	return &EXT4_I(inode)->i_reserved_quota;
318
}
319
#endif
320

321 322
/*
 * Calculate the number of metadata blocks need to reserve
323
 * to allocate a block located at @lblock
324
 */
325
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
326
{
327
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
328
		return ext4_ext_calc_metadata_amount(inode, lblock);
329

330
	return ext4_ind_calc_metadata_amount(inode, lblock);
331 332
}

333 334 335 336
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
337 338
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
339 340
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
341 342 343
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
344
	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
345
	if (unlikely(used > ei->i_reserved_data_blocks)) {
346
		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
347
			 "with only %d reserved data blocks",
348 349 350 351 352
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
353

354
	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
355 356 357 358 359 360
		ext4_warning(inode->i_sb, "ino %lu, allocated %d "
			"with only %d reserved metadata blocks "
			"(releasing %d blocks with reserved %d data blocks)",
			inode->i_ino, ei->i_allocated_meta_blocks,
			     ei->i_reserved_meta_blocks, used,
			     ei->i_reserved_data_blocks);
361 362 363 364
		WARN_ON(1);
		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
	}

365 366 367
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
368
	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
369
			   used + ei->i_allocated_meta_blocks);
370
	ei->i_allocated_meta_blocks = 0;
371

372 373 374 375 376 377
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
378
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
379
				   ei->i_reserved_meta_blocks);
380
		ei->i_reserved_meta_blocks = 0;
381
		ei->i_da_metadata_calc_len = 0;
382
	}
383
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
384

385 386
	/* Update quota subsystem for data blocks */
	if (quota_claim)
387
		dquot_claim_block(inode, EXT4_C2B(sbi, used));
388
	else {
389 390 391
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
392
		 * not re-claim the quota for fallocated blocks.
393
		 */
394
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
395
	}
396 397 398 399 400 401

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
402 403
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
404
		ext4_discard_preallocations(inode);
405 406
}

407
static int __check_block_validity(struct inode *inode, const char *func,
408 409
				unsigned int line,
				struct ext4_map_blocks *map)
410
{
411 412
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
413 414 415 416
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
417 418 419 420 421
		return -EIO;
	}
	return 0;
}

422
#define check_block_validity(inode, map)	\
423
	__check_block_validity((inode), __func__, __LINE__, (map))
424

425
/*
426 427
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
461 462 463 464 465 466 467 468 469
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
470 471 472 473 474
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
475 476
			if (num >= max_pages) {
				done = 1;
477
				break;
478
			}
479 480 481 482 483 484
		}
		pagevec_release(&pvec);
	}
	return num;
}

485
/*
486
 * The ext4_map_blocks() function tries to look up the requested blocks,
487
 * and returns if the blocks are already mapped.
488 489 490 491 492
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
493 494
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
495 496 497 498 499 500 501 502
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
503
 * that case, buffer head is unmapped
504 505 506
 *
 * It returns the error in case of allocation failure.
 */
507 508
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
509 510
{
	int retval;
511

512 513 514 515
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
516
	/*
517 518
	 * Try to see if we can get the block without requesting a new
	 * file system block.
519
	 */
520 521
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		down_read((&EXT4_I(inode)->i_data_sem));
522
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
523 524
		retval = ext4_ext_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
525
	} else {
526 527
		retval = ext4_ind_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
528
	}
529 530
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		up_read((&EXT4_I(inode)->i_data_sem));
531

532
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
533 534 535 536 537 538 539 540 541 542
		int ret;
		if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
			/* delayed alloc may be allocated by fallocate and
			 * coverted to initialized by directIO.
			 * we need to handle delayed extent here.
			 */
			down_write((&EXT4_I(inode)->i_data_sem));
			goto delayed_mapped;
		}
		ret = check_block_validity(inode, map);
543 544 545 546
		if (ret != 0)
			return ret;
	}

547
	/* If it is only a block(s) look up */
548
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
549 550 551 552 553 554
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
555
	 * ext4_ext_get_block() returns the create = 0
556 557
	 * with buffer head unmapped.
	 */
558
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
559 560
		return retval;

561 562 563 564 565 566 567 568 569 570
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
571
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
572

573
	/*
574 575 576 577
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
578 579
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
580 581 582 583 584 585 586

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
587
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
588
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
589 590 591 592
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
593
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
594
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
595
	} else {
596
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
597

598
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
599 600 601 602 603
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
604
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
605
		}
606

607 608 609 610 611 612 613
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
614
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
615 616
			ext4_da_update_reserve_space(inode, retval, 1);
	}
617
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
618
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
619

620 621 622 623 624 625 626 627 628
		if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
			int ret;
delayed_mapped:
			/* delayed allocation blocks has been allocated */
			ret = ext4_es_remove_extent(inode, map->m_lblk,
						    map->m_len);
			if (ret < 0)
				retval = ret;
		}
629 630
	}

631
	up_write((&EXT4_I(inode)->i_data_sem));
632
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
633
		int ret = check_block_validity(inode, map);
634 635 636
		if (ret != 0)
			return ret;
	}
637 638 639
	return retval;
}

640 641 642
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

643 644
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
645
{
646
	handle_t *handle = ext4_journal_current_handle();
647
	struct ext4_map_blocks map;
J
Jan Kara 已提交
648
	int ret = 0, started = 0;
649
	int dio_credits;
650

T
Tao Ma 已提交
651 652 653
	if (ext4_has_inline_data(inode))
		return -ERANGE;

654 655 656
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

657
	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
J
Jan Kara 已提交
658
		/* Direct IO write... */
659 660 661
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
662 663
		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
					    dio_credits);
J
Jan Kara 已提交
664
		if (IS_ERR(handle)) {
665
			ret = PTR_ERR(handle);
666
			return ret;
667
		}
J
Jan Kara 已提交
668
		started = 1;
669 670
	}

671
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
672
	if (ret > 0) {
673 674 675
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
676
		ret = 0;
677
	}
J
Jan Kara 已提交
678 679
	if (started)
		ext4_journal_stop(handle);
680 681 682
	return ret;
}

683 684 685 686 687 688 689
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

690 691 692
/*
 * `handle' can be NULL if create is zero
 */
693
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
694
				ext4_lblk_t block, int create, int *errp)
695
{
696 697
	struct ext4_map_blocks map;
	struct buffer_head *bh;
698 699 700 701
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

702 703 704 705
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
706

707 708 709
	/* ensure we send some value back into *errp */
	*errp = 0;

710 711
	if (create && err == 0)
		err = -ENOSPC;	/* should never happen */
712 713 714 715 716 717
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
718
	if (unlikely(!bh)) {
719
		*errp = -ENOMEM;
720
		return NULL;
721
	}
722 723 724
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
725

726 727 728 729 730 731 732 733 734 735 736 737 738
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
739
		}
740 741 742 743 744 745 746
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
747
	}
748 749 750 751 752 753
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
754 755
}

756
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
757
			       ext4_lblk_t block, int create, int *err)
758
{
759
	struct buffer_head *bh;
760

761
	bh = ext4_getblk(handle, inode, block, create, err);
762 763 764 765
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
766
	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
767 768 769 770 771 772 773 774
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

775 776 777 778 779 780 781
int ext4_walk_page_buffers(handle_t *handle,
			   struct buffer_head *head,
			   unsigned from,
			   unsigned to,
			   int *partial,
			   int (*fn)(handle_t *handle,
				     struct buffer_head *bh))
782 783 784 785 786 787 788
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

789 790
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
791
	     block_start = block_end, bh = next) {
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
809
 * close off a transaction and start a new one between the ext4_get_block()
810
 * and the commit_write().  So doing the jbd2_journal_start at the start of
811 812
 * prepare_write() is the right place.
 *
813 814 815 816
 * Also, this function can nest inside ext4_writepage().  In that case, we
 * *know* that ext4_writepage() has generated enough buffer credits to do the
 * whole page.  So we won't block on the journal in that case, which is good,
 * because the caller may be PF_MEMALLOC.
817
 *
818
 * By accident, ext4 can be reentered when a transaction is open via
819 820 821 822 823 824
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
825
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
826 827 828 829
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
830 831
int do_journal_get_write_access(handle_t *handle,
				struct buffer_head *bh)
832
{
833 834 835
	int dirty = buffer_dirty(bh);
	int ret;

836 837
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
838
	/*
C
Christoph Hellwig 已提交
839
	 * __block_write_begin() could have dirtied some buffers. Clean
840 841
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
842
	 * by __block_write_begin() isn't a real problem here as we clear
843 844 845 846 847 848 849 850 851
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
852 853
}

854 855
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
856
static int ext4_write_begin(struct file *file, struct address_space *mapping,
857 858
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
859
{
860
	struct inode *inode = mapping->host;
861
	int ret, needed_blocks;
862 863
	handle_t *handle;
	int retries = 0;
864
	struct page *page;
865
	pgoff_t index;
866
	unsigned from, to;
N
Nick Piggin 已提交
867

868
	trace_ext4_write_begin(inode, pos, len, flags);
869 870 871 872 873
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
874
	index = pos >> PAGE_CACHE_SHIFT;
875 876
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
877

878 879 880 881
	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
						    flags, pagep);
		if (ret < 0)
882 883 884
			return ret;
		if (ret == 1)
			return 0;
885 886
	}

887 888 889 890 891 892 893 894 895 896 897 898 899 900
	/*
	 * grab_cache_page_write_begin() can take a long time if the
	 * system is thrashing due to memory pressure, or if the page
	 * is being written back.  So grab it first before we start
	 * the transaction handle.  This also allows us to allocate
	 * the page (if needed) without using GFP_NOFS.
	 */
retry_grab:
	page = grab_cache_page_write_begin(mapping, index, flags);
	if (!page)
		return -ENOMEM;
	unlock_page(page);

retry_journal:
901
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
902
	if (IS_ERR(handle)) {
903 904
		page_cache_release(page);
		return PTR_ERR(handle);
905
	}
906

907 908 909 910 911
	lock_page(page);
	if (page->mapping != mapping) {
		/* The page got truncated from under us */
		unlock_page(page);
		page_cache_release(page);
912
		ext4_journal_stop(handle);
913
		goto retry_grab;
914
	}
915
	wait_on_page_writeback(page);
916

917
	if (ext4_should_dioread_nolock(inode))
918
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
919
	else
920
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
921 922

	if (!ret && ext4_should_journal_data(inode)) {
923 924 925
		ret = ext4_walk_page_buffers(handle, page_buffers(page),
					     from, to, NULL,
					     do_journal_get_write_access);
926
	}
N
Nick Piggin 已提交
927 928

	if (ret) {
929
		unlock_page(page);
930
		/*
931
		 * __block_write_begin may have instantiated a few blocks
932 933
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
934 935 936
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
937
		 */
938
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
939 940 941 942
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
943
			ext4_truncate_failed_write(inode);
944
			/*
945
			 * If truncate failed early the inode might
946 947 948 949 950 951 952
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
953

954 955 956 957 958 959 960
		if (ret == -ENOSPC &&
		    ext4_should_retry_alloc(inode->i_sb, &retries))
			goto retry_journal;
		page_cache_release(page);
		return ret;
	}
	*pagep = page;
961 962 963
	return ret;
}

N
Nick Piggin 已提交
964 965
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
966 967 968 969
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
970
	return ext4_handle_dirty_metadata(handle, NULL, bh);
971 972
}

973
static int ext4_generic_write_end(struct file *file,
974 975 976
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
977 978 979 980 981
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

982 983 984 985 986 987
	if (ext4_has_inline_data(inode))
		copied = ext4_write_inline_data_end(inode, pos, len,
						    copied, page);
	else
		copied = block_write_end(file, mapping, pos,
					 len, copied, page, fsdata);
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1024 1025 1026 1027
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1028
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1029 1030
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1031
static int ext4_ordered_write_end(struct file *file,
1032 1033 1034
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1035
{
1036
	handle_t *handle = ext4_journal_current_handle();
1037
	struct inode *inode = mapping->host;
1038 1039
	int ret = 0, ret2;

1040
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1041
	ret = ext4_jbd2_file_inode(handle, inode);
1042 1043

	if (ret == 0) {
1044
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1045
							page, fsdata);
1046
		copied = ret2;
1047
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1048 1049 1050 1051 1052
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1053 1054
		if (ret2 < 0)
			ret = ret2;
1055 1056 1057
	} else {
		unlock_page(page);
		page_cache_release(page);
1058
	}
1059

1060
	ret2 = ext4_journal_stop(handle);
1061 1062
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1063

1064
	if (pos + len > inode->i_size) {
1065
		ext4_truncate_failed_write(inode);
1066
		/*
1067
		 * If truncate failed early the inode might still be
1068 1069 1070 1071 1072 1073 1074 1075
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1076
	return ret ? ret : copied;
1077 1078
}

N
Nick Piggin 已提交
1079
static int ext4_writeback_write_end(struct file *file,
1080 1081 1082
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1083
{
1084
	handle_t *handle = ext4_journal_current_handle();
1085
	struct inode *inode = mapping->host;
1086 1087
	int ret = 0, ret2;

1088
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1089
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1090
							page, fsdata);
1091
	copied = ret2;
1092
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1093 1094 1095 1096 1097 1098
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1099 1100
	if (ret2 < 0)
		ret = ret2;
1101

1102
	ret2 = ext4_journal_stop(handle);
1103 1104
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1105

1106
	if (pos + len > inode->i_size) {
1107
		ext4_truncate_failed_write(inode);
1108
		/*
1109
		 * If truncate failed early the inode might still be
1110 1111 1112 1113 1114 1115 1116
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1117
	return ret ? ret : copied;
1118 1119
}

N
Nick Piggin 已提交
1120
static int ext4_journalled_write_end(struct file *file,
1121 1122 1123
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1124
{
1125
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1126
	struct inode *inode = mapping->host;
1127 1128
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1129
	unsigned from, to;
1130
	loff_t new_i_size;
1131

1132
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1133 1134 1135
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

1136 1137
	BUG_ON(!ext4_handle_valid(handle));

1138 1139 1140 1141 1142 1143 1144 1145 1146
	if (ext4_has_inline_data(inode))
		copied = ext4_write_inline_data_end(inode, pos, len,
						    copied, page);
	else {
		if (copied < len) {
			if (!PageUptodate(page))
				copied = 0;
			page_zero_new_buffers(page, from+copied, to);
		}
1147

1148 1149 1150 1151 1152
		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
					     to, &partial, write_end_fn);
		if (!partial)
			SetPageUptodate(page);
	}
1153 1154
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1155
		i_size_write(inode, pos+copied);
1156
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1157
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1158 1159
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1160
		ret2 = ext4_mark_inode_dirty(handle, inode);
1161 1162 1163
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1164

1165
	unlock_page(page);
1166
	page_cache_release(page);
1167
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1168 1169 1170 1171 1172 1173
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1174
	ret2 = ext4_journal_stop(handle);
1175 1176
	if (!ret)
		ret = ret2;
1177
	if (pos + len > inode->i_size) {
1178
		ext4_truncate_failed_write(inode);
1179
		/*
1180
		 * If truncate failed early the inode might still be
1181 1182 1183 1184 1185 1186
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1187 1188

	return ret ? ret : copied;
1189
}
1190

1191
/*
1192
 * Reserve a single cluster located at lblock
1193
 */
1194
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1195
{
A
Aneesh Kumar K.V 已提交
1196
	int retries = 0;
1197
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1198
	struct ext4_inode_info *ei = EXT4_I(inode);
1199
	unsigned int md_needed;
1200
	int ret;
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	ext4_lblk_t save_last_lblock;
	int save_len;

	/*
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
	 */
	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
	if (ret)
		return ret;
1212 1213 1214 1215 1216 1217

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1218
repeat:
1219
	spin_lock(&ei->i_block_reservation_lock);
1220 1221 1222 1223 1224 1225
	/*
	 * ext4_calc_metadata_amount() has side effects, which we have
	 * to be prepared undo if we fail to claim space.
	 */
	save_len = ei->i_da_metadata_calc_len;
	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1226 1227
	md_needed = EXT4_NUM_B2C(sbi,
				 ext4_calc_metadata_amount(inode, lblock));
1228
	trace_ext4_da_reserve_space(inode, md_needed);
1229

1230 1231 1232 1233
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1234
	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1235 1236 1237
		ei->i_da_metadata_calc_len = save_len;
		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
		spin_unlock(&ei->i_block_reservation_lock);
A
Aneesh Kumar K.V 已提交
1238 1239 1240 1241
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1242
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1243 1244
		return -ENOSPC;
	}
1245
	ei->i_reserved_data_blocks++;
1246 1247
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1248

1249 1250 1251
	return 0;       /* success */
}

1252
static void ext4_da_release_space(struct inode *inode, int to_free)
1253 1254
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1255
	struct ext4_inode_info *ei = EXT4_I(inode);
1256

1257 1258 1259
	if (!to_free)
		return;		/* Nothing to release, exit */

1260
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1261

L
Li Zefan 已提交
1262
	trace_ext4_da_release_space(inode, to_free);
1263
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1264
		/*
1265 1266 1267 1268
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1269
		 */
1270
		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1271
			 "ino %lu, to_free %d with only %d reserved "
1272
			 "data blocks", inode->i_ino, to_free,
1273 1274 1275
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1276
	}
1277
	ei->i_reserved_data_blocks -= to_free;
1278

1279 1280 1281 1282 1283
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
1284 1285
		 * Note that in case of bigalloc, i_reserved_meta_blocks,
		 * i_reserved_data_blocks, etc. refer to number of clusters.
1286
		 */
1287
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1288
				   ei->i_reserved_meta_blocks);
1289
		ei->i_reserved_meta_blocks = 0;
1290
		ei->i_da_metadata_calc_len = 0;
1291
	}
1292

1293
	/* update fs dirty data blocks counter */
1294
	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1295 1296

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1297

1298
	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1299 1300 1301
}

static void ext4_da_page_release_reservation(struct page *page,
1302
					     unsigned long offset)
1303 1304 1305 1306
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;
1307 1308 1309
	struct inode *inode = page->mapping->host;
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int num_clusters;
1310
	ext4_fsblk_t lblk;
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1323

1324 1325 1326 1327 1328
	if (to_release) {
		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
		ext4_es_remove_extent(inode, lblk, to_release);
	}

1329 1330 1331 1332 1333 1334 1335
	/* If we have released all the blocks belonging to a cluster, then we
	 * need to release the reserved space for that cluster. */
	num_clusters = EXT4_NUM_B2C(sbi, to_release);
	while (num_clusters > 0) {
		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
			((num_clusters - 1) << sbi->s_cluster_bits);
		if (sbi->s_cluster_ratio == 1 ||
1336
		    !ext4_find_delalloc_cluster(inode, lblk))
1337 1338 1339 1340
			ext4_da_release_space(inode, 1);

		num_clusters--;
	}
1341
}
1342

1343 1344 1345 1346 1347 1348
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1349
 * them with writepage() call back
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
1360 1361
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
1362
{
1363 1364 1365 1366 1367
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1368
	loff_t size = i_size_read(inode);
1369 1370
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
1371
	sector_t pblock = 0, cur_logical = 0;
1372
	struct ext4_io_submit io_submit;
1373 1374

	BUG_ON(mpd->next_page <= mpd->first_page);
1375
	memset(&io_submit, 0, sizeof(io_submit));
1376 1377 1378
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1379
	 * If we look at mpd->b_blocknr we would only be looking
1380 1381
	 * at the currently mapped buffer_heads.
	 */
1382 1383 1384
	index = mpd->first_page;
	end = mpd->next_page - 1;

1385
	pagevec_init(&pvec, 0);
1386
	while (index <= end) {
1387
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1388 1389 1390
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
1391
			int skip_page = 0;
1392 1393
			struct page *page = pvec.pages[i];

1394 1395 1396
			index = page->index;
			if (index > end)
				break;
1397 1398 1399 1400 1401

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
1402 1403 1404 1405 1406 1407
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
1408 1409 1410 1411 1412
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1413 1414
			bh = page_bufs = page_buffers(page);
			block_start = 0;
1415
			do {
1416 1417 1418
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
1419 1420 1421 1422
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
1423 1424 1425 1426 1427 1428 1429
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
1430

1431 1432 1433 1434 1435
				/*
				 * skip page if block allocation undone and
				 * block is dirty
				 */
				if (ext4_bh_delay_or_unwritten(NULL, bh))
1436
					skip_page = 1;
1437 1438
				bh = bh->b_this_page;
				block_start += bh->b_size;
1439 1440
				cur_logical++;
				pblock++;
1441 1442
			} while (bh != page_bufs);

1443 1444 1445 1446
			if (skip_page) {
				unlock_page(page);
				continue;
			}
1447

1448
			clear_page_dirty_for_io(page);
1449 1450
			err = ext4_bio_write_page(&io_submit, page, len,
						  mpd->wbc);
1451
			if (!err)
1452
				mpd->pages_written++;
1453 1454 1455 1456 1457 1458 1459 1460 1461
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
1462
	ext4_io_submit(&io_submit);
1463 1464 1465
	return ret;
}

1466
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1467 1468 1469 1470 1471 1472
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1473
	ext4_lblk_t start, last;
1474

1475 1476
	index = mpd->first_page;
	end   = mpd->next_page - 1;
1477 1478 1479 1480 1481

	start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	ext4_es_remove_extent(inode, start, last - start + 1);

1482
	pagevec_init(&pvec, 0);
1483 1484 1485 1486 1487 1488
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
1489
			if (page->index > end)
1490 1491 1492 1493 1494 1495 1496
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
1497 1498
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
1499 1500 1501 1502
	}
	return;
}

1503 1504 1505
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1506 1507 1508
	struct super_block *sb = inode->i_sb;

	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1509 1510
	       EXT4_C2B(EXT4_SB(inode->i_sb),
			ext4_count_free_clusters(inode->i_sb)));
1511 1512
	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1513 1514
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1515
	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1516 1517
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1518 1519 1520 1521
	ext4_msg(sb, KERN_CRIT, "Block reservation details");
	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
		 EXT4_I(inode)->i_reserved_data_blocks);
	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1522
	       EXT4_I(inode)->i_reserved_meta_blocks);
1523 1524 1525
	return;
}

1526
/*
1527 1528
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
1529
 *
1530
 * @mpd - bh describing space
1531 1532 1533 1534
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1535
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1536
{
1537
	int err, blks, get_blocks_flags;
1538
	struct ext4_map_blocks map, *mapp = NULL;
1539 1540 1541 1542
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
1543 1544

	/*
1545 1546
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
1547
	 */
1548 1549 1550 1551 1552
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
1553 1554 1555 1556

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

1557
	/*
1558
	 * Call ext4_map_blocks() to allocate any delayed allocation
1559 1560 1561 1562 1563 1564 1565 1566
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
1567
	 * want to change *many* call functions, so ext4_map_blocks()
1568
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1569 1570 1571 1572 1573
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
1574
	 */
1575 1576
	map.m_lblk = next;
	map.m_len = max_blocks;
1577
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1578 1579
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1580
	if (mpd->b_state & (1 << BH_Delay))
1581 1582
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

1583
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1584
	if (blks < 0) {
1585 1586
		struct super_block *sb = mpd->inode->i_sb;

1587
		err = blks;
1588
		/*
1589
		 * If get block returns EAGAIN or ENOSPC and there
1590 1591
		 * appears to be free blocks we will just let
		 * mpage_da_submit_io() unlock all of the pages.
1592 1593
		 */
		if (err == -EAGAIN)
1594
			goto submit_io;
1595

1596
		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1597
			mpd->retval = err;
1598
			goto submit_io;
1599 1600
		}

1601
		/*
1602 1603 1604 1605 1606
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
1607
		 */
1608 1609 1610 1611 1612 1613 1614 1615
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
1616
				"This should not happen!! Data will be lost");
1617 1618
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
1619
		}
1620
		/* invalidate all the pages */
1621
		ext4_da_block_invalidatepages(mpd);
1622 1623 1624

		/* Mark this page range as having been completed */
		mpd->io_done = 1;
1625
		return;
1626
	}
1627 1628
	BUG_ON(blks == 0);

1629
	mapp = &map;
1630 1631 1632
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
1633

1634 1635
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
1636 1637 1638
	}

	/*
1639
	 * Update on-disk size along with block allocation.
1640 1641 1642 1643 1644 1645
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
1646 1647 1648 1649 1650
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
1651 1652
	}

1653
submit_io:
1654
	mpage_da_submit_io(mpd, mapp);
1655
	mpd->io_done = 1;
1656 1657
}

1658 1659
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
1660 1661 1662 1663 1664 1665

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
1666
 * @b_state - b_state of the buffer head added
1667 1668 1669
 *
 * the function is used to collect contig. blocks in same state
 */
1670
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1671
				   unsigned long b_state)
1672 1673
{
	sector_t next;
1674 1675
	int blkbits = mpd->inode->i_blkbits;
	int nrblocks = mpd->b_size >> blkbits;
1676

1677 1678 1679 1680
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
1681
	 * ext4_map_blocks() multiple times in a loop
1682
	 */
1683
	if (nrblocks >= (8*1024*1024 >> blkbits))
1684 1685
		goto flush_it;

1686 1687
	/* check if the reserved journal credits might overflow */
	if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		}
	}
1698 1699 1700
	/*
	 * First block in the extent
	 */
1701 1702
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
1703
		mpd->b_size = 1 << blkbits;
1704
		mpd->b_state = b_state & BH_FLAGS;
1705 1706 1707
		return;
	}

1708
	next = mpd->b_blocknr + nrblocks;
1709 1710 1711
	/*
	 * Can we merge the block to our big extent?
	 */
1712
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1713
		mpd->b_size += 1 << blkbits;
1714 1715 1716
		return;
	}

1717
flush_it:
1718 1719 1720 1721
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
1722
	mpage_da_map_and_submit(mpd);
1723
	return;
1724 1725
}

1726
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1727
{
1728
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1729 1730
}

1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
/*
 * This function is grabs code from the very beginning of
 * ext4_map_blocks, but assumes that the caller is from delayed write
 * time. This function looks up the requested blocks and sets the
 * buffer delay bit under the protection of i_data_sem.
 */
static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
			      struct ext4_map_blocks *map,
			      struct buffer_head *bh)
{
	int retval;
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;

	map->m_flags = 0;
	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, map->m_len,
		  (unsigned long) map->m_lblk);
	/*
	 * Try to see if we can get the block without requesting a new
	 * file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
	if (ext4_has_inline_data(inode)) {
		/*
		 * We will soon create blocks for this page, and let
		 * us pretend as if the blocks aren't allocated yet.
		 * In case of clusters, we have to handle the work
		 * of mapping from cluster so that the reserved space
		 * is calculated properly.
		 */
		if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
		    ext4_find_delalloc_cluster(inode, map->m_lblk))
			map->m_flags |= EXT4_MAP_FROM_CLUSTER;
		retval = 0;
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
	else
		retval = ext4_ind_map_blocks(NULL, inode, map, 0);

	if (retval == 0) {
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
		/* If the block was allocated from previously allocated cluster,
		 * then we dont need to reserve it again. */
		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
			retval = ext4_da_reserve_space(inode, iblock);
			if (retval)
				/* not enough space to reserve */
				goto out_unlock;
		}

1787 1788
		retval = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
					       ~0, EXTENT_STATUS_DELAYED);
1789 1790 1791
		if (retval)
			goto out_unlock;

1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
		 * and it should not appear on the bh->b_state.
		 */
		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;

		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
	}

out_unlock:
	up_read((&EXT4_I(inode)->i_data_sem));

	return retval;
}

1808
/*
1809 1810 1811
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
1812 1813 1814 1815 1816 1817 1818
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
1819
 */
1820 1821
int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int create)
1822
{
1823
	struct ext4_map_blocks map;
1824 1825 1826
	int ret = 0;

	BUG_ON(create == 0);
1827 1828 1829 1830
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
1831 1832 1833 1834 1835 1836

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
1837 1838
	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
	if (ret <= 0)
1839
		return ret;
1840

1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
1852
		set_buffer_mapped(bh);
1853 1854
	}
	return 0;
1855
}
1856

1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
1874
	struct buffer_head *page_bufs = NULL;
1875
	handle_t *handle = NULL;
1876 1877 1878
	int ret = 0, err = 0;
	int inline_data = ext4_has_inline_data(inode);
	struct buffer_head *inode_bh = NULL;
1879

1880
	ClearPageChecked(page);
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896

	if (inline_data) {
		BUG_ON(page->index != 0);
		BUG_ON(len > ext4_get_max_inline_size(inode));
		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
		if (inode_bh == NULL)
			goto out;
	} else {
		page_bufs = page_buffers(page);
		if (!page_bufs) {
			BUG();
			goto out;
		}
		ext4_walk_page_buffers(handle, page_bufs, 0, len,
				       NULL, bget_one);
	}
1897 1898 1899 1900
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

1901 1902
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
				    ext4_writepage_trans_blocks(inode));
1903 1904 1905 1906 1907
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

1908 1909
	BUG_ON(!ext4_handle_valid(handle));

1910 1911
	if (inline_data) {
		ret = ext4_journal_get_write_access(handle, inode_bh);
1912

1913 1914 1915 1916 1917 1918 1919 1920 1921
		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);

	} else {
		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
					     do_journal_get_write_access);

		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
					     write_end_fn);
	}
1922 1923
	if (ret == 0)
		ret = err;
1924
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1925 1926 1927 1928
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

1929 1930 1931
	if (!ext4_has_inline_data(inode))
		ext4_walk_page_buffers(handle, page_bufs, 0, len,
				       NULL, bput_one);
1932
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1933
out:
1934
	brelse(inode_bh);
1935 1936 1937
	return ret;
}

1938
/*
1939 1940 1941 1942
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
L
Lucas De Marchi 已提交
1943
 * we are writing back data modified via mmap(), no one guarantees in which
1944 1945 1946 1947
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
1948 1949 1950
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
1951
 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1952
 *   - grab_page_cache when doing write_begin (have journal handle)
1953 1954 1955 1956 1957 1958 1959 1960 1961
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
1962
 * but other buffer_heads would be unmapped but dirty (dirty done via the
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1978
 */
1979
static int ext4_writepage(struct page *page,
1980
			  struct writeback_control *wbc)
1981
{
1982
	int ret = 0;
1983
	loff_t size;
1984
	unsigned int len;
1985
	struct buffer_head *page_bufs = NULL;
1986
	struct inode *inode = page->mapping->host;
1987
	struct ext4_io_submit io_submit;
1988

L
Lukas Czerner 已提交
1989
	trace_ext4_writepage(page);
1990 1991 1992 1993 1994
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
1995

T
Theodore Ts'o 已提交
1996
	page_bufs = page_buffers(page);
1997 1998 1999 2000 2001 2002 2003
	/*
	 * We cannot do block allocation or other extent handling in this
	 * function. If there are buffers needing that, we have to redirty
	 * the page. But we may reach here when we do a journal commit via
	 * journal_submit_inode_data_buffers() and in that case we must write
	 * allocated buffers to achieve data=ordered mode guarantees.
	 */
2004 2005
	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
				   ext4_bh_delay_or_unwritten)) {
2006
		redirty_page_for_writepage(wbc, page);
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
		if (current->flags & PF_MEMALLOC) {
			/*
			 * For memory cleaning there's no point in writing only
			 * some buffers. So just bail out. Warn if we came here
			 * from direct reclaim.
			 */
			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
							== PF_MEMALLOC);
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
2018
	}
2019

2020
	if (PageChecked(page) && ext4_should_journal_data(inode))
2021 2022 2023 2024
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
2025
		return __ext4_journalled_writepage(page, len);
2026

2027 2028 2029
	memset(&io_submit, 0, sizeof(io_submit));
	ret = ext4_bio_write_page(&io_submit, page, len, wbc);
	ext4_io_submit(&io_submit);
2030 2031 2032
	return ret;
}

2033
/*
2034
 * This is called via ext4_da_writepages() to
L
Lucas De Marchi 已提交
2035
 * calculate the total number of credits to reserve to fit
2036 2037 2038
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2039
 */
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2051
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2052 2053 2054 2055 2056
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2057

2058 2059
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
2060
 * address space and accumulate pages that need writing, and call
2061 2062
 * mpage_da_map_and_submit to map a single contiguous memory region
 * and then write them.
2063
 */
2064 2065
static int write_cache_pages_da(handle_t *handle,
				struct address_space *mapping,
2066
				struct writeback_control *wbc,
2067 2068
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
2069
{
2070
	struct buffer_head	*bh, *head;
2071
	struct inode		*inode = mapping->host;
2072 2073 2074 2075 2076 2077
	struct pagevec		pvec;
	unsigned int		nr_pages;
	sector_t		logical;
	pgoff_t			index, end;
	long			nr_to_write = wbc->nr_to_write;
	int			i, tag, ret = 0;
2078

2079 2080 2081
	memset(mpd, 0, sizeof(struct mpage_da_data));
	mpd->wbc = wbc;
	mpd->inode = inode;
2082 2083 2084 2085
	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2086
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2087 2088 2089 2090
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2091
	*done_index = index;
2092
	while (index <= end) {
2093
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2094 2095
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
2096
			return 0;
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
2108 2109
			if (page->index > end)
				goto out;
2110

2111 2112
			*done_index = page->index + 1;

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
			/*
			 * If we can't merge this page, and we have
			 * accumulated an contiguous region, write it
			 */
			if ((mpd->next_page != page->index) &&
			    (mpd->next_page != mpd->first_page)) {
				mpage_da_map_and_submit(mpd);
				goto ret_extent_tail;
			}

2123 2124 2125
			lock_page(page);

			/*
2126 2127 2128 2129 2130 2131
			 * If the page is no longer dirty, or its
			 * mapping no longer corresponds to inode we
			 * are writing (which means it has been
			 * truncated or invalidated), or the page is
			 * already under writeback and we are not
			 * doing a data integrity writeback, skip the page
2132
			 */
2133 2134 2135 2136
			if (!PageDirty(page) ||
			    (PageWriteback(page) &&
			     (wbc->sync_mode == WB_SYNC_NONE)) ||
			    unlikely(page->mapping != mapping)) {
2137 2138 2139 2140
				unlock_page(page);
				continue;
			}

2141
			wait_on_page_writeback(page);
2142 2143
			BUG_ON(PageWriteback(page));

2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
			/*
			 * If we have inline data and arrive here, it means that
			 * we will soon create the block for the 1st page, so
			 * we'd better clear the inline data here.
			 */
			if (ext4_has_inline_data(inode)) {
				BUG_ON(ext4_test_inode_state(inode,
						EXT4_STATE_MAY_INLINE_DATA));
				ext4_destroy_inline_data(handle, inode);
			}

2155
			if (mpd->next_page != page->index)
2156 2157 2158 2159 2160
				mpd->first_page = page->index;
			mpd->next_page = page->index + 1;
			logical = (sector_t) page->index <<
				(PAGE_CACHE_SHIFT - inode->i_blkbits);

2161 2162 2163 2164 2165
			/* Add all dirty buffers to mpd */
			head = page_buffers(page);
			bh = head;
			do {
				BUG_ON(buffer_locked(bh));
2166
				/*
2167 2168 2169
				 * We need to try to allocate unmapped blocks
				 * in the same page.  Otherwise we won't make
				 * progress with the page in ext4_writepage
2170
				 */
2171 2172 2173 2174 2175 2176 2177
				if (ext4_bh_delay_or_unwritten(NULL, bh)) {
					mpage_add_bh_to_extent(mpd, logical,
							       bh->b_state);
					if (mpd->io_done)
						goto ret_extent_tail;
				} else if (buffer_dirty(bh) &&
					   buffer_mapped(bh)) {
2178
					/*
2179 2180 2181 2182 2183 2184 2185
					 * mapped dirty buffer. We need to
					 * update the b_state because we look
					 * at b_state in mpage_da_map_blocks.
					 * We don't update b_size because if we
					 * find an unmapped buffer_head later
					 * we need to use the b_state flag of
					 * that buffer_head.
2186
					 */
2187 2188 2189 2190 2191 2192
					if (mpd->b_size == 0)
						mpd->b_state =
							bh->b_state & BH_FLAGS;
				}
				logical++;
			} while ((bh = bh->b_this_page) != head);
2193 2194 2195 2196

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
2197
				    wbc->sync_mode == WB_SYNC_NONE)
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
2208
					goto out;
2209 2210 2211 2212 2213
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2214 2215 2216
	return 0;
ret_extent_tail:
	ret = MPAGE_DA_EXTENT_TAIL;
2217 2218 2219
out:
	pagevec_release(&pvec);
	cond_resched();
2220 2221 2222 2223
	return ret;
}


2224
static int ext4_da_writepages(struct address_space *mapping,
2225
			      struct writeback_control *wbc)
2226
{
2227 2228
	pgoff_t	index;
	int range_whole = 0;
2229
	handle_t *handle = NULL;
2230
	struct mpage_da_data mpd;
2231
	struct inode *inode = mapping->host;
2232
	int pages_written = 0;
2233
	unsigned int max_pages;
2234
	int range_cyclic, cycled = 1, io_done = 0;
2235 2236
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2237
	loff_t range_start = wbc->range_start;
2238
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2239
	pgoff_t done_index = 0;
2240
	pgoff_t end;
S
Shaohua Li 已提交
2241
	struct blk_plug plug;
2242

2243
	trace_ext4_da_writepages(inode, wbc);
2244

2245 2246 2247 2248 2249
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2250
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2251
		return 0;
2252 2253 2254 2255 2256

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2257
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2258 2259 2260 2261 2262
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2263
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2264 2265
		return -EROFS;

2266 2267
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2268

2269 2270
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2271
		index = mapping->writeback_index;
2272 2273 2274 2275 2276
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2277 2278
		end = -1;
	} else {
2279
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2280 2281
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2282

2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2300 2301 2302 2303 2304 2305
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2316
retry:
2317
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2318 2319
		tag_pages_for_writeback(mapping, index, end);

S
Shaohua Li 已提交
2320
	blk_start_plug(&plug);
2321
	while (!ret && wbc->nr_to_write > 0) {
2322 2323 2324 2325 2326 2327 2328 2329

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2330
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2331

2332
		/* start a new transaction*/
2333 2334
		handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
					    needed_blocks);
2335 2336
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2337
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2338
			       "%ld pages, ino %lu; err %d", __func__,
2339
				wbc->nr_to_write, inode->i_ino, ret);
2340
			blk_finish_plug(&plug);
2341 2342
			goto out_writepages;
		}
2343 2344

		/*
2345
		 * Now call write_cache_pages_da() to find the next
2346
		 * contiguous region of logical blocks that need
2347
		 * blocks to be allocated by ext4 and submit them.
2348
		 */
2349 2350
		ret = write_cache_pages_da(handle, mapping,
					   wbc, &mpd, &done_index);
2351
		/*
2352
		 * If we have a contiguous extent of pages and we
2353 2354 2355 2356
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2357
			mpage_da_map_and_submit(&mpd);
2358 2359
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2360
		trace_ext4_da_write_pages(inode, &mpd);
2361
		wbc->nr_to_write -= mpd.pages_written;
2362

2363
		ext4_journal_stop(handle);
2364

2365
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2366 2367 2368 2369
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2370
			jbd2_journal_force_commit_nested(sbi->s_journal);
2371 2372
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2373
			/*
2374 2375 2376
			 * Got one extent now try with rest of the pages.
			 * If mpd.retval is set -EIO, journal is aborted.
			 * So we don't need to write any more.
2377
			 */
2378
			pages_written += mpd.pages_written;
2379
			ret = mpd.retval;
2380
			io_done = 1;
2381
		} else if (wbc->nr_to_write)
2382 2383 2384 2385 2386 2387
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2388
	}
S
Shaohua Li 已提交
2389
	blk_finish_plug(&plug);
2390 2391 2392 2393 2394 2395 2396
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2397 2398

	/* Update index */
2399
	wbc->range_cyclic = range_cyclic;
2400 2401 2402 2403 2404
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
2405
		mapping->writeback_index = done_index;
2406

2407
out_writepages:
2408
	wbc->nr_to_write -= nr_to_writebump;
2409
	wbc->range_start = range_start;
2410
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2411
	return ret;
2412 2413
}

2414 2415 2416 2417 2418 2419 2420 2421
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2422
	 * counters can get slightly wrong with percpu_counter_batch getting
2423 2424 2425 2426
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
2427 2428 2429
	free_blocks  = EXT4_C2B(sbi,
		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
	/*
	 * Start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
	    !writeback_in_progress(sb->s_bdi) &&
	    down_read_trylock(&sb->s_umount)) {
		writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
		up_read(&sb->s_umount);
	}

2440
	if (2 * free_blocks < 3 * dirty_blocks ||
2441
		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2442
		/*
2443 2444
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
2445 2446 2447 2448 2449 2450
		 */
		return 1;
	}
	return 0;
}

2451
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2452 2453
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
2454
{
2455
	int ret, retries = 0;
2456 2457 2458 2459 2460 2461
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
2462 2463 2464 2465 2466 2467 2468

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2469
	trace_ext4_da_write_begin(inode, pos, len, flags);
2470 2471 2472 2473 2474 2475

	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
		ret = ext4_da_write_inline_data_begin(mapping, inode,
						      pos, len, flags,
						      pagep, fsdata);
		if (ret < 0)
2476 2477 2478
			return ret;
		if (ret == 1)
			return 0;
2479 2480
	}

2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
	/*
	 * grab_cache_page_write_begin() can take a long time if the
	 * system is thrashing due to memory pressure, or if the page
	 * is being written back.  So grab it first before we start
	 * the transaction handle.  This also allows us to allocate
	 * the page (if needed) without using GFP_NOFS.
	 */
retry_grab:
	page = grab_cache_page_write_begin(mapping, index, flags);
	if (!page)
		return -ENOMEM;
	unlock_page(page);

2494 2495 2496 2497 2498 2499
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
2500
retry_journal:
2501
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2502
	if (IS_ERR(handle)) {
2503 2504
		page_cache_release(page);
		return PTR_ERR(handle);
2505 2506
	}

2507 2508 2509 2510 2511
	lock_page(page);
	if (page->mapping != mapping) {
		/* The page got truncated from under us */
		unlock_page(page);
		page_cache_release(page);
2512
		ext4_journal_stop(handle);
2513
		goto retry_grab;
2514
	}
2515 2516
	/* In case writeback began while the page was unlocked */
	wait_on_page_writeback(page);
2517

2518
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2519 2520 2521
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
2522 2523 2524 2525 2526 2527
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
2528
			ext4_truncate_failed_write(inode);
2529 2530 2531 2532 2533 2534 2535

		if (ret == -ENOSPC &&
		    ext4_should_retry_alloc(inode->i_sb, &retries))
			goto retry_journal;

		page_cache_release(page);
		return ret;
2536 2537
	}

2538
	*pagep = page;
2539 2540 2541
	return ret;
}

2542 2543 2544 2545 2546
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
2547
					    unsigned long offset)
2548 2549 2550 2551 2552 2553 2554 2555 2556
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2557
	for (i = 0; i < idx; i++)
2558 2559
		bh = bh->b_this_page;

2560
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2561 2562 2563 2564
		return 0;
	return 1;
}

2565
static int ext4_da_write_end(struct file *file,
2566 2567 2568
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
2569 2570 2571 2572 2573
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2574
	unsigned long start, end;
2575 2576 2577
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2578 2579
		switch (ext4_inode_journal_mode(inode)) {
		case EXT4_INODE_ORDERED_DATA_MODE:
2580 2581
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2582
		case EXT4_INODE_WRITEBACK_DATA_MODE:
2583 2584
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2585
		default:
2586 2587 2588
			BUG();
		}
	}
2589

2590
	trace_ext4_da_write_end(inode, pos, len, copied);
2591
	start = pos & (PAGE_CACHE_SIZE - 1);
2592
	end = start + copied - 1;
2593 2594 2595 2596 2597 2598 2599

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */
	new_i_size = pos + copied;
2600
	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2601 2602
		if (ext4_has_inline_data(inode) ||
		    ext4_da_should_update_i_disksize(page, end)) {
2603
			down_write(&EXT4_I(inode)->i_data_sem);
2604
			if (new_i_size > EXT4_I(inode)->i_disksize)
2605 2606
				EXT4_I(inode)->i_disksize = new_i_size;
			up_write(&EXT4_I(inode)->i_data_sem);
2607 2608 2609 2610 2611
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2612
		}
2613
	}
2614 2615 2616 2617 2618 2619 2620 2621

	if (write_mode != CONVERT_INLINE_DATA &&
	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
	    ext4_has_inline_data(inode))
		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
						     page);
	else
		ret2 = generic_write_end(file, mapping, pos, len, copied,
2622
							page, fsdata);
2623

2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2643
	ext4_da_page_release_reservation(page, offset);
2644 2645 2646 2647 2648 2649 2650

out:
	ext4_invalidatepage(page, offset);

	return;
}

2651 2652 2653 2654 2655
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
2656 2657
	trace_ext4_alloc_da_blocks(inode);

2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
2668
	 *
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
2681
	 * the pages by calling redirty_page_for_writepage() but that
2682 2683
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
L
Lucas De Marchi 已提交
2684
	 * simplifying them because we wouldn't actually intend to
2685 2686 2687
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
2688
	 *
2689 2690 2691 2692 2693 2694
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
2695

2696 2697 2698 2699 2700
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2701
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2702 2703 2704 2705 2706 2707 2708 2709
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2710
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2711 2712 2713 2714 2715
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

T
Tao Ma 已提交
2716 2717 2718 2719 2720 2721
	/*
	 * We can get here for an inline file via the FIBMAP ioctl
	 */
	if (ext4_has_inline_data(inode))
		return 0;

2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2732 2733
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2745
		 * NB. EXT4_STATE_JDATA is not set on files other than
2746 2747 2748 2749 2750 2751
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2752
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2753
		journal = EXT4_JOURNAL(inode);
2754 2755 2756
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2757 2758 2759 2760 2761

		if (err)
			return 0;
	}

2762
	return generic_block_bmap(mapping, block, ext4_get_block);
2763 2764
}

2765
static int ext4_readpage(struct file *file, struct page *page)
2766
{
T
Tao Ma 已提交
2767 2768 2769
	int ret = -EAGAIN;
	struct inode *inode = page->mapping->host;

2770
	trace_ext4_readpage(page);
T
Tao Ma 已提交
2771 2772 2773 2774 2775 2776 2777 2778

	if (ext4_has_inline_data(inode))
		ret = ext4_readpage_inline(inode, page);

	if (ret == -EAGAIN)
		return mpage_readpage(page, ext4_get_block);

	return ret;
2779 2780 2781
}

static int
2782
ext4_readpages(struct file *file, struct address_space *mapping,
2783 2784
		struct list_head *pages, unsigned nr_pages)
{
T
Tao Ma 已提交
2785 2786 2787 2788 2789 2790
	struct inode *inode = mapping->host;

	/* If the file has inline data, no need to do readpages. */
	if (ext4_has_inline_data(inode))
		return 0;

2791
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2792 2793
}

2794
static void ext4_invalidatepage(struct page *page, unsigned long offset)
2795
{
2796 2797
	trace_ext4_invalidatepage(page, offset);

2798 2799 2800 2801 2802 2803
	/* No journalling happens on data buffers when this function is used */
	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));

	block_invalidatepage(page, offset);
}

2804 2805
static int __ext4_journalled_invalidatepage(struct page *page,
					    unsigned long offset)
2806 2807 2808 2809 2810
{
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);

	trace_ext4_journalled_invalidatepage(page, offset);

2811 2812 2813 2814 2815 2816
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

2817 2818 2819 2820 2821 2822 2823 2824
	return jbd2_journal_invalidatepage(journal, page, offset);
}

/* Wrapper for aops... */
static void ext4_journalled_invalidatepage(struct page *page,
					   unsigned long offset)
{
	WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
2825 2826
}

2827
static int ext4_releasepage(struct page *page, gfp_t wait)
2828
{
2829
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2830

2831 2832
	trace_ext4_releasepage(page);

2833 2834 2835
	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
2836 2837 2838 2839
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
2840 2841
}

2842 2843 2844 2845 2846
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
2847
int ext4_get_block_write(struct inode *inode, sector_t iblock,
2848 2849
		   struct buffer_head *bh_result, int create)
{
2850
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2851
		   inode->i_ino, create);
2852 2853
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2854 2855
}

2856
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2857
		   struct buffer_head *bh_result, int create)
2858
{
2859 2860 2861 2862
	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
		   inode->i_ino, create);
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_NO_LOCK);
2863 2864
}

2865
static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2866 2867
			    ssize_t size, void *private, int ret,
			    bool is_async)
2868
{
2869
	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2870 2871
        ext4_io_end_t *io_end = iocb->private;

2872 2873
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
2874
		goto out;
2875

2876
	ext_debug("ext4_end_io_dio(): io_end 0x%p "
2877
		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2878 2879 2880
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

2881 2882
	iocb->private = NULL;

2883
	/* if not aio dio with unwritten extents, just free io and return */
2884
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2885
		ext4_free_io_end(io_end);
2886
out:
2887
		inode_dio_done(inode);
2888 2889 2890
		if (is_async)
			aio_complete(iocb, ret, 0);
		return;
2891 2892
	}

2893 2894
	io_end->offset = offset;
	io_end->size = size;
2895 2896 2897 2898
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
2899

2900
	ext4_add_complete_io(io_end);
2901
}
2902

2903 2904 2905 2906 2907
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
2908
 * For holes, we fallocate those blocks, mark them as uninitialized
2909
 * If those blocks were preallocated, we mark sure they are split, but
2910
 * still keep the range to write as uninitialized.
2911
 *
2912
 * The unwritten extents will be converted to written when DIO is completed.
2913
 * For async direct IO, since the IO may still pending when return, we
L
Lucas De Marchi 已提交
2914
 * set up an end_io call back function, which will do the conversion
2915
 * when async direct IO completed.
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);
2930 2931 2932
	int overwrite = 0;
	get_block_t *get_block_func = NULL;
	int dio_flags = 0;
2933
	loff_t final_size = offset + count;
2934

2935 2936 2937
	/* Use the old path for reads and writes beyond i_size. */
	if (rw != WRITE || final_size > inode->i_size)
		return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2938

2939
	BUG_ON(iocb->private == NULL);
2940

2941 2942
	/* If we do a overwrite dio, i_mutex locking can be released */
	overwrite = *((int *)iocb->private);
2943

2944 2945 2946 2947 2948
	if (overwrite) {
		atomic_inc(&inode->i_dio_count);
		down_read(&EXT4_I(inode)->i_data_sem);
		mutex_unlock(&inode->i_mutex);
	}
2949

2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
	/*
	 * We could direct write to holes and fallocate.
	 *
	 * Allocated blocks to fill the hole are marked as
	 * uninitialized to prevent parallel buffered read to expose
	 * the stale data before DIO complete the data IO.
	 *
	 * As to previously fallocated extents, ext4 get_block will
	 * just simply mark the buffer mapped but still keep the
	 * extents uninitialized.
	 *
	 * For non AIO case, we will convert those unwritten extents
	 * to written after return back from blockdev_direct_IO.
	 *
	 * For async DIO, the conversion needs to be deferred when the
	 * IO is completed. The ext4 end_io callback function will be
	 * called to take care of the conversion work.  Here for async
	 * case, we allocate an io_end structure to hook to the iocb.
	 */
	iocb->private = NULL;
	ext4_inode_aio_set(inode, NULL);
	if (!is_sync_kiocb(iocb)) {
		ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
		if (!io_end) {
			ret = -ENOMEM;
			goto retake_lock;
2976
		}
2977 2978
		io_end->flag |= EXT4_IO_END_DIRECT;
		iocb->private = io_end;
2979
		/*
2980 2981 2982 2983
		 * we save the io structure for current async direct
		 * IO, so that later ext4_map_blocks() could flag the
		 * io structure whether there is a unwritten extents
		 * needs to be converted when IO is completed.
2984
		 */
2985 2986
		ext4_inode_aio_set(inode, io_end);
	}
2987

2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
	if (overwrite) {
		get_block_func = ext4_get_block_write_nolock;
	} else {
		get_block_func = ext4_get_block_write;
		dio_flags = DIO_LOCKING;
	}
	ret = __blockdev_direct_IO(rw, iocb, inode,
				   inode->i_sb->s_bdev, iov,
				   offset, nr_segs,
				   get_block_func,
				   ext4_end_io_dio,
				   NULL,
				   dio_flags);

	if (iocb->private)
		ext4_inode_aio_set(inode, NULL);
	/*
	 * The io_end structure takes a reference to the inode, that
	 * structure needs to be destroyed and the reference to the
	 * inode need to be dropped, when IO is complete, even with 0
	 * byte write, or failed.
	 *
	 * In the successful AIO DIO case, the io_end structure will
	 * be destroyed and the reference to the inode will be dropped
	 * after the end_io call back function is called.
	 *
	 * In the case there is 0 byte write, or error case, since VFS
	 * direct IO won't invoke the end_io call back function, we
	 * need to free the end_io structure here.
	 */
	if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
		ext4_free_io_end(iocb->private);
		iocb->private = NULL;
	} else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
		int err;
		/*
		 * for non AIO case, since the IO is already
		 * completed, we could do the conversion right here
		 */
		err = ext4_convert_unwritten_extents(inode,
						     offset, ret);
		if (err < 0)
			ret = err;
		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
	}
3034

3035 3036 3037 3038 3039 3040
retake_lock:
	/* take i_mutex locking again if we do a ovewrite dio */
	if (overwrite) {
		inode_dio_done(inode);
		up_read(&EXT4_I(inode)->i_data_sem);
		mutex_lock(&inode->i_mutex);
3041
	}
3042

3043
	return ret;
3044 3045 3046 3047 3048 3049 3050 3051
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3052
	ssize_t ret;
3053

3054 3055 3056 3057 3058 3059
	/*
	 * If we are doing data journalling we don't support O_DIRECT
	 */
	if (ext4_should_journal_data(inode))
		return 0;

T
Tao Ma 已提交
3060 3061 3062 3063
	/* Let buffer I/O handle the inline data case. */
	if (ext4_has_inline_data(inode))
		return 0;

3064
	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3065
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3066 3067 3068 3069 3070 3071
		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
	else
		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
	trace_ext4_direct_IO_exit(inode, offset,
				iov_length(iov, nr_segs), rw, ret);
	return ret;
3072 3073
}

3074
/*
3075
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3087
static int ext4_journalled_set_page_dirty(struct page *page)
3088 3089 3090 3091 3092
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3093
static const struct address_space_operations ext4_ordered_aops = {
3094 3095
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3096
	.writepage		= ext4_writepage,
3097 3098 3099 3100 3101 3102 3103 3104
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3105
	.error_remove_page	= generic_error_remove_page,
3106 3107
};

3108
static const struct address_space_operations ext4_writeback_aops = {
3109 3110
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3111
	.writepage		= ext4_writepage,
3112 3113 3114 3115 3116 3117 3118 3119
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3120
	.error_remove_page	= generic_error_remove_page,
3121 3122
};

3123
static const struct address_space_operations ext4_journalled_aops = {
3124 3125
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3126
	.writepage		= ext4_writepage,
3127 3128 3129 3130
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
3131
	.invalidatepage		= ext4_journalled_invalidatepage,
3132
	.releasepage		= ext4_releasepage,
3133
	.direct_IO		= ext4_direct_IO,
3134
	.is_partially_uptodate  = block_is_partially_uptodate,
3135
	.error_remove_page	= generic_error_remove_page,
3136 3137
};

3138
static const struct address_space_operations ext4_da_aops = {
3139 3140
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3141
	.writepage		= ext4_writepage,
3142 3143 3144 3145 3146 3147 3148 3149 3150
	.writepages		= ext4_da_writepages,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3151
	.error_remove_page	= generic_error_remove_page,
3152 3153
};

3154
void ext4_set_aops(struct inode *inode)
3155
{
3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
	switch (ext4_inode_journal_mode(inode)) {
	case EXT4_INODE_ORDERED_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_ordered_aops;
		break;
	case EXT4_INODE_WRITEBACK_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_writeback_aops;
		break;
	case EXT4_INODE_JOURNAL_DATA_MODE:
3170
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3171 3172 3173 3174
		break;
	default:
		BUG();
	}
3175 3176
}

3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196

/*
 * ext4_discard_partial_page_buffers()
 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
 * This function finds and locks the page containing the offset
 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
 * Calling functions that already have the page locked should call
 * ext4_discard_partial_page_buffers_no_lock directly.
 */
int ext4_discard_partial_page_buffers(handle_t *handle,
		struct address_space *mapping, loff_t from,
		loff_t length, int flags)
{
	struct inode *inode = mapping->host;
	struct page *page;
	int err = 0;

	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
	if (!page)
3197
		return -ENOMEM;
3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225

	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
		from, length, flags);

	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * ext4_discard_partial_page_buffers_no_lock()
 * Zeros a page range of length 'length' starting from offset 'from'.
 * Buffer heads that correspond to the block aligned regions of the
 * zeroed range will be unmapped.  Unblock aligned regions
 * will have the corresponding buffer head mapped if needed so that
 * that region of the page can be updated with the partial zero out.
 *
 * This function assumes that the page has already been  locked.  The
 * The range to be discarded must be contained with in the given page.
 * If the specified range exceeds the end of the page it will be shortened
 * to the end of the page that corresponds to 'from'.  This function is
 * appropriate for updating a page and it buffer heads to be unmapped and
 * zeroed for blocks that have been either released, or are going to be
 * released.
 *
 * handle: The journal handle
 * inode:  The files inode
 * page:   A locked page that contains the offset "from"
3226
 * from:   The starting byte offset (from the beginning of the file)
3227 3228 3229 3230 3231 3232 3233
 *         to begin discarding
 * len:    The length of bytes to discard
 * flags:  Optional flags that may be used:
 *
 *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
 *         Only zero the regions of the page whose buffer heads
 *         have already been unmapped.  This flag is appropriate
3234
 *         for updating the contents of a page whose blocks may
3235 3236 3237
 *         have already been released, and we only want to zero
 *         out the regions that correspond to those released blocks.
 *
3238
 * Returns zero on success or negative on failure.
3239
 */
E
Eric Sandeen 已提交
3240
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags)
{
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
	unsigned int blocksize, max, pos;
	ext4_lblk_t iblock;
	struct buffer_head *bh;
	int err = 0;

	blocksize = inode->i_sb->s_blocksize;
	max = PAGE_CACHE_SIZE - offset;

	if (index != page->index)
		return -EINVAL;

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the page
	 */
	if (length > max || length < 0)
		length = max;

	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

3266 3267
	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	pos = offset;
	while (pos < offset + length) {
3280 3281
		unsigned int end_of_block, range_to_discard;

3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
		err = 0;

		/* The length of space left to zero and unmap */
		range_to_discard = offset + length - pos;

		/* The length of space until the end of the block */
		end_of_block = blocksize - (pos & (blocksize-1));

		/*
		 * Do not unmap or zero past end of block
		 * for this buffer head
		 */
		if (range_to_discard > end_of_block)
			range_to_discard = end_of_block;


		/*
		 * Skip this buffer head if we are only zeroing unampped
		 * regions of the page
		 */
		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
			buffer_mapped(bh))
				goto next;

		/* If the range is block aligned, unmap */
		if (range_to_discard == blocksize) {
			clear_buffer_dirty(bh);
			bh->b_bdev = NULL;
			clear_buffer_mapped(bh);
			clear_buffer_req(bh);
			clear_buffer_new(bh);
			clear_buffer_delay(bh);
			clear_buffer_unwritten(bh);
			clear_buffer_uptodate(bh);
			zero_user(page, pos, range_to_discard);
			BUFFER_TRACE(bh, "Buffer discarded");
			goto next;
		}

		/*
		 * If this block is not completely contained in the range
		 * to be discarded, then it is not going to be released. Because
		 * we need to keep this block, we need to make sure this part
		 * of the page is uptodate before we modify it by writeing
		 * partial zeros on it.
		 */
		if (!buffer_mapped(bh)) {
			/*
			 * Buffer head must be mapped before we can read
			 * from the block
			 */
			BUFFER_TRACE(bh, "unmapped");
			ext4_get_block(inode, iblock, bh, 0);
			/* unmapped? It's a hole - nothing to do */
			if (!buffer_mapped(bh)) {
				BUFFER_TRACE(bh, "still unmapped");
				goto next;
			}
		}

		/* Ok, it's mapped. Make sure it's up-to-date */
		if (PageUptodate(page))
			set_buffer_uptodate(bh);

		if (!buffer_uptodate(bh)) {
			err = -EIO;
			ll_rw_block(READ, 1, &bh);
			wait_on_buffer(bh);
			/* Uhhuh. Read error. Complain and punt.*/
			if (!buffer_uptodate(bh))
				goto next;
		}

		if (ext4_should_journal_data(inode)) {
			BUFFER_TRACE(bh, "get write access");
			err = ext4_journal_get_write_access(handle, bh);
			if (err)
				goto next;
		}

		zero_user(page, pos, range_to_discard);

		err = 0;
		if (ext4_should_journal_data(inode)) {
			err = ext4_handle_dirty_metadata(handle, inode, bh);
3367
		} else
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
			mark_buffer_dirty(bh);

		BUFFER_TRACE(bh, "Partial buffer zeroed");
next:
		bh = bh->b_this_page;
		iblock++;
		pos += range_to_discard;
	}

	return err;
}

3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
int ext4_can_truncate(struct inode *inode)
{
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3391 3392 3393 3394 3395 3396 3397 3398
/*
 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 * associated with the given offset and length
 *
 * @inode:  File inode
 * @offset: The offset where the hole will begin
 * @len:    The length of the hole
 *
3399
 * Returns: 0 on success or negative on failure
3400 3401 3402 3403 3404 3405
 */

int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	if (!S_ISREG(inode->i_mode))
3406
		return -EOPNOTSUPP;
3407

3408 3409
	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
		return ext4_ind_punch_hole(file, offset, length);
3410

3411 3412
	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
		/* TODO: Add support for bigalloc file systems */
3413
		return -EOPNOTSUPP;
3414 3415
	}

3416 3417
	trace_ext4_punch_hole(inode, offset, length);

3418 3419 3420
	return ext4_ext_punch_hole(file, offset, length);
}

3421
/*
3422
 * ext4_truncate()
3423
 *
3424 3425
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3426 3427
 * simultaneously on behalf of the same inode.
 *
3428
 * As we work through the truncate and commit bits of it to the journal there
3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3442
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3443
 * that this inode's truncate did not complete and it will again call
3444 3445
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3446
 * that's fine - as long as they are linked from the inode, the post-crash
3447
 * ext4_truncate() run will find them and release them.
3448
 */
3449
void ext4_truncate(struct inode *inode)
3450
{
3451 3452
	trace_ext4_truncate_enter(inode);

3453
	if (!ext4_can_truncate(inode))
3454 3455
		return;

3456
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3457

3458
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3459
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3460

3461 3462 3463 3464 3465 3466 3467 3468
	if (ext4_has_inline_data(inode)) {
		int has_inline = 1;

		ext4_inline_data_truncate(inode, &has_inline);
		if (has_inline)
			return;
	}

3469
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3470
		ext4_ext_truncate(inode);
3471 3472
	else
		ext4_ind_truncate(inode);
3473

3474
	trace_ext4_truncate_exit(inode);
3475 3476 3477
}

/*
3478
 * ext4_get_inode_loc returns with an extra refcount against the inode's
3479 3480 3481 3482
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
3483 3484
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
3485
{
3486 3487 3488 3489 3490 3491
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
3492
	iloc->bh = NULL;
3493 3494
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
3495

3496 3497 3498
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
3499 3500
		return -EIO;

3501 3502 3503
	/*
	 * Figure out the offset within the block group inode table
	 */
3504
	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3505 3506 3507 3508 3509 3510
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
3511
	if (unlikely(!bh))
3512
		return -ENOMEM;
3513 3514
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
3538
			int i, start;
3539

3540
			start = inode_offset & ~(inodes_per_block - 1);
3541

3542 3543
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3544
			if (unlikely(!bitmap_bh))
3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
3556
			for (i = start; i < start + inodes_per_block; i++) {
3557 3558
				if (i == inode_offset)
					continue;
3559
				if (ext4_test_bit(i, bitmap_bh->b_data))
3560 3561 3562
					break;
			}
			brelse(bitmap_bh);
3563
			if (i == start + inodes_per_block) {
3564 3565 3566 3567 3568 3569 3570 3571 3572
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
3573 3574 3575 3576 3577 3578 3579 3580 3581
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
3582
			/* s_inode_readahead_blks is always a power of 2 */
3583 3584 3585 3586 3587
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
3588
			if (ext4_has_group_desc_csum(sb))
3589
				num -= ext4_itable_unused_count(sb, gdp);
3590 3591 3592 3593 3594 3595 3596
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

3597 3598 3599 3600 3601
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
3602
		trace_ext4_load_inode(inode);
3603 3604
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
3605
		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3606 3607
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
3608 3609
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
3610 3611 3612 3613 3614 3615 3616 3617 3618
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

3619
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3620 3621
{
	/* We have all inode data except xattrs in memory here. */
3622
	return __ext4_get_inode_loc(inode, iloc,
3623
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3624 3625
}

3626
void ext4_set_inode_flags(struct inode *inode)
3627
{
3628
	unsigned int flags = EXT4_I(inode)->i_flags;
3629 3630

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3631
	if (flags & EXT4_SYNC_FL)
3632
		inode->i_flags |= S_SYNC;
3633
	if (flags & EXT4_APPEND_FL)
3634
		inode->i_flags |= S_APPEND;
3635
	if (flags & EXT4_IMMUTABLE_FL)
3636
		inode->i_flags |= S_IMMUTABLE;
3637
	if (flags & EXT4_NOATIME_FL)
3638
		inode->i_flags |= S_NOATIME;
3639
	if (flags & EXT4_DIRSYNC_FL)
3640 3641 3642
		inode->i_flags |= S_DIRSYNC;
}

3643 3644 3645
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3666
}
3667

3668
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3669
				  struct ext4_inode_info *ei)
3670 3671
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
3672 3673
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
3674 3675 3676 3677 3678 3679

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
3680
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
3681 3682 3683 3684 3685
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
3686 3687 3688 3689
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
3690

3691 3692 3693 3694 3695 3696
static inline void ext4_iget_extra_inode(struct inode *inode,
					 struct ext4_inode *raw_inode,
					 struct ext4_inode_info *ei)
{
	__le32 *magic = (void *)raw_inode +
			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3697
	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3698
		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3699
		ext4_find_inline_data_nolock(inode);
3700 3701
	} else
		EXT4_I(inode)->i_inline_off = 0;
3702 3703
}

3704
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3705
{
3706 3707
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
3708 3709
	struct ext4_inode_info *ei;
	struct inode *inode;
3710
	journal_t *journal = EXT4_SB(sb)->s_journal;
3711
	long ret;
3712
	int block;
3713 3714
	uid_t i_uid;
	gid_t i_gid;
3715

3716 3717 3718 3719 3720 3721 3722
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
3723
	iloc.bh = NULL;
3724

3725 3726
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
3727
		goto bad_inode;
3728
	raw_inode = ext4_raw_inode(&iloc);
3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761

	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
		    EXT4_INODE_SIZE(inode->i_sb)) {
			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
				EXT4_INODE_SIZE(inode->i_sb));
			ret = -EIO;
			goto bad_inode;
		}
	} else
		ei->i_extra_isize = 0;

	/* Precompute checksum seed for inode metadata */
	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
		__u32 csum;
		__le32 inum = cpu_to_le32(inode->i_ino);
		__le32 gen = raw_inode->i_generation;
		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
				   sizeof(inum));
		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
					      sizeof(gen));
	}

	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
		EXT4_ERROR_INODE(inode, "checksum invalid");
		ret = -EIO;
		goto bad_inode;
	}

3762
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3763 3764
	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3765
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3766 3767
		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3768
	}
3769 3770
	i_uid_write(inode, i_uid);
	i_gid_write(inode, i_gid);
M
Miklos Szeredi 已提交
3771
	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3772

3773
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3774
	ei->i_inline_off = 0;
3775 3776 3777 3778 3779 3780 3781 3782 3783
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
3784
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3785
			/* this inode is deleted */
3786
			ret = -ESTALE;
3787 3788 3789 3790 3791 3792 3793 3794
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3795
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3796
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3797
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
3798 3799
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3800
	inode->i_size = ext4_isize(raw_inode);
3801
	ei->i_disksize = inode->i_size;
3802 3803 3804
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
3805 3806
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
3807
	ei->i_last_alloc_group = ~0;
3808 3809 3810 3811
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
3812
	for (block = 0; block < EXT4_N_BLOCKS; block++)
3813 3814 3815
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

3827
		read_lock(&journal->j_state_lock);
3828 3829 3830 3831 3832 3833 3834 3835
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
3836
		read_unlock(&journal->j_state_lock);
3837 3838 3839 3840
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

3841
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3842 3843
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
3844 3845
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
3846
		} else {
3847
			ext4_iget_extra_inode(inode, raw_inode, ei);
3848
		}
3849
	}
3850

K
Kalpak Shah 已提交
3851 3852 3853 3854 3855
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

3856 3857 3858 3859 3860 3861 3862
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

3863
	ret = 0;
3864
	if (ei->i_file_acl &&
3865
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3866 3867
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
3868 3869
		ret = -EIO;
		goto bad_inode;
3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882
	} else if (!ext4_has_inline_data(inode)) {
		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
			    (S_ISLNK(inode->i_mode) &&
			     !ext4_inode_is_fast_symlink(inode))))
				/* Validate extent which is part of inode */
				ret = ext4_ext_check_inode(inode);
		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
			   (S_ISLNK(inode->i_mode) &&
			    !ext4_inode_is_fast_symlink(inode))) {
			/* Validate block references which are part of inode */
			ret = ext4_ind_check_inode(inode);
		}
3883
	}
3884
	if (ret)
3885
		goto bad_inode;
3886

3887
	if (S_ISREG(inode->i_mode)) {
3888 3889 3890
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
3891
	} else if (S_ISDIR(inode->i_mode)) {
3892 3893
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
3894
	} else if (S_ISLNK(inode->i_mode)) {
3895
		if (ext4_inode_is_fast_symlink(inode)) {
3896
			inode->i_op = &ext4_fast_symlink_inode_operations;
3897 3898 3899
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
3900 3901
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
3902
		}
3903 3904
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3905
		inode->i_op = &ext4_special_inode_operations;
3906 3907 3908 3909 3910 3911
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3912 3913
	} else {
		ret = -EIO;
3914
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3915
		goto bad_inode;
3916
	}
3917
	brelse(iloc.bh);
3918
	ext4_set_inode_flags(inode);
3919 3920
	unlock_new_inode(inode);
	return inode;
3921 3922

bad_inode:
3923
	brelse(iloc.bh);
3924 3925
	iget_failed(inode);
	return ERR_PTR(ret);
3926 3927
}

3928 3929 3930 3931 3932 3933 3934 3935 3936 3937
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
3938
		 * i_blocks can be represented in a 32 bit variable
3939 3940
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3941
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3942
		raw_inode->i_blocks_high = 0;
3943
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3944 3945 3946 3947 3948 3949
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
3950 3951 3952 3953
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3954
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3955
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3956
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3957
	} else {
3958
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
3959 3960 3961 3962
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3963
	}
3964
	return 0;
3965 3966
}

3967 3968 3969 3970 3971 3972 3973
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
3974
static int ext4_do_update_inode(handle_t *handle,
3975
				struct inode *inode,
3976
				struct ext4_iloc *iloc)
3977
{
3978 3979
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
3980 3981
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;
3982
	int need_datasync = 0;
3983 3984
	uid_t i_uid;
	gid_t i_gid;
3985 3986 3987

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
3988
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3989
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3990

3991
	ext4_get_inode_flags(ei);
3992
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3993 3994
	i_uid = i_uid_read(inode);
	i_gid = i_gid_read(inode);
3995
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3996 3997
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
3998 3999 4000 4001
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
4002
		if (!ei->i_dtime) {
4003
			raw_inode->i_uid_high =
4004
				cpu_to_le16(high_16_bits(i_uid));
4005
			raw_inode->i_gid_high =
4006
				cpu_to_le16(high_16_bits(i_gid));
4007 4008 4009 4010 4011
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
4012 4013
		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4014 4015 4016 4017
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4018 4019 4020 4021 4022 4023

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4024 4025
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4026
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4027
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4028 4029
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4030 4031
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4032
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4033 4034 4035 4036
	if (ei->i_disksize != ext4_isize(raw_inode)) {
		ext4_isize_set(raw_inode, ei->i_disksize);
		need_datasync = 1;
	}
4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4052
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4053
			ext4_handle_sync(handle);
4054
			err = ext4_handle_dirty_super(handle, sb);
4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4069
	} else if (!ext4_has_inline_data(inode)) {
4070 4071
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
4072
	}
4073

4074 4075 4076 4077 4078
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4079
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4080 4081
	}

4082 4083
	ext4_inode_csum_set(inode, raw_inode, ei);

4084
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4085
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4086 4087
	if (!err)
		err = rc;
4088
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4089

4090
	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4091
out_brelse:
4092
	brelse(bh);
4093
	ext4_std_error(inode->i_sb, err);
4094 4095 4096 4097
	return err;
}

/*
4098
 * ext4_write_inode()
4099 4100 4101 4102 4103
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
4104
 *   transaction to commit.
4105 4106 4107 4108 4109 4110 4111 4112 4113 4114
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4115
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4132
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4133
{
4134 4135
	int err;

4136 4137 4138
	if (current->flags & PF_MEMALLOC)
		return 0;

4139 4140 4141 4142 4143 4144
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
4145

4146
		if (wbc->sync_mode != WB_SYNC_ALL)
4147 4148 4149 4150 4151
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
4152

4153
		err = __ext4_get_inode_loc(inode, &iloc, 0);
4154 4155
		if (err)
			return err;
4156
		if (wbc->sync_mode == WB_SYNC_ALL)
4157 4158
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4159 4160
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
4161 4162
			err = -EIO;
		}
4163
		brelse(iloc.bh);
4164 4165
	}
	return err;
4166 4167
}

4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
/*
 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
 * buffers that are attached to a page stradding i_size and are undergoing
 * commit. In that case we have to wait for commit to finish and try again.
 */
static void ext4_wait_for_tail_page_commit(struct inode *inode)
{
	struct page *page;
	unsigned offset;
	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
	tid_t commit_tid = 0;
	int ret;

	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
	/*
	 * All buffers in the last page remain valid? Then there's nothing to
	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
	 * blocksize case
	 */
	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
		return;
	while (1) {
		page = find_lock_page(inode->i_mapping,
				      inode->i_size >> PAGE_CACHE_SHIFT);
		if (!page)
			return;
		ret = __ext4_journalled_invalidatepage(page, offset);
		unlock_page(page);
		page_cache_release(page);
		if (ret != -EBUSY)
			return;
		commit_tid = 0;
		read_lock(&journal->j_state_lock);
		if (journal->j_committing_transaction)
			commit_tid = journal->j_committing_transaction->t_tid;
		read_unlock(&journal->j_state_lock);
		if (commit_tid)
			jbd2_log_wait_commit(journal, commit_tid);
	}
}

4209
/*
4210
 * ext4_setattr()
4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4224 4225 4226 4227 4228 4229 4230 4231
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4232
 */
4233
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4234 4235 4236
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
4237
	int orphan = 0;
4238 4239 4240 4241 4242 4243
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

4244
	if (is_quota_modification(inode, attr))
4245
		dquot_initialize(inode);
4246 4247
	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4248 4249 4250 4251
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
4252 4253 4254
		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4255 4256 4257 4258
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4259
		error = dquot_transfer(inode, attr);
4260
		if (error) {
4261
			ext4_journal_stop(handle);
4262 4263 4264 4265 4266 4267 4268 4269
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4270 4271
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4272 4273
	}

4274
	if (attr->ia_valid & ATTR_SIZE) {
4275

4276
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4277 4278
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

4279 4280
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
4281 4282 4283
		}
	}

4284
	if (S_ISREG(inode->i_mode) &&
4285
	    attr->ia_valid & ATTR_SIZE &&
4286
	    (attr->ia_size < inode->i_size)) {
4287 4288
		handle_t *handle;

4289
		handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4290 4291 4292 4293
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4294 4295 4296 4297
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
4298 4299
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4300 4301
		if (!error)
			error = rc;
4302
		ext4_journal_stop(handle);
4303 4304 4305 4306 4307 4308

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
4309 4310
				handle = ext4_journal_start(inode,
							    EXT4_HT_INODE, 3);
4311 4312 4313 4314 4315
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
4316
				orphan = 0;
4317 4318 4319 4320
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4321 4322
	}

4323
	if (attr->ia_valid & ATTR_SIZE) {
4324 4325 4326 4327 4328 4329 4330 4331 4332
		if (attr->ia_size != inode->i_size) {
			loff_t oldsize = inode->i_size;

			i_size_write(inode, attr->ia_size);
			/*
			 * Blocks are going to be removed from the inode. Wait
			 * for dio in flight.  Temporarily disable
			 * dioread_nolock to prevent livelock.
			 */
4333
			if (orphan) {
4334 4335 4336 4337 4338 4339
				if (!ext4_should_journal_data(inode)) {
					ext4_inode_block_unlocked_dio(inode);
					inode_dio_wait(inode);
					ext4_inode_resume_unlocked_dio(inode);
				} else
					ext4_wait_for_tail_page_commit(inode);
4340
			}
4341 4342 4343 4344 4345
			/*
			 * Truncate pagecache after we've waited for commit
			 * in data=journal mode to make pages freeable.
			 */
			truncate_pagecache(inode, oldsize, inode->i_size);
4346
		}
4347
		ext4_truncate(inode);
4348
	}
4349

C
Christoph Hellwig 已提交
4350 4351 4352 4353 4354 4355 4356 4357 4358
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
4359
	if (orphan && inode->i_nlink)
4360
		ext4_orphan_del(NULL, inode);
4361 4362

	if (!rc && (ia_valid & ATTR_MODE))
4363
		rc = ext4_acl_chmod(inode);
4364 4365

err_out:
4366
	ext4_std_error(inode->i_sb, error);
4367 4368 4369 4370 4371
	if (!error)
		error = rc;
	return error;
}

4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
4391 4392
	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
				EXT4_I(inode)->i_reserved_data_blocks);
4393 4394 4395 4396

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4397

4398 4399
static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
4400
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4401
		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4402
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4403
}
4404

4405
/*
4406 4407 4408
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4409
 *
4410
 * If datablocks are discontiguous, they are possible to spread over
4411
 * different block groups too. If they are contiguous, with flexbg,
4412
 * they could still across block group boundary.
4413
 *
4414 4415
 * Also account for superblock, inode, quota and xattr blocks
 */
4416
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4417
{
4418 4419
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
4446 4447
	if (groups > ngroups)
		groups = ngroups;
4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
L
Lucas De Marchi 已提交
4461
 * Calculate the total number of credits to reserve to fit
4462 4463
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4464
 *
4465
 * This could be called via ext4_write_begin()
4466
 *
4467
 * We need to consider the worse case, when
4468
 * one new block per extent.
4469
 */
A
Alex Tomas 已提交
4470
int ext4_writepage_trans_blocks(struct inode *inode)
4471
{
4472
	int bpp = ext4_journal_blocks_per_page(inode);
4473 4474
	int ret;

4475
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4476

4477
	/* Account for data blocks for journalled mode */
4478
	if (ext4_should_journal_data(inode))
4479
		ret += bpp;
4480 4481
	return ret;
}
4482 4483 4484 4485 4486

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
4487
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4488 4489 4490 4491 4492 4493 4494 4495 4496
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4497
/*
4498
 * The caller must have previously called ext4_reserve_inode_write().
4499 4500
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4501
int ext4_mark_iloc_dirty(handle_t *handle,
4502
			 struct inode *inode, struct ext4_iloc *iloc)
4503 4504 4505
{
	int err = 0;

4506
	if (IS_I_VERSION(inode))
4507 4508
		inode_inc_iversion(inode);

4509 4510 4511
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4512
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4513
	err = ext4_do_update_inode(handle, inode, iloc);
4514 4515 4516 4517 4518 4519 4520 4521 4522 4523
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4524 4525
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4526
{
4527 4528 4529 4530 4531 4532 4533 4534 4535
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
4536 4537
		}
	}
4538
	ext4_std_error(inode->i_sb, err);
4539 4540 4541
	return err;
}

4542 4543 4544 4545
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4546 4547 4548 4549
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
4562 4563
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 */
4588
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4589
{
4590
	struct ext4_iloc iloc;
4591 4592 4593
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
4594 4595

	might_sleep();
4596
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4597
	err = ext4_reserve_inode_write(handle, inode, &iloc);
4598 4599
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4600
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
4614 4615
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
4616 4617
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4618
					ext4_warning(inode->i_sb,
4619 4620 4621
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
4622 4623
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
4624 4625 4626 4627
				}
			}
		}
	}
4628
	if (!err)
4629
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4630 4631 4632 4633
	return err;
}

/*
4634
 * ext4_dirty_inode() is called from __mark_inode_dirty()
4635 4636 4637 4638 4639
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
4640
 * Also, dquot_alloc_block() will always dirty the inode when blocks
4641 4642 4643 4644 4645 4646
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
4647
void ext4_dirty_inode(struct inode *inode, int flags)
4648 4649 4650
{
	handle_t *handle;

4651
	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4652 4653
	if (IS_ERR(handle))
		goto out;
4654 4655 4656

	ext4_mark_inode_dirty(handle, inode);

4657
	ext4_journal_stop(handle);
4658 4659 4660 4661 4662 4663 4664 4665
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
4666
 * ext4_reserve_inode_write, this leaves behind no bh reference and
4667 4668 4669
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
4670
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4671
{
4672
	struct ext4_iloc iloc;
4673 4674 4675

	int err = 0;
	if (handle) {
4676
		err = ext4_get_inode_loc(inode, &iloc);
4677 4678
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
4679
			err = jbd2_journal_get_write_access(handle, iloc.bh);
4680
			if (!err)
4681
				err = ext4_handle_dirty_metadata(handle,
4682
								 NULL,
4683
								 iloc.bh);
4684 4685 4686
			brelse(iloc.bh);
		}
	}
4687
	ext4_std_error(inode->i_sb, err);
4688 4689 4690 4691
	return err;
}
#endif

4692
int ext4_change_inode_journal_flag(struct inode *inode, int val)
4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

4708
	journal = EXT4_JOURNAL(inode);
4709 4710
	if (!journal)
		return 0;
4711
	if (is_journal_aborted(journal))
4712
		return -EROFS;
4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723
	/* We have to allocate physical blocks for delalloc blocks
	 * before flushing journal. otherwise delalloc blocks can not
	 * be allocated any more. even more truncate on delalloc blocks
	 * could trigger BUG by flushing delalloc blocks in journal.
	 * There is no delalloc block in non-journal data mode.
	 */
	if (val && test_opt(inode->i_sb, DELALLOC)) {
		err = ext4_alloc_da_blocks(inode);
		if (err < 0)
			return err;
	}
4724

4725 4726 4727 4728
	/* Wait for all existing dio workers */
	ext4_inode_block_unlocked_dio(inode);
	inode_dio_wait(inode);

4729
	jbd2_journal_lock_updates(journal);
4730 4731 4732 4733 4734 4735 4736 4737 4738 4739

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
4740
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4741 4742
	else {
		jbd2_journal_flush(journal);
4743
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4744
	}
4745
	ext4_set_aops(inode);
4746

4747
	jbd2_journal_unlock_updates(journal);
4748
	ext4_inode_resume_unlocked_dio(inode);
4749 4750 4751

	/* Finally we can mark the inode as dirty. */

4752
	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4753 4754 4755
	if (IS_ERR(handle))
		return PTR_ERR(handle);

4756
	err = ext4_mark_inode_dirty(handle, inode);
4757
	ext4_handle_sync(handle);
4758 4759
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
4760 4761 4762

	return err;
}
4763 4764 4765 4766 4767 4768

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

4769
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4770
{
4771
	struct page *page = vmf->page;
4772 4773
	loff_t size;
	unsigned long len;
4774
	int ret;
4775 4776 4777
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;
4778 4779 4780
	handle_t *handle;
	get_block_t *get_block;
	int retries = 0;
4781

4782
	sb_start_pagefault(inode->i_sb);
4783
	file_update_time(vma->vm_file);
4784 4785 4786 4787 4788 4789 4790 4791 4792 4793
	/* Delalloc case is easy... */
	if (test_opt(inode->i_sb, DELALLOC) &&
	    !ext4_should_journal_data(inode) &&
	    !ext4_nonda_switch(inode->i_sb)) {
		do {
			ret = __block_page_mkwrite(vma, vmf,
						   ext4_da_get_block_prep);
		} while (ret == -ENOSPC &&
		       ext4_should_retry_alloc(inode->i_sb, &retries));
		goto out_ret;
4794
	}
4795 4796

	lock_page(page);
4797 4798 4799 4800 4801 4802
	size = i_size_read(inode);
	/* Page got truncated from under us? */
	if (page->mapping != mapping || page_offset(page) > size) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
4803
	}
4804 4805 4806 4807 4808

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
4809
	/*
4810 4811
	 * Return if we have all the buffers mapped. This avoids the need to do
	 * journal_start/journal_stop which can block and take a long time
4812
	 */
4813
	if (page_has_buffers(page)) {
4814 4815 4816
		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
					    0, len, NULL,
					    ext4_bh_unmapped)) {
4817 4818 4819 4820
			/* Wait so that we don't change page under IO */
			wait_on_page_writeback(page);
			ret = VM_FAULT_LOCKED;
			goto out;
4821
		}
4822
	}
4823
	unlock_page(page);
4824 4825 4826 4827 4828 4829
	/* OK, we need to fill the hole... */
	if (ext4_should_dioread_nolock(inode))
		get_block = ext4_get_block_write;
	else
		get_block = ext4_get_block;
retry_alloc:
4830 4831
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
				    ext4_writepage_trans_blocks(inode));
4832
	if (IS_ERR(handle)) {
4833
		ret = VM_FAULT_SIGBUS;
4834 4835 4836 4837
		goto out;
	}
	ret = __block_page_mkwrite(vma, vmf, get_block);
	if (!ret && ext4_should_journal_data(inode)) {
4838
		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
4839 4840 4841
			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
			unlock_page(page);
			ret = VM_FAULT_SIGBUS;
4842
			ext4_journal_stop(handle);
4843 4844 4845 4846 4847 4848 4849 4850 4851 4852
			goto out;
		}
		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
	}
	ext4_journal_stop(handle);
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry_alloc;
out_ret:
	ret = block_page_mkwrite_return(ret);
out:
4853
	sb_end_pagefault(inode->i_sb);
4854 4855
	return ret;
}