inode.c 173.6 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38 39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include <linux/workqueue.h>
41
#include <linux/kernel.h>
42

43
#include "ext4_jbd2.h"
44 45
#include "xattr.h"
#include "acl.h"
46
#include "ext4_extents.h"
47

48 49
#include <trace/events/ext4.h>

50 51
#define MPAGE_DA_EXTENT_TAIL 0x01

52 53 54
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
55 56 57 58
	return jbd2_journal_begin_ordered_truncate(
					EXT4_SB(inode->i_sb)->s_journal,
					&EXT4_I(inode)->jinode,
					new_size);
59 60
}

61 62
static void ext4_invalidatepage(struct page *page, unsigned long offset);

63 64 65
/*
 * Test whether an inode is a fast symlink.
 */
66
static int ext4_inode_is_fast_symlink(struct inode *inode)
67
{
68
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
69 70 71 72 73 74 75 76 77 78 79
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
80
	ext4_lblk_t needed;
81 82 83 84 85 86

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
87
	 * like a regular file for ext4 to try to delete it.  Things
88 89 90 91 92 93 94
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
95 96
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
97

98
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

115
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
116 117 118
	if (!IS_ERR(result))
		return result;

119
	ext4_std_error(inode->i_sb, PTR_ERR(result));
120 121 122 123 124 125 126 127 128 129 130
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
131 132 133
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
134
		return 0;
135
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
136 137 138 139 140 141 142 143 144
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
145
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
146
				 int nblocks)
147
{
148 149 150 151 152 153 154 155
	int ret;

	/*
	 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
156
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
157
	jbd_debug(2, "restarting handle %p\n", handle);
158 159 160
	up_write(&EXT4_I(inode)->i_data_sem);
	ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
	down_write(&EXT4_I(inode)->i_data_sem);
161
	ext4_discard_preallocations(inode);
162 163

	return ret;
164 165 166 167 168
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
169
void ext4_delete_inode(struct inode *inode)
170 171
{
	handle_t *handle;
172
	int err;
173

174 175
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
176 177 178 179 180
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

181
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
182
	if (IS_ERR(handle)) {
183
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
184 185 186 187 188
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
189
		ext4_orphan_del(NULL, inode);
190 191 192 193
		goto no_delete;
	}

	if (IS_SYNC(inode))
194
		ext4_handle_sync(handle);
195
	inode->i_size = 0;
196 197
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
198
		ext4_warning(inode->i_sb,
199 200 201
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
202
	if (inode->i_blocks)
203
		ext4_truncate(inode);
204 205 206 207 208 209 210

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
211
	if (!ext4_handle_has_enough_credits(handle, 3)) {
212 213 214 215
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
216
			ext4_warning(inode->i_sb,
217 218 219 220 221 222 223
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
			goto no_delete;
		}
	}

224
	/*
225
	 * Kill off the orphan record which ext4_truncate created.
226
	 * AKPM: I think this can be inside the above `if'.
227
	 * Note that ext4_orphan_del() has to be able to cope with the
228
	 * deletion of a non-existent orphan - this is because we don't
229
	 * know if ext4_truncate() actually created an orphan record.
230 231
	 * (Well, we could do this if we need to, but heck - it works)
	 */
232 233
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
234 235 236 237 238 239 240 241

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
242
	if (ext4_mark_inode_dirty(handle, inode))
243 244 245
		/* If that failed, just do the required in-core inode clear. */
		clear_inode(inode);
	else
246 247
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
	return;
no_delete:
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
266
 *	ext4_block_to_path - parse the block number into array of offsets
267 268 269
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
270 271
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
272
 *
273
 *	To store the locations of file's data ext4 uses a data structure common
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

296
static int ext4_block_to_path(struct inode *inode,
297 298
			      ext4_lblk_t i_block,
			      ext4_lblk_t offsets[4], int *boundary)
299
{
300 301 302
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
303 304 305 306 307
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

308
	if (i_block < direct_blocks) {
309 310
		offsets[n++] = i_block;
		final = direct_blocks;
311
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
312
		offsets[n++] = EXT4_IND_BLOCK;
313 314 315
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
316
		offsets[n++] = EXT4_DIND_BLOCK;
317 318 319 320
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
321
		offsets[n++] = EXT4_TIND_BLOCK;
322 323 324 325 326
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
327
		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
328 329
			     i_block + direct_blocks +
			     indirect_blocks + double_blocks, inode->i_ino);
330 331 332 333 334 335
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

336
static int __ext4_check_blockref(const char *function, struct inode *inode,
337 338
				 __le32 *p, unsigned int max)
{
339
	__le32 *bref = p;
340 341
	unsigned int blk;

342
	while (bref < p+max) {
343
		blk = le32_to_cpu(*bref++);
344 345
		if (blk &&
		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
346
						    blk, 1))) {
347
			__ext4_error(inode->i_sb, function,
348 349
				   "invalid block reference %u "
				   "in inode #%lu", blk, inode->i_ino);
350 351 352 353
			return -EIO;
		}
	}
	return 0;
354 355 356 357
}


#define ext4_check_indirect_blockref(inode, bh)                         \
358
	__ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
359 360 361
			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))

#define ext4_check_inode_blockref(inode)                                \
362
	__ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
363 364
			      EXT4_NDIR_BLOCKS)

365
/**
366
 *	ext4_get_branch - read the chain of indirect blocks leading to data
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
391 392
 *
 *      Need to be called with
393
 *      down_read(&EXT4_I(inode)->i_data_sem)
394
 */
A
Aneesh Kumar K.V 已提交
395 396
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
397 398 399 400 401 402 403 404
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
405
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
406 407 408
	if (!p->key)
		goto no_block;
	while (--depth) {
409 410
		bh = sb_getblk(sb, le32_to_cpu(p->key));
		if (unlikely(!bh))
411
			goto failure;
412

413 414 415 416 417 418 419 420 421 422 423
		if (!bh_uptodate_or_lock(bh)) {
			if (bh_submit_read(bh) < 0) {
				put_bh(bh);
				goto failure;
			}
			/* validate block references */
			if (ext4_check_indirect_blockref(inode, bh)) {
				put_bh(bh);
				goto failure;
			}
		}
424

425
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
426 427 428 429 430 431 432 433 434 435 436 437 438
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
439
 *	ext4_find_near - find a place for allocation with sufficient locality
440 441 442
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
443
 *	This function returns the preferred place for block allocation.
444 445 446 447 448 449 450 451 452 453 454 455 456 457
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
458
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
459
{
460
	struct ext4_inode_info *ei = EXT4_I(inode);
461
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
462
	__le32 *p;
463
	ext4_fsblk_t bg_start;
464
	ext4_fsblk_t last_block;
465
	ext4_grpblk_t colour;
466 467
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
483 484 485 486 487 488 489
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
490 491
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

492 493 494 495 496 497 498
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

499 500
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
501
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
502 503
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
504 505 506 507
	return bg_start + colour;
}

/**
508
 *	ext4_find_goal - find a preferred place for allocation.
509 510 511 512
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
513
 *	Normally this function find the preferred place for block allocation,
514
 *	returns it.
515 516
 *	Because this is only used for non-extent files, we limit the block nr
 *	to 32 bits.
517
 */
A
Aneesh Kumar K.V 已提交
518
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
519
				   Indirect *partial)
520
{
521 522
	ext4_fsblk_t goal;

523
	/*
524
	 * XXX need to get goal block from mballoc's data structures
525 526
	 */

527 528 529
	goal = ext4_find_near(inode, partial);
	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
	return goal;
530 531 532
}

/**
533
 *	ext4_blks_to_allocate: Look up the block map and count the number
534 535 536 537 538 539 540 541 542 543
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
544
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
545
				 int blocks_to_boundary)
546
{
547
	unsigned int count = 0;
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
571
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
572 573 574 575 576 577 578 579
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
580
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
581 582 583
			     ext4_lblk_t iblock, ext4_fsblk_t goal,
			     int indirect_blks, int blks,
			     ext4_fsblk_t new_blocks[4], int *err)
584
{
585
	struct ext4_allocation_request ar;
586
	int target, i;
587
	unsigned long count = 0, blk_allocated = 0;
588
	int index = 0;
589
	ext4_fsblk_t current_block = 0;
590 591 592 593 594 595 596 597 598 599
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
600 601 602
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
603 604
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
605 606
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
607 608 609
		if (*err)
			goto failed_out;

610 611 612 613 614 615 616 617
		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
			EXT4_ERROR_INODE(inode,
					 "current_block %llu + count %lu > %d!",
					 current_block, count,
					 EXT4_MAX_BLOCK_FILE_PHYS);
			*err = -EIO;
			goto failed_out;
		}
618

619 620 621 622 623 624
		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
625 626 627 628 629 630 631 632 633
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
634
			break;
635
		}
636 637
	}

638 639 640 641 642
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
643 644 645 646 647 648 649 650 651 652
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);
653 654 655 656 657 658 659 660
	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
		EXT4_ERROR_INODE(inode,
				 "current_block %llu + ar.len %d > %d!",
				 current_block, ar.len,
				 EXT4_MAX_BLOCK_FILE_PHYS);
		*err = -EIO;
		goto failed_out;
	}
661

662 663 664 665 666 667 668 669 670
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
671 672 673 674
			/*
			 * save the new block number
			 * for the first direct block
			 */
675 676
			new_blocks[index] = current_block;
		}
677
		blk_allocated += ar.len;
678 679
	}
allocated:
680
	/* total number of blocks allocated for direct blocks */
681
	ret = blk_allocated;
682 683 684
	*err = 0;
	return ret;
failed_out:
685
	for (i = 0; i < index; i++)
686
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
687 688 689 690
	return ret;
}

/**
691
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
692 693 694 695 696 697 698 699 700 701
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
702
 *	the same format as ext4_get_branch() would do. We are calling it after
703 704
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
705
 *	picture as after the successful ext4_get_block(), except that in one
706 707 708 709 710 711
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
712
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
713 714
 *	as described above and return 0.
 */
715
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
716 717 718
			     ext4_lblk_t iblock, int indirect_blks,
			     int *blks, ext4_fsblk_t goal,
			     ext4_lblk_t *offsets, Indirect *branch)
719 720 721 722 723 724
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
725 726
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
727

728
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
747
		err = ext4_journal_get_create_access(handle, bh);
748
		if (err) {
749 750
			/* Don't brelse(bh) here; it's done in
			 * ext4_journal_forget() below */
751 752 753 754 755 756 757 758
			unlock_buffer(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
759
		if (n == indirect_blks) {
760 761 762 763 764 765
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
766
			for (i = 1; i < num; i++)
767 768 769 770 771 772
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

773 774
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
775 776 777 778 779 780 781
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
782
	ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
783
	for (i = 1; i <= n ; i++) {
784
		/* 
785 786 787
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
788
		 */
789 790
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
				 EXT4_FREE_BLOCKS_FORGET);
791
	}
792 793
	for (i = n+1; i < indirect_blks; i++)
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
794

795
	ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
796 797 798 799 800

	return err;
}

/**
801
 * ext4_splice_branch - splice the allocated branch onto inode.
802 803 804
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
805
 *	ext4_alloc_branch)
806 807 808 809 810 811 812 813
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
814
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
815 816
			      ext4_lblk_t block, Indirect *where, int num,
			      int blks)
817 818 819
{
	int i;
	int err = 0;
820
	ext4_fsblk_t current_block;
821 822 823 824 825 826 827 828

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
829
		err = ext4_journal_get_write_access(handle, where->bh);
830 831 832 833 834 835 836 837 838 839 840 841 842 843
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
844
			*(where->p + i) = cpu_to_le32(current_block++);
845 846 847 848 849 850 851 852 853 854 855
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */
	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
856
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
857 858
		 */
		jbd_debug(5, "splicing indirect only\n");
859 860
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
861 862 863 864 865 866
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 */
867
		ext4_mark_inode_dirty(handle, inode);
868 869 870 871 872 873
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
874
		/* 
875 876 877
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
878
		 */
879 880
		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
				 EXT4_FREE_BLOCKS_FORGET);
881
	}
882 883
	ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
			 blks, 0);
884 885 886 887 888

	return err;
}

/*
889 890 891 892
 * The ext4_ind_get_blocks() function handles non-extents inodes
 * (i.e., using the traditional indirect/double-indirect i_blocks
 * scheme) for ext4_get_blocks().
 *
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
909
 *
910 911 912 913 914
 * The ext4_ind_get_blocks() function should be called with
 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 * blocks.
915
 */
916
static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
917 918 919
			       ext4_lblk_t iblock, unsigned int maxblocks,
			       struct buffer_head *bh_result,
			       int flags)
920 921
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
922
	ext4_lblk_t offsets[4];
923 924
	Indirect chain[4];
	Indirect *partial;
925
	ext4_fsblk_t goal;
926 927 928 929
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
	int count = 0;
930
	ext4_fsblk_t first_block = 0;
931

A
Alex Tomas 已提交
932
	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
933
	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
A
Aneesh Kumar K.V 已提交
934
	depth = ext4_block_to_path(inode, iblock, offsets,
935
				   &blocks_to_boundary);
936 937 938 939

	if (depth == 0)
		goto out;

940
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
941 942 943 944 945 946 947 948

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		clear_buffer_new(bh_result);
		count++;
		/*map more blocks*/
		while (count < maxblocks && count <= blocks_to_boundary) {
949
			ext4_fsblk_t blk;
950 951 952 953 954 955 956 957

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
958
		goto got_it;
959 960 961
	}

	/* Next simple case - plain lookup or failed read of indirect block */
962
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
963 964 965
		goto cleanup;

	/*
966
	 * Okay, we need to do block allocation.
967
	*/
968
	goal = ext4_find_goal(inode, iblock, partial);
969 970 971 972 973 974 975 976

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
977
	count = ext4_blks_to_allocate(partial, indirect_blks,
978 979
					maxblocks, blocks_to_boundary);
	/*
980
	 * Block out ext4_truncate while we alter the tree
981
	 */
982
	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
983 984
				&count, goal,
				offsets + (partial - chain), partial);
985 986

	/*
987
	 * The ext4_splice_branch call will free and forget any buffers
988 989 990 991 992 993
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
994
		err = ext4_splice_branch(handle, inode, iblock,
995
					 partial, indirect_blks, count);
996
	if (err)
997 998 999
		goto cleanup;

	set_buffer_new(bh_result);
1000 1001

	ext4_update_inode_fsync_trans(handle, inode, 1);
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
got_it:
	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
	if (count > blocks_to_boundary)
		set_buffer_boundary(bh_result);
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
	BUFFER_TRACE(bh_result, "returned");
out:
	return err;
}

1020 1021
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
1022
{
1023
	return &EXT4_I(inode)->i_reserved_quota;
1024
}
1025
#endif
1026

1027 1028
/*
 * Calculate the number of metadata blocks need to reserve
1029
 * to allocate a new block at @lblocks for non extent file based file
1030
 */
1031 1032
static int ext4_indirect_calc_metadata_amount(struct inode *inode,
					      sector_t lblock)
1033
{
1034 1035 1036
	struct ext4_inode_info *ei = EXT4_I(inode);
	int dind_mask = EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1;
	int blk_bits;
1037

1038 1039
	if (lblock < EXT4_NDIR_BLOCKS)
		return 0;
1040

1041
	lblock -= EXT4_NDIR_BLOCKS;
1042

1043 1044 1045 1046 1047 1048 1049 1050 1051
	if (ei->i_da_metadata_calc_len &&
	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
		ei->i_da_metadata_calc_len++;
		return 0;
	}
	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
	ei->i_da_metadata_calc_len = 1;
	blk_bits = roundup_pow_of_two(lblock + 1);
	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1052 1053 1054 1055
}

/*
 * Calculate the number of metadata blocks need to reserve
1056
 * to allocate a block located at @lblock
1057
 */
1058
static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1059 1060
{
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1061
		return ext4_ext_calc_metadata_amount(inode, lblock);
1062

1063
	return ext4_indirect_calc_metadata_amount(inode, lblock);
1064 1065
}

1066 1067 1068 1069
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
1070 1071
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
1072 1073
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1074
	struct ext4_inode_info *ei = EXT4_I(inode);
1075
	int mdb_free = 0, allocated_meta_blocks = 0;
1076 1077

	spin_lock(&ei->i_block_reservation_lock);
1078
	trace_ext4_da_update_reserve_space(inode, used);
1079 1080 1081 1082 1083 1084 1085 1086
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
			 "with only %d reserved data blocks\n",
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
1087

1088 1089 1090 1091
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	used += ei->i_allocated_meta_blocks;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1092
	allocated_meta_blocks = ei->i_allocated_meta_blocks;
1093 1094
	ei->i_allocated_meta_blocks = 0;
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, used);
1095

1096 1097 1098 1099 1100 1101
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1102 1103
		mdb_free = ei->i_reserved_meta_blocks;
		ei->i_reserved_meta_blocks = 0;
1104
		ei->i_da_metadata_calc_len = 0;
1105 1106
		percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
	}
1107
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1108

1109
	/* Update quota subsystem */
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
	if (quota_claim) {
		vfs_dq_claim_block(inode, used);
		if (mdb_free)
			vfs_dq_release_reservation_block(inode, mdb_free);
	} else {
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
		 * not update the quota for allocated blocks. But then
		 * converting an fallocate region to initialized region would
		 * have caused a metadata allocation. So claim quota for
		 * that
		 */
		if (allocated_meta_blocks)
			vfs_dq_claim_block(inode, allocated_meta_blocks);
		vfs_dq_release_reservation_block(inode, mdb_free + used);
	}
1127 1128 1129 1130 1131 1132

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
1133 1134
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
1135
		ext4_discard_preallocations(inode);
1136 1137
}

1138 1139
static int check_block_validity(struct inode *inode, const char *msg,
				sector_t logical, sector_t phys, int len)
1140 1141
{
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1142
		__ext4_error(inode->i_sb, msg,
1143 1144 1145 1146 1147 1148 1149 1150 1151
			   "inode #%lu logical block %llu mapped to %llu "
			   "(size %d)", inode->i_ino,
			   (unsigned long long) logical,
			   (unsigned long long) phys, len);
		return -EIO;
	}
	return 0;
}

1152
/*
1153 1154
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
1188 1189 1190 1191 1192 1193 1194 1195 1196
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
			if (num >= max_pages)
				break;
		}
		pagevec_release(&pvec);
	}
	return num;
}

1210
/*
1211
 * The ext4_get_blocks() function tries to look up the requested blocks,
1212
 * and returns if the blocks are already mapped.
1213 1214 1215 1216 1217 1218
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
 * If file type is extents based, it will call ext4_ext_get_blocks(),
1219
 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
1232 1233
int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
		    unsigned int max_blocks, struct buffer_head *bh,
1234
		    int flags)
1235 1236
{
	int retval;
1237 1238

	clear_buffer_mapped(bh);
1239
	clear_buffer_unwritten(bh);
1240

1241 1242 1243
	ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, max_blocks,
		  (unsigned long)block);
1244
	/*
1245 1246
	 * Try to see if we can get the block without requesting a new
	 * file system block.
1247 1248 1249 1250
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1251
				bh, 0);
1252
	} else {
1253
		retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1254
					     bh, 0);
1255
	}
1256
	up_read((&EXT4_I(inode)->i_data_sem));
1257

1258
	if (retval > 0 && buffer_mapped(bh)) {
1259 1260
		int ret = check_block_validity(inode, "file system corruption",
					       block, bh->b_blocknr, retval);
1261 1262 1263 1264
		if (ret != 0)
			return ret;
	}

1265
	/* If it is only a block(s) look up */
1266
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
	if (retval > 0 && buffer_mapped(bh))
1277 1278
		return retval;

1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
	clear_buffer_unwritten(bh);

1291
	/*
1292 1293 1294 1295
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1296 1297
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
1298 1299 1300 1301 1302 1303 1304

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
1305
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1306
		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1307 1308 1309 1310
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1311 1312
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1313
					      bh, flags);
1314
	} else {
1315
		retval = ext4_ind_get_blocks(handle, inode, block,
1316
					     max_blocks, bh, flags);
1317 1318 1319 1320 1321 1322 1323

		if (retval > 0 && buffer_new(bh)) {
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
1324
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1325
		}
1326

1327 1328 1329 1330 1331 1332 1333
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
1334
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1335 1336
			ext4_da_update_reserve_space(inode, retval, 1);
	}
1337
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1338
		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1339

1340
	up_write((&EXT4_I(inode)->i_data_sem));
1341
	if (retval > 0 && buffer_mapped(bh)) {
1342 1343 1344
		int ret = check_block_validity(inode, "file system "
					       "corruption after allocation",
					       block, bh->b_blocknr, retval);
1345 1346 1347
		if (ret != 0)
			return ret;
	}
1348 1349 1350
	return retval;
}

1351 1352 1353
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

1354 1355
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create)
1356
{
1357
	handle_t *handle = ext4_journal_current_handle();
J
Jan Kara 已提交
1358
	int ret = 0, started = 0;
1359
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1360
	int dio_credits;
1361

J
Jan Kara 已提交
1362 1363 1364 1365
	if (create && !handle) {
		/* Direct IO write... */
		if (max_blocks > DIO_MAX_BLOCKS)
			max_blocks = DIO_MAX_BLOCKS;
1366 1367
		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
1368
		if (IS_ERR(handle)) {
1369
			ret = PTR_ERR(handle);
J
Jan Kara 已提交
1370
			goto out;
1371
		}
J
Jan Kara 已提交
1372
		started = 1;
1373 1374
	}

1375
	ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1376
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
J
Jan Kara 已提交
1377 1378 1379
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
1380
	}
J
Jan Kara 已提交
1381 1382 1383
	if (started)
		ext4_journal_stop(handle);
out:
1384 1385 1386 1387 1388 1389
	return ret;
}

/*
 * `handle' can be NULL if create is zero
 */
1390
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1391
				ext4_lblk_t block, int create, int *errp)
1392 1393 1394
{
	struct buffer_head dummy;
	int fatal = 0, err;
1395
	int flags = 0;
1396 1397 1398 1399 1400 1401

	J_ASSERT(handle != NULL || create == 0);

	dummy.b_state = 0;
	dummy.b_blocknr = -1000;
	buffer_trace_init(&dummy.b_history);
1402 1403 1404
	if (create)
		flags |= EXT4_GET_BLOCKS_CREATE;
	err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1405
	/*
1406 1407
	 * ext4_get_blocks() returns number of blocks mapped. 0 in
	 * case of a HOLE.
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
	 */
	if (err > 0) {
		if (err > 1)
			WARN_ON(1);
		err = 0;
	}
	*errp = err;
	if (!err && buffer_mapped(&dummy)) {
		struct buffer_head *bh;
		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
		if (!bh) {
			*errp = -EIO;
			goto err;
		}
		if (buffer_new(&dummy)) {
			J_ASSERT(create != 0);
A
Aneesh Kumar K.V 已提交
1424
			J_ASSERT(handle != NULL);
1425 1426 1427 1428 1429

			/*
			 * Now that we do not always journal data, we should
			 * keep in mind whether this should always journal the
			 * new buffer as metadata.  For now, regular file
1430
			 * writes use ext4_get_block instead, so it's not a
1431 1432 1433 1434
			 * problem.
			 */
			lock_buffer(bh);
			BUFFER_TRACE(bh, "call get_create_access");
1435
			fatal = ext4_journal_get_create_access(handle, bh);
1436
			if (!fatal && !buffer_uptodate(bh)) {
1437
				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1438 1439 1440
				set_buffer_uptodate(bh);
			}
			unlock_buffer(bh);
1441 1442
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			err = ext4_handle_dirty_metadata(handle, inode, bh);
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
			if (!fatal)
				fatal = err;
		} else {
			BUFFER_TRACE(bh, "not a new buffer");
		}
		if (fatal) {
			*errp = fatal;
			brelse(bh);
			bh = NULL;
		}
		return bh;
	}
err:
	return NULL;
}

1459
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1460
			       ext4_lblk_t block, int create, int *err)
1461
{
1462
	struct buffer_head *bh;
1463

1464
	bh = ext4_getblk(handle, inode, block, create, err);
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

1478 1479 1480 1481 1482 1483 1484
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
1485 1486 1487 1488 1489 1490 1491
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

1492 1493
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
1494
	     block_start = block_end, bh = next) {
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1512
 * close off a transaction and start a new one between the ext4_get_block()
1513
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1514 1515
 * prepare_write() is the right place.
 *
1516 1517
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1518 1519 1520 1521
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1522
 * By accident, ext4 can be reentered when a transaction is open via
1523 1524 1525 1526 1527 1528
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1529
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1530 1531 1532 1533 1534
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
1535
				       struct buffer_head *bh)
1536 1537 1538
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1539
	return ext4_journal_get_write_access(handle, bh);
1540 1541
}

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
/*
 * Truncate blocks that were not used by write. We have to truncate the
 * pagecache as well so that corresponding buffers get properly unmapped.
 */
static void ext4_truncate_failed_write(struct inode *inode)
{
	truncate_inode_pages(inode->i_mapping, inode->i_size);
	ext4_truncate(inode);
}

1552 1553
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
1554
static int ext4_write_begin(struct file *file, struct address_space *mapping,
1555 1556
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
1557
{
1558
	struct inode *inode = mapping->host;
1559
	int ret, needed_blocks;
1560 1561
	handle_t *handle;
	int retries = 0;
1562
	struct page *page;
1563
	pgoff_t index;
1564
	unsigned from, to;
N
Nick Piggin 已提交
1565

1566
	trace_ext4_write_begin(inode, pos, len, flags);
1567 1568 1569 1570 1571
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1572
	index = pos >> PAGE_CACHE_SHIFT;
1573 1574
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
1575 1576

retry:
1577 1578 1579 1580
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
1581
	}
1582

1583 1584 1585 1586
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

1587
	page = grab_cache_page_write_begin(mapping, index, flags);
1588 1589 1590 1591 1592 1593 1594
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

1595 1596 1597 1598 1599 1600
	if (ext4_should_dioread_nolock(inode))
		ret = block_write_begin(file, mapping, pos, len, flags, pagep,
				fsdata, ext4_get_block_write);
	else
		ret = block_write_begin(file, mapping, pos, len, flags, pagep,
				fsdata, ext4_get_block);
N
Nick Piggin 已提交
1601 1602

	if (!ret && ext4_should_journal_data(inode)) {
1603 1604 1605
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1606 1607

	if (ret) {
1608 1609
		unlock_page(page);
		page_cache_release(page);
1610 1611 1612 1613
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
1614 1615 1616
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
1617
		 */
1618
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1619 1620 1621 1622
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
1623
			ext4_truncate_failed_write(inode);
1624
			/*
1625
			 * If truncate failed early the inode might
1626 1627 1628 1629 1630 1631 1632
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
1633 1634
	}

1635
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1636
		goto retry;
1637
out:
1638 1639 1640
	return ret;
}

N
Nick Piggin 已提交
1641 1642
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1643 1644 1645 1646
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1647
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1648 1649
}

1650
static int ext4_generic_write_end(struct file *file,
1651 1652 1653
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1696 1697 1698 1699
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1700
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1701 1702
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1703
static int ext4_ordered_write_end(struct file *file,
1704 1705 1706
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1707
{
1708
	handle_t *handle = ext4_journal_current_handle();
1709
	struct inode *inode = mapping->host;
1710 1711
	int ret = 0, ret2;

1712
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1713
	ret = ext4_jbd2_file_inode(handle, inode);
1714 1715

	if (ret == 0) {
1716
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1717
							page, fsdata);
1718
		copied = ret2;
1719
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1720 1721 1722 1723 1724
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1725 1726
		if (ret2 < 0)
			ret = ret2;
1727
	}
1728
	ret2 = ext4_journal_stop(handle);
1729 1730
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1731

1732
	if (pos + len > inode->i_size) {
1733
		ext4_truncate_failed_write(inode);
1734
		/*
1735
		 * If truncate failed early the inode might still be
1736 1737 1738 1739 1740 1741 1742 1743
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1744
	return ret ? ret : copied;
1745 1746
}

N
Nick Piggin 已提交
1747
static int ext4_writeback_write_end(struct file *file,
1748 1749 1750
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1751
{
1752
	handle_t *handle = ext4_journal_current_handle();
1753
	struct inode *inode = mapping->host;
1754 1755
	int ret = 0, ret2;

1756
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1757
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1758
							page, fsdata);
1759
	copied = ret2;
1760
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1761 1762 1763 1764 1765 1766
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1767 1768
	if (ret2 < 0)
		ret = ret2;
1769

1770
	ret2 = ext4_journal_stop(handle);
1771 1772
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1773

1774
	if (pos + len > inode->i_size) {
1775
		ext4_truncate_failed_write(inode);
1776
		/*
1777
		 * If truncate failed early the inode might still be
1778 1779 1780 1781 1782 1783 1784
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1785
	return ret ? ret : copied;
1786 1787
}

N
Nick Piggin 已提交
1788
static int ext4_journalled_write_end(struct file *file,
1789 1790 1791
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1792
{
1793
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1794
	struct inode *inode = mapping->host;
1795 1796
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1797
	unsigned from, to;
1798
	loff_t new_i_size;
1799

1800
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1801 1802 1803 1804 1805 1806 1807 1808
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1809 1810

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1811
				to, &partial, write_end_fn);
1812 1813
	if (!partial)
		SetPageUptodate(page);
1814 1815
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1816
		i_size_write(inode, pos+copied);
1817
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1818 1819
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1820
		ret2 = ext4_mark_inode_dirty(handle, inode);
1821 1822 1823
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1824

1825
	unlock_page(page);
1826
	page_cache_release(page);
1827
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1828 1829 1830 1831 1832 1833
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1834
	ret2 = ext4_journal_stop(handle);
1835 1836
	if (!ret)
		ret = ret2;
1837
	if (pos + len > inode->i_size) {
1838
		ext4_truncate_failed_write(inode);
1839
		/*
1840
		 * If truncate failed early the inode might still be
1841 1842 1843 1844 1845 1846
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1847 1848

	return ret ? ret : copied;
1849
}
1850

1851 1852 1853 1854
/*
 * Reserve a single block located at lblock
 */
static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1855
{
A
Aneesh Kumar K.V 已提交
1856
	int retries = 0;
1857
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1858
	struct ext4_inode_info *ei = EXT4_I(inode);
1859
	unsigned long md_needed, md_reserved;
1860 1861 1862 1863 1864 1865

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1866
repeat:
1867 1868
	spin_lock(&ei->i_block_reservation_lock);
	md_reserved = ei->i_reserved_meta_blocks;
1869
	md_needed = ext4_calc_metadata_amount(inode, lblock);
1870
	trace_ext4_da_reserve_space(inode, md_needed);
1871
	spin_unlock(&ei->i_block_reservation_lock);
1872

1873 1874 1875 1876 1877
	/*
	 * Make quota reservation here to prevent quota overflow
	 * later. Real quota accounting is done at pages writeout
	 * time.
	 */
1878
	if (vfs_dq_reserve_block(inode, md_needed + 1))
1879 1880
		return -EDQUOT;

1881 1882
	if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
		vfs_dq_release_reservation_block(inode, md_needed + 1);
A
Aneesh Kumar K.V 已提交
1883 1884 1885 1886
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1887 1888
		return -ENOSPC;
	}
1889
	spin_lock(&ei->i_block_reservation_lock);
1890
	ei->i_reserved_data_blocks++;
1891 1892
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1893

1894 1895 1896
	return 0;       /* success */
}

1897
static void ext4_da_release_space(struct inode *inode, int to_free)
1898 1899
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1900
	struct ext4_inode_info *ei = EXT4_I(inode);
1901

1902 1903 1904
	if (!to_free)
		return;		/* Nothing to release, exit */

1905
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1906

1907
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1908
		/*
1909 1910 1911 1912
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1913
		 */
1914 1915 1916 1917 1918 1919
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
			 "data blocks\n", inode->i_ino, to_free,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1920
	}
1921
	ei->i_reserved_data_blocks -= to_free;
1922

1923 1924 1925 1926 1927 1928
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1929 1930
		to_free += ei->i_reserved_meta_blocks;
		ei->i_reserved_meta_blocks = 0;
1931
		ei->i_da_metadata_calc_len = 0;
1932
	}
1933

1934 1935
	/* update fs dirty blocks counter */
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1936 1937

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1938

1939
	vfs_dq_release_reservation_block(inode, to_free);
1940 1941 1942
}

static void ext4_da_page_release_reservation(struct page *page,
1943
					     unsigned long offset)
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1960
	ext4_da_release_space(page->mapping->host, to_release);
1961
}
1962

1963 1964 1965 1966 1967 1968
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1969
 * them with writepage() call back
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
static int mpage_da_submit_io(struct mpage_da_data *mpd)
{
1982
	long pages_skipped;
1983 1984 1985 1986 1987
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1988 1989

	BUG_ON(mpd->next_page <= mpd->first_page);
1990 1991 1992
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1993
	 * If we look at mpd->b_blocknr we would only be looking
1994 1995
	 * at the currently mapped buffer_heads.
	 */
1996 1997 1998
	index = mpd->first_page;
	end = mpd->next_page - 1;

1999
	pagevec_init(&pvec, 0);
2000
	while (index <= end) {
2001
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2002 2003 2004 2005 2006
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

2007 2008 2009 2010 2011 2012 2013 2014
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

2015
			pages_skipped = mpd->wbc->pages_skipped;
2016
			err = mapping->a_ops->writepage(page, mpd->wbc);
2017 2018 2019 2020 2021
			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
				/*
				 * have successfully written the page
				 * without skipping the same
				 */
2022
				mpd->pages_written++;
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 * XXX: unlock and re-dirty them?
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
	return ret;
}

/*
 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
 *
 * @mpd->inode - inode to walk through
 * @exbh->b_blocknr - first block on a disk
 * @exbh->b_size - amount of space in bytes
 * @logical - first logical block to start assignment with
 *
 * the function goes through all passed space and put actual disk
2045
 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2046 2047 2048 2049 2050 2051 2052 2053 2054
 */
static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
				 struct buffer_head *exbh)
{
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
	int blocks = exbh->b_size >> inode->i_blkbits;
	sector_t pblock = exbh->b_blocknr, cur_logical;
	struct buffer_head *head, *bh;
2055
	pgoff_t index, end;
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
	struct pagevec pvec;
	int nr_pages, i;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);

	while (index <= end) {
		/* XXX: optimize tail */
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			BUG_ON(!page_has_buffers(page));

			bh = page_buffers(page);
			head = bh;

			/* skip blocks out of the range */
			do {
				if (cur_logical >= logical)
					break;
				cur_logical++;
			} while ((bh = bh->b_this_page) != head);

			do {
				if (cur_logical >= logical + blocks)
					break;
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112

				if (buffer_delay(bh) ||
						buffer_unwritten(bh)) {

					BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);

					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					} else {
						/*
						 * unwritten already should have
						 * blocknr assigned. Verify that
						 */
						clear_buffer_unwritten(bh);
						BUG_ON(bh->b_blocknr != pblock);
					}

2113
				} else if (buffer_mapped(bh))
2114 2115
					BUG_ON(bh->b_blocknr != pblock);

2116 2117
				if (buffer_uninit(exbh))
					set_buffer_uninit(bh);
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
				cur_logical++;
				pblock++;
			} while ((bh = bh->b_this_page) != head);
		}
		pagevec_release(&pvec);
	}
}


/*
 * __unmap_underlying_blocks - just a helper function to unmap
 * set of blocks described by @bh
 */
static inline void __unmap_underlying_blocks(struct inode *inode,
					     struct buffer_head *bh)
{
	struct block_device *bdev = inode->i_sb->s_bdev;
	int blocks, i;

	blocks = bh->b_size >> inode->i_blkbits;
	for (i = 0; i < blocks; i++)
		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
}

2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
					sector_t logical, long blk_cnt)
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end   = (logical + blk_cnt - 1) >>
				(PAGE_CACHE_SHIFT - inode->i_blkbits);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
	}
	return;
}

2175 2176 2177
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
	printk(KERN_CRIT "Total free blocks count %lld\n",
	       ext4_count_free_blocks(inode->i_sb));
	printk(KERN_CRIT "Free/Dirty block details\n");
	printk(KERN_CRIT "free_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
	printk(KERN_CRIT "dirty_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
	printk(KERN_CRIT "Block reservation details\n");
	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_data_blocks);
	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_meta_blocks);
2190 2191 2192
	return;
}

2193 2194 2195
/*
 * mpage_da_map_blocks - go through given space
 *
2196
 * @mpd - bh describing space
2197 2198 2199 2200
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
2201
static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2202
{
2203
	int err, blks, get_blocks_flags;
A
Aneesh Kumar K.V 已提交
2204
	struct buffer_head new;
2205 2206 2207 2208
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
2209 2210 2211 2212

	/*
	 * We consider only non-mapped and non-allocated blocks
	 */
2213
	if ((mpd->b_state  & (1 << BH_Mapped)) &&
2214 2215
		!(mpd->b_state & (1 << BH_Delay)) &&
		!(mpd->b_state & (1 << BH_Unwritten)))
2216
		return 0;
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226

	/*
	 * If we didn't accumulate anything to write simply return
	 */
	if (!mpd->b_size)
		return 0;

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

2227
	/*
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
	 * Call ext4_get_blocks() to allocate any delayed allocation
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
	 * want to change *many* call functions, so ext4_get_blocks()
	 * will set the magic i_delalloc_reserved_flag once the
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
2244
	 */
2245
	new.b_state = 0;
2246
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2247 2248
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2249
	if (mpd->b_state & (1 << BH_Delay))
2250 2251
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

2252
	blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2253
			       &new, get_blocks_flags);
2254 2255
	if (blks < 0) {
		err = blks;
2256 2257 2258 2259
		/*
		 * If get block returns with error we simply
		 * return. Later writepage will redirty the page and
		 * writepages will find the dirty page again
2260 2261 2262
		 */
		if (err == -EAGAIN)
			return 0;
2263 2264

		if (err == -ENOSPC &&
2265
		    ext4_count_free_blocks(mpd->inode->i_sb)) {
2266 2267 2268 2269
			mpd->retval = err;
			return 0;
		}

2270
		/*
2271 2272 2273 2274 2275
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
2276
		 */
2277 2278 2279 2280 2281 2282 2283 2284
		ext4_msg(mpd->inode->i_sb, KERN_CRIT,
			 "delayed block allocation failed for inode %lu at "
			 "logical offset %llu with max blocks %zd with "
			 "error %d\n", mpd->inode->i_ino,
			 (unsigned long long) next,
			 mpd->b_size >> mpd->inode->i_blkbits, err);
		printk(KERN_CRIT "This should not happen!!  "
		       "Data will be lost\n");
A
Aneesh Kumar K.V 已提交
2285
		if (err == -ENOSPC) {
2286
			ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
2287
		}
2288
		/* invalidate all the pages */
2289
		ext4_da_block_invalidatepages(mpd, next,
2290
				mpd->b_size >> mpd->inode->i_blkbits);
2291 2292
		return err;
	}
2293 2294 2295
	BUG_ON(blks == 0);

	new.b_size = (blks << mpd->inode->i_blkbits);
2296

2297 2298
	if (buffer_new(&new))
		__unmap_underlying_blocks(mpd->inode, &new);
2299

2300 2301 2302 2303
	/*
	 * If blocks are delayed marked, we need to
	 * put actual blocknr and drop delayed bit
	 */
2304 2305
	if ((mpd->b_state & (1 << BH_Delay)) ||
	    (mpd->b_state & (1 << BH_Unwritten)))
2306
		mpage_put_bnr_to_bhs(mpd, next, &new);
2307

2308 2309 2310 2311 2312 2313 2314
	if (ext4_should_order_data(mpd->inode)) {
		err = ext4_jbd2_file_inode(handle, mpd->inode);
		if (err)
			return err;
	}

	/*
2315
	 * Update on-disk size along with block allocation.
2316 2317 2318 2319 2320 2321 2322 2323 2324
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
		return ext4_mark_inode_dirty(handle, mpd->inode);
	}

2325
	return 0;
2326 2327
}

2328 2329
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2341 2342
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
2343 2344
{
	sector_t next;
2345
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2346

2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
	/* check if thereserved journal credits might overflow */
	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
2369 2370 2371
	/*
	 * First block in the extent
	 */
2372 2373 2374 2375
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
2376 2377 2378
		return;
	}

2379
	next = mpd->b_blocknr + nrblocks;
2380 2381 2382
	/*
	 * Can we merge the block to our big extent?
	 */
2383 2384
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
2385 2386 2387
		return;
	}

2388
flush_it:
2389 2390 2391 2392
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
2393 2394
	if (mpage_da_map_blocks(mpd) == 0)
		mpage_da_submit_io(mpd);
2395 2396
	mpd->io_done = 1;
	return;
2397 2398
}

2399
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2400
{
2401
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2402 2403
}

2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
/*
 * __mpage_da_writepage - finds extent of pages and blocks
 *
 * @page: page to consider
 * @wbc: not used, we just follow rules
 * @data: context
 *
 * The function finds extents of pages and scan them for all blocks.
 */
static int __mpage_da_writepage(struct page *page,
				struct writeback_control *wbc, void *data)
{
	struct mpage_da_data *mpd = data;
	struct inode *inode = mpd->inode;
2418
	struct buffer_head *bh, *head;
2419 2420
	sector_t logical;

2421 2422 2423 2424
	if (mpd->io_done) {
		/*
		 * Rest of the page in the page_vec
		 * redirty then and skip then. We will
2425
		 * try to write them again after
2426 2427 2428 2429 2430 2431
		 * starting a new transaction
		 */
		redirty_page_for_writepage(wbc, page);
		unlock_page(page);
		return MPAGE_DA_EXTENT_TAIL;
	}
2432 2433 2434 2435 2436 2437
	/*
	 * Can we merge this page to current extent?
	 */
	if (mpd->next_page != page->index) {
		/*
		 * Nope, we can't. So, we map non-allocated blocks
2438
		 * and start IO on them using writepage()
2439 2440
		 */
		if (mpd->next_page != mpd->first_page) {
2441 2442
			if (mpage_da_map_blocks(mpd) == 0)
				mpage_da_submit_io(mpd);
2443 2444 2445 2446 2447 2448 2449
			/*
			 * skip rest of the page in the page_vec
			 */
			mpd->io_done = 1;
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return MPAGE_DA_EXTENT_TAIL;
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
		}

		/*
		 * Start next extent of pages ...
		 */
		mpd->first_page = page->index;

		/*
		 * ... and blocks
		 */
2460 2461 2462
		mpd->b_size = 0;
		mpd->b_state = 0;
		mpd->b_blocknr = 0;
2463 2464 2465 2466 2467 2468 2469
	}

	mpd->next_page = page->index + 1;
	logical = (sector_t) page->index <<
		  (PAGE_CACHE_SHIFT - inode->i_blkbits);

	if (!page_has_buffers(page)) {
2470 2471
		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2472 2473
		if (mpd->io_done)
			return MPAGE_DA_EXTENT_TAIL;
2474 2475 2476 2477 2478 2479 2480 2481
	} else {
		/*
		 * Page with regular buffer heads, just add all dirty ones
		 */
		head = page_buffers(page);
		bh = head;
		do {
			BUG_ON(buffer_locked(bh));
2482 2483 2484 2485
			/*
			 * We need to try to allocate
			 * unmapped blocks in the same page.
			 * Otherwise we won't make progress
2486
			 * with the page in ext4_writepage
2487
			 */
2488
			if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2489 2490 2491
				mpage_add_bh_to_extent(mpd, logical,
						       bh->b_size,
						       bh->b_state);
2492 2493
				if (mpd->io_done)
					return MPAGE_DA_EXTENT_TAIL;
2494 2495 2496 2497 2498 2499 2500 2501 2502
			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
				/*
				 * mapped dirty buffer. We need to update
				 * the b_state because we look at
				 * b_state in mpage_da_map_blocks. We don't
				 * update b_size because if we find an
				 * unmapped buffer_head later we need to
				 * use the b_state flag of that buffer_head.
				 */
2503 2504
				if (mpd->b_size == 0)
					mpd->b_state = bh->b_state & BH_FLAGS;
2505
			}
2506 2507 2508 2509 2510 2511 2512 2513
			logical++;
		} while ((bh = bh->b_this_page) != head);
	}

	return 0;
}

/*
2514 2515 2516
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
2517 2518 2519 2520 2521 2522 2523
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
2524 2525 2526 2527 2528
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
				  struct buffer_head *bh_result, int create)
{
	int ret = 0;
2529 2530 2531 2532
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;
2533 2534 2535 2536 2537 2538 2539 2540 2541

	BUG_ON(create == 0);
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2542
	ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2543 2544
	if ((ret == 0) && !buffer_delay(bh_result)) {
		/* the block isn't (pre)allocated yet, let's reserve space */
2545 2546 2547 2548
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
2549
		ret = ext4_da_reserve_space(inode, iblock);
2550 2551 2552 2553
		if (ret)
			/* not enough space to reserve */
			return ret;

2554
		map_bh(bh_result, inode->i_sb, invalid_block);
2555 2556 2557 2558
		set_buffer_new(bh_result);
		set_buffer_delay(bh_result);
	} else if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
2559 2560 2561 2562 2563 2564 2565 2566
		if (buffer_unwritten(bh_result)) {
			/* A delayed write to unwritten bh should
			 * be marked new and mapped.  Mapped ensures
			 * that we don't do get_block multiple times
			 * when we write to the same offset and new
			 * ensures that we do proper zero out for
			 * partial write.
			 */
2567
			set_buffer_new(bh_result);
2568 2569
			set_buffer_mapped(bh_result);
		}
2570 2571 2572 2573 2574
		ret = 0;
	}

	return ret;
}
2575

2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
 * callback function for block_prepare_write(), nobh_writepage(), and
 * block_write_full_page().  These functions should only try to map a
 * single block at a time.
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
 * delayed allocation before calling nobh_writepage() or
 * block_write_full_page().  Otherwise, b_blocknr could be left
 * unitialized, and the page write functions will be taken by
 * surprise.
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2593 2594 2595 2596 2597
				   struct buffer_head *bh_result, int create)
{
	int ret = 0;
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;

2598 2599
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);

2600 2601 2602 2603
	/*
	 * we don't want to do block allocation in writepage
	 * so call get_block_wrap with create = 0
	 */
2604
	ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2605 2606 2607 2608 2609
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
	}
	return ret;
2610 2611
}

2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2659
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2660 2661 2662 2663
out:
	return ret;
}

2664 2665 2666
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);

2667
/*
2668 2669 2670 2671 2672 2673 2674 2675 2676
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
 * we are writing back data modified via mmap(), noone guarantees in which
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
2677 2678 2679 2680 2681
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
 * but other bufer_heads would be unmapped but dirty(dirty done via the
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2707
 */
2708
static int ext4_writepage(struct page *page,
2709
			  struct writeback_control *wbc)
2710 2711
{
	int ret = 0;
2712
	loff_t size;
2713
	unsigned int len;
2714
	struct buffer_head *page_bufs = NULL;
2715 2716
	struct inode *inode = page->mapping->host;

2717
	trace_ext4_writepage(inode, page);
2718 2719 2720 2721 2722
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2723

2724
	if (page_has_buffers(page)) {
2725
		page_bufs = page_buffers(page);
2726
		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2727
					ext4_bh_delay_or_unwritten)) {
2728
			/*
2729 2730
			 * We don't want to do  block allocation
			 * So redirty the page and return
2731 2732 2733
			 * We may reach here when we do a journal commit
			 * via journal_submit_inode_data_buffers.
			 * If we don't have mapping block we just ignore
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
			 * them. We can also reach here via shrink_page_list
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
	} else {
		/*
		 * The test for page_has_buffers() is subtle:
		 * We know the page is dirty but it lost buffers. That means
		 * that at some moment in time after write_begin()/write_end()
		 * has been called all buffers have been clean and thus they
		 * must have been written at least once. So they are all
		 * mapped and we can happily proceed with mapping them
		 * and writing the page.
		 *
		 * Try to initialize the buffer_heads and check whether
		 * all are mapped and non delay. We don't want to
		 * do block allocation here.
		 */
2754
		ret = block_prepare_write(page, 0, len,
2755
					  noalloc_get_block_write);
2756 2757 2758 2759
		if (!ret) {
			page_bufs = page_buffers(page);
			/* check whether all are mapped and non delay */
			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2760
						ext4_bh_delay_or_unwritten)) {
2761 2762 2763 2764 2765 2766 2767 2768 2769
				redirty_page_for_writepage(wbc, page);
				unlock_page(page);
				return 0;
			}
		} else {
			/*
			 * We can't do block allocation here
			 * so just redity the page and unlock
			 * and return
2770 2771 2772 2773 2774
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
2775
		/* now mark the buffer_heads as dirty and uptodate */
2776
		block_commit_write(page, 0, len);
2777 2778
	}

2779 2780 2781 2782 2783 2784
	if (PageChecked(page) && ext4_should_journal_data(inode)) {
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
		ClearPageChecked(page);
2785
		return __ext4_journalled_writepage(page, len);
2786 2787
	}

2788
	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2789
		ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2790 2791 2792 2793 2794
	else if (page_bufs && buffer_uninit(page_bufs)) {
		ext4_set_bh_endio(page_bufs, inode);
		ret = block_write_full_page_endio(page, noalloc_get_block_write,
					    wbc, ext4_end_io_buffer_write);
	} else
2795 2796
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
2797 2798 2799 2800

	return ret;
}

2801
/*
2802 2803 2804 2805 2806
 * This is called via ext4_da_writepages() to
 * calulate the total number of credits to reserve to fit
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2807
 */
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2819
	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
2820 2821 2822 2823 2824
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2825

2826
static int ext4_da_writepages(struct address_space *mapping,
2827
			      struct writeback_control *wbc)
2828
{
2829 2830
	pgoff_t	index;
	int range_whole = 0;
2831
	handle_t *handle = NULL;
2832
	struct mpage_da_data mpd;
2833
	struct inode *inode = mapping->host;
2834
	int no_nrwrite_index_update;
2835 2836
	int pages_written = 0;
	long pages_skipped;
2837
	unsigned int max_pages;
2838
	int range_cyclic, cycled = 1, io_done = 0;
2839 2840
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2841
	loff_t range_start = wbc->range_start;
2842
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2843

2844
	trace_ext4_da_writepages(inode, wbc);
2845

2846 2847 2848 2849 2850
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2851
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2852
		return 0;
2853 2854 2855 2856 2857

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2858
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2859 2860 2861 2862 2863
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2864
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2865 2866
		return -EROFS;

2867 2868
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2869

2870 2871
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2872
		index = mapping->writeback_index;
2873 2874 2875 2876 2877 2878
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
	} else
2879
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2880

2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
	if (!range_cyclic && range_whole)
		desired_nr_to_write = wbc->nr_to_write * 8;
	else
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2911 2912 2913
	mpd.wbc = wbc;
	mpd.inode = mapping->host;

2914 2915 2916 2917 2918 2919 2920 2921
	/*
	 * we don't want write_cache_pages to update
	 * nr_to_write and writeback_index
	 */
	no_nrwrite_index_update = wbc->no_nrwrite_index_update;
	wbc->no_nrwrite_index_update = 1;
	pages_skipped = wbc->pages_skipped;

2922
retry:
2923
	while (!ret && wbc->nr_to_write > 0) {
2924 2925 2926 2927 2928 2929 2930 2931

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2932
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2933

2934 2935 2936 2937
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2938
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2939 2940
			       "%ld pages, ino %lu; err %d\n", __func__,
				wbc->nr_to_write, inode->i_ino, ret);
2941 2942
			goto out_writepages;
		}
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963

		/*
		 * Now call __mpage_da_writepage to find the next
		 * contiguous region of logical blocks that need
		 * blocks to be allocated by ext4.  We don't actually
		 * submit the blocks for I/O here, even though
		 * write_cache_pages thinks it will, and will set the
		 * pages as clean for write before calling
		 * __mpage_da_writepage().
		 */
		mpd.b_size = 0;
		mpd.b_state = 0;
		mpd.b_blocknr = 0;
		mpd.first_page = 0;
		mpd.next_page = 0;
		mpd.io_done = 0;
		mpd.pages_written = 0;
		mpd.retval = 0;
		ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
					&mpd);
		/*
2964
		 * If we have a contiguous extent of pages and we
2965 2966 2967 2968 2969 2970 2971 2972 2973
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
			if (mpage_da_map_blocks(&mpd) == 0)
				mpage_da_submit_io(&mpd);
			mpd.io_done = 1;
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2974
		trace_ext4_da_write_pages(inode, &mpd);
2975
		wbc->nr_to_write -= mpd.pages_written;
2976

2977
		ext4_journal_stop(handle);
2978

2979
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2980 2981 2982 2983
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2984
			jbd2_journal_force_commit_nested(sbi->s_journal);
2985 2986 2987
			wbc->pages_skipped = pages_skipped;
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2988 2989 2990 2991
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
2992 2993
			pages_written += mpd.pages_written;
			wbc->pages_skipped = pages_skipped;
2994
			ret = 0;
2995
			io_done = 1;
2996
		} else if (wbc->nr_to_write)
2997 2998 2999 3000 3001 3002
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
3003
	}
3004 3005 3006 3007 3008 3009 3010
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
3011
	if (pages_skipped != wbc->pages_skipped)
3012 3013 3014 3015
		ext4_msg(inode->i_sb, KERN_CRIT,
			 "This should not happen leaving %s "
			 "with nr_to_write = %ld ret = %d\n",
			 __func__, wbc->nr_to_write, ret);
3016 3017 3018

	/* Update index */
	index += pages_written;
3019
	wbc->range_cyclic = range_cyclic;
3020 3021 3022 3023 3024 3025
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
		mapping->writeback_index = index;
3026

3027
out_writepages:
3028 3029
	if (!no_nrwrite_index_update)
		wbc->no_nrwrite_index_update = 0;
3030
	wbc->nr_to_write -= nr_to_writebump;
3031
	wbc->range_start = range_start;
3032
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3033
	return ret;
3034 3035
}

3036 3037 3038 3039 3040 3041 3042 3043 3044
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
3045
	 * counters can get slightly wrong with percpu_counter_batch getting
3046 3047 3048 3049 3050 3051 3052 3053 3054
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
3055 3056
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
3057 3058 3059
		 */
		return 1;
	}
3060 3061 3062 3063 3064 3065 3066
	/*
	 * Even if we don't switch but are nearing capacity,
	 * start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (free_blocks < 2 * dirty_blocks)
		writeback_inodes_sb_if_idle(sb);

3067 3068 3069
	return 0;
}

3070
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3071 3072
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
3073
{
3074
	int ret, retries = 0, quota_retries = 0;
3075 3076 3077 3078 3079 3080 3081 3082 3083
	struct page *page;
	pgoff_t index;
	unsigned from, to;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
3084 3085 3086 3087 3088 3089 3090

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
3091
	trace_ext4_da_write_begin(inode, pos, len, flags);
3092
retry:
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
3104 3105 3106
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
3107

3108
	page = grab_cache_page_write_begin(mapping, index, flags);
3109 3110 3111 3112 3113
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
3114 3115 3116
	*pagep = page;

	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3117
				ext4_da_get_block_prep);
3118 3119 3120 3121
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
3122 3123 3124 3125 3126 3127
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
3128
			ext4_truncate_failed_write(inode);
3129 3130
	}

3131 3132
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148

	if ((ret == -EDQUOT) &&
	    EXT4_I(inode)->i_reserved_meta_blocks &&
	    (quota_retries++ < 3)) {
		/*
		 * Since we often over-estimate the number of meta
		 * data blocks required, we may sometimes get a
		 * spurios out of quota error even though there would
		 * be enough space once we write the data blocks and
		 * find out how many meta data blocks were _really_
		 * required.  So try forcing the inode write to see if
		 * that helps.
		 */
		write_inode_now(inode, (quota_retries == 3));
		goto retry;
	}
3149 3150 3151 3152
out:
	return ret;
}

3153 3154 3155 3156 3157
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
3158
					    unsigned long offset)
3159 3160 3161 3162 3163 3164 3165 3166 3167
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

3168
	for (i = 0; i < idx; i++)
3169 3170
		bh = bh->b_this_page;

3171
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3172 3173 3174 3175
		return 0;
	return 1;
}

3176
static int ext4_da_write_end(struct file *file,
3177 3178 3179
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
3180 3181 3182 3183 3184
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
3185
	unsigned long start, end;
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
3199

3200
	trace_ext4_da_write_end(inode, pos, len, copied);
3201
	start = pos & (PAGE_CACHE_SIZE - 1);
3202
	end = start + copied - 1;
3203 3204 3205 3206 3207 3208 3209 3210

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
3222

3223 3224 3225
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
3226 3227 3228 3229 3230
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
3231
		}
3232
	}
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

3254
	ext4_da_page_release_reservation(page, offset);
3255 3256 3257 3258 3259 3260 3261

out:
	ext4_invalidatepage(page, offset);

	return;
}

3262 3263 3264 3265 3266
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
3267 3268
	trace_ext4_alloc_da_blocks(inode);

3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
3279
	 *
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
	 * the pages by calling redirty_page_for_writeback() but that
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
	 * simplifying them becuase we wouldn't actually intend to
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
3299
	 *
3300 3301 3302 3303 3304 3305
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
3306

3307 3308 3309 3310 3311
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
3312
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3313 3314 3315 3316 3317 3318 3319 3320
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
3321
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3322 3323 3324 3325 3326
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

3337 3338
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
3350
		 * NB. EXT4_STATE_JDATA is not set on files other than
3351 3352 3353 3354 3355 3356
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

3357
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3358
		journal = EXT4_JOURNAL(inode);
3359 3360 3361
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
3362 3363 3364 3365 3366

		if (err)
			return 0;
	}

3367
	return generic_block_bmap(mapping, block, ext4_get_block);
3368 3369
}

3370
static int ext4_readpage(struct file *file, struct page *page)
3371
{
3372
	return mpage_readpage(page, ext4_get_block);
3373 3374 3375
}

static int
3376
ext4_readpages(struct file *file, struct address_space *mapping,
3377 3378
		struct list_head *pages, unsigned nr_pages)
{
3379
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3380 3381
}

3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
static void ext4_free_io_end(ext4_io_end_t *io)
{
	BUG_ON(!io);
	if (io->page)
		put_page(io->page);
	iput(io->inode);
	kfree(io);
}

static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
{
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	if (!page_has_buffers(page))
		return;
	head = bh = page_buffers(page);
	do {
		if (offset <= curr_off && test_clear_buffer_uninit(bh)
					&& bh->b_private) {
			ext4_free_io_end(bh->b_private);
			bh->b_private = NULL;
			bh->b_end_io = NULL;
		}
		curr_off = curr_off + bh->b_size;
		bh = bh->b_this_page;
	} while (bh != head);
}

3411
static void ext4_invalidatepage(struct page *page, unsigned long offset)
3412
{
3413
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3414

3415 3416 3417 3418 3419
	/*
	 * free any io_end structure allocated for buffers to be discarded
	 */
	if (ext4_should_dioread_nolock(page->mapping->host))
		ext4_invalidatepage_free_endio(page, offset);
3420 3421 3422 3423 3424 3425
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3426 3427 3428 3429
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
3430 3431
}

3432
static int ext4_releasepage(struct page *page, gfp_t wait)
3433
{
3434
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3435 3436 3437 3438

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
3439 3440 3441 3442
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3443 3444 3445
}

/*
3446 3447
 * O_DIRECT for ext3 (or indirect map) based files
 *
3448 3449 3450 3451 3452
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
3453 3454
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
3455
 */
3456
static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3457 3458
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
3459 3460 3461
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3462
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
3463
	handle_t *handle;
3464 3465 3466
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);
3467
	int retries = 0;
3468 3469 3470 3471 3472

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
3473 3474 3475 3476 3477 3478
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
3479
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
3480 3481 3482 3483
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
3484 3485
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
3486
			ext4_journal_stop(handle);
3487 3488 3489
		}
	}

3490
retry:
3491 3492 3493 3494 3495 3496 3497 3498
	if (rw == READ && ext4_should_dioread_nolock(inode))
		ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
				 inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
				 ext4_get_block, NULL);
	else
		ret = blockdev_direct_IO(rw, iocb, inode,
				 inode->i_sb->s_bdev, iov,
3499
				 offset, nr_segs,
3500
				 ext4_get_block, NULL);
3501 3502
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3503

J
Jan Kara 已提交
3504
	if (orphan) {
3505 3506
		int err;

J
Jan Kara 已提交
3507 3508 3509 3510 3511 3512 3513
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
3514 3515 3516
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);

J
Jan Kara 已提交
3517 3518 3519
			goto out;
		}
		if (inode->i_nlink)
3520
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
3521
		if (ret > 0) {
3522 3523 3524 3525 3526 3527 3528 3529
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
3530
				 * ext4_mark_inode_dirty() to userspace.  So
3531 3532
				 * ignore it.
				 */
3533
				ext4_mark_inode_dirty(handle, inode);
3534 3535
			}
		}
3536
		err = ext4_journal_stop(handle);
3537 3538 3539 3540 3541 3542 3543
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

3544
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3545 3546
		   struct buffer_head *bh_result, int create)
{
3547
	handle_t *handle = ext4_journal_current_handle();
3548 3549 3550
	int ret = 0;
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
	int dio_credits;
3551
	int started = 0;
3552

3553
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3554
		   inode->i_ino, create);
3555
	/*
3556 3557 3558
	 * ext4_get_block in prepare for a DIO write or buffer write.
	 * We allocate an uinitialized extent if blocks haven't been allocated.
	 * The extent will be converted to initialized after IO complete.
3559
	 */
3560
	create = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3561

3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
	if (!handle) {
		if (max_blocks > DIO_MAX_BLOCKS)
			max_blocks = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
		handle = ext4_journal_start(inode, dio_credits);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
			goto out;
		}
		started = 1;
3572
	}
3573

3574 3575 3576 3577 3578 3579
	ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
			      create);
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
	}
3580 3581
	if (started)
		ext4_journal_stop(handle);
3582 3583 3584 3585
out:
	return ret;
}

3586
static void dump_completed_IO(struct inode * inode)
3587 3588 3589 3590
{
#ifdef	EXT4_DEBUG
	struct list_head *cur, *before, *after;
	ext4_io_end_t *io, *io0, *io1;
3591
	unsigned long flags;
3592

3593 3594
	if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
		ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
3595 3596 3597
		return;
	}

3598
	ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
3599
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3600
	list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
3601 3602 3603 3604 3605 3606 3607 3608 3609
		cur = &io->list;
		before = cur->prev;
		io0 = container_of(before, ext4_io_end_t, list);
		after = cur->next;
		io1 = container_of(after, ext4_io_end_t, list);

		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
			    io, inode->i_ino, io0, io1);
	}
3610
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3611 3612
#endif
}
3613 3614 3615 3616

/*
 * check a range of space and convert unwritten extents to written.
 */
3617
static int ext4_end_io_nolock(ext4_io_end_t *io)
3618 3619 3620
{
	struct inode *inode = io->inode;
	loff_t offset = io->offset;
3621
	ssize_t size = io->size;
3622 3623
	int ret = 0;

3624
	ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
3625 3626 3627 3628 3629 3630
		   "list->prev 0x%p\n",
	           io, inode->i_ino, io->list.next, io->list.prev);

	if (list_empty(&io->list))
		return ret;

3631
	if (io->flag != EXT4_IO_UNWRITTEN)
3632 3633
		return ret;

3634
	ret = ext4_convert_unwritten_extents(inode, offset, size);
3635
	if (ret < 0) {
3636
		printk(KERN_EMERG "%s: failed to convert unwritten"
3637 3638 3639 3640 3641
			"extents to written extents, error is %d"
			" io is still on inode %lu aio dio list\n",
                       __func__, ret, inode->i_ino);
		return ret;
	}
3642

3643 3644 3645
	/* clear the DIO AIO unwritten flag */
	io->flag = 0;
	return ret;
3646
}
3647

3648 3649 3650
/*
 * work on completed aio dio IO, to convert unwritten extents to extents
 */
3651
static void ext4_end_io_work(struct work_struct *work)
3652
{
3653 3654 3655 3656 3657
	ext4_io_end_t		*io = container_of(work, ext4_io_end_t, work);
	struct inode		*inode = io->inode;
	struct ext4_inode_info	*ei = EXT4_I(inode);
	unsigned long		flags;
	int			ret;
3658

3659
	mutex_lock(&inode->i_mutex);
3660
	ret = ext4_end_io_nolock(io);
3661 3662 3663
	if (ret < 0) {
		mutex_unlock(&inode->i_mutex);
		return;
3664
	}
3665 3666 3667 3668 3669

	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	if (!list_empty(&io->list))
		list_del_init(&io->list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3670
	mutex_unlock(&inode->i_mutex);
3671
	ext4_free_io_end(io);
3672
}
3673

3674 3675 3676
/*
 * This function is called from ext4_sync_file().
 *
3677 3678
 * When IO is completed, the work to convert unwritten extents to
 * written is queued on workqueue but may not get immediately
3679 3680
 * scheduled. When fsync is called, we need to ensure the
 * conversion is complete before fsync returns.
3681 3682 3683 3684 3685
 * The inode keeps track of a list of pending/completed IO that
 * might needs to do the conversion. This function walks through
 * the list and convert the related unwritten extents for completed IO
 * to written.
 * The function return the number of pending IOs on success.
3686
 */
3687
int flush_completed_IO(struct inode *inode)
3688 3689
{
	ext4_io_end_t *io;
3690 3691
	struct ext4_inode_info *ei = EXT4_I(inode);
	unsigned long flags;
3692 3693 3694
	int ret = 0;
	int ret2 = 0;

3695
	if (list_empty(&ei->i_completed_io_list))
3696 3697
		return ret;

3698
	dump_completed_IO(inode);
3699 3700 3701
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	while (!list_empty(&ei->i_completed_io_list)){
		io = list_entry(ei->i_completed_io_list.next,
3702 3703
				ext4_io_end_t, list);
		/*
3704
		 * Calling ext4_end_io_nolock() to convert completed
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716
		 * IO to written.
		 *
		 * When ext4_sync_file() is called, run_queue() may already
		 * about to flush the work corresponding to this io structure.
		 * It will be upset if it founds the io structure related
		 * to the work-to-be schedule is freed.
		 *
		 * Thus we need to keep the io structure still valid here after
		 * convertion finished. The io structure has a flag to
		 * avoid double converting from both fsync and background work
		 * queue work.
		 */
3717
		spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3718
		ret = ext4_end_io_nolock(io);
3719
		spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3720 3721 3722 3723 3724
		if (ret < 0)
			ret2 = ret;
		else
			list_del_init(&io->list);
	}
3725
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3726 3727 3728
	return (ret2 < 0) ? ret2 : 0;
}

3729
static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
3730 3731 3732
{
	ext4_io_end_t *io = NULL;

3733
	io = kmalloc(sizeof(*io), flags);
3734 3735

	if (io) {
3736
		igrab(inode);
3737
		io->inode = inode;
3738
		io->flag = 0;
3739 3740
		io->offset = 0;
		io->size = 0;
3741
		io->page = NULL;
3742
		INIT_WORK(&io->work, ext4_end_io_work);
3743
		INIT_LIST_HEAD(&io->list);
3744 3745 3746 3747 3748 3749 3750 3751 3752 3753
	}

	return io;
}

static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
			    ssize_t size, void *private)
{
        ext4_io_end_t *io_end = iocb->private;
	struct workqueue_struct *wq;
3754 3755
	unsigned long flags;
	struct ext4_inode_info *ei;
3756

3757 3758 3759 3760
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
		return;

3761 3762 3763 3764 3765 3766
	ext_debug("ext4_end_io_dio(): io_end 0x%p"
		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

	/* if not aio dio with unwritten extents, just free io and return */
3767
	if (io_end->flag != EXT4_IO_UNWRITTEN){
3768 3769
		ext4_free_io_end(io_end);
		iocb->private = NULL;
3770
		return;
3771 3772
	}

3773 3774
	io_end->offset = offset;
	io_end->size = size;
3775
	io_end->flag = EXT4_IO_UNWRITTEN;
3776 3777
	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;

3778
	/* queue the work to convert unwritten extents to written */
3779 3780
	queue_work(wq, &io_end->work);

3781
	/* Add the io_end to per-inode completed aio dio list*/
3782 3783 3784 3785
	ei = EXT4_I(io_end->inode);
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &ei->i_completed_io_list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3786 3787
	iocb->private = NULL;
}
3788

3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
{
	ext4_io_end_t *io_end = bh->b_private;
	struct workqueue_struct *wq;
	struct inode *inode;
	unsigned long flags;

	if (!test_clear_buffer_uninit(bh) || !io_end)
		goto out;

	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
		printk("sb umounted, discard end_io request for inode %lu\n",
			io_end->inode->i_ino);
		ext4_free_io_end(io_end);
		goto out;
	}

	io_end->flag = EXT4_IO_UNWRITTEN;
	inode = io_end->inode;

	/* Add the io_end to per-inode completed io list*/
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);

	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
out:
	bh->b_private = NULL;
	bh->b_end_io = NULL;
	clear_buffer_uninit(bh);
	end_buffer_async_write(bh, uptodate);
}

static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
{
	ext4_io_end_t *io_end;
	struct page *page = bh->b_page;
	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
	size_t size = bh->b_size;

retry:
	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
	if (!io_end) {
		if (printk_ratelimit())
			printk(KERN_WARNING "%s: allocation fail\n", __func__);
		schedule();
		goto retry;
	}
	io_end->offset = offset;
	io_end->size = size;
	/*
	 * We need to hold a reference to the page to make sure it
	 * doesn't get evicted before ext4_end_io_work() has a chance
	 * to convert the extent from written to unwritten.
	 */
	io_end->page = page;
	get_page(io_end->page);

	bh->b_private = io_end;
	bh->b_end_io = ext4_end_io_buffer_write;
	return 0;
}

3854 3855 3856 3857 3858 3859 3860 3861 3862
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
 * For holes, we fallocate those blocks, mark them as unintialized
 * If those blocks were preallocated, we mark sure they are splited, but
 * still keep the range to write as unintialized.
 *
3863 3864 3865 3866
 * The unwrritten extents will be converted to written when DIO is completed.
 * For async direct IO, since the IO may still pending when return, we
 * set up an end_io call back function, which will do the convertion
 * when async direct IO completed.
3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);

	loff_t final_size = offset + count;
	if (rw == WRITE && final_size <= inode->i_size) {
		/*
3885 3886 3887
 		 * We could direct write to holes and fallocate.
		 *
 		 * Allocated blocks to fill the hole are marked as uninitialized
3888 3889
 		 * to prevent paralel buffered read to expose the stale data
 		 * before DIO complete the data IO.
3890 3891
		 *
 		 * As to previously fallocated extents, ext4 get_block
3892 3893 3894
 		 * will just simply mark the buffer mapped but still
 		 * keep the extents uninitialized.
 		 *
3895 3896 3897 3898 3899 3900 3901 3902
		 * for non AIO case, we will convert those unwritten extents
		 * to written after return back from blockdev_direct_IO.
		 *
		 * for async DIO, the conversion needs to be defered when
		 * the IO is completed. The ext4 end_io callback function
		 * will be called to take care of the conversion work.
		 * Here for async case, we allocate an io_end structure to
		 * hook to the iocb.
3903
 		 */
3904 3905 3906
		iocb->private = NULL;
		EXT4_I(inode)->cur_aio_dio = NULL;
		if (!is_sync_kiocb(iocb)) {
3907
			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
			if (!iocb->private)
				return -ENOMEM;
			/*
			 * we save the io structure for current async
			 * direct IO, so that later ext4_get_blocks()
			 * could flag the io structure whether there
			 * is a unwritten extents needs to be converted
			 * when IO is completed.
			 */
			EXT4_I(inode)->cur_aio_dio = iocb->private;
		}

3920 3921 3922
		ret = blockdev_direct_IO(rw, iocb, inode,
					 inode->i_sb->s_bdev, iov,
					 offset, nr_segs,
3923
					 ext4_get_block_write,
3924
					 ext4_end_io_dio);
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
		if (iocb->private)
			EXT4_I(inode)->cur_aio_dio = NULL;
		/*
		 * The io_end structure takes a reference to the inode,
		 * that structure needs to be destroyed and the
		 * reference to the inode need to be dropped, when IO is
		 * complete, even with 0 byte write, or failed.
		 *
		 * In the successful AIO DIO case, the io_end structure will be
		 * desctroyed and the reference to the inode will be dropped
		 * after the end_io call back function is called.
		 *
		 * In the case there is 0 byte write, or error case, since
		 * VFS direct IO won't invoke the end_io call back function,
		 * we need to free the end_io structure here.
		 */
		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
			ext4_free_io_end(iocb->private);
			iocb->private = NULL;
3944 3945
		} else if (ret > 0 && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
3946
			int err;
3947 3948 3949 3950
			/*
			 * for non AIO case, since the IO is already
			 * completed, we could do the convertion right here
			 */
3951 3952 3953 3954
			err = ext4_convert_unwritten_extents(inode,
							     offset, ret);
			if (err < 0)
				ret = err;
3955
			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3956
		}
3957 3958
		return ret;
	}
3959 3960

	/* for write the the end of file case, we fall back to old way */
3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976
	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;

	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
		return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);

	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

3977
/*
3978
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3990
static int ext4_journalled_set_page_dirty(struct page *page)
3991 3992 3993 3994 3995
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3996
static const struct address_space_operations ext4_ordered_aops = {
3997 3998
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3999
	.writepage		= ext4_writepage,
4000 4001 4002 4003 4004 4005 4006 4007 4008
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
4009
	.error_remove_page	= generic_error_remove_page,
4010 4011
};

4012
static const struct address_space_operations ext4_writeback_aops = {
4013 4014
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
4015
	.writepage		= ext4_writepage,
4016 4017 4018 4019 4020 4021 4022 4023 4024
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
4025
	.error_remove_page	= generic_error_remove_page,
4026 4027
};

4028
static const struct address_space_operations ext4_journalled_aops = {
4029 4030
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
4031
	.writepage		= ext4_writepage,
4032 4033 4034 4035 4036 4037 4038 4039
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
4040
	.error_remove_page	= generic_error_remove_page,
4041 4042
};

4043
static const struct address_space_operations ext4_da_aops = {
4044 4045
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
4046
	.writepage		= ext4_writepage,
4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
	.writepages		= ext4_da_writepages,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
4057
	.error_remove_page	= generic_error_remove_page,
4058 4059
};

4060
void ext4_set_aops(struct inode *inode)
4061
{
4062 4063 4064 4065
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
4066
		inode->i_mapping->a_ops = &ext4_ordered_aops;
4067 4068 4069
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
4070 4071
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
4072
	else
4073
		inode->i_mapping->a_ops = &ext4_journalled_aops;
4074 4075 4076
}

/*
4077
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4078 4079 4080 4081
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
4082
int ext4_block_truncate_page(handle_t *handle,
4083 4084
		struct address_space *mapping, loff_t from)
{
4085
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
4086
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
4087 4088
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
4089 4090
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
4091
	struct page *page;
4092 4093
	int err = 0;

4094 4095
	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
4096 4097 4098
	if (!page)
		return -EINVAL;

4099 4100 4101 4102 4103 4104 4105 4106 4107
	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	/*
	 * For "nobh" option,  we can only work if we don't need to
	 * read-in the page - otherwise we create buffers to do the IO.
	 */
	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
4108
	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
4109
		zero_user(page, offset, length);
4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133
		set_page_dirty(page);
		goto unlock;
	}

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
4134
		ext4_get_block(inode, iblock, bh, 0);
4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

4155
	if (ext4_should_journal_data(inode)) {
4156
		BUFFER_TRACE(bh, "get write access");
4157
		err = ext4_journal_get_write_access(handle, bh);
4158 4159 4160 4161
		if (err)
			goto unlock;
	}

4162
	zero_user(page, offset, length);
4163 4164 4165 4166

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
4167
	if (ext4_should_journal_data(inode)) {
4168
		err = ext4_handle_dirty_metadata(handle, inode, bh);
4169
	} else {
4170
		if (ext4_should_order_data(inode))
4171
			err = ext4_jbd2_file_inode(handle, inode);
4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
4195
 *	ext4_find_shared - find the indirect blocks for partial truncation.
4196 4197
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
4198
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
4199 4200 4201
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
4202
 *	This is a helper function used by ext4_truncate().
4203 4204 4205 4206 4207 4208 4209
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
4210
 *	past the truncation point is possible until ext4_truncate()
4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

4229
static Indirect *ext4_find_shared(struct inode *inode, int depth,
4230 4231
				  ext4_lblk_t offsets[4], Indirect chain[4],
				  __le32 *top)
4232 4233 4234 4235 4236
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
4237
	/* Make k index the deepest non-null offset + 1 */
4238 4239
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
4240
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
4251
	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
4263
		/* Nope, don't do this in ext4.  Must leave the tree intact */
4264 4265 4266 4267 4268 4269
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

4270
	while (partial > p) {
4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
4286 4287 4288 4289 4290
static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
			     struct buffer_head *bh,
			     ext4_fsblk_t block_to_free,
			     unsigned long count, __le32 *first,
			     __le32 *last)
4291 4292
{
	__le32 *p;
4293
	int	flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4294 4295 4296

	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
		flags |= EXT4_FREE_BLOCKS_METADATA;
4297

4298 4299
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
				   count)) {
4300
		ext4_error(inode->i_sb, "inode #%lu: "
4301 4302 4303 4304 4305 4306
			   "attempt to clear blocks %llu len %lu, invalid",
			   inode->i_ino, (unsigned long long) block_to_free,
			   count);
		return 1;
	}

4307 4308
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
4309 4310
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			ext4_handle_dirty_metadata(handle, inode, bh);
4311
		}
4312
		ext4_mark_inode_dirty(handle, inode);
4313 4314
		ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
4315 4316
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
4317
			ext4_journal_get_write_access(handle, bh);
4318 4319 4320
		}
	}

4321 4322
	for (p = first; p < last; p++)
		*p = 0;
4323

4324
	ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4325
	return 0;
4326 4327 4328
}

/**
4329
 * ext4_free_data - free a list of data blocks
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
4347
static void ext4_free_data(handle_t *handle, struct inode *inode,
4348 4349 4350
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
4351
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4352 4353 4354 4355
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
4356
	ext4_fsblk_t nr;		    /* Current block # */
4357 4358 4359 4360 4361 4362
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
4363
		err = ext4_journal_get_write_access(handle, this_bh);
4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
4381 4382 4383 4384
				if (ext4_clear_blocks(handle, inode, this_bh,
						      block_to_free, count,
						      block_to_free_p, p))
					break;
4385 4386 4387 4388 4389 4390 4391 4392
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
4393
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4394 4395 4396
				  count, block_to_free_p, p);

	if (this_bh) {
4397
		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4398 4399 4400 4401 4402 4403 4404

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
4405
		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4406
			ext4_handle_dirty_metadata(handle, inode, this_bh);
4407
		else
4408
			ext4_error(inode->i_sb,
4409 4410 4411 4412
				   "circular indirect block detected, "
				   "inode=%lu, block=%llu",
				   inode->i_ino,
				   (unsigned long long) this_bh->b_blocknr);
4413 4414 4415 4416
	}
}

/**
4417
 *	ext4_free_branches - free an array of branches
4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
4429
static void ext4_free_branches(handle_t *handle, struct inode *inode,
4430 4431 4432
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
4433
	ext4_fsblk_t nr;
4434 4435
	__le32 *p;

4436
	if (ext4_handle_is_aborted(handle))
4437 4438 4439 4440
		return;

	if (depth--) {
		struct buffer_head *bh;
4441
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4442 4443 4444 4445 4446 4447
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

4448 4449
			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
						   nr, 1)) {
4450
				ext4_error(inode->i_sb,
4451 4452 4453 4454 4455 4456 4457
					   "indirect mapped block in inode "
					   "#%lu invalid (level %d, blk #%lu)",
					   inode->i_ino, depth,
					   (unsigned long) nr);
				break;
			}

4458 4459 4460 4461 4462 4463 4464 4465
			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
4466
				ext4_error(inode->i_sb,
4467
					   "Read failure, inode=%lu, block=%llu",
4468 4469 4470 4471 4472 4473
					   inode->i_ino, nr);
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
4474
			ext4_free_branches(handle, inode, bh,
4475 4476 4477
					(__le32 *) bh->b_data,
					(__le32 *) bh->b_data + addr_per_block,
					depth);
4478 4479 4480 4481 4482

			/*
			 * We've probably journalled the indirect block several
			 * times during the truncate.  But it's no longer
			 * needed and we now drop it from the transaction via
4483
			 * jbd2_journal_revoke().
4484 4485 4486
			 *
			 * That's easy if it's exclusively part of this
			 * transaction.  But if it's part of the committing
4487
			 * transaction then jbd2_journal_forget() will simply
4488
			 * brelse() it.  That means that if the underlying
4489
			 * block is reallocated in ext4_get_block(),
4490 4491 4492 4493 4494 4495 4496 4497
			 * unmap_underlying_metadata() will find this block
			 * and will try to get rid of it.  damn, damn.
			 *
			 * If this block has already been committed to the
			 * journal, a revoke record will be written.  And
			 * revoke records must be emitted *before* clearing
			 * this block's bit in the bitmaps.
			 */
4498
			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
4516
			if (ext4_handle_is_aborted(handle))
4517 4518
				return;
			if (try_to_extend_transaction(handle, inode)) {
4519
				ext4_mark_inode_dirty(handle, inode);
4520 4521
				ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
4522 4523
			}

4524 4525
			ext4_free_blocks(handle, inode, 0, nr, 1,
					 EXT4_FREE_BLOCKS_METADATA);
4526 4527 4528 4529 4530 4531 4532

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
4533
				if (!ext4_journal_get_write_access(handle,
4534 4535 4536
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
4537 4538 4539 4540
					"call ext4_handle_dirty_metadata");
					ext4_handle_dirty_metadata(handle,
								   inode,
								   parent_bh);
4541 4542 4543 4544 4545 4546
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
4547
		ext4_free_data(handle, inode, parent_bh, first, last);
4548 4549 4550
	}
}

4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

4564
/*
4565
 * ext4_truncate()
4566
 *
4567 4568
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
4585
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4586
 * that this inode's truncate did not complete and it will again call
4587 4588
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
4589
 * that's fine - as long as they are linked from the inode, the post-crash
4590
 * ext4_truncate() run will find them and release them.
4591
 */
4592
void ext4_truncate(struct inode *inode)
4593 4594
{
	handle_t *handle;
4595
	struct ext4_inode_info *ei = EXT4_I(inode);
4596
	__le32 *i_data = ei->i_data;
4597
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4598
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
4599
	ext4_lblk_t offsets[4];
4600 4601 4602 4603
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
4604
	ext4_lblk_t last_block;
4605 4606
	unsigned blocksize = inode->i_sb->s_blocksize;

4607
	if (!ext4_can_truncate(inode))
4608 4609
		return;

4610 4611
	EXT4_I(inode)->i_flags &= ~EXT4_EOFBLOCKS_FL;

4612
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4613
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4614

A
Aneesh Kumar K.V 已提交
4615
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4616
		ext4_ext_truncate(inode);
A
Aneesh Kumar K.V 已提交
4617 4618
		return;
	}
A
Alex Tomas 已提交
4619

4620
	handle = start_transaction(inode);
4621
	if (IS_ERR(handle))
4622 4623 4624
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
4625
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4626

4627 4628 4629
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
4630

4631
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
4644
	if (ext4_orphan_add(handle, inode))
4645 4646
		goto out_stop;

4647 4648 4649 4650 4651
	/*
	 * From here we block out all ext4_get_block() callers who want to
	 * modify the block allocation tree.
	 */
	down_write(&ei->i_data_sem);
4652

4653
	ext4_discard_preallocations(inode);
4654

4655 4656 4657 4658 4659
	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
4660
	 * ext4 *really* writes onto the disk inode.
4661 4662 4663 4664
	 */
	ei->i_disksize = inode->i_size;

	if (n == 1) {		/* direct blocks */
4665 4666
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
4667 4668 4669
		goto do_indirects;
	}

4670
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4671 4672 4673 4674
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
4675
			ext4_free_branches(handle, inode, NULL,
4676 4677 4678 4679 4680 4681 4682 4683 4684
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
4685
			ext4_free_branches(handle, inode, partial->bh,
4686 4687 4688 4689 4690 4691
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
4692
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4693 4694 4695
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
4696
		brelse(partial->bh);
4697 4698 4699 4700 4701 4702
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
4703
		nr = i_data[EXT4_IND_BLOCK];
4704
		if (nr) {
4705 4706
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
4707
		}
4708 4709
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
4710
		if (nr) {
4711 4712
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
4713
		}
4714 4715
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
4716
		if (nr) {
4717 4718
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
4719
		}
4720
	case EXT4_TIND_BLOCK:
4721 4722 4723
		;
	}

4724
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
4725
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4726
	ext4_mark_inode_dirty(handle, inode);
4727 4728 4729 4730 4731 4732

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
4733
		ext4_handle_sync(handle);
4734 4735 4736 4737 4738
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
4739
	 * ext4_delete_inode(), and we allow that function to clean up the
4740 4741 4742
	 * orphan info for us.
	 */
	if (inode->i_nlink)
4743
		ext4_orphan_del(handle, inode);
4744

4745
	ext4_journal_stop(handle);
4746 4747 4748
}

/*
4749
 * ext4_get_inode_loc returns with an extra refcount against the inode's
4750 4751 4752 4753
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
4754 4755
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
4756
{
4757 4758 4759 4760 4761 4762
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
4763
	iloc->bh = NULL;
4764 4765
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
4766

4767 4768 4769
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
4770 4771
		return -EIO;

4772 4773 4774 4775 4776 4777 4778 4779 4780 4781
	/*
	 * Figure out the offset within the block group inode table
	 */
	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
4782
	if (!bh) {
4783 4784
		ext4_error(sb, "unable to read inode block - "
			   "inode=%lu, block=%llu", inode->i_ino, block);
4785 4786 4787 4788
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
4789 4790 4791 4792 4793 4794 4795 4796 4797 4798

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
4812
			int i, start;
4813

4814
			start = inode_offset & ~(inodes_per_block - 1);
4815

4816 4817
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
4830
			for (i = start; i < start + inodes_per_block; i++) {
4831 4832
				if (i == inode_offset)
					continue;
4833
				if (ext4_test_bit(i, bitmap_bh->b_data))
4834 4835 4836
					break;
			}
			brelse(bitmap_bh);
4837
			if (i == start + inodes_per_block) {
4838 4839 4840 4841 4842 4843 4844 4845 4846
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
4847 4848 4849 4850 4851 4852 4853 4854 4855
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
4856
			/* s_inode_readahead_blks is always a power of 2 */
4857 4858 4859 4860 4861 4862 4863
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4864
				num -= ext4_itable_unused_count(sb, gdp);
4865 4866 4867 4868 4869 4870 4871
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

4872 4873 4874 4875 4876 4877 4878 4879 4880 4881
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
4882 4883
			ext4_error(sb, "unable to read inode block - inode=%lu,"
				   " block=%llu", inode->i_ino, block);
4884 4885 4886 4887 4888 4889 4890 4891 4892
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4893
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4894 4895
{
	/* We have all inode data except xattrs in memory here. */
4896
	return __ext4_get_inode_loc(inode, iloc,
4897
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4898 4899
}

4900
void ext4_set_inode_flags(struct inode *inode)
4901
{
4902
	unsigned int flags = EXT4_I(inode)->i_flags;
4903 4904

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4905
	if (flags & EXT4_SYNC_FL)
4906
		inode->i_flags |= S_SYNC;
4907
	if (flags & EXT4_APPEND_FL)
4908
		inode->i_flags |= S_APPEND;
4909
	if (flags & EXT4_IMMUTABLE_FL)
4910
		inode->i_flags |= S_IMMUTABLE;
4911
	if (flags & EXT4_NOATIME_FL)
4912
		inode->i_flags |= S_NOATIME;
4913
	if (flags & EXT4_DIRSYNC_FL)
4914 4915 4916
		inode->i_flags |= S_DIRSYNC;
}

4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
	unsigned int flags = ei->vfs_inode.i_flags;

	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
	if (flags & S_SYNC)
		ei->i_flags |= EXT4_SYNC_FL;
	if (flags & S_APPEND)
		ei->i_flags |= EXT4_APPEND_FL;
	if (flags & S_IMMUTABLE)
		ei->i_flags |= EXT4_IMMUTABLE_FL;
	if (flags & S_NOATIME)
		ei->i_flags |= EXT4_NOATIME_FL;
	if (flags & S_DIRSYNC)
		ei->i_flags |= EXT4_DIRSYNC_FL;
}
4935

4936
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4937
				  struct ext4_inode_info *ei)
4938 4939
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
4940 4941
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4942 4943 4944 4945 4946 4947

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
A
Aneesh Kumar K.V 已提交
4948 4949 4950 4951 4952 4953
		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
4954 4955 4956 4957
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
4958

4959
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4960
{
4961 4962
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
4963 4964
	struct ext4_inode_info *ei;
	struct inode *inode;
4965
	journal_t *journal = EXT4_SB(sb)->s_journal;
4966
	long ret;
4967 4968
	int block;

4969 4970 4971 4972 4973 4974 4975
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
4976
	iloc.bh = 0;
4977

4978 4979
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
4980
		goto bad_inode;
4981
	raw_inode = ext4_raw_inode(&iloc);
4982 4983 4984
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4985
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4986 4987 4988 4989 4990
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

4991
	ei->i_state_flags = 0;
4992 4993 4994 4995 4996 4997 4998 4999 5000
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
5001
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
5002
			/* this inode is deleted */
5003
			ret = -ESTALE;
5004 5005 5006 5007 5008 5009 5010 5011
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
5012
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
5013
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5014
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
5015 5016
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5017
	inode->i_size = ext4_isize(raw_inode);
5018
	ei->i_disksize = inode->i_size;
5019 5020 5021
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
5022 5023
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
5024
	ei->i_last_alloc_group = ~0;
5025 5026 5027 5028
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
5029
	for (block = 0; block < EXT4_N_BLOCKS; block++)
5030 5031 5032
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

		spin_lock(&journal->j_state_lock);
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
		spin_unlock(&journal->j_state_lock);
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

5058
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5059
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
5060
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
5061
		    EXT4_INODE_SIZE(inode->i_sb)) {
5062
			ret = -EIO;
5063
			goto bad_inode;
5064
		}
5065 5066
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
5067 5068
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
5069 5070
		} else {
			__le32 *magic = (void *)raw_inode +
5071
					EXT4_GOOD_OLD_INODE_SIZE +
5072
					ei->i_extra_isize;
5073
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
5074
				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5075 5076 5077 5078
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
5079 5080 5081 5082 5083
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

5084 5085 5086 5087 5088 5089 5090
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

5091
	ret = 0;
5092
	if (ei->i_file_acl &&
5093
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5094
		ext4_error(sb, "bad extended attribute block %llu inode #%lu",
5095 5096 5097 5098
			   ei->i_file_acl, inode->i_ino);
		ret = -EIO;
		goto bad_inode;
	} else if (ei->i_flags & EXT4_EXTENTS_FL) {
5099 5100 5101 5102 5103
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
5104
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5105 5106
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
5107
		/* Validate block references which are part of inode */
5108 5109
		ret = ext4_check_inode_blockref(inode);
	}
5110
	if (ret)
5111
		goto bad_inode;
5112

5113
	if (S_ISREG(inode->i_mode)) {
5114 5115 5116
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
5117
	} else if (S_ISDIR(inode->i_mode)) {
5118 5119
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
5120
	} else if (S_ISLNK(inode->i_mode)) {
5121
		if (ext4_inode_is_fast_symlink(inode)) {
5122
			inode->i_op = &ext4_fast_symlink_inode_operations;
5123 5124 5125
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
5126 5127
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
5128
		}
5129 5130
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5131
		inode->i_op = &ext4_special_inode_operations;
5132 5133 5134 5135 5136 5137
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5138 5139
	} else {
		ret = -EIO;
5140
		ext4_error(inode->i_sb, "bogus i_mode (%o) for inode=%lu",
5141 5142
			   inode->i_mode, inode->i_ino);
		goto bad_inode;
5143
	}
5144
	brelse(iloc.bh);
5145
	ext4_set_inode_flags(inode);
5146 5147
	unlock_new_inode(inode);
	return inode;
5148 5149

bad_inode:
5150
	brelse(iloc.bh);
5151 5152
	iget_failed(inode);
	return ERR_PTR(ret);
5153 5154
}

5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
5168
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5169
		raw_inode->i_blocks_high = 0;
A
Aneesh Kumar K.V 已提交
5170
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5171 5172 5173 5174 5175 5176
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
5177 5178 5179 5180
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
5181
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5182
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
A
Aneesh Kumar K.V 已提交
5183
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5184
	} else {
A
Aneesh Kumar K.V 已提交
5185 5186 5187 5188 5189
		ei->i_flags |= EXT4_HUGE_FILE_FL;
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5190
	}
5191
	return 0;
5192 5193
}

5194 5195 5196 5197 5198 5199 5200
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
5201
static int ext4_do_update_inode(handle_t *handle,
5202
				struct inode *inode,
5203
				struct ext4_iloc *iloc)
5204
{
5205 5206
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
5207 5208 5209 5210 5211
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
5212
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5213
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5214

5215
	ext4_get_inode_flags(ei);
5216
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5217
	if (!(test_opt(inode->i_sb, NO_UID32))) {
5218 5219 5220 5221 5222 5223
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
5224
		if (!ei->i_dtime) {
5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
5242 5243 5244 5245 5246 5247

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

5248 5249
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
5250
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5251
	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5252 5253
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
5254 5255
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
5256
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
5273
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5274
			sb->s_dirt = 1;
5275
			ext4_handle_sync(handle);
5276
			err = ext4_handle_dirty_metadata(handle, NULL,
5277
					EXT4_SB(sb)->s_sbh);
5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
5292 5293 5294
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
5295

5296 5297 5298 5299 5300
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
5301
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5302 5303
	}

5304
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5305
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5306 5307
	if (!err)
		err = rc;
5308
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5309

5310
	ext4_update_inode_fsync_trans(handle, inode, 0);
5311
out_brelse:
5312
	brelse(bh);
5313
	ext4_std_error(inode->i_sb, err);
5314 5315 5316 5317
	return err;
}

/*
5318
 * ext4_write_inode()
5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
5335
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
5352
int ext4_write_inode(struct inode *inode, int wait)
5353
{
5354 5355
	int err;

5356 5357 5358
	if (current->flags & PF_MEMALLOC)
		return 0;

5359 5360 5361 5362 5363 5364
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
5365

5366 5367 5368 5369 5370 5371
		if (!wait)
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
5372

5373 5374 5375
		err = ext4_get_inode_loc(inode, &iloc);
		if (err)
			return err;
5376 5377 5378
		if (wait)
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5379 5380
			ext4_error(inode->i_sb, "IO error syncing inode, "
				   "inode=%lu, block=%llu", inode->i_ino,
5381 5382 5383
				   (unsigned long long)iloc.bh->b_blocknr);
			err = -EIO;
		}
5384 5385
	}
	return err;
5386 5387 5388
}

/*
5389
 * ext4_setattr()
5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
5403 5404 5405 5406 5407 5408 5409 5410
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
5411
 */
5412
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
D
Dmitry Monakhov 已提交
5428
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5429
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5430 5431 5432 5433
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
5434
		error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
5435
		if (error) {
5436
			ext4_journal_stop(handle);
5437 5438 5439 5440 5441 5442 5443 5444
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
5445 5446
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
5447 5448
	}

5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459
	if (attr->ia_valid & ATTR_SIZE) {
		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
				error = -EFBIG;
				goto err_out;
			}
		}
	}

5460
	if (S_ISREG(inode->i_mode) &&
5461 5462 5463
	    attr->ia_valid & ATTR_SIZE &&
	    (attr->ia_size < inode->i_size ||
	     (EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL))) {
5464 5465
		handle_t *handle;

5466
		handle = ext4_journal_start(inode, 3);
5467 5468 5469 5470 5471
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}

5472 5473 5474
		error = ext4_orphan_add(handle, inode);
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
5475 5476
		if (!error)
			error = rc;
5477
		ext4_journal_stop(handle);
5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
5494 5495 5496
		/* ext4_truncate will clear the flag */
		if ((EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL))
			ext4_truncate(inode);
5497 5498 5499 5500
	}

	rc = inode_setattr(inode, attr);

5501
	/* If inode_setattr's call to ext4_truncate failed to get a
5502 5503 5504
	 * transaction handle at all, we need to clean up the in-core
	 * orphan list manually. */
	if (inode->i_nlink)
5505
		ext4_orphan_del(NULL, inode);
5506 5507

	if (!rc && (ia_valid & ATTR_MODE))
5508
		rc = ext4_acl_chmod(inode);
5509 5510

err_out:
5511
	ext4_std_error(inode->i_sb, error);
5512 5513 5514 5515 5516
	if (!error)
		error = rc;
	return error;
}

5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
5543

5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571
static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
				      int chunk)
{
	int indirects;

	/* if nrblocks are contiguous */
	if (chunk) {
		/*
		 * With N contiguous data blocks, it need at most
		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
		 * 2 dindirect blocks
		 * 1 tindirect block
		 */
		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
		return indirects + 3;
	}
	/*
	 * if nrblocks are not contiguous, worse case, each block touch
	 * a indirect block, and each indirect block touch a double indirect
	 * block, plus a triple indirect block
	 */
	indirects = nrblocks * 2 + 1;
	return indirects;
}

static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5572 5573
		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5574
}
5575

5576
/*
5577 5578 5579
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
5580
 *
5581
 * If datablocks are discontiguous, they are possible to spread over
5582
 * different block groups too. If they are contiuguous, with flexbg,
5583
 * they could still across block group boundary.
5584
 *
5585 5586 5587 5588
 * Also account for superblock, inode, quota and xattr blocks
 */
int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
5589 5590
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
5617 5618
	if (groups > ngroups)
		groups = ngroups;
5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
 * Calulate the total number of credits to reserve to fit
5633 5634
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
5635
 *
5636
 * This could be called via ext4_write_begin()
5637
 *
5638
 * We need to consider the worse case, when
5639
 * one new block per extent.
5640
 */
A
Alex Tomas 已提交
5641
int ext4_writepage_trans_blocks(struct inode *inode)
5642
{
5643
	int bpp = ext4_journal_blocks_per_page(inode);
5644 5645
	int ret;

5646
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
5647

5648
	/* Account for data blocks for journalled mode */
5649
	if (ext4_should_journal_data(inode))
5650
		ret += bpp;
5651 5652
	return ret;
}
5653 5654 5655 5656 5657

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
5658
 * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks.
5659 5660 5661 5662 5663 5664 5665 5666 5667
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

5668
/*
5669
 * The caller must have previously called ext4_reserve_inode_write().
5670 5671
 * Give this, we know that the caller already has write access to iloc->bh.
 */
5672
int ext4_mark_iloc_dirty(handle_t *handle,
5673
			 struct inode *inode, struct ext4_iloc *iloc)
5674 5675 5676
{
	int err = 0;

5677 5678 5679
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

5680 5681 5682
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

5683
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5684
	err = ext4_do_update_inode(handle, inode, iloc);
5685 5686 5687 5688 5689 5690 5691 5692 5693 5694
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
5695 5696
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
5697
{
5698 5699 5700 5701 5702 5703 5704 5705 5706
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
5707 5708
		}
	}
5709
	ext4_std_error(inode->i_sb, err);
5710 5711 5712
	return err;
}

5713 5714 5715 5716
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
5717 5718 5719 5720
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;
	struct ext4_xattr_entry *entry;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);
	entry = IFIRST(header);

	/* No extended attributes present */
5735 5736
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
5769
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5770
{
5771
	struct ext4_iloc iloc;
5772 5773 5774
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
5775 5776

	might_sleep();
5777
	err = ext4_reserve_inode_write(handle, inode, &iloc);
5778 5779
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5780
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
5794 5795
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
5796 5797
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5798
					ext4_warning(inode->i_sb,
5799 5800 5801
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
5802 5803
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
5804 5805 5806 5807
				}
			}
		}
	}
5808
	if (!err)
5809
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5810 5811 5812 5813
	return err;
}

/*
5814
 * ext4_dirty_inode() is called from __mark_inode_dirty()
5815 5816 5817 5818 5819
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
5820
 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5821 5822 5823 5824 5825 5826
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
5827
void ext4_dirty_inode(struct inode *inode)
5828 5829 5830
{
	handle_t *handle;

5831
	handle = ext4_journal_start(inode, 2);
5832 5833
	if (IS_ERR(handle))
		goto out;
5834 5835 5836

	ext4_mark_inode_dirty(handle, inode);

5837
	ext4_journal_stop(handle);
5838 5839 5840 5841 5842 5843 5844 5845
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5846
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5847 5848 5849
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5850
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5851
{
5852
	struct ext4_iloc iloc;
5853 5854 5855

	int err = 0;
	if (handle) {
5856
		err = ext4_get_inode_loc(inode, &iloc);
5857 5858
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5859
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5860
			if (!err)
5861
				err = ext4_handle_dirty_metadata(handle,
5862
								 NULL,
5863
								 iloc.bh);
5864 5865 5866
			brelse(iloc.bh);
		}
	}
5867
	ext4_std_error(inode->i_sb, err);
5868 5869 5870 5871
	return err;
}
#endif

5872
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5888
	journal = EXT4_JOURNAL(inode);
5889 5890
	if (!journal)
		return 0;
5891
	if (is_journal_aborted(journal))
5892 5893
		return -EROFS;

5894 5895
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
5896 5897 5898 5899 5900 5901 5902 5903 5904 5905

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
5906
		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5907
	else
5908 5909
		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
	ext4_set_aops(inode);
5910

5911
	jbd2_journal_unlock_updates(journal);
5912 5913 5914

	/* Finally we can mark the inode as dirty. */

5915
	handle = ext4_journal_start(inode, 1);
5916 5917 5918
	if (IS_ERR(handle))
		return PTR_ERR(handle);

5919
	err = ext4_mark_inode_dirty(handle, inode);
5920
	ext4_handle_sync(handle);
5921 5922
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
5923 5924 5925

	return err;
}
5926 5927 5928 5929 5930 5931

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

5932
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5933
{
5934
	struct page *page = vmf->page;
5935 5936 5937
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
5938
	void *fsdata;
5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
	if (PageMappedToDisk(page))
		goto out_unlock;

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

5963 5964 5965 5966 5967 5968 5969
	lock_page(page);
	/*
	 * return if we have all the buffers mapped. This avoid
	 * the need to call write_begin/write_end which does a
	 * journal_start/journal_stop which can block and take
	 * long time
	 */
5970 5971
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5972 5973
					ext4_bh_unmapped)) {
			unlock_page(page);
5974
			goto out_unlock;
5975
		}
5976
	}
5977
	unlock_page(page);
5978 5979 5980 5981 5982 5983 5984 5985
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5986
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5987 5988 5989
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5990
			len, len, page, fsdata);
5991 5992 5993 5994
	if (ret < 0)
		goto out_unlock;
	ret = 0;
out_unlock:
5995 5996
	if (ret)
		ret = VM_FAULT_SIGBUS;
5997 5998 5999
	up_read(&inode->i_alloc_sem);
	return ret;
}