efi-stub-helper.c 10.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9
/*
 * Helper functions used by the EFI stub on multiple
 * architectures. This should be #included by the EFI stub
 * implementation files.
 *
 * Copyright 2011 Intel Corporation; author Matt Fleming
 */

10 11 12 13
#include <linux/efi.h>
#include <asm/efi.h>

#include "efistub.h"
14

15
static bool __efistub_global efi_nochunk;
16
static bool __efistub_global efi_nokaslr;
17
static bool __efistub_global efi_noinitrd;
18 19 20
static bool __efistub_global efi_quiet;
static bool __efistub_global efi_novamap;
static bool __efistub_global efi_nosoftreserve;
21 22
static bool __efistub_global efi_disable_pci_dma =
					IS_ENABLED(CONFIG_EFI_DISABLE_PCI_DMA);
23

24 25 26 27
bool __pure nochunk(void)
{
	return efi_nochunk;
}
28
bool __pure nokaslr(void)
29
{
30
	return efi_nokaslr;
31
}
32 33 34 35
bool __pure noinitrd(void)
{
	return efi_noinitrd;
}
36
bool __pure is_quiet(void)
37
{
38
	return efi_quiet;
39
}
40
bool __pure novamap(void)
41
{
42
	return efi_novamap;
43
}
44 45 46 47
bool __pure __efi_soft_reserve_enabled(void)
{
	return !efi_nosoftreserve;
}
48

49
void efi_printk(char *str)
50 51 52 53 54 55 56 57 58
{
	char *s8;

	for (s8 = str; *s8; s8++) {
		efi_char16_t ch[2] = { 0 };

		ch[0] = *s8;
		if (*s8 == '\n') {
			efi_char16_t nl[2] = { '\r', 0 };
59
			efi_char16_printk(nl);
60 61
		}

62
		efi_char16_printk(ch);
63 64 65
	}
}

66 67 68 69 70 71 72 73
/*
 * Parse the ASCII string 'cmdline' for EFI options, denoted by the efi=
 * option, e.g. efi=nochunk.
 *
 * It should be noted that efi= is parsed in two very different
 * environments, first in the early boot environment of the EFI boot
 * stub, and subsequently during the kernel boot.
 */
74
efi_status_t efi_parse_options(char const *cmdline)
75
{
76 77 78
	size_t len = strlen(cmdline) + 1;
	efi_status_t status;
	char *str, *buf;
79

80 81 82
	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, len, (void **)&buf);
	if (status != EFI_SUCCESS)
		return status;
83

84
	str = skip_spaces(memcpy(buf, cmdline, len));
85

86 87
	while (*str) {
		char *param, *val;
88

89
		str = next_arg(str, &param, &val);
90

91 92 93 94
		if (!strcmp(param, "nokaslr")) {
			efi_nokaslr = true;
		} else if (!strcmp(param, "quiet")) {
			efi_quiet = true;
95 96
		} else if (!strcmp(param, "noinitrd")) {
			efi_noinitrd = true;
97 98 99
		} else if (!strcmp(param, "efi") && val) {
			efi_nochunk = parse_option_str(val, "nochunk");
			efi_novamap = parse_option_str(val, "novamap");
100

101 102
			efi_nosoftreserve = IS_ENABLED(CONFIG_EFI_SOFT_RESERVE) &&
					    parse_option_str(val, "nosoftreserve");
103

104 105 106 107 108 109 110
			if (parse_option_str(val, "disable_early_pci_dma"))
				efi_disable_pci_dma = true;
			if (parse_option_str(val, "no_disable_early_pci_dma"))
				efi_disable_pci_dma = false;
		}
	}
	efi_bs_call(free_pool, buf);
111 112
	return EFI_SUCCESS;
}
113

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
/*
 * Get the number of UTF-8 bytes corresponding to an UTF-16 character.
 * This overestimates for surrogates, but that is okay.
 */
static int efi_utf8_bytes(u16 c)
{
	return 1 + (c >= 0x80) + (c >= 0x800);
}

/*
 * Convert an UTF-16 string, not necessarily null terminated, to UTF-8.
 */
static u8 *efi_utf16_to_utf8(u8 *dst, const u16 *src, int n)
{
	unsigned int c;

	while (n--) {
		c = *src++;
		if (n && c >= 0xd800 && c <= 0xdbff &&
		    *src >= 0xdc00 && *src <= 0xdfff) {
			c = 0x10000 + ((c & 0x3ff) << 10) + (*src & 0x3ff);
			src++;
			n--;
		}
		if (c >= 0xd800 && c <= 0xdfff)
			c = 0xfffd; /* Unmatched surrogate */
		if (c < 0x80) {
			*dst++ = c;
			continue;
		}
		if (c < 0x800) {
			*dst++ = 0xc0 + (c >> 6);
			goto t1;
		}
		if (c < 0x10000) {
			*dst++ = 0xe0 + (c >> 12);
			goto t2;
		}
		*dst++ = 0xf0 + (c >> 18);
		*dst++ = 0x80 + ((c >> 12) & 0x3f);
	t2:
		*dst++ = 0x80 + ((c >> 6) & 0x3f);
	t1:
		*dst++ = 0x80 + (c & 0x3f);
	}

	return dst;
}

163 164 165 166 167
/*
 * Convert the unicode UEFI command line to ASCII to pass to kernel.
 * Size of memory allocated return in *cmd_line_len.
 * Returns NULL on error.
 */
168
char *efi_convert_cmdline(efi_loaded_image_t *image,
169
			  int *cmd_line_len, unsigned long max_addr)
170
{
171
	const u16 *s2;
172 173
	u8 *s1 = NULL;
	unsigned long cmdline_addr = 0;
174 175
	int load_options_chars = efi_table_attr(image, load_options_size) / 2;
	const u16 *options = efi_table_attr(image, load_options);
176 177
	int options_bytes = 0;  /* UTF-8 bytes */
	int options_chars = 0;  /* UTF-16 chars */
178 179 180 181 182
	efi_status_t status;
	u16 zero = 0;

	if (options) {
		s2 = options;
183 184 185 186
		while (*s2 && *s2 != '\n'
		       && options_chars < load_options_chars) {
			options_bytes += efi_utf8_bytes(*s2++);
			options_chars++;
187 188 189
		}
	}

190
	if (!options_chars) {
191 192 193 194
		/* No command line options, so return empty string*/
		options = &zero;
	}

195
	options_bytes++;	/* NUL termination */
L
Leif Lindholm 已提交
196

197
	status = efi_allocate_pages(options_bytes, &cmdline_addr, max_addr);
198 199 200 201
	if (status != EFI_SUCCESS)
		return NULL;

	s1 = (u8 *)cmdline_addr;
202
	s2 = (const u16 *)options;
203

204
	s1 = efi_utf16_to_utf8(s1, s2, options_chars);
205 206
	*s1 = '\0';

207
	*cmd_line_len = options_bytes;
208 209
	return (char *)cmdline_addr;
}
210 211 212 213 214 215 216 217 218

/*
 * Handle calling ExitBootServices according to the requirements set out by the
 * spec.  Obtains the current memory map, and returns that info after calling
 * ExitBootServices.  The client must specify a function to perform any
 * processing of the memory map data prior to ExitBootServices.  A client
 * specific structure may be passed to the function via priv.  The client
 * function may be called multiple times.
 */
219
efi_status_t efi_exit_boot_services(void *handle,
220 221 222 223 224 225
				    struct efi_boot_memmap *map,
				    void *priv,
				    efi_exit_boot_map_processing priv_func)
{
	efi_status_t status;

226
	status = efi_get_memory_map(map);
227 228 229 230

	if (status != EFI_SUCCESS)
		goto fail;

231
	status = priv_func(map, priv);
232 233 234
	if (status != EFI_SUCCESS)
		goto free_map;

235 236 237
	if (efi_disable_pci_dma)
		efi_pci_disable_bridge_busmaster();

238
	status = efi_bs_call(exit_boot_services, handle, *map->key_ptr);
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254

	if (status == EFI_INVALID_PARAMETER) {
		/*
		 * The memory map changed between efi_get_memory_map() and
		 * exit_boot_services().  Per the UEFI Spec v2.6, Section 6.4:
		 * EFI_BOOT_SERVICES.ExitBootServices we need to get the
		 * updated map, and try again.  The spec implies one retry
		 * should be sufficent, which is confirmed against the EDK2
		 * implementation.  Per the spec, we can only invoke
		 * get_memory_map() and exit_boot_services() - we cannot alloc
		 * so efi_get_memory_map() cannot be used, and we must reuse
		 * the buffer.  For all practical purposes, the headroom in the
		 * buffer should account for any changes in the map so the call
		 * to get_memory_map() is expected to succeed here.
		 */
		*map->map_size = *map->buff_size;
255 256 257 258 259 260
		status = efi_bs_call(get_memory_map,
				     map->map_size,
				     *map->map,
				     map->key_ptr,
				     map->desc_size,
				     map->desc_ver);
261 262 263 264 265

		/* exit_boot_services() was called, thus cannot free */
		if (status != EFI_SUCCESS)
			goto fail;

266
		status = priv_func(map, priv);
267 268 269 270
		/* exit_boot_services() was called, thus cannot free */
		if (status != EFI_SUCCESS)
			goto fail;

271
		status = efi_bs_call(exit_boot_services, handle, *map->key_ptr);
272 273 274 275 276 277 278 279 280
	}

	/* exit_boot_services() was called, thus cannot free */
	if (status != EFI_SUCCESS)
		goto fail;

	return EFI_SUCCESS;

free_map:
281
	efi_bs_call(free_pool, *map->map);
282 283 284
fail:
	return status;
}
285

286
void *get_efi_config_table(efi_guid_t guid)
287
{
288 289
	unsigned long tables = efi_table_attr(efi_system_table(), tables);
	int nr_tables = efi_table_attr(efi_system_table(), nr_tables);
290 291 292 293 294 295
	int i;

	for (i = 0; i < nr_tables; i++) {
		efi_config_table_t *t = (void *)tables;

		if (efi_guidcmp(t->guid, guid) == 0)
296
			return efi_table_attr(t, table);
297 298 299 300 301

		tables += efi_is_native() ? sizeof(efi_config_table_t)
					  : sizeof(efi_config_table_32_t);
	}
	return NULL;
302
}
303

304
void efi_char16_printk(efi_char16_t *str)
305
{
306
	efi_call_proto(efi_table_attr(efi_system_table(), con_out),
307
		       output_string, str);
308
}
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394

/*
 * The LINUX_EFI_INITRD_MEDIA_GUID vendor media device path below provides a way
 * for the firmware or bootloader to expose the initrd data directly to the stub
 * via the trivial LoadFile2 protocol, which is defined in the UEFI spec, and is
 * very easy to implement. It is a simple Linux initrd specific conduit between
 * kernel and firmware, allowing us to put the EFI stub (being part of the
 * kernel) in charge of where and when to load the initrd, while leaving it up
 * to the firmware to decide whether it needs to expose its filesystem hierarchy
 * via EFI protocols.
 */
static const struct {
	struct efi_vendor_dev_path	vendor;
	struct efi_generic_dev_path	end;
} __packed initrd_dev_path = {
	{
		{
			EFI_DEV_MEDIA,
			EFI_DEV_MEDIA_VENDOR,
			sizeof(struct efi_vendor_dev_path),
		},
		LINUX_EFI_INITRD_MEDIA_GUID
	}, {
		EFI_DEV_END_PATH,
		EFI_DEV_END_ENTIRE,
		sizeof(struct efi_generic_dev_path)
	}
};

/**
 * efi_load_initrd_dev_path - load the initrd from the Linux initrd device path
 * @load_addr:	pointer to store the address where the initrd was loaded
 * @load_size:	pointer to store the size of the loaded initrd
 * @max:	upper limit for the initrd memory allocation
 * @return:	%EFI_SUCCESS if the initrd was loaded successfully, in which
 *		case @load_addr and @load_size are assigned accordingly
 *		%EFI_NOT_FOUND if no LoadFile2 protocol exists on the initrd
 *		device path
 *		%EFI_INVALID_PARAMETER if load_addr == NULL or load_size == NULL
 *		%EFI_OUT_OF_RESOURCES if memory allocation failed
 *		%EFI_LOAD_ERROR in all other cases
 */
efi_status_t efi_load_initrd_dev_path(unsigned long *load_addr,
				      unsigned long *load_size,
				      unsigned long max)
{
	efi_guid_t lf2_proto_guid = EFI_LOAD_FILE2_PROTOCOL_GUID;
	efi_device_path_protocol_t *dp;
	efi_load_file2_protocol_t *lf2;
	unsigned long initrd_addr;
	unsigned long initrd_size;
	efi_handle_t handle;
	efi_status_t status;

	if (!load_addr || !load_size)
		return EFI_INVALID_PARAMETER;

	dp = (efi_device_path_protocol_t *)&initrd_dev_path;
	status = efi_bs_call(locate_device_path, &lf2_proto_guid, &dp, &handle);
	if (status != EFI_SUCCESS)
		return status;

	status = efi_bs_call(handle_protocol, handle, &lf2_proto_guid,
			     (void **)&lf2);
	if (status != EFI_SUCCESS)
		return status;

	status = efi_call_proto(lf2, load_file, dp, false, &initrd_size, NULL);
	if (status != EFI_BUFFER_TOO_SMALL)
		return EFI_LOAD_ERROR;

	status = efi_allocate_pages(initrd_size, &initrd_addr, max);
	if (status != EFI_SUCCESS)
		return status;

	status = efi_call_proto(lf2, load_file, dp, false, &initrd_size,
				(void *)initrd_addr);
	if (status != EFI_SUCCESS) {
		efi_free(initrd_size, initrd_addr);
		return EFI_LOAD_ERROR;
	}

	*load_addr = initrd_addr;
	*load_size = initrd_size;
	return EFI_SUCCESS;
}