efi-stub-helper.c 22.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9
/*
 * Helper functions used by the EFI stub on multiple
 * architectures. This should be #included by the EFI stub
 * implementation files.
 *
 * Copyright 2011 Intel Corporation; author Matt Fleming
 */

10 11 12 13
#include <linux/efi.h>
#include <asm/efi.h>

#include "efistub.h"
14

15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Some firmware implementations have problems reading files in one go.
 * A read chunk size of 1MB seems to work for most platforms.
 *
 * Unfortunately, reading files in chunks triggers *other* bugs on some
 * platforms, so we provide a way to disable this workaround, which can
 * be done by passing "efi=nochunk" on the EFI boot stub command line.
 *
 * If you experience issues with initrd images being corrupt it's worth
 * trying efi=nochunk, but chunking is enabled by default because there
 * are far more machines that require the workaround than those that
 * break with it enabled.
 */
28
#define EFI_READ_CHUNK_SIZE	(1024 * 1024)
29

30 31
static unsigned long __chunk_size = EFI_READ_CHUNK_SIZE;

32
static int __section(.data) __nokaslr;
33
static int __section(.data) __quiet;
34
static int __section(.data) __novamap;
35
static bool __section(.data) efi_nosoftreserve;
36 37 38 39 40

int __pure nokaslr(void)
{
	return __nokaslr;
}
41 42 43 44
int __pure is_quiet(void)
{
	return __quiet;
}
45 46 47 48
int __pure novamap(void)
{
	return __novamap;
}
49 50 51 52
bool __pure __efi_soft_reserve_enabled(void)
{
	return !efi_nosoftreserve;
}
53

54 55
#define EFI_MMAP_NR_SLACK_SLOTS	8

56
struct file_info {
57 58 59 60
	efi_file_handle_t *handle;
	u64 size;
};

61
void efi_printk(char *str)
62 63 64 65 66 67 68 69 70
{
	char *s8;

	for (s8 = str; *s8; s8++) {
		efi_char16_t ch[2] = { 0 };

		ch[0] = *s8;
		if (*s8 == '\n') {
			efi_char16_t nl[2] = { '\r', 0 };
71
			efi_char16_printk(nl);
72 73
		}

74
		efi_char16_printk(ch);
75 76 77
	}
}

78 79 80 81 82 83 84 85 86
static inline bool mmap_has_headroom(unsigned long buff_size,
				     unsigned long map_size,
				     unsigned long desc_size)
{
	unsigned long slack = buff_size - map_size;

	return slack / desc_size >= EFI_MMAP_NR_SLACK_SLOTS;
}

87
efi_status_t efi_get_memory_map(struct efi_boot_memmap *map)
88 89 90 91 92 93
{
	efi_memory_desc_t *m = NULL;
	efi_status_t status;
	unsigned long key;
	u32 desc_version;

94 95 96
	*map->desc_size =	sizeof(*m);
	*map->map_size =	*map->desc_size * 32;
	*map->buff_size =	*map->map_size;
97
again:
98
	status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
99
				*map->map_size, (void **)&m);
100 101 102
	if (status != EFI_SUCCESS)
		goto fail;

103
	*map->desc_size = 0;
104
	key = 0;
105 106 107 108 109
	status = efi_call_early(get_memory_map, map->map_size, m,
				&key, map->desc_size, &desc_version);
	if (status == EFI_BUFFER_TOO_SMALL ||
	    !mmap_has_headroom(*map->buff_size, *map->map_size,
			       *map->desc_size)) {
110
		efi_call_early(free_pool, m);
111 112 113 114 115 116 117 118 119
		/*
		 * Make sure there is some entries of headroom so that the
		 * buffer can be reused for a new map after allocations are
		 * no longer permitted.  Its unlikely that the map will grow to
		 * exceed this headroom once we are ready to trigger
		 * ExitBootServices()
		 */
		*map->map_size += *map->desc_size * EFI_MMAP_NR_SLACK_SLOTS;
		*map->buff_size = *map->map_size;
120
		goto again;
121 122 123
	}

	if (status != EFI_SUCCESS)
124
		efi_call_early(free_pool, m);
125

126 127 128 129
	if (map->key_ptr && status == EFI_SUCCESS)
		*map->key_ptr = key;
	if (map->desc_ver && status == EFI_SUCCESS)
		*map->desc_ver = desc_version;
130 131

fail:
132
	*map->map = m;
133 134 135
	return status;
}

136

137
unsigned long get_dram_base(void)
138 139
{
	efi_status_t status;
140
	unsigned long map_size, buff_size;
141 142 143
	unsigned long membase  = EFI_ERROR;
	struct efi_memory_map map;
	efi_memory_desc_t *md;
144
	struct efi_boot_memmap boot_map;
145

146 147 148 149 150 151 152
	boot_map.map =		(efi_memory_desc_t **)&map.map;
	boot_map.map_size =	&map_size;
	boot_map.desc_size =	&map.desc_size;
	boot_map.desc_ver =	NULL;
	boot_map.key_ptr =	NULL;
	boot_map.buff_size =	&buff_size;

153
	status = efi_get_memory_map(&boot_map);
154 155 156 157 158
	if (status != EFI_SUCCESS)
		return membase;

	map.map_end = map.map + map_size;

159 160
	for_each_efi_memory_desc_in_map(&map, md) {
		if (md->attribute & EFI_MEMORY_WB) {
161 162
			if (membase > md->phys_addr)
				membase = md->phys_addr;
163 164
		}
	}
165 166 167 168 169 170

	efi_call_early(free_pool, map.map);

	return membase;
}

171 172 173
/*
 * Allocate at the highest possible address that is not above 'max'.
 */
174
efi_status_t efi_high_alloc(unsigned long size, unsigned long align,
175
			    unsigned long *addr, unsigned long max)
176
{
177
	unsigned long map_size, desc_size, buff_size;
178 179 180 181 182
	efi_memory_desc_t *map;
	efi_status_t status;
	unsigned long nr_pages;
	u64 max_addr = 0;
	int i;
183 184 185 186 187 188 189 190
	struct efi_boot_memmap boot_map;

	boot_map.map =		&map;
	boot_map.map_size =	&map_size;
	boot_map.desc_size =	&desc_size;
	boot_map.desc_ver =	NULL;
	boot_map.key_ptr =	NULL;
	boot_map.buff_size =	&buff_size;
191

192
	status = efi_get_memory_map(&boot_map);
193 194 195
	if (status != EFI_SUCCESS)
		goto fail;

196
	/*
197 198 199 200
	 * Enforce minimum alignment that EFI or Linux requires when
	 * requesting a specific address.  We are doing page-based (or
	 * larger) allocations, and both the address and size must meet
	 * alignment constraints.
201
	 */
202 203
	if (align < EFI_ALLOC_ALIGN)
		align = EFI_ALLOC_ALIGN;
204

205 206
	size = round_up(size, EFI_ALLOC_ALIGN);
	nr_pages = size / EFI_PAGE_SIZE;
207 208 209 210 211 212
again:
	for (i = 0; i < map_size / desc_size; i++) {
		efi_memory_desc_t *desc;
		unsigned long m = (unsigned long)map;
		u64 start, end;

213
		desc = efi_early_memdesc_ptr(m, desc_size, i);
214 215 216
		if (desc->type != EFI_CONVENTIONAL_MEMORY)
			continue;

217 218 219 220
		if (efi_soft_reserve_enabled() &&
		    (desc->attribute & EFI_MEMORY_SP))
			continue;

221 222 223 224
		if (desc->num_pages < nr_pages)
			continue;

		start = desc->phys_addr;
225
		end = start + desc->num_pages * EFI_PAGE_SIZE;
226

227
		if (end > max)
228 229
			end = max;

230 231 232
		if ((start + size) > end)
			continue;

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
		if (round_down(end - size, align) < start)
			continue;

		start = round_down(end - size, align);

		/*
		 * Don't allocate at 0x0. It will confuse code that
		 * checks pointers against NULL.
		 */
		if (start == 0x0)
			continue;

		if (start > max_addr)
			max_addr = start;
	}

	if (!max_addr)
		status = EFI_NOT_FOUND;
	else {
252 253 254
		status = efi_call_early(allocate_pages,
					EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
					nr_pages, &max_addr);
255 256 257 258 259 260 261 262 263
		if (status != EFI_SUCCESS) {
			max = max_addr;
			max_addr = 0;
			goto again;
		}

		*addr = max_addr;
	}

264
	efi_call_early(free_pool, map);
265 266 267 268 269
fail:
	return status;
}

/*
270
 * Allocate at the lowest possible address that is not below 'min'.
271
 */
272
efi_status_t efi_low_alloc_above(unsigned long size, unsigned long align,
273
				 unsigned long *addr, unsigned long min)
274
{
275
	unsigned long map_size, desc_size, buff_size;
276 277 278 279
	efi_memory_desc_t *map;
	efi_status_t status;
	unsigned long nr_pages;
	int i;
280 281 282 283 284 285 286 287
	struct efi_boot_memmap boot_map;

	boot_map.map =		&map;
	boot_map.map_size =	&map_size;
	boot_map.desc_size =	&desc_size;
	boot_map.desc_ver =	NULL;
	boot_map.key_ptr =	NULL;
	boot_map.buff_size =	&buff_size;
288

289
	status = efi_get_memory_map(&boot_map);
290 291 292
	if (status != EFI_SUCCESS)
		goto fail;

293
	/*
294 295 296 297
	 * Enforce minimum alignment that EFI or Linux requires when
	 * requesting a specific address.  We are doing page-based (or
	 * larger) allocations, and both the address and size must meet
	 * alignment constraints.
298
	 */
299 300
	if (align < EFI_ALLOC_ALIGN)
		align = EFI_ALLOC_ALIGN;
301

302 303
	size = round_up(size, EFI_ALLOC_ALIGN);
	nr_pages = size / EFI_PAGE_SIZE;
304 305 306 307 308
	for (i = 0; i < map_size / desc_size; i++) {
		efi_memory_desc_t *desc;
		unsigned long m = (unsigned long)map;
		u64 start, end;

309
		desc = efi_early_memdesc_ptr(m, desc_size, i);
310 311 312 313

		if (desc->type != EFI_CONVENTIONAL_MEMORY)
			continue;

314 315 316 317
		if (efi_soft_reserve_enabled() &&
		    (desc->attribute & EFI_MEMORY_SP))
			continue;

318 319 320 321
		if (desc->num_pages < nr_pages)
			continue;

		start = desc->phys_addr;
322
		end = start + desc->num_pages * EFI_PAGE_SIZE;
323

324 325
		if (start < min)
			start = min;
326 327 328 329 330

		start = round_up(start, align);
		if ((start + size) > end)
			continue;

331 332 333
		status = efi_call_early(allocate_pages,
					EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
					nr_pages, &start);
334 335 336 337 338 339 340 341 342
		if (status == EFI_SUCCESS) {
			*addr = start;
			break;
		}
	}

	if (i == map_size / desc_size)
		status = EFI_NOT_FOUND;

343
	efi_call_early(free_pool, map);
344 345 346 347
fail:
	return status;
}

348
void efi_free(unsigned long size, unsigned long addr)
349 350 351
	__weak __alias(efi_free_native);

void efi_free_native(unsigned long size, unsigned long addr)
352 353 354
{
	unsigned long nr_pages;

355 356 357
	if (!size)
		return;

358
	nr_pages = round_up(size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE;
359
	efi_system_table()->boottime->free_pages(addr, nr_pages);
360 361
}

362 363
static efi_status_t efi_file_size(void *__fh, efi_char16_t *filename_16,
				  void **handle, u64 *file_sz)
364 365 366 367 368 369 370
{
	efi_file_handle_t *h, *fh = __fh;
	efi_file_info_t *info;
	efi_status_t status;
	efi_guid_t info_guid = EFI_FILE_INFO_ID;
	unsigned long info_sz;

371
	status = fh->open(fh, &h, filename_16, EFI_FILE_MODE_READ, 0);
372
	if (status != EFI_SUCCESS) {
373 374 375
		efi_printk("Failed to open file: ");
		efi_char16_printk(filename_16);
		efi_printk("\n");
376 377 378 379 380 381
		return status;
	}

	*handle = h;

	info_sz = 0;
382
	status = h->get_info(h, &info_guid, &info_sz, NULL);
383
	if (status != EFI_BUFFER_TOO_SMALL) {
384
		efi_printk("Failed to get file info size\n");
385 386 387 388 389 390 391
		return status;
	}

grow:
	status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
				info_sz, (void **)&info);
	if (status != EFI_SUCCESS) {
392
		efi_printk("Failed to alloc mem for file info\n");
393 394 395
		return status;
	}

396
	status = h->get_info(h, &info_guid, &info_sz, info);
397 398 399 400 401 402 403 404 405
	if (status == EFI_BUFFER_TOO_SMALL) {
		efi_call_early(free_pool, info);
		goto grow;
	}

	*file_sz = info->file_size;
	efi_call_early(free_pool, info);

	if (status != EFI_SUCCESS)
406
		efi_printk("Failed to get initrd info\n");
407 408 409 410

	return status;
}

411 412
static efi_status_t efi_file_read(efi_file_handle_t *handle,
				  unsigned long *size, void *addr)
413
{
414
	return handle->read(handle, size, addr);
415 416
}

417
static efi_status_t efi_file_close(efi_file_handle_t *handle)
418
{
419
	return handle->close(handle);
420 421
}

422
static efi_status_t efi_open_volume(efi_loaded_image_t *image,
423 424 425 426 427 428
				    efi_file_handle_t **__fh)
{
	efi_file_io_interface_t *io;
	efi_file_handle_t *fh;
	efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID;
	efi_status_t status;
429
	efi_handle_t handle = image->device_handle;
430 431 432 433

	status = efi_call_early(handle_protocol, handle,
				&fs_proto, (void **)&io);
	if (status != EFI_SUCCESS) {
434
		efi_printk("Failed to handle fs_proto\n");
435 436 437
		return status;
	}

438
	status = io->open_volume(io, &fh);
439
	if (status != EFI_SUCCESS)
440
		efi_printk("Failed to open volume\n");
441 442 443 444 445 446
	else
		*__fh = fh;

	return status;
}

447 448 449 450 451 452 453 454
/*
 * Parse the ASCII string 'cmdline' for EFI options, denoted by the efi=
 * option, e.g. efi=nochunk.
 *
 * It should be noted that efi= is parsed in two very different
 * environments, first in the early boot environment of the EFI boot
 * stub, and subsequently during the kernel boot.
 */
455
efi_status_t efi_parse_options(char const *cmdline)
456 457 458
{
	char *str;

459 460 461
	str = strstr(cmdline, "nokaslr");
	if (str == cmdline || (str && str > cmdline && *(str - 1) == ' '))
		__nokaslr = 1;
462

463 464 465 466
	str = strstr(cmdline, "quiet");
	if (str == cmdline || (str && str > cmdline && *(str - 1) == ' '))
		__quiet = 1;

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
	/*
	 * If no EFI parameters were specified on the cmdline we've got
	 * nothing to do.
	 */
	str = strstr(cmdline, "efi=");
	if (!str)
		return EFI_SUCCESS;

	/* Skip ahead to first argument */
	str += strlen("efi=");

	/*
	 * Remember, because efi= is also used by the kernel we need to
	 * skip over arguments we don't understand.
	 */
482
	while (*str && *str != ' ') {
483 484 485 486 487
		if (!strncmp(str, "nochunk", 7)) {
			str += strlen("nochunk");
			__chunk_size = -1UL;
		}

488 489 490 491 492
		if (!strncmp(str, "novamap", 7)) {
			str += strlen("novamap");
			__novamap = 1;
		}

493 494 495 496 497 498
		if (IS_ENABLED(CONFIG_EFI_SOFT_RESERVE) &&
		    !strncmp(str, "nosoftreserve", 7)) {
			str += strlen("nosoftreserve");
			efi_nosoftreserve = 1;
		}

499
		/* Group words together, delimited by "," */
500
		while (*str && *str != ' ' && *str != ',')
501 502 503 504 505 506 507 508
			str++;

		if (*str == ',')
			str++;
	}

	return EFI_SUCCESS;
}
509 510

/*
511
 * Check the cmdline for a LILO-style file= arguments.
512
 *
513 514
 * We only support loading a file from the same filesystem as
 * the kernel image.
515
 */
516
efi_status_t handle_cmdline_files(efi_loaded_image_t *image,
517 518 519 520
				  char *cmd_line, char *option_string,
				  unsigned long max_addr,
				  unsigned long *load_addr,
				  unsigned long *load_size)
521
{
522 523 524
	struct file_info *files;
	unsigned long file_addr;
	u64 file_size_total;
L
Leif Lindholm 已提交
525
	efi_file_handle_t *fh = NULL;
526
	efi_status_t status;
527
	int nr_files;
528 529 530
	char *str;
	int i, j, k;

531 532
	file_addr = 0;
	file_size_total = 0;
533

534
	str = cmd_line;
535 536 537

	j = 0;			/* See close_handles */

538 539 540 541 542 543
	if (!load_addr || !load_size)
		return EFI_INVALID_PARAMETER;

	*load_addr = 0;
	*load_size = 0;

544 545 546
	if (!str || !*str)
		return EFI_SUCCESS;

547
	for (nr_files = 0; *str; nr_files++) {
548
		str = strstr(str, option_string);
549 550 551
		if (!str)
			break;

552
		str += strlen(option_string);
553 554 555 556 557 558 559 560 561

		/* Skip any leading slashes */
		while (*str == '/' || *str == '\\')
			str++;

		while (*str && *str != ' ' && *str != '\n')
			str++;
	}

562
	if (!nr_files)
563 564
		return EFI_SUCCESS;

565 566
	status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
				nr_files * sizeof(*files), (void **)&files);
567
	if (status != EFI_SUCCESS) {
568
		pr_efi_err("Failed to alloc mem for file handle list\n");
569 570 571
		goto fail;
	}

572
	str = cmd_line;
573 574
	for (i = 0; i < nr_files; i++) {
		struct file_info *file;
575 576 577
		efi_char16_t filename_16[256];
		efi_char16_t *p;

578
		str = strstr(str, option_string);
579 580 581
		if (!str)
			break;

582
		str += strlen(option_string);
583

584
		file = &files[i];
585 586 587 588 589 590 591 592 593 594 595 596
		p = filename_16;

		/* Skip any leading slashes */
		while (*str == '/' || *str == '\\')
			str++;

		while (*str && *str != ' ' && *str != '\n') {
			if ((u8 *)p >= (u8 *)filename_16 + sizeof(filename_16))
				break;

			if (*str == '/') {
				*p++ = '\\';
597
				str++;
598 599 600 601 602 603 604 605 606
			} else {
				*p++ = *str++;
			}
		}

		*p = '\0';

		/* Only open the volume once. */
		if (!i) {
607
			status = efi_open_volume(image, &fh);
608
			if (status != EFI_SUCCESS)
609
				goto free_files;
610 611
		}

612 613
		status = efi_file_size(fh, filename_16, (void **)&file->handle,
				       &file->size);
614
		if (status != EFI_SUCCESS)
615 616
			goto close_handles;

617
		file_size_total += file->size;
618 619
	}

620
	if (file_size_total) {
621 622 623
		unsigned long addr;

		/*
624 625 626
		 * Multiple files need to be at consecutive addresses in memory,
		 * so allocate enough memory for all the files.  This is used
		 * for loading multiple files.
627
		 */
628 629
		status = efi_high_alloc(file_size_total, 0x1000, &file_addr,
					max_addr);
630
		if (status != EFI_SUCCESS) {
631
			pr_efi_err("Failed to alloc highmem for files\n");
632 633 634 635
			goto close_handles;
		}

		/* We've run out of free low memory. */
636
		if (file_addr > max_addr) {
637
			pr_efi_err("We've run out of free low memory\n");
638
			status = EFI_INVALID_PARAMETER;
639
			goto free_file_total;
640 641
		}

642 643
		addr = file_addr;
		for (j = 0; j < nr_files; j++) {
644
			unsigned long size;
645

646
			size = files[j].size;
647
			while (size) {
648
				unsigned long chunksize;
649 650

				if (IS_ENABLED(CONFIG_X86) && size > __chunk_size)
651
					chunksize = __chunk_size;
652 653
				else
					chunksize = size;
654

655
				status = efi_file_read(files[j].handle,
656 657
						       &chunksize,
						       (void *)addr);
658
				if (status != EFI_SUCCESS) {
659
					pr_efi_err("Failed to read file\n");
660
					goto free_file_total;
661 662 663 664 665
				}
				addr += chunksize;
				size -= chunksize;
			}

666
			efi_file_close(files[j].handle);
667 668 669 670
		}

	}

671
	efi_call_early(free_pool, files);
672

673 674
	*load_addr = file_addr;
	*load_size = file_size_total;
675 676 677

	return status;

678
free_file_total:
679
	efi_free(file_size_total, file_addr);
680 681 682

close_handles:
	for (k = j; k < i; k++)
683
		efi_file_close(files[k].handle);
684
free_files:
685
	efi_call_early(free_pool, files);
686
fail:
687 688
	*load_addr = 0;
	*load_size = 0;
689 690 691

	return status;
}
692 693 694 695 696 697 698 699 700 701
/*
 * Relocate a kernel image, either compressed or uncompressed.
 * In the ARM64 case, all kernel images are currently
 * uncompressed, and as such when we relocate it we need to
 * allocate additional space for the BSS segment. Any low
 * memory that this function should avoid needs to be
 * unavailable in the EFI memory map, as if the preferred
 * address is not available the lowest available address will
 * be used.
 */
702
efi_status_t efi_relocate_kernel(unsigned long *image_addr,
703 704 705
				 unsigned long image_size,
				 unsigned long alloc_size,
				 unsigned long preferred_addr,
706 707
				 unsigned long alignment,
				 unsigned long min_addr)
708
{
709 710
	unsigned long cur_image_addr;
	unsigned long new_addr = 0;
711
	efi_status_t status;
712 713 714 715 716 717 718 719 720
	unsigned long nr_pages;
	efi_physical_addr_t efi_addr = preferred_addr;

	if (!image_addr || !image_size || !alloc_size)
		return EFI_INVALID_PARAMETER;
	if (alloc_size < image_size)
		return EFI_INVALID_PARAMETER;

	cur_image_addr = *image_addr;
721 722 723

	/*
	 * The EFI firmware loader could have placed the kernel image
724 725 726 727 728
	 * anywhere in memory, but the kernel has restrictions on the
	 * max physical address it can run at.  Some architectures
	 * also have a prefered address, so first try to relocate
	 * to the preferred address.  If that fails, allocate as low
	 * as possible while respecting the required alignment.
729
	 */
730
	nr_pages = round_up(alloc_size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE;
731 732 733
	status = efi_call_early(allocate_pages,
				EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
				nr_pages, &efi_addr);
734 735 736 737 738
	new_addr = efi_addr;
	/*
	 * If preferred address allocation failed allocate as low as
	 * possible.
	 */
739
	if (status != EFI_SUCCESS) {
740 741
		status = efi_low_alloc_above(alloc_size, alignment, &new_addr,
					     min_addr);
742 743
	}
	if (status != EFI_SUCCESS) {
744
		pr_efi_err("Failed to allocate usable memory for kernel.\n");
745
		return status;
746 747
	}

748 749 750 751 752
	/*
	 * We know source/dest won't overlap since both memory ranges
	 * have been allocated by UEFI, so we can safely use memcpy.
	 */
	memcpy((void *)new_addr, (void *)cur_image_addr, image_size);
753

754 755
	/* Return the new address of the relocated image. */
	*image_addr = new_addr;
756 757 758

	return status;
}
759

760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
/*
 * Get the number of UTF-8 bytes corresponding to an UTF-16 character.
 * This overestimates for surrogates, but that is okay.
 */
static int efi_utf8_bytes(u16 c)
{
	return 1 + (c >= 0x80) + (c >= 0x800);
}

/*
 * Convert an UTF-16 string, not necessarily null terminated, to UTF-8.
 */
static u8 *efi_utf16_to_utf8(u8 *dst, const u16 *src, int n)
{
	unsigned int c;

	while (n--) {
		c = *src++;
		if (n && c >= 0xd800 && c <= 0xdbff &&
		    *src >= 0xdc00 && *src <= 0xdfff) {
			c = 0x10000 + ((c & 0x3ff) << 10) + (*src & 0x3ff);
			src++;
			n--;
		}
		if (c >= 0xd800 && c <= 0xdfff)
			c = 0xfffd; /* Unmatched surrogate */
		if (c < 0x80) {
			*dst++ = c;
			continue;
		}
		if (c < 0x800) {
			*dst++ = 0xc0 + (c >> 6);
			goto t1;
		}
		if (c < 0x10000) {
			*dst++ = 0xe0 + (c >> 12);
			goto t2;
		}
		*dst++ = 0xf0 + (c >> 18);
		*dst++ = 0x80 + ((c >> 12) & 0x3f);
	t2:
		*dst++ = 0x80 + ((c >> 6) & 0x3f);
	t1:
		*dst++ = 0x80 + (c & 0x3f);
	}

	return dst;
}

809 810 811 812
#ifndef MAX_CMDLINE_ADDRESS
#define MAX_CMDLINE_ADDRESS	ULONG_MAX
#endif

813 814 815 816 817
/*
 * Convert the unicode UEFI command line to ASCII to pass to kernel.
 * Size of memory allocated return in *cmd_line_len.
 * Returns NULL on error.
 */
818
char *efi_convert_cmdline(efi_loaded_image_t *image,
819
			  int *cmd_line_len)
820
{
821
	const u16 *s2;
822 823
	u8 *s1 = NULL;
	unsigned long cmdline_addr = 0;
824 825 826 827
	int load_options_chars = image->load_options_size / 2; /* UTF-16 */
	const u16 *options = image->load_options;
	int options_bytes = 0;  /* UTF-8 bytes */
	int options_chars = 0;  /* UTF-16 chars */
828 829 830 831 832
	efi_status_t status;
	u16 zero = 0;

	if (options) {
		s2 = options;
833 834 835 836
		while (*s2 && *s2 != '\n'
		       && options_chars < load_options_chars) {
			options_bytes += efi_utf8_bytes(*s2++);
			options_chars++;
837 838 839
		}
	}

840
	if (!options_chars) {
841 842 843 844
		/* No command line options, so return empty string*/
		options = &zero;
	}

845
	options_bytes++;	/* NUL termination */
L
Leif Lindholm 已提交
846

847 848
	status = efi_high_alloc(options_bytes, 0, &cmdline_addr,
				MAX_CMDLINE_ADDRESS);
849 850 851 852
	if (status != EFI_SUCCESS)
		return NULL;

	s1 = (u8 *)cmdline_addr;
853
	s2 = (const u16 *)options;
854

855
	s1 = efi_utf16_to_utf8(s1, s2, options_chars);
856 857
	*s1 = '\0';

858
	*cmd_line_len = options_bytes;
859 860
	return (char *)cmdline_addr;
}
861 862 863 864 865 866 867 868 869

/*
 * Handle calling ExitBootServices according to the requirements set out by the
 * spec.  Obtains the current memory map, and returns that info after calling
 * ExitBootServices.  The client must specify a function to perform any
 * processing of the memory map data prior to ExitBootServices.  A client
 * specific structure may be passed to the function via priv.  The client
 * function may be called multiple times.
 */
870
efi_status_t efi_exit_boot_services(void *handle,
871 872 873 874 875 876
				    struct efi_boot_memmap *map,
				    void *priv,
				    efi_exit_boot_map_processing priv_func)
{
	efi_status_t status;

877
	status = efi_get_memory_map(map);
878 879 880 881

	if (status != EFI_SUCCESS)
		goto fail;

882
	status = priv_func(map, priv);
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
	if (status != EFI_SUCCESS)
		goto free_map;

	status = efi_call_early(exit_boot_services, handle, *map->key_ptr);

	if (status == EFI_INVALID_PARAMETER) {
		/*
		 * The memory map changed between efi_get_memory_map() and
		 * exit_boot_services().  Per the UEFI Spec v2.6, Section 6.4:
		 * EFI_BOOT_SERVICES.ExitBootServices we need to get the
		 * updated map, and try again.  The spec implies one retry
		 * should be sufficent, which is confirmed against the EDK2
		 * implementation.  Per the spec, we can only invoke
		 * get_memory_map() and exit_boot_services() - we cannot alloc
		 * so efi_get_memory_map() cannot be used, and we must reuse
		 * the buffer.  For all practical purposes, the headroom in the
		 * buffer should account for any changes in the map so the call
		 * to get_memory_map() is expected to succeed here.
		 */
		*map->map_size = *map->buff_size;
		status = efi_call_early(get_memory_map,
					map->map_size,
					*map->map,
					map->key_ptr,
					map->desc_size,
					map->desc_ver);

		/* exit_boot_services() was called, thus cannot free */
		if (status != EFI_SUCCESS)
			goto fail;

914
		status = priv_func(map, priv);
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
		/* exit_boot_services() was called, thus cannot free */
		if (status != EFI_SUCCESS)
			goto fail;

		status = efi_call_early(exit_boot_services, handle, *map->key_ptr);
	}

	/* exit_boot_services() was called, thus cannot free */
	if (status != EFI_SUCCESS)
		goto fail;

	return EFI_SUCCESS;

free_map:
	efi_call_early(free_pool, *map->map);
fail:
	return status;
}
933

934
void *get_efi_config_table(efi_guid_t guid)
935
{
936 937
	unsigned long tables = efi_table_attr(efi_system_table(), tables);
	int nr_tables = efi_table_attr(efi_system_table(), nr_tables);
938 939 940 941 942 943
	int i;

	for (i = 0; i < nr_tables; i++) {
		efi_config_table_t *t = (void *)tables;

		if (efi_guidcmp(t->guid, guid) == 0)
944
			return efi_table_attr(t, table);
945 946 947 948 949

		tables += efi_is_native() ? sizeof(efi_config_table_t)
					  : sizeof(efi_config_table_32_t);
	}
	return NULL;
950
}
951

952
void efi_char16_printk(efi_char16_t *str)
953
{
954
	efi_call_proto(efi_table_attr(efi_system_table(), con_out),
955
		       output_string, str);
956
}