efi-stub-helper.c 22.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9
/*
 * Helper functions used by the EFI stub on multiple
 * architectures. This should be #included by the EFI stub
 * implementation files.
 *
 * Copyright 2011 Intel Corporation; author Matt Fleming
 */

10 11 12 13
#include <linux/efi.h>
#include <asm/efi.h>

#include "efistub.h"
14

15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Some firmware implementations have problems reading files in one go.
 * A read chunk size of 1MB seems to work for most platforms.
 *
 * Unfortunately, reading files in chunks triggers *other* bugs on some
 * platforms, so we provide a way to disable this workaround, which can
 * be done by passing "efi=nochunk" on the EFI boot stub command line.
 *
 * If you experience issues with initrd images being corrupt it's worth
 * trying efi=nochunk, but chunking is enabled by default because there
 * are far more machines that require the workaround than those that
 * break with it enabled.
 */
28
#define EFI_READ_CHUNK_SIZE	(1024 * 1024)
29

30 31
static unsigned long __chunk_size = EFI_READ_CHUNK_SIZE;

32
static int __section(.data) __nokaslr;
33
static int __section(.data) __quiet;
34
static int __section(.data) __novamap;
35
static bool __section(.data) efi_nosoftreserve;
36 37 38 39 40

int __pure nokaslr(void)
{
	return __nokaslr;
}
41 42 43 44
int __pure is_quiet(void)
{
	return __quiet;
}
45 46 47 48
int __pure novamap(void)
{
	return __novamap;
}
49 50 51 52
bool __pure __efi_soft_reserve_enabled(void)
{
	return !efi_nosoftreserve;
}
53

54 55
#define EFI_MMAP_NR_SLACK_SLOTS	8

56
struct file_info {
57 58 59 60
	efi_file_handle_t *handle;
	u64 size;
};

61
void efi_printk(char *str)
62 63 64 65 66 67 68 69 70
{
	char *s8;

	for (s8 = str; *s8; s8++) {
		efi_char16_t ch[2] = { 0 };

		ch[0] = *s8;
		if (*s8 == '\n') {
			efi_char16_t nl[2] = { '\r', 0 };
71
			efi_char16_printk(nl);
72 73
		}

74
		efi_char16_printk(ch);
75 76 77
	}
}

78 79 80 81 82 83 84 85 86
static inline bool mmap_has_headroom(unsigned long buff_size,
				     unsigned long map_size,
				     unsigned long desc_size)
{
	unsigned long slack = buff_size - map_size;

	return slack / desc_size >= EFI_MMAP_NR_SLACK_SLOTS;
}

87
efi_status_t efi_get_memory_map(struct efi_boot_memmap *map)
88 89 90 91 92 93
{
	efi_memory_desc_t *m = NULL;
	efi_status_t status;
	unsigned long key;
	u32 desc_version;

94 95 96
	*map->desc_size =	sizeof(*m);
	*map->map_size =	*map->desc_size * 32;
	*map->buff_size =	*map->map_size;
97
again:
98 99
	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA,
			     *map->map_size, (void **)&m);
100 101 102
	if (status != EFI_SUCCESS)
		goto fail;

103
	*map->desc_size = 0;
104
	key = 0;
105 106
	status = efi_bs_call(get_memory_map, map->map_size, m,
			     &key, map->desc_size, &desc_version);
107 108 109
	if (status == EFI_BUFFER_TOO_SMALL ||
	    !mmap_has_headroom(*map->buff_size, *map->map_size,
			       *map->desc_size)) {
110
		efi_bs_call(free_pool, m);
111 112 113 114 115 116 117 118 119
		/*
		 * Make sure there is some entries of headroom so that the
		 * buffer can be reused for a new map after allocations are
		 * no longer permitted.  Its unlikely that the map will grow to
		 * exceed this headroom once we are ready to trigger
		 * ExitBootServices()
		 */
		*map->map_size += *map->desc_size * EFI_MMAP_NR_SLACK_SLOTS;
		*map->buff_size = *map->map_size;
120
		goto again;
121 122 123
	}

	if (status != EFI_SUCCESS)
124
		efi_bs_call(free_pool, m);
125

126 127 128 129
	if (map->key_ptr && status == EFI_SUCCESS)
		*map->key_ptr = key;
	if (map->desc_ver && status == EFI_SUCCESS)
		*map->desc_ver = desc_version;
130 131

fail:
132
	*map->map = m;
133 134 135
	return status;
}

136

137
unsigned long get_dram_base(void)
138 139
{
	efi_status_t status;
140
	unsigned long map_size, buff_size;
141 142 143
	unsigned long membase  = EFI_ERROR;
	struct efi_memory_map map;
	efi_memory_desc_t *md;
144
	struct efi_boot_memmap boot_map;
145

146 147 148 149 150 151 152
	boot_map.map =		(efi_memory_desc_t **)&map.map;
	boot_map.map_size =	&map_size;
	boot_map.desc_size =	&map.desc_size;
	boot_map.desc_ver =	NULL;
	boot_map.key_ptr =	NULL;
	boot_map.buff_size =	&buff_size;

153
	status = efi_get_memory_map(&boot_map);
154 155 156 157 158
	if (status != EFI_SUCCESS)
		return membase;

	map.map_end = map.map + map_size;

159 160
	for_each_efi_memory_desc_in_map(&map, md) {
		if (md->attribute & EFI_MEMORY_WB) {
161 162
			if (membase > md->phys_addr)
				membase = md->phys_addr;
163 164
		}
	}
165

166
	efi_bs_call(free_pool, map.map);
167 168 169 170

	return membase;
}

171 172 173
/*
 * Allocate at the highest possible address that is not above 'max'.
 */
174
efi_status_t efi_high_alloc(unsigned long size, unsigned long align,
175
			    unsigned long *addr, unsigned long max)
176
{
177
	unsigned long map_size, desc_size, buff_size;
178 179 180 181 182
	efi_memory_desc_t *map;
	efi_status_t status;
	unsigned long nr_pages;
	u64 max_addr = 0;
	int i;
183 184 185 186 187 188 189 190
	struct efi_boot_memmap boot_map;

	boot_map.map =		&map;
	boot_map.map_size =	&map_size;
	boot_map.desc_size =	&desc_size;
	boot_map.desc_ver =	NULL;
	boot_map.key_ptr =	NULL;
	boot_map.buff_size =	&buff_size;
191

192
	status = efi_get_memory_map(&boot_map);
193 194 195
	if (status != EFI_SUCCESS)
		goto fail;

196
	/*
197 198 199 200
	 * Enforce minimum alignment that EFI or Linux requires when
	 * requesting a specific address.  We are doing page-based (or
	 * larger) allocations, and both the address and size must meet
	 * alignment constraints.
201
	 */
202 203
	if (align < EFI_ALLOC_ALIGN)
		align = EFI_ALLOC_ALIGN;
204

205 206
	size = round_up(size, EFI_ALLOC_ALIGN);
	nr_pages = size / EFI_PAGE_SIZE;
207 208 209 210 211 212
again:
	for (i = 0; i < map_size / desc_size; i++) {
		efi_memory_desc_t *desc;
		unsigned long m = (unsigned long)map;
		u64 start, end;

213
		desc = efi_early_memdesc_ptr(m, desc_size, i);
214 215 216
		if (desc->type != EFI_CONVENTIONAL_MEMORY)
			continue;

217 218 219 220
		if (efi_soft_reserve_enabled() &&
		    (desc->attribute & EFI_MEMORY_SP))
			continue;

221 222 223 224
		if (desc->num_pages < nr_pages)
			continue;

		start = desc->phys_addr;
225
		end = start + desc->num_pages * EFI_PAGE_SIZE;
226

227
		if (end > max)
228 229
			end = max;

230 231 232
		if ((start + size) > end)
			continue;

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
		if (round_down(end - size, align) < start)
			continue;

		start = round_down(end - size, align);

		/*
		 * Don't allocate at 0x0. It will confuse code that
		 * checks pointers against NULL.
		 */
		if (start == 0x0)
			continue;

		if (start > max_addr)
			max_addr = start;
	}

	if (!max_addr)
		status = EFI_NOT_FOUND;
	else {
252 253
		status = efi_bs_call(allocate_pages, EFI_ALLOCATE_ADDRESS,
				     EFI_LOADER_DATA, nr_pages, &max_addr);
254 255 256 257 258 259 260 261 262
		if (status != EFI_SUCCESS) {
			max = max_addr;
			max_addr = 0;
			goto again;
		}

		*addr = max_addr;
	}

263
	efi_bs_call(free_pool, map);
264 265 266 267 268
fail:
	return status;
}

/*
269
 * Allocate at the lowest possible address that is not below 'min'.
270
 */
271
efi_status_t efi_low_alloc_above(unsigned long size, unsigned long align,
272
				 unsigned long *addr, unsigned long min)
273
{
274
	unsigned long map_size, desc_size, buff_size;
275 276 277 278
	efi_memory_desc_t *map;
	efi_status_t status;
	unsigned long nr_pages;
	int i;
279 280 281 282 283 284 285 286
	struct efi_boot_memmap boot_map;

	boot_map.map =		&map;
	boot_map.map_size =	&map_size;
	boot_map.desc_size =	&desc_size;
	boot_map.desc_ver =	NULL;
	boot_map.key_ptr =	NULL;
	boot_map.buff_size =	&buff_size;
287

288
	status = efi_get_memory_map(&boot_map);
289 290 291
	if (status != EFI_SUCCESS)
		goto fail;

292
	/*
293 294 295 296
	 * Enforce minimum alignment that EFI or Linux requires when
	 * requesting a specific address.  We are doing page-based (or
	 * larger) allocations, and both the address and size must meet
	 * alignment constraints.
297
	 */
298 299
	if (align < EFI_ALLOC_ALIGN)
		align = EFI_ALLOC_ALIGN;
300

301 302
	size = round_up(size, EFI_ALLOC_ALIGN);
	nr_pages = size / EFI_PAGE_SIZE;
303 304 305 306 307
	for (i = 0; i < map_size / desc_size; i++) {
		efi_memory_desc_t *desc;
		unsigned long m = (unsigned long)map;
		u64 start, end;

308
		desc = efi_early_memdesc_ptr(m, desc_size, i);
309 310 311 312

		if (desc->type != EFI_CONVENTIONAL_MEMORY)
			continue;

313 314 315 316
		if (efi_soft_reserve_enabled() &&
		    (desc->attribute & EFI_MEMORY_SP))
			continue;

317 318 319 320
		if (desc->num_pages < nr_pages)
			continue;

		start = desc->phys_addr;
321
		end = start + desc->num_pages * EFI_PAGE_SIZE;
322

323 324
		if (start < min)
			start = min;
325 326 327 328 329

		start = round_up(start, align);
		if ((start + size) > end)
			continue;

330 331
		status = efi_bs_call(allocate_pages, EFI_ALLOCATE_ADDRESS,
				     EFI_LOADER_DATA, nr_pages, &start);
332 333 334 335 336 337 338 339 340
		if (status == EFI_SUCCESS) {
			*addr = start;
			break;
		}
	}

	if (i == map_size / desc_size)
		status = EFI_NOT_FOUND;

341
	efi_bs_call(free_pool, map);
342 343 344 345
fail:
	return status;
}

346
void efi_free(unsigned long size, unsigned long addr)
347 348 349
	__weak __alias(efi_free_native);

void efi_free_native(unsigned long size, unsigned long addr)
350 351 352
{
	unsigned long nr_pages;

353 354 355
	if (!size)
		return;

356
	nr_pages = round_up(size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE;
357
	efi_system_table()->boottime->free_pages(addr, nr_pages);
358 359
}

360 361
static efi_status_t efi_file_size(void *__fh, efi_char16_t *filename_16,
				  void **handle, u64 *file_sz)
362 363 364 365 366 367 368
{
	efi_file_handle_t *h, *fh = __fh;
	efi_file_info_t *info;
	efi_status_t status;
	efi_guid_t info_guid = EFI_FILE_INFO_ID;
	unsigned long info_sz;

369
	status = fh->open(fh, &h, filename_16, EFI_FILE_MODE_READ, 0);
370
	if (status != EFI_SUCCESS) {
371 372 373
		efi_printk("Failed to open file: ");
		efi_char16_printk(filename_16);
		efi_printk("\n");
374 375 376 377 378 379
		return status;
	}

	*handle = h;

	info_sz = 0;
380
	status = h->get_info(h, &info_guid, &info_sz, NULL);
381
	if (status != EFI_BUFFER_TOO_SMALL) {
382
		efi_printk("Failed to get file info size\n");
383 384 385 386
		return status;
	}

grow:
387 388
	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, info_sz,
			     (void **)&info);
389
	if (status != EFI_SUCCESS) {
390
		efi_printk("Failed to alloc mem for file info\n");
391 392 393
		return status;
	}

394
	status = h->get_info(h, &info_guid, &info_sz, info);
395
	if (status == EFI_BUFFER_TOO_SMALL) {
396
		efi_bs_call(free_pool, info);
397 398 399 400
		goto grow;
	}

	*file_sz = info->file_size;
401
	efi_bs_call(free_pool, info);
402 403

	if (status != EFI_SUCCESS)
404
		efi_printk("Failed to get initrd info\n");
405 406 407 408

	return status;
}

409 410
static efi_status_t efi_file_read(efi_file_handle_t *handle,
				  unsigned long *size, void *addr)
411
{
412
	return handle->read(handle, size, addr);
413 414
}

415
static efi_status_t efi_file_close(efi_file_handle_t *handle)
416
{
417
	return handle->close(handle);
418 419
}

420
static efi_status_t efi_open_volume(efi_loaded_image_t *image,
421 422 423 424 425 426
				    efi_file_handle_t **__fh)
{
	efi_file_io_interface_t *io;
	efi_file_handle_t *fh;
	efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID;
	efi_status_t status;
427
	efi_handle_t handle = image->device_handle;
428

429
	status = efi_bs_call(handle_protocol, handle, &fs_proto, (void **)&io);
430
	if (status != EFI_SUCCESS) {
431
		efi_printk("Failed to handle fs_proto\n");
432 433 434
		return status;
	}

435
	status = io->open_volume(io, &fh);
436
	if (status != EFI_SUCCESS)
437
		efi_printk("Failed to open volume\n");
438 439 440 441 442 443
	else
		*__fh = fh;

	return status;
}

444 445 446 447 448 449 450 451
/*
 * Parse the ASCII string 'cmdline' for EFI options, denoted by the efi=
 * option, e.g. efi=nochunk.
 *
 * It should be noted that efi= is parsed in two very different
 * environments, first in the early boot environment of the EFI boot
 * stub, and subsequently during the kernel boot.
 */
452
efi_status_t efi_parse_options(char const *cmdline)
453 454 455
{
	char *str;

456 457 458
	str = strstr(cmdline, "nokaslr");
	if (str == cmdline || (str && str > cmdline && *(str - 1) == ' '))
		__nokaslr = 1;
459

460 461 462 463
	str = strstr(cmdline, "quiet");
	if (str == cmdline || (str && str > cmdline && *(str - 1) == ' '))
		__quiet = 1;

464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
	/*
	 * If no EFI parameters were specified on the cmdline we've got
	 * nothing to do.
	 */
	str = strstr(cmdline, "efi=");
	if (!str)
		return EFI_SUCCESS;

	/* Skip ahead to first argument */
	str += strlen("efi=");

	/*
	 * Remember, because efi= is also used by the kernel we need to
	 * skip over arguments we don't understand.
	 */
479
	while (*str && *str != ' ') {
480 481 482 483 484
		if (!strncmp(str, "nochunk", 7)) {
			str += strlen("nochunk");
			__chunk_size = -1UL;
		}

485 486 487 488 489
		if (!strncmp(str, "novamap", 7)) {
			str += strlen("novamap");
			__novamap = 1;
		}

490 491 492 493 494 495
		if (IS_ENABLED(CONFIG_EFI_SOFT_RESERVE) &&
		    !strncmp(str, "nosoftreserve", 7)) {
			str += strlen("nosoftreserve");
			efi_nosoftreserve = 1;
		}

496
		/* Group words together, delimited by "," */
497
		while (*str && *str != ' ' && *str != ',')
498 499 500 501 502 503 504 505
			str++;

		if (*str == ',')
			str++;
	}

	return EFI_SUCCESS;
}
506 507

/*
508
 * Check the cmdline for a LILO-style file= arguments.
509
 *
510 511
 * We only support loading a file from the same filesystem as
 * the kernel image.
512
 */
513
efi_status_t handle_cmdline_files(efi_loaded_image_t *image,
514 515 516 517
				  char *cmd_line, char *option_string,
				  unsigned long max_addr,
				  unsigned long *load_addr,
				  unsigned long *load_size)
518
{
519 520 521
	struct file_info *files;
	unsigned long file_addr;
	u64 file_size_total;
L
Leif Lindholm 已提交
522
	efi_file_handle_t *fh = NULL;
523
	efi_status_t status;
524
	int nr_files;
525 526 527
	char *str;
	int i, j, k;

528 529
	file_addr = 0;
	file_size_total = 0;
530

531
	str = cmd_line;
532 533 534

	j = 0;			/* See close_handles */

535 536 537 538 539 540
	if (!load_addr || !load_size)
		return EFI_INVALID_PARAMETER;

	*load_addr = 0;
	*load_size = 0;

541 542 543
	if (!str || !*str)
		return EFI_SUCCESS;

544
	for (nr_files = 0; *str; nr_files++) {
545
		str = strstr(str, option_string);
546 547 548
		if (!str)
			break;

549
		str += strlen(option_string);
550 551 552 553 554 555 556 557 558

		/* Skip any leading slashes */
		while (*str == '/' || *str == '\\')
			str++;

		while (*str && *str != ' ' && *str != '\n')
			str++;
	}

559
	if (!nr_files)
560 561
		return EFI_SUCCESS;

562 563
	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA,
			     nr_files * sizeof(*files), (void **)&files);
564
	if (status != EFI_SUCCESS) {
565
		pr_efi_err("Failed to alloc mem for file handle list\n");
566 567 568
		goto fail;
	}

569
	str = cmd_line;
570 571
	for (i = 0; i < nr_files; i++) {
		struct file_info *file;
572 573 574
		efi_char16_t filename_16[256];
		efi_char16_t *p;

575
		str = strstr(str, option_string);
576 577 578
		if (!str)
			break;

579
		str += strlen(option_string);
580

581
		file = &files[i];
582 583 584 585 586 587 588 589 590 591 592 593
		p = filename_16;

		/* Skip any leading slashes */
		while (*str == '/' || *str == '\\')
			str++;

		while (*str && *str != ' ' && *str != '\n') {
			if ((u8 *)p >= (u8 *)filename_16 + sizeof(filename_16))
				break;

			if (*str == '/') {
				*p++ = '\\';
594
				str++;
595 596 597 598 599 600 601 602 603
			} else {
				*p++ = *str++;
			}
		}

		*p = '\0';

		/* Only open the volume once. */
		if (!i) {
604
			status = efi_open_volume(image, &fh);
605
			if (status != EFI_SUCCESS)
606
				goto free_files;
607 608
		}

609 610
		status = efi_file_size(fh, filename_16, (void **)&file->handle,
				       &file->size);
611
		if (status != EFI_SUCCESS)
612 613
			goto close_handles;

614
		file_size_total += file->size;
615 616
	}

617
	if (file_size_total) {
618 619 620
		unsigned long addr;

		/*
621 622 623
		 * Multiple files need to be at consecutive addresses in memory,
		 * so allocate enough memory for all the files.  This is used
		 * for loading multiple files.
624
		 */
625 626
		status = efi_high_alloc(file_size_total, 0x1000, &file_addr,
					max_addr);
627
		if (status != EFI_SUCCESS) {
628
			pr_efi_err("Failed to alloc highmem for files\n");
629 630 631 632
			goto close_handles;
		}

		/* We've run out of free low memory. */
633
		if (file_addr > max_addr) {
634
			pr_efi_err("We've run out of free low memory\n");
635
			status = EFI_INVALID_PARAMETER;
636
			goto free_file_total;
637 638
		}

639 640
		addr = file_addr;
		for (j = 0; j < nr_files; j++) {
641
			unsigned long size;
642

643
			size = files[j].size;
644
			while (size) {
645
				unsigned long chunksize;
646 647

				if (IS_ENABLED(CONFIG_X86) && size > __chunk_size)
648
					chunksize = __chunk_size;
649 650
				else
					chunksize = size;
651

652
				status = efi_file_read(files[j].handle,
653 654
						       &chunksize,
						       (void *)addr);
655
				if (status != EFI_SUCCESS) {
656
					pr_efi_err("Failed to read file\n");
657
					goto free_file_total;
658 659 660 661 662
				}
				addr += chunksize;
				size -= chunksize;
			}

663
			efi_file_close(files[j].handle);
664 665 666 667
		}

	}

668
	efi_bs_call(free_pool, files);
669

670 671
	*load_addr = file_addr;
	*load_size = file_size_total;
672 673 674

	return status;

675
free_file_total:
676
	efi_free(file_size_total, file_addr);
677 678 679

close_handles:
	for (k = j; k < i; k++)
680
		efi_file_close(files[k].handle);
681
free_files:
682
	efi_bs_call(free_pool, files);
683
fail:
684 685
	*load_addr = 0;
	*load_size = 0;
686 687 688

	return status;
}
689 690 691 692 693 694 695 696 697 698
/*
 * Relocate a kernel image, either compressed or uncompressed.
 * In the ARM64 case, all kernel images are currently
 * uncompressed, and as such when we relocate it we need to
 * allocate additional space for the BSS segment. Any low
 * memory that this function should avoid needs to be
 * unavailable in the EFI memory map, as if the preferred
 * address is not available the lowest available address will
 * be used.
 */
699
efi_status_t efi_relocate_kernel(unsigned long *image_addr,
700 701 702
				 unsigned long image_size,
				 unsigned long alloc_size,
				 unsigned long preferred_addr,
703 704
				 unsigned long alignment,
				 unsigned long min_addr)
705
{
706 707
	unsigned long cur_image_addr;
	unsigned long new_addr = 0;
708
	efi_status_t status;
709 710 711 712 713 714 715 716 717
	unsigned long nr_pages;
	efi_physical_addr_t efi_addr = preferred_addr;

	if (!image_addr || !image_size || !alloc_size)
		return EFI_INVALID_PARAMETER;
	if (alloc_size < image_size)
		return EFI_INVALID_PARAMETER;

	cur_image_addr = *image_addr;
718 719 720

	/*
	 * The EFI firmware loader could have placed the kernel image
721 722 723 724 725
	 * anywhere in memory, but the kernel has restrictions on the
	 * max physical address it can run at.  Some architectures
	 * also have a prefered address, so first try to relocate
	 * to the preferred address.  If that fails, allocate as low
	 * as possible while respecting the required alignment.
726
	 */
727
	nr_pages = round_up(alloc_size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE;
728 729
	status = efi_bs_call(allocate_pages, EFI_ALLOCATE_ADDRESS,
			     EFI_LOADER_DATA, nr_pages, &efi_addr);
730 731 732 733 734
	new_addr = efi_addr;
	/*
	 * If preferred address allocation failed allocate as low as
	 * possible.
	 */
735
	if (status != EFI_SUCCESS) {
736 737
		status = efi_low_alloc_above(alloc_size, alignment, &new_addr,
					     min_addr);
738 739
	}
	if (status != EFI_SUCCESS) {
740
		pr_efi_err("Failed to allocate usable memory for kernel.\n");
741
		return status;
742 743
	}

744 745 746 747 748
	/*
	 * We know source/dest won't overlap since both memory ranges
	 * have been allocated by UEFI, so we can safely use memcpy.
	 */
	memcpy((void *)new_addr, (void *)cur_image_addr, image_size);
749

750 751
	/* Return the new address of the relocated image. */
	*image_addr = new_addr;
752 753 754

	return status;
}
755

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
/*
 * Get the number of UTF-8 bytes corresponding to an UTF-16 character.
 * This overestimates for surrogates, but that is okay.
 */
static int efi_utf8_bytes(u16 c)
{
	return 1 + (c >= 0x80) + (c >= 0x800);
}

/*
 * Convert an UTF-16 string, not necessarily null terminated, to UTF-8.
 */
static u8 *efi_utf16_to_utf8(u8 *dst, const u16 *src, int n)
{
	unsigned int c;

	while (n--) {
		c = *src++;
		if (n && c >= 0xd800 && c <= 0xdbff &&
		    *src >= 0xdc00 && *src <= 0xdfff) {
			c = 0x10000 + ((c & 0x3ff) << 10) + (*src & 0x3ff);
			src++;
			n--;
		}
		if (c >= 0xd800 && c <= 0xdfff)
			c = 0xfffd; /* Unmatched surrogate */
		if (c < 0x80) {
			*dst++ = c;
			continue;
		}
		if (c < 0x800) {
			*dst++ = 0xc0 + (c >> 6);
			goto t1;
		}
		if (c < 0x10000) {
			*dst++ = 0xe0 + (c >> 12);
			goto t2;
		}
		*dst++ = 0xf0 + (c >> 18);
		*dst++ = 0x80 + ((c >> 12) & 0x3f);
	t2:
		*dst++ = 0x80 + ((c >> 6) & 0x3f);
	t1:
		*dst++ = 0x80 + (c & 0x3f);
	}

	return dst;
}

805 806 807 808
#ifndef MAX_CMDLINE_ADDRESS
#define MAX_CMDLINE_ADDRESS	ULONG_MAX
#endif

809 810 811 812 813
/*
 * Convert the unicode UEFI command line to ASCII to pass to kernel.
 * Size of memory allocated return in *cmd_line_len.
 * Returns NULL on error.
 */
814
char *efi_convert_cmdline(efi_loaded_image_t *image,
815
			  int *cmd_line_len)
816
{
817
	const u16 *s2;
818 819
	u8 *s1 = NULL;
	unsigned long cmdline_addr = 0;
820 821 822 823
	int load_options_chars = image->load_options_size / 2; /* UTF-16 */
	const u16 *options = image->load_options;
	int options_bytes = 0;  /* UTF-8 bytes */
	int options_chars = 0;  /* UTF-16 chars */
824 825 826 827 828
	efi_status_t status;
	u16 zero = 0;

	if (options) {
		s2 = options;
829 830 831 832
		while (*s2 && *s2 != '\n'
		       && options_chars < load_options_chars) {
			options_bytes += efi_utf8_bytes(*s2++);
			options_chars++;
833 834 835
		}
	}

836
	if (!options_chars) {
837 838 839 840
		/* No command line options, so return empty string*/
		options = &zero;
	}

841
	options_bytes++;	/* NUL termination */
L
Leif Lindholm 已提交
842

843 844
	status = efi_high_alloc(options_bytes, 0, &cmdline_addr,
				MAX_CMDLINE_ADDRESS);
845 846 847 848
	if (status != EFI_SUCCESS)
		return NULL;

	s1 = (u8 *)cmdline_addr;
849
	s2 = (const u16 *)options;
850

851
	s1 = efi_utf16_to_utf8(s1, s2, options_chars);
852 853
	*s1 = '\0';

854
	*cmd_line_len = options_bytes;
855 856
	return (char *)cmdline_addr;
}
857 858 859 860 861 862 863 864 865

/*
 * Handle calling ExitBootServices according to the requirements set out by the
 * spec.  Obtains the current memory map, and returns that info after calling
 * ExitBootServices.  The client must specify a function to perform any
 * processing of the memory map data prior to ExitBootServices.  A client
 * specific structure may be passed to the function via priv.  The client
 * function may be called multiple times.
 */
866
efi_status_t efi_exit_boot_services(void *handle,
867 868 869 870 871 872
				    struct efi_boot_memmap *map,
				    void *priv,
				    efi_exit_boot_map_processing priv_func)
{
	efi_status_t status;

873
	status = efi_get_memory_map(map);
874 875 876 877

	if (status != EFI_SUCCESS)
		goto fail;

878
	status = priv_func(map, priv);
879 880 881
	if (status != EFI_SUCCESS)
		goto free_map;

882
	status = efi_bs_call(exit_boot_services, handle, *map->key_ptr);
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898

	if (status == EFI_INVALID_PARAMETER) {
		/*
		 * The memory map changed between efi_get_memory_map() and
		 * exit_boot_services().  Per the UEFI Spec v2.6, Section 6.4:
		 * EFI_BOOT_SERVICES.ExitBootServices we need to get the
		 * updated map, and try again.  The spec implies one retry
		 * should be sufficent, which is confirmed against the EDK2
		 * implementation.  Per the spec, we can only invoke
		 * get_memory_map() and exit_boot_services() - we cannot alloc
		 * so efi_get_memory_map() cannot be used, and we must reuse
		 * the buffer.  For all practical purposes, the headroom in the
		 * buffer should account for any changes in the map so the call
		 * to get_memory_map() is expected to succeed here.
		 */
		*map->map_size = *map->buff_size;
899 900 901 902 903 904
		status = efi_bs_call(get_memory_map,
				     map->map_size,
				     *map->map,
				     map->key_ptr,
				     map->desc_size,
				     map->desc_ver);
905 906 907 908 909

		/* exit_boot_services() was called, thus cannot free */
		if (status != EFI_SUCCESS)
			goto fail;

910
		status = priv_func(map, priv);
911 912 913 914
		/* exit_boot_services() was called, thus cannot free */
		if (status != EFI_SUCCESS)
			goto fail;

915
		status = efi_bs_call(exit_boot_services, handle, *map->key_ptr);
916 917 918 919 920 921 922 923 924
	}

	/* exit_boot_services() was called, thus cannot free */
	if (status != EFI_SUCCESS)
		goto fail;

	return EFI_SUCCESS;

free_map:
925
	efi_bs_call(free_pool, *map->map);
926 927 928
fail:
	return status;
}
929

930
void *get_efi_config_table(efi_guid_t guid)
931
{
932 933
	unsigned long tables = efi_table_attr(efi_system_table(), tables);
	int nr_tables = efi_table_attr(efi_system_table(), nr_tables);
934 935 936 937 938 939
	int i;

	for (i = 0; i < nr_tables; i++) {
		efi_config_table_t *t = (void *)tables;

		if (efi_guidcmp(t->guid, guid) == 0)
940
			return efi_table_attr(t, table);
941 942 943 944 945

		tables += efi_is_native() ? sizeof(efi_config_table_t)
					  : sizeof(efi_config_table_32_t);
	}
	return NULL;
946
}
947

948
void efi_char16_printk(efi_char16_t *str)
949
{
950
	efi_call_proto(efi_table_attr(efi_system_table(), con_out),
951
		       output_string, str);
952
}