repair.c 27.8 KB
Newer Older
D
Dave Chinner 已提交
1
// SPDX-License-Identifier: GPL-2.0+
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright (C) 2018 Oracle.  All Rights Reserved.
 * Author: Darrick J. Wong <darrick.wong@oracle.com>
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_btree.h"
#include "xfs_bit.h"
#include "xfs_log_format.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_inode.h"
#include "xfs_icache.h"
#include "xfs_alloc.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc.h"
#include "xfs_ialloc_btree.h"
#include "xfs_rmap.h"
#include "xfs_rmap_btree.h"
#include "xfs_refcount.h"
#include "xfs_refcount_btree.h"
#include "xfs_extent_busy.h"
#include "xfs_ag_resv.h"
#include "xfs_trans_space.h"
31
#include "xfs_quota.h"
32 33
#include "xfs_attr.h"
#include "xfs_reflink.h"
34 35 36 37 38
#include "scrub/xfs_scrub.h"
#include "scrub/scrub.h"
#include "scrub/common.h"
#include "scrub/trace.h"
#include "scrub/repair.h"
39
#include "scrub/bitmap.h"
40 41 42 43 44 45 46

/*
 * Attempt to repair some metadata, if the metadata is corrupt and userspace
 * told us to fix it.  This function returns -EAGAIN to mean "re-run scrub",
 * and will set *fixed to true if it thinks it repaired anything.
 */
int
47
xrep_attempt(
48
	struct xfs_inode	*ip,
49
	struct xfs_scrub	*sc)
50
{
51
	int			error = 0;
52

53
	trace_xrep_attempt(ip, sc->sm, error);
54

D
Darrick J. Wong 已提交
55
	xchk_ag_btcur_free(&sc->sa);
56 57 58 59

	/* Repair whatever's broken. */
	ASSERT(sc->ops->repair);
	error = sc->ops->repair(sc);
60
	trace_xrep_done(ip, sc->sm, error);
61 62 63 64 65 66 67
	switch (error) {
	case 0:
		/*
		 * Repair succeeded.  Commit the fixes and perform a second
		 * scrub so that we can tell userspace if we fixed the problem.
		 */
		sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
68
		sc->flags |= XREP_ALREADY_FIXED;
69 70 71 72
		return -EAGAIN;
	case -EDEADLOCK:
	case -EAGAIN:
		/* Tell the caller to try again having grabbed all the locks. */
73 74
		if (!(sc->flags & XCHK_TRY_HARDER)) {
			sc->flags |= XCHK_TRY_HARDER;
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
			return -EAGAIN;
		}
		/*
		 * We tried harder but still couldn't grab all the resources
		 * we needed to fix it.  The corruption has not been fixed,
		 * so report back to userspace.
		 */
		return -EFSCORRUPTED;
	default:
		return error;
	}
}

/*
 * Complain about unfixable problems in the filesystem.  We don't log
 * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver
 * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the
 * administrator isn't running xfs_scrub in no-repairs mode.
 *
 * Use this helper function because _ratelimited silently declares a static
 * structure to track rate limiting information.
 */
void
98
xrep_failure(
99
	struct xfs_mount	*mp)
100 101 102 103 104 105 106 107 108 109
{
	xfs_alert_ratelimited(mp,
"Corruption not fixed during online repair.  Unmount and run xfs_repair.");
}

/*
 * Repair probe -- userspace uses this to probe if we're willing to repair a
 * given mountpoint.
 */
int
110
xrep_probe(
111
	struct xfs_scrub	*sc)
112
{
113
	int			error = 0;
114

D
Darrick J. Wong 已提交
115
	if (xchk_should_terminate(sc, &error))
116 117 118 119
		return error;

	return 0;
}
120 121 122 123 124 125

/*
 * Roll a transaction, keeping the AG headers locked and reinitializing
 * the btree cursors.
 */
int
126
xrep_roll_ag_trans(
127
	struct xfs_scrub	*sc)
128
{
129
	int			error;
130 131

	/* Keep the AG header buffers locked so we can keep going. */
D
Darrick J. Wong 已提交
132 133 134 135 136 137
	if (sc->sa.agi_bp)
		xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
	if (sc->sa.agf_bp)
		xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
	if (sc->sa.agfl_bp)
		xfs_trans_bhold(sc->tp, sc->sa.agfl_bp);
138

139 140 141 142 143 144 145
	/*
	 * Roll the transaction.  We still own the buffer and the buffer lock
	 * regardless of whether or not the roll succeeds.  If the roll fails,
	 * the buffers will be released during teardown on our way out of the
	 * kernel.  If it succeeds, we join them to the new transaction and
	 * move on.
	 */
146 147
	error = xfs_trans_roll(&sc->tp);
	if (error)
148
		return error;
149 150

	/* Join AG headers to the new transaction. */
D
Darrick J. Wong 已提交
151 152 153 154 155 156
	if (sc->sa.agi_bp)
		xfs_trans_bjoin(sc->tp, sc->sa.agi_bp);
	if (sc->sa.agf_bp)
		xfs_trans_bjoin(sc->tp, sc->sa.agf_bp);
	if (sc->sa.agfl_bp)
		xfs_trans_bjoin(sc->tp, sc->sa.agfl_bp);
157 158 159 160 161 162 163 164 165 166

	return 0;
}

/*
 * Does the given AG have enough space to rebuild a btree?  Neither AG
 * reservation can be critical, and we must have enough space (factoring
 * in AG reservations) to construct a whole btree.
 */
bool
167
xrep_ag_has_space(
168 169 170
	struct xfs_perag	*pag,
	xfs_extlen_t		nr_blocks,
	enum xfs_ag_resv_type	type)
171 172 173 174 175 176 177 178 179 180 181 182
{
	return  !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) &&
		!xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) &&
		pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks;
}

/*
 * Figure out how many blocks to reserve for an AG repair.  We calculate the
 * worst case estimate for the number of blocks we'd need to rebuild one of
 * any type of per-AG btree.
 */
xfs_extlen_t
183
xrep_calc_ag_resblks(
184
	struct xfs_scrub		*sc)
185 186 187 188 189
{
	struct xfs_mount		*mp = sc->mp;
	struct xfs_scrub_metadata	*sm = sc->sm;
	struct xfs_perag		*pag;
	struct xfs_buf			*bp;
190 191
	xfs_agino_t			icount = NULLAGINO;
	xfs_extlen_t			aglen = NULLAGBLOCK;
192 193 194 195 196 197 198 199 200 201 202 203
	xfs_extlen_t			usedlen;
	xfs_extlen_t			freelen;
	xfs_extlen_t			bnobt_sz;
	xfs_extlen_t			inobt_sz;
	xfs_extlen_t			rmapbt_sz;
	xfs_extlen_t			refcbt_sz;
	int				error;

	if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
		return 0;

	pag = xfs_perag_get(mp, sm->sm_agno);
204 205
	if (pag->pagi_init) {
		/* Use in-core icount if possible. */
206
		icount = pag->pagi_count;
207 208
	} else {
		/* Try to get the actual counters from disk. */
209
		error = xfs_ialloc_read_agi(mp, NULL, sm->sm_agno, &bp);
210
		if (!error) {
211 212 213 214 215 216 217
			icount = pag->pagi_count;
			xfs_buf_relse(bp);
		}
	}

	/* Now grab the block counters from the AGF. */
	error = xfs_alloc_read_agf(mp, NULL, sm->sm_agno, 0, &bp);
218
	if (!error) {
219
		aglen = be32_to_cpu(XFS_BUF_TO_AGF(bp)->agf_length);
220
		freelen = be32_to_cpu(XFS_BUF_TO_AGF(bp)->agf_freeblks);
221 222 223 224 225
		usedlen = aglen - freelen;
		xfs_buf_relse(bp);
	}
	xfs_perag_put(pag);

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
	/* If the icount is impossible, make some worst-case assumptions. */
	if (icount == NULLAGINO ||
	    !xfs_verify_agino(mp, sm->sm_agno, icount)) {
		xfs_agino_t	first, last;

		xfs_agino_range(mp, sm->sm_agno, &first, &last);
		icount = last - first + 1;
	}

	/* If the block counts are impossible, make worst-case assumptions. */
	if (aglen == NULLAGBLOCK ||
	    aglen != xfs_ag_block_count(mp, sm->sm_agno) ||
	    freelen >= aglen) {
		aglen = xfs_ag_block_count(mp, sm->sm_agno);
		freelen = aglen;
		usedlen = aglen;
	}

244
	trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen,
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
			freelen, usedlen);

	/*
	 * Figure out how many blocks we'd need worst case to rebuild
	 * each type of btree.  Note that we can only rebuild the
	 * bnobt/cntbt or inobt/finobt as pairs.
	 */
	bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen);
	if (xfs_sb_version_hassparseinodes(&mp->m_sb))
		inobt_sz = xfs_iallocbt_calc_size(mp, icount /
				XFS_INODES_PER_HOLEMASK_BIT);
	else
		inobt_sz = xfs_iallocbt_calc_size(mp, icount /
				XFS_INODES_PER_CHUNK);
	if (xfs_sb_version_hasfinobt(&mp->m_sb))
		inobt_sz *= 2;
	if (xfs_sb_version_hasreflink(&mp->m_sb))
		refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen);
	else
		refcbt_sz = 0;
	if (xfs_sb_version_hasrmapbt(&mp->m_sb)) {
		/*
		 * Guess how many blocks we need to rebuild the rmapbt.
		 * For non-reflink filesystems we can't have more records than
		 * used blocks.  However, with reflink it's possible to have
		 * more than one rmap record per AG block.  We don't know how
		 * many rmaps there could be in the AG, so we start off with
		 * what we hope is an generous over-estimation.
		 */
		if (xfs_sb_version_hasreflink(&mp->m_sb))
			rmapbt_sz = xfs_rmapbt_calc_size(mp,
					(unsigned long long)aglen * 2);
		else
			rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen);
	} else {
		rmapbt_sz = 0;
	}

283
	trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz,
284 285 286 287
			inobt_sz, rmapbt_sz, refcbt_sz);

	return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz));
}
288 289 290

/* Allocate a block in an AG. */
int
291
xrep_alloc_ag_block(
292 293 294 295
	struct xfs_scrub		*sc,
	const struct xfs_owner_info	*oinfo,
	xfs_fsblock_t			*fsbno,
	enum xfs_ag_resv_type		resv)
296
{
297 298 299
	struct xfs_alloc_arg		args = {0};
	xfs_agblock_t			bno;
	int				error;
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341

	switch (resv) {
	case XFS_AG_RESV_AGFL:
	case XFS_AG_RESV_RMAPBT:
		error = xfs_alloc_get_freelist(sc->tp, sc->sa.agf_bp, &bno, 1);
		if (error)
			return error;
		if (bno == NULLAGBLOCK)
			return -ENOSPC;
		xfs_extent_busy_reuse(sc->mp, sc->sa.agno, bno,
				1, false);
		*fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.agno, bno);
		if (resv == XFS_AG_RESV_RMAPBT)
			xfs_ag_resv_rmapbt_alloc(sc->mp, sc->sa.agno);
		return 0;
	default:
		break;
	}

	args.tp = sc->tp;
	args.mp = sc->mp;
	args.oinfo = *oinfo;
	args.fsbno = XFS_AGB_TO_FSB(args.mp, sc->sa.agno, 0);
	args.minlen = 1;
	args.maxlen = 1;
	args.prod = 1;
	args.type = XFS_ALLOCTYPE_THIS_AG;
	args.resv = resv;

	error = xfs_alloc_vextent(&args);
	if (error)
		return error;
	if (args.fsbno == NULLFSBLOCK)
		return -ENOSPC;
	ASSERT(args.len == 1);
	*fsbno = args.fsbno;

	return 0;
}

/* Initialize a new AG btree root block with zero entries. */
int
342
xrep_init_btblock(
343
	struct xfs_scrub		*sc,
344 345 346 347 348 349 350 351 352
	xfs_fsblock_t			fsb,
	struct xfs_buf			**bpp,
	xfs_btnum_t			btnum,
	const struct xfs_buf_ops	*ops)
{
	struct xfs_trans		*tp = sc->tp;
	struct xfs_mount		*mp = sc->mp;
	struct xfs_buf			*bp;

353
	trace_xrep_init_btblock(mp, XFS_FSB_TO_AGNO(mp, fsb),
354 355 356 357 358 359 360 361 362 363 364 365 366 367
			XFS_FSB_TO_AGBNO(mp, fsb), btnum);

	ASSERT(XFS_FSB_TO_AGNO(mp, fsb) == sc->sa.agno);
	bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, fsb),
			XFS_FSB_TO_BB(mp, 1), 0);
	xfs_buf_zero(bp, 0, BBTOB(bp->b_length));
	xfs_btree_init_block(mp, bp, btnum, 0, 0, sc->sa.agno, 0);
	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_BTREE_BUF);
	xfs_trans_log_buf(tp, bp, 0, bp->b_length);
	bp->b_ops = ops;
	*bpp = bp;

	return 0;
}
368 369 370 371 372 373 374 375 376 377 378 379

/*
 * Reconstructing per-AG Btrees
 *
 * When a space btree is corrupt, we don't bother trying to fix it.  Instead,
 * we scan secondary space metadata to derive the records that should be in
 * the damaged btree, initialize a fresh btree root, and insert the records.
 * Note that for rebuilding the rmapbt we scan all the primary data to
 * generate the new records.
 *
 * However, that leaves the matter of removing all the metadata describing the
 * old broken structure.  For primary metadata we use the rmap data to collect
380
 * every extent with a matching rmap owner (bitmap); we then iterate all other
381
 * metadata structures with the same rmap owner to collect the extents that
382
 * cannot be removed (sublist).  We then subtract sublist from bitmap to
383 384 385 386 387 388
 * derive the blocks that were used by the old btree.  These blocks can be
 * reaped.
 *
 * For rmapbt reconstructions we must use different tactics for extent
 * collection.  First we iterate all primary metadata (this excludes the old
 * rmapbt, obviously) to generate new rmap records.  The gaps in the rmap
389 390
 * records are collected as bitmap.  The bnobt records are collected as
 * sublist.  As with the other btrees we subtract sublist from bitmap, and the
391 392 393
 * result (since the rmapbt lives in the free space) are the blocks from the
 * old rmapbt.
 *
394 395 396 397
 * Disposal of Blocks from Old per-AG Btrees
 *
 * Now that we've constructed a new btree to replace the damaged one, we want
 * to dispose of the blocks that (we think) the old btree was using.
398
 * Previously, we used the rmapbt to collect the extents (bitmap) with the
399 400
 * rmap owner corresponding to the tree we rebuilt, collected extents for any
 * blocks with the same rmap owner that are owned by another data structure
401 402
 * (sublist), and subtracted sublist from bitmap.  In theory the extents
 * remaining in bitmap are the old btree's blocks.
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
 *
 * Unfortunately, it's possible that the btree was crosslinked with other
 * blocks on disk.  The rmap data can tell us if there are multiple owners, so
 * if the rmapbt says there is an owner of this block other than @oinfo, then
 * the block is crosslinked.  Remove the reverse mapping and continue.
 *
 * If there is one rmap record, we can free the block, which removes the
 * reverse mapping but doesn't add the block to the free space.  Our repair
 * strategy is to hope the other metadata objects crosslinked on this block
 * will be rebuilt (atop different blocks), thereby removing all the cross
 * links.
 *
 * If there are no rmap records at all, we also free the block.  If the btree
 * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't
 * supposed to be a rmap record and everything is ok.  For other btrees there
418
 * had to have been an rmap entry for the block to have ended up on @bitmap,
419 420 421 422 423 424 425 426 427 428 429 430
 * so if it's gone now there's something wrong and the fs will shut down.
 *
 * Note: If there are multiple rmap records with only the same rmap owner as
 * the btree we're trying to rebuild and the block is indeed owned by another
 * data structure with the same rmap owner, then the block will be in sublist
 * and therefore doesn't need disposal.  If there are multiple rmap records
 * with only the same rmap owner but the block is not owned by something with
 * the same rmap owner, the block will be freed.
 *
 * The caller is responsible for locking the AG headers for the entire rebuild
 * operation so that nothing else can sneak in and change the AG state while
 * we're not looking.  We also assume that the caller already invalidated any
431
 * buffers associated with @bitmap.
432 433 434 435 436 437 438
 */

/*
 * Invalidate buffers for per-AG btree blocks we're dumping.  This function
 * is not intended for use with file data repairs; we have bunmapi for that.
 */
int
439
xrep_invalidate_blocks(
440
	struct xfs_scrub	*sc,
441
	struct xfs_bitmap	*bitmap)
442
{
443 444
	struct xfs_bitmap_range	*bmr;
	struct xfs_bitmap_range	*n;
445 446
	struct xfs_buf		*bp;
	xfs_fsblock_t		fsbno;
447 448 449 450 451 452 453 454 455

	/*
	 * For each block in each extent, see if there's an incore buffer for
	 * exactly that block; if so, invalidate it.  The buffer cache only
	 * lets us look for one buffer at a time, so we have to look one block
	 * at a time.  Avoid invalidating AG headers and post-EOFS blocks
	 * because we never own those; and if we can't TRYLOCK the buffer we
	 * assume it's owned by someone else.
	 */
456 457 458 459 460 461 462 463 464 465
	for_each_xfs_bitmap_block(fsbno, bmr, n, bitmap) {
		/* Skip AG headers and post-EOFS blocks */
		if (!xfs_verify_fsbno(sc->mp, fsbno))
			continue;
		bp = xfs_buf_incore(sc->mp->m_ddev_targp,
				XFS_FSB_TO_DADDR(sc->mp, fsbno),
				XFS_FSB_TO_BB(sc->mp, 1), XBF_TRYLOCK);
		if (bp) {
			xfs_trans_bjoin(sc->tp, bp);
			xfs_trans_binval(sc->tp, bp);
466 467 468 469 470 471 472 473
		}
	}

	return 0;
}

/* Ensure the freelist is the correct size. */
int
474
xrep_fix_freelist(
475
	struct xfs_scrub	*sc,
476
	bool			can_shrink)
477
{
478
	struct xfs_alloc_arg	args = {0};
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493

	args.mp = sc->mp;
	args.tp = sc->tp;
	args.agno = sc->sa.agno;
	args.alignment = 1;
	args.pag = sc->sa.pag;

	return xfs_alloc_fix_freelist(&args,
			can_shrink ? 0 : XFS_ALLOC_FLAG_NOSHRINK);
}

/*
 * Put a block back on the AGFL.
 */
STATIC int
494
xrep_put_freelist(
495
	struct xfs_scrub	*sc,
496
	xfs_agblock_t		agbno)
497
{
498
	int			error;
499 500

	/* Make sure there's space on the freelist. */
501
	error = xrep_fix_freelist(sc, true);
502 503 504 505 506 507 508 509 510
	if (error)
		return error;

	/*
	 * Since we're "freeing" a lost block onto the AGFL, we have to
	 * create an rmap for the block prior to merging it or else other
	 * parts will break.
	 */
	error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.agno, agbno, 1,
511
			&XFS_RMAP_OINFO_AG);
512 513 514 515 516 517 518 519 520 521 522 523 524 525
	if (error)
		return error;

	/* Put the block on the AGFL. */
	error = xfs_alloc_put_freelist(sc->tp, sc->sa.agf_bp, sc->sa.agfl_bp,
			agbno, 0);
	if (error)
		return error;
	xfs_extent_busy_insert(sc->tp, sc->sa.agno, agbno, 1,
			XFS_EXTENT_BUSY_SKIP_DISCARD);

	return 0;
}

526
/* Dispose of a single block. */
527
STATIC int
528
xrep_reap_block(
529 530 531 532
	struct xfs_scrub		*sc,
	xfs_fsblock_t			fsbno,
	const struct xfs_owner_info	*oinfo,
	enum xfs_ag_resv_type		resv)
533
{
534 535 536 537 538 539
	struct xfs_btree_cur		*cur;
	struct xfs_buf			*agf_bp = NULL;
	xfs_agnumber_t			agno;
	xfs_agblock_t			agbno;
	bool				has_other_rmap;
	int				error;
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561

	agno = XFS_FSB_TO_AGNO(sc->mp, fsbno);
	agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno);

	/*
	 * If we are repairing per-inode metadata, we need to read in the AGF
	 * buffer.  Otherwise, we're repairing a per-AG structure, so reuse
	 * the AGF buffer that the setup functions already grabbed.
	 */
	if (sc->ip) {
		error = xfs_alloc_read_agf(sc->mp, sc->tp, agno, 0, &agf_bp);
		if (error)
			return error;
		if (!agf_bp)
			return -ENOMEM;
	} else {
		agf_bp = sc->sa.agf_bp;
	}
	cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, agf_bp, agno);

	/* Can we find any other rmappings? */
	error = xfs_rmap_has_other_keys(cur, agbno, 1, oinfo, &has_other_rmap);
562
	xfs_btree_del_cursor(cur, error);
563
	if (error)
564
		goto out_free;
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581

	/*
	 * If there are other rmappings, this block is cross linked and must
	 * not be freed.  Remove the reverse mapping and move on.  Otherwise,
	 * we were the only owner of the block, so free the extent, which will
	 * also remove the rmap.
	 *
	 * XXX: XFS doesn't support detecting the case where a single block
	 * metadata structure is crosslinked with a multi-block structure
	 * because the buffer cache doesn't detect aliasing problems, so we
	 * can't fix 100% of crosslinking problems (yet).  The verifiers will
	 * blow on writeout, the filesystem will shut down, and the admin gets
	 * to run xfs_repair.
	 */
	if (has_other_rmap)
		error = xfs_rmap_free(sc->tp, agf_bp, agno, agbno, 1, oinfo);
	else if (resv == XFS_AG_RESV_AGFL)
582
		error = xrep_put_freelist(sc, agbno);
583 584 585 586 587 588 589 590 591
	else
		error = xfs_free_extent(sc->tp, fsbno, 1, oinfo, resv);
	if (agf_bp != sc->sa.agf_bp)
		xfs_trans_brelse(sc->tp, agf_bp);
	if (error)
		return error;

	if (sc->ip)
		return xfs_trans_roll_inode(&sc->tp, sc->ip);
592
	return xrep_roll_ag_trans(sc);
593

594
out_free:
595 596 597 598 599
	if (agf_bp != sc->sa.agf_bp)
		xfs_trans_brelse(sc->tp, agf_bp);
	return error;
}

600
/* Dispose of every block of every extent in the bitmap. */
601
int
602
xrep_reap_extents(
603 604 605 606
	struct xfs_scrub		*sc,
	struct xfs_bitmap		*bitmap,
	const struct xfs_owner_info	*oinfo,
	enum xfs_ag_resv_type		type)
607
{
608 609 610 611
	struct xfs_bitmap_range		*bmr;
	struct xfs_bitmap_range		*n;
	xfs_fsblock_t			fsbno;
	int				error = 0;
612 613 614

	ASSERT(xfs_sb_version_hasrmapbt(&sc->mp->m_sb));

615
	for_each_xfs_bitmap_block(fsbno, bmr, n, bitmap) {
616
		ASSERT(sc->ip != NULL ||
617
		       XFS_FSB_TO_AGNO(sc->mp, fsbno) == sc->sa.agno);
618
		trace_xrep_dispose_btree_extent(sc->mp,
619 620 621 622 623 624
				XFS_FSB_TO_AGNO(sc->mp, fsbno),
				XFS_FSB_TO_AGBNO(sc->mp, fsbno), 1);

		error = xrep_reap_block(sc, fsbno, oinfo, type);
		if (error)
			goto out;
625 626 627
	}

out:
628
	xfs_bitmap_destroy(bitmap);
629 630
	return error;
}
631 632 633 634 635 636 637 638 639

/*
 * Finding per-AG Btree Roots for AGF/AGI Reconstruction
 *
 * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild
 * the AG headers by using the rmap data to rummage through the AG looking for
 * btree roots.  This is not guaranteed to work if the AG is heavily damaged
 * or the rmap data are corrupt.
 *
640
 * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL
641 642 643 644
 * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the
 * AGI is being rebuilt.  It must maintain these locks until it's safe for
 * other threads to change the btrees' shapes.  The caller provides
 * information about the btrees to look for by passing in an array of
645
 * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set.
646 647 648 649 650 651 652 653 654 655 656 657 658
 * The (root, height) fields will be set on return if anything is found.  The
 * last element of the array should have a NULL buf_ops to mark the end of the
 * array.
 *
 * For every rmapbt record matching any of the rmap owners in btree_info,
 * read each block referenced by the rmap record.  If the block is a btree
 * block from this filesystem matching any of the magic numbers and has a
 * level higher than what we've already seen, remember the block and the
 * height of the tree required to have such a block.  When the call completes,
 * we return the highest block we've found for each btree description; those
 * should be the roots.
 */

659
struct xrep_findroot {
660
	struct xfs_scrub		*sc;
661 662
	struct xfs_buf			*agfl_bp;
	struct xfs_agf			*agf;
663
	struct xrep_find_ag_btree	*btree_info;
664 665 666 667
};

/* See if our block is in the AGFL. */
STATIC int
668
xrep_findroot_agfl_walk(
669 670 671
	struct xfs_mount	*mp,
	xfs_agblock_t		bno,
	void			*priv)
672
{
673
	xfs_agblock_t		*agbno = priv;
674 675 676 677 678 679

	return (*agbno == bno) ? XFS_BTREE_QUERY_RANGE_ABORT : 0;
}

/* Does this block match the btree information passed in? */
STATIC int
680 681 682
xrep_findroot_block(
	struct xrep_findroot		*ri,
	struct xrep_find_ag_btree	*fab,
683 684
	uint64_t			owner,
	xfs_agblock_t			agbno,
685
	bool				*done_with_block)
686 687 688 689 690
{
	struct xfs_mount		*mp = ri->sc->mp;
	struct xfs_buf			*bp;
	struct xfs_btree_block		*btblock;
	xfs_daddr_t			daddr;
691
	int				block_level;
692
	int				error = 0;
693 694 695 696 697 698 699 700 701 702 703

	daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.agno, agbno);

	/*
	 * Blocks in the AGFL have stale contents that might just happen to
	 * have a matching magic and uuid.  We don't want to pull these blocks
	 * in as part of a tree root, so we have to filter out the AGFL stuff
	 * here.  If the AGFL looks insane we'll just refuse to repair.
	 */
	if (owner == XFS_RMAP_OWN_AG) {
		error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp,
704
				xrep_findroot_agfl_walk, &agbno);
705 706 707 708 709 710
		if (error == XFS_BTREE_QUERY_RANGE_ABORT)
			return 0;
		if (error)
			return error;
	}

711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
	/*
	 * Read the buffer into memory so that we can see if it's a match for
	 * our btree type.  We have no clue if it is beforehand, and we want to
	 * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which
	 * will cause needless disk reads in subsequent calls to this function)
	 * and logging metadata verifier failures.
	 *
	 * Therefore, pass in NULL buffer ops.  If the buffer was already in
	 * memory from some other caller it will already have b_ops assigned.
	 * If it was in memory from a previous unsuccessful findroot_block
	 * call, the buffer won't have b_ops but it should be clean and ready
	 * for us to try to verify if the read call succeeds.  The same applies
	 * if the buffer wasn't in memory at all.
	 *
	 * Note: If we never match a btree type with this buffer, it will be
	 * left in memory with NULL b_ops.  This shouldn't be a problem unless
	 * the buffer gets written.
	 */
729 730 731 732 733
	error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr,
			mp->m_bsize, 0, &bp, NULL);
	if (error)
		return error;

734
	/* Ensure the block magic matches the btree type we're looking for. */
735
	btblock = XFS_BUF_TO_BLOCK(bp);
736 737
	ASSERT(fab->buf_ops->magic[1] != 0);
	if (btblock->bb_magic != fab->buf_ops->magic[1])
738 739
		goto out;

740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
	/*
	 * If the buffer already has ops applied and they're not the ones for
	 * this btree type, we know this block doesn't match the btree and we
	 * can bail out.
	 *
	 * If the buffer ops match ours, someone else has already validated
	 * the block for us, so we can move on to checking if this is a root
	 * block candidate.
	 *
	 * If the buffer does not have ops, nobody has successfully validated
	 * the contents and the buffer cannot be dirty.  If the magic, uuid,
	 * and structure match this btree type then we'll move on to checking
	 * if it's a root block candidate.  If there is no match, bail out.
	 */
	if (bp->b_ops) {
		if (bp->b_ops != fab->buf_ops)
			goto out;
	} else {
		ASSERT(!xfs_trans_buf_is_dirty(bp));
		if (!uuid_equal(&btblock->bb_u.s.bb_uuid,
				&mp->m_sb.sb_meta_uuid))
			goto out;
762 763 764 765 766 767
		/*
		 * Read verifiers can reference b_ops, so we set the pointer
		 * here.  If the verifier fails we'll reset the buffer state
		 * to what it was before we touched the buffer.
		 */
		bp->b_ops = fab->buf_ops;
768 769
		fab->buf_ops->verify_read(bp);
		if (bp->b_error) {
770
			bp->b_ops = NULL;
771 772 773 774 775 776
			bp->b_error = 0;
			goto out;
		}

		/*
		 * Some read verifiers will (re)set b_ops, so we must be
777
		 * careful not to change b_ops after running the verifier.
778 779
		 */
	}
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821

	/*
	 * This block passes the magic/uuid and verifier tests for this btree
	 * type.  We don't need the caller to try the other tree types.
	 */
	*done_with_block = true;

	/*
	 * Compare this btree block's level to the height of the current
	 * candidate root block.
	 *
	 * If the level matches the root we found previously, throw away both
	 * blocks because there can't be two candidate roots.
	 *
	 * If level is lower in the tree than the root we found previously,
	 * ignore this block.
	 */
	block_level = xfs_btree_get_level(btblock);
	if (block_level + 1 == fab->height) {
		fab->root = NULLAGBLOCK;
		goto out;
	} else if (block_level < fab->height) {
		goto out;
	}

	/*
	 * This is the highest block in the tree that we've found so far.
	 * Update the btree height to reflect what we've learned from this
	 * block.
	 */
	fab->height = block_level + 1;

	/*
	 * If this block doesn't have sibling pointers, then it's the new root
	 * block candidate.  Otherwise, the root will be found farther up the
	 * tree.
	 */
	if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) &&
	    btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
		fab->root = agbno;
	else
		fab->root = NULLAGBLOCK;
822

823
	trace_xrep_findroot_block(mp, ri->sc->sa.agno, agbno,
824 825 826 827 828 829 830 831 832 833 834
			be32_to_cpu(btblock->bb_magic), fab->height - 1);
out:
	xfs_trans_brelse(ri->sc->tp, bp);
	return error;
}

/*
 * Do any of the blocks in this rmap record match one of the btrees we're
 * looking for?
 */
STATIC int
835
xrep_findroot_rmap(
836 837 838 839
	struct xfs_btree_cur		*cur,
	struct xfs_rmap_irec		*rec,
	void				*priv)
{
840 841
	struct xrep_findroot		*ri = priv;
	struct xrep_find_ag_btree	*fab;
842
	xfs_agblock_t			b;
843
	bool				done;
844 845 846 847 848 849 850 851
	int				error = 0;

	/* Ignore anything that isn't AG metadata. */
	if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner))
		return 0;

	/* Otherwise scan each block + btree type. */
	for (b = 0; b < rec->rm_blockcount; b++) {
852
		done = false;
853 854 855
		for (fab = ri->btree_info; fab->buf_ops; fab++) {
			if (rec->rm_owner != fab->rmap_owner)
				continue;
856
			error = xrep_findroot_block(ri, fab,
857
					rec->rm_owner, rec->rm_startblock + b,
858
					&done);
859 860
			if (error)
				return error;
861
			if (done)
862 863 864 865 866 867 868 869 870
				break;
		}
	}

	return 0;
}

/* Find the roots of the per-AG btrees described in btree_info. */
int
871
xrep_find_ag_btree_roots(
872
	struct xfs_scrub		*sc,
873
	struct xfs_buf			*agf_bp,
874
	struct xrep_find_ag_btree	*btree_info,
875 876 877
	struct xfs_buf			*agfl_bp)
{
	struct xfs_mount		*mp = sc->mp;
878 879
	struct xrep_findroot		ri;
	struct xrep_find_ag_btree	*fab;
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
	struct xfs_btree_cur		*cur;
	int				error;

	ASSERT(xfs_buf_islocked(agf_bp));
	ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp));

	ri.sc = sc;
	ri.btree_info = btree_info;
	ri.agf = XFS_BUF_TO_AGF(agf_bp);
	ri.agfl_bp = agfl_bp;
	for (fab = btree_info; fab->buf_ops; fab++) {
		ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG);
		ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner));
		fab->root = NULLAGBLOCK;
		fab->height = 0;
	}

	cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.agno);
898
	error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri);
899
	xfs_btree_del_cursor(cur, error);
900 901 902

	return error;
}
903 904 905

/* Force a quotacheck the next time we mount. */
void
906
xrep_force_quotacheck(
907
	struct xfs_scrub	*sc,
908
	uint			dqtype)
909
{
910
	uint			flag;
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933

	flag = xfs_quota_chkd_flag(dqtype);
	if (!(flag & sc->mp->m_qflags))
		return;

	sc->mp->m_qflags &= ~flag;
	spin_lock(&sc->mp->m_sb_lock);
	sc->mp->m_sb.sb_qflags &= ~flag;
	spin_unlock(&sc->mp->m_sb_lock);
	xfs_log_sb(sc->tp);
}

/*
 * Attach dquots to this inode, or schedule quotacheck to fix them.
 *
 * This function ensures that the appropriate dquots are attached to an inode.
 * We cannot allow the dquot code to allocate an on-disk dquot block here
 * because we're already in transaction context with the inode locked.  The
 * on-disk dquot should already exist anyway.  If the quota code signals
 * corruption or missing quota information, schedule quotacheck, which will
 * repair corruptions in the quota metadata.
 */
int
934
xrep_ino_dqattach(
935
	struct xfs_scrub	*sc)
936
{
937
	int			error;
938 939 940 941 942 943 944 945 946 947

	error = xfs_qm_dqattach_locked(sc->ip, false);
	switch (error) {
	case -EFSBADCRC:
	case -EFSCORRUPTED:
	case -ENOENT:
		xfs_err_ratelimited(sc->mp,
"inode %llu repair encountered quota error %d, quotacheck forced.",
				(unsigned long long)sc->ip->i_ino, error);
		if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot)
948
			xrep_force_quotacheck(sc, XFS_DQ_USER);
949
		if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot)
950
			xrep_force_quotacheck(sc, XFS_DQ_GROUP);
951
		if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot)
952
			xrep_force_quotacheck(sc, XFS_DQ_PROJ);
953 954 955 956 957 958 959 960 961 962
		/* fall through */
	case -ESRCH:
		error = 0;
		break;
	default:
		break;
	}

	return error;
}