repair.c 24.8 KB
Newer Older
D
Dave Chinner 已提交
1
// SPDX-License-Identifier: GPL-2.0+
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright (C) 2018 Oracle.  All Rights Reserved.
 * Author: Darrick J. Wong <darrick.wong@oracle.com>
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_btree.h"
#include "xfs_bit.h"
#include "xfs_log_format.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_inode.h"
#include "xfs_icache.h"
#include "xfs_alloc.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc.h"
#include "xfs_ialloc_btree.h"
#include "xfs_rmap.h"
#include "xfs_rmap_btree.h"
#include "xfs_refcount.h"
#include "xfs_refcount_btree.h"
#include "xfs_extent_busy.h"
#include "xfs_ag_resv.h"
#include "xfs_trans_space.h"
31
#include "xfs_quota.h"
32 33 34 35 36
#include "scrub/xfs_scrub.h"
#include "scrub/scrub.h"
#include "scrub/common.h"
#include "scrub/trace.h"
#include "scrub/repair.h"
37
#include "scrub/bitmap.h"
38 39 40 41 42 43 44

/*
 * Attempt to repair some metadata, if the metadata is corrupt and userspace
 * told us to fix it.  This function returns -EAGAIN to mean "re-run scrub",
 * and will set *fixed to true if it thinks it repaired anything.
 */
int
45
xrep_attempt(
46
	struct xfs_inode	*ip,
47
	struct xfs_scrub	*sc,
48
	bool			*fixed)
49
{
50
	int			error = 0;
51

52
	trace_xrep_attempt(ip, sc->sm, error);
53

D
Darrick J. Wong 已提交
54
	xchk_ag_btcur_free(&sc->sa);
55 56 57 58

	/* Repair whatever's broken. */
	ASSERT(sc->ops->repair);
	error = sc->ops->repair(sc);
59
	trace_xrep_done(ip, sc->sm, error);
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
	switch (error) {
	case 0:
		/*
		 * Repair succeeded.  Commit the fixes and perform a second
		 * scrub so that we can tell userspace if we fixed the problem.
		 */
		sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
		*fixed = true;
		return -EAGAIN;
	case -EDEADLOCK:
	case -EAGAIN:
		/* Tell the caller to try again having grabbed all the locks. */
		if (!sc->try_harder) {
			sc->try_harder = true;
			return -EAGAIN;
		}
		/*
		 * We tried harder but still couldn't grab all the resources
		 * we needed to fix it.  The corruption has not been fixed,
		 * so report back to userspace.
		 */
		return -EFSCORRUPTED;
	default:
		return error;
	}
}

/*
 * Complain about unfixable problems in the filesystem.  We don't log
 * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver
 * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the
 * administrator isn't running xfs_scrub in no-repairs mode.
 *
 * Use this helper function because _ratelimited silently declares a static
 * structure to track rate limiting information.
 */
void
97
xrep_failure(
98
	struct xfs_mount	*mp)
99 100 101 102 103 104 105 106 107 108
{
	xfs_alert_ratelimited(mp,
"Corruption not fixed during online repair.  Unmount and run xfs_repair.");
}

/*
 * Repair probe -- userspace uses this to probe if we're willing to repair a
 * given mountpoint.
 */
int
109
xrep_probe(
110
	struct xfs_scrub	*sc)
111
{
112
	int			error = 0;
113

D
Darrick J. Wong 已提交
114
	if (xchk_should_terminate(sc, &error))
115 116 117 118
		return error;

	return 0;
}
119 120 121 122 123 124

/*
 * Roll a transaction, keeping the AG headers locked and reinitializing
 * the btree cursors.
 */
int
125
xrep_roll_ag_trans(
126
	struct xfs_scrub	*sc)
127
{
128
	int			error;
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

	/* Keep the AG header buffers locked so we can keep going. */
	xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
	xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
	xfs_trans_bhold(sc->tp, sc->sa.agfl_bp);

	/* Roll the transaction. */
	error = xfs_trans_roll(&sc->tp);
	if (error)
		goto out_release;

	/* Join AG headers to the new transaction. */
	xfs_trans_bjoin(sc->tp, sc->sa.agi_bp);
	xfs_trans_bjoin(sc->tp, sc->sa.agf_bp);
	xfs_trans_bjoin(sc->tp, sc->sa.agfl_bp);

	return 0;

out_release:
	/*
	 * Rolling failed, so release the hold on the buffers.  The
	 * buffers will be released during teardown on our way out
	 * of the kernel.
	 */
	xfs_trans_bhold_release(sc->tp, sc->sa.agi_bp);
	xfs_trans_bhold_release(sc->tp, sc->sa.agf_bp);
	xfs_trans_bhold_release(sc->tp, sc->sa.agfl_bp);

	return error;
}

/*
 * Does the given AG have enough space to rebuild a btree?  Neither AG
 * reservation can be critical, and we must have enough space (factoring
 * in AG reservations) to construct a whole btree.
 */
bool
166
xrep_ag_has_space(
167 168 169
	struct xfs_perag	*pag,
	xfs_extlen_t		nr_blocks,
	enum xfs_ag_resv_type	type)
170 171 172 173 174 175 176 177 178 179 180 181
{
	return  !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) &&
		!xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) &&
		pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks;
}

/*
 * Figure out how many blocks to reserve for an AG repair.  We calculate the
 * worst case estimate for the number of blocks we'd need to rebuild one of
 * any type of per-AG btree.
 */
xfs_extlen_t
182
xrep_calc_ag_resblks(
183
	struct xfs_scrub		*sc)
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
{
	struct xfs_mount		*mp = sc->mp;
	struct xfs_scrub_metadata	*sm = sc->sm;
	struct xfs_perag		*pag;
	struct xfs_buf			*bp;
	xfs_agino_t			icount = 0;
	xfs_extlen_t			aglen = 0;
	xfs_extlen_t			usedlen;
	xfs_extlen_t			freelen;
	xfs_extlen_t			bnobt_sz;
	xfs_extlen_t			inobt_sz;
	xfs_extlen_t			rmapbt_sz;
	xfs_extlen_t			refcbt_sz;
	int				error;

	if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
		return 0;

	/* Use in-core counters if possible. */
	pag = xfs_perag_get(mp, sm->sm_agno);
	if (pag->pagi_init)
		icount = pag->pagi_count;

	/*
	 * Otherwise try to get the actual counters from disk; if not, make
	 * some worst case assumptions.
	 */
	if (icount == 0) {
		error = xfs_ialloc_read_agi(mp, NULL, sm->sm_agno, &bp);
		if (error) {
			icount = mp->m_sb.sb_agblocks / mp->m_sb.sb_inopblock;
		} else {
			icount = pag->pagi_count;
			xfs_buf_relse(bp);
		}
	}

	/* Now grab the block counters from the AGF. */
	error = xfs_alloc_read_agf(mp, NULL, sm->sm_agno, 0, &bp);
	if (error) {
		aglen = mp->m_sb.sb_agblocks;
		freelen = aglen;
		usedlen = aglen;
	} else {
		aglen = be32_to_cpu(XFS_BUF_TO_AGF(bp)->agf_length);
		freelen = pag->pagf_freeblks;
		usedlen = aglen - freelen;
		xfs_buf_relse(bp);
	}
	xfs_perag_put(pag);

235
	trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen,
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
			freelen, usedlen);

	/*
	 * Figure out how many blocks we'd need worst case to rebuild
	 * each type of btree.  Note that we can only rebuild the
	 * bnobt/cntbt or inobt/finobt as pairs.
	 */
	bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen);
	if (xfs_sb_version_hassparseinodes(&mp->m_sb))
		inobt_sz = xfs_iallocbt_calc_size(mp, icount /
				XFS_INODES_PER_HOLEMASK_BIT);
	else
		inobt_sz = xfs_iallocbt_calc_size(mp, icount /
				XFS_INODES_PER_CHUNK);
	if (xfs_sb_version_hasfinobt(&mp->m_sb))
		inobt_sz *= 2;
	if (xfs_sb_version_hasreflink(&mp->m_sb))
		refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen);
	else
		refcbt_sz = 0;
	if (xfs_sb_version_hasrmapbt(&mp->m_sb)) {
		/*
		 * Guess how many blocks we need to rebuild the rmapbt.
		 * For non-reflink filesystems we can't have more records than
		 * used blocks.  However, with reflink it's possible to have
		 * more than one rmap record per AG block.  We don't know how
		 * many rmaps there could be in the AG, so we start off with
		 * what we hope is an generous over-estimation.
		 */
		if (xfs_sb_version_hasreflink(&mp->m_sb))
			rmapbt_sz = xfs_rmapbt_calc_size(mp,
					(unsigned long long)aglen * 2);
		else
			rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen);
	} else {
		rmapbt_sz = 0;
	}

274
	trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz,
275 276 277 278
			inobt_sz, rmapbt_sz, refcbt_sz);

	return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz));
}
279 280 281

/* Allocate a block in an AG. */
int
282
xrep_alloc_ag_block(
283
	struct xfs_scrub	*sc,
284 285 286
	struct xfs_owner_info	*oinfo,
	xfs_fsblock_t		*fsbno,
	enum xfs_ag_resv_type	resv)
287
{
288 289 290
	struct xfs_alloc_arg	args = {0};
	xfs_agblock_t		bno;
	int			error;
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332

	switch (resv) {
	case XFS_AG_RESV_AGFL:
	case XFS_AG_RESV_RMAPBT:
		error = xfs_alloc_get_freelist(sc->tp, sc->sa.agf_bp, &bno, 1);
		if (error)
			return error;
		if (bno == NULLAGBLOCK)
			return -ENOSPC;
		xfs_extent_busy_reuse(sc->mp, sc->sa.agno, bno,
				1, false);
		*fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.agno, bno);
		if (resv == XFS_AG_RESV_RMAPBT)
			xfs_ag_resv_rmapbt_alloc(sc->mp, sc->sa.agno);
		return 0;
	default:
		break;
	}

	args.tp = sc->tp;
	args.mp = sc->mp;
	args.oinfo = *oinfo;
	args.fsbno = XFS_AGB_TO_FSB(args.mp, sc->sa.agno, 0);
	args.minlen = 1;
	args.maxlen = 1;
	args.prod = 1;
	args.type = XFS_ALLOCTYPE_THIS_AG;
	args.resv = resv;

	error = xfs_alloc_vextent(&args);
	if (error)
		return error;
	if (args.fsbno == NULLFSBLOCK)
		return -ENOSPC;
	ASSERT(args.len == 1);
	*fsbno = args.fsbno;

	return 0;
}

/* Initialize a new AG btree root block with zero entries. */
int
333
xrep_init_btblock(
334
	struct xfs_scrub		*sc,
335 336 337 338 339 340 341 342 343
	xfs_fsblock_t			fsb,
	struct xfs_buf			**bpp,
	xfs_btnum_t			btnum,
	const struct xfs_buf_ops	*ops)
{
	struct xfs_trans		*tp = sc->tp;
	struct xfs_mount		*mp = sc->mp;
	struct xfs_buf			*bp;

344
	trace_xrep_init_btblock(mp, XFS_FSB_TO_AGNO(mp, fsb),
345 346 347 348 349 350 351 352 353 354 355 356 357 358
			XFS_FSB_TO_AGBNO(mp, fsb), btnum);

	ASSERT(XFS_FSB_TO_AGNO(mp, fsb) == sc->sa.agno);
	bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, fsb),
			XFS_FSB_TO_BB(mp, 1), 0);
	xfs_buf_zero(bp, 0, BBTOB(bp->b_length));
	xfs_btree_init_block(mp, bp, btnum, 0, 0, sc->sa.agno, 0);
	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_BTREE_BUF);
	xfs_trans_log_buf(tp, bp, 0, bp->b_length);
	bp->b_ops = ops;
	*bpp = bp;

	return 0;
}
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384

/*
 * Reconstructing per-AG Btrees
 *
 * When a space btree is corrupt, we don't bother trying to fix it.  Instead,
 * we scan secondary space metadata to derive the records that should be in
 * the damaged btree, initialize a fresh btree root, and insert the records.
 * Note that for rebuilding the rmapbt we scan all the primary data to
 * generate the new records.
 *
 * However, that leaves the matter of removing all the metadata describing the
 * old broken structure.  For primary metadata we use the rmap data to collect
 * every extent with a matching rmap owner (exlist); we then iterate all other
 * metadata structures with the same rmap owner to collect the extents that
 * cannot be removed (sublist).  We then subtract sublist from exlist to
 * derive the blocks that were used by the old btree.  These blocks can be
 * reaped.
 *
 * For rmapbt reconstructions we must use different tactics for extent
 * collection.  First we iterate all primary metadata (this excludes the old
 * rmapbt, obviously) to generate new rmap records.  The gaps in the rmap
 * records are collected as exlist.  The bnobt records are collected as
 * sublist.  As with the other btrees we subtract sublist from exlist, and the
 * result (since the rmapbt lives in the free space) are the blocks from the
 * old rmapbt.
 *
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
 * Disposal of Blocks from Old per-AG Btrees
 *
 * Now that we've constructed a new btree to replace the damaged one, we want
 * to dispose of the blocks that (we think) the old btree was using.
 * Previously, we used the rmapbt to collect the extents (exlist) with the
 * rmap owner corresponding to the tree we rebuilt, collected extents for any
 * blocks with the same rmap owner that are owned by another data structure
 * (sublist), and subtracted sublist from exlist.  In theory the extents
 * remaining in exlist are the old btree's blocks.
 *
 * Unfortunately, it's possible that the btree was crosslinked with other
 * blocks on disk.  The rmap data can tell us if there are multiple owners, so
 * if the rmapbt says there is an owner of this block other than @oinfo, then
 * the block is crosslinked.  Remove the reverse mapping and continue.
 *
 * If there is one rmap record, we can free the block, which removes the
 * reverse mapping but doesn't add the block to the free space.  Our repair
 * strategy is to hope the other metadata objects crosslinked on this block
 * will be rebuilt (atop different blocks), thereby removing all the cross
 * links.
 *
 * If there are no rmap records at all, we also free the block.  If the btree
 * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't
 * supposed to be a rmap record and everything is ok.  For other btrees there
 * had to have been an rmap entry for the block to have ended up on @exlist,
 * so if it's gone now there's something wrong and the fs will shut down.
 *
 * Note: If there are multiple rmap records with only the same rmap owner as
 * the btree we're trying to rebuild and the block is indeed owned by another
 * data structure with the same rmap owner, then the block will be in sublist
 * and therefore doesn't need disposal.  If there are multiple rmap records
 * with only the same rmap owner but the block is not owned by something with
 * the same rmap owner, the block will be freed.
 *
 * The caller is responsible for locking the AG headers for the entire rebuild
 * operation so that nothing else can sneak in and change the AG state while
 * we're not looking.  We also assume that the caller already invalidated any
 * buffers associated with @exlist.
 */

/*
 * Invalidate buffers for per-AG btree blocks we're dumping.  This function
 * is not intended for use with file data repairs; we have bunmapi for that.
 */
int
430
xrep_invalidate_blocks(
431
	struct xfs_scrub	*sc,
432
	struct xrep_extent_list	*exlist)
433
{
434 435 436 437 438
	struct xrep_extent	*rex;
	struct xrep_extent	*n;
	struct xfs_buf		*bp;
	xfs_fsblock_t		fsbno;
	xfs_agblock_t		i;
439 440 441 442 443 444 445 446 447

	/*
	 * For each block in each extent, see if there's an incore buffer for
	 * exactly that block; if so, invalidate it.  The buffer cache only
	 * lets us look for one buffer at a time, so we have to look one block
	 * at a time.  Avoid invalidating AG headers and post-EOFS blocks
	 * because we never own those; and if we can't TRYLOCK the buffer we
	 * assume it's owned by someone else.
	 */
448
	for_each_xrep_extent_safe(rex, n, exlist) {
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
		for (fsbno = rex->fsbno, i = rex->len; i > 0; fsbno++, i--) {
			/* Skip AG headers and post-EOFS blocks */
			if (!xfs_verify_fsbno(sc->mp, fsbno))
				continue;
			bp = xfs_buf_incore(sc->mp->m_ddev_targp,
					XFS_FSB_TO_DADDR(sc->mp, fsbno),
					XFS_FSB_TO_BB(sc->mp, 1), XBF_TRYLOCK);
			if (bp) {
				xfs_trans_bjoin(sc->tp, bp);
				xfs_trans_binval(sc->tp, bp);
			}
		}
	}

	return 0;
}

/* Ensure the freelist is the correct size. */
int
468
xrep_fix_freelist(
469
	struct xfs_scrub	*sc,
470
	bool			can_shrink)
471
{
472
	struct xfs_alloc_arg	args = {0};
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487

	args.mp = sc->mp;
	args.tp = sc->tp;
	args.agno = sc->sa.agno;
	args.alignment = 1;
	args.pag = sc->sa.pag;

	return xfs_alloc_fix_freelist(&args,
			can_shrink ? 0 : XFS_ALLOC_FLAG_NOSHRINK);
}

/*
 * Put a block back on the AGFL.
 */
STATIC int
488
xrep_put_freelist(
489
	struct xfs_scrub	*sc,
490
	xfs_agblock_t		agbno)
491
{
492 493
	struct xfs_owner_info	oinfo;
	int			error;
494 495

	/* Make sure there's space on the freelist. */
496
	error = xrep_fix_freelist(sc, true);
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
	if (error)
		return error;

	/*
	 * Since we're "freeing" a lost block onto the AGFL, we have to
	 * create an rmap for the block prior to merging it or else other
	 * parts will break.
	 */
	xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_AG);
	error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.agno, agbno, 1,
			&oinfo);
	if (error)
		return error;

	/* Put the block on the AGFL. */
	error = xfs_alloc_put_freelist(sc->tp, sc->sa.agf_bp, sc->sa.agfl_bp,
			agbno, 0);
	if (error)
		return error;
	xfs_extent_busy_insert(sc->tp, sc->sa.agno, agbno, 1,
			XFS_EXTENT_BUSY_SKIP_DISCARD);

	return 0;
}

/* Dispose of a single metadata block. */
STATIC int
524
xrep_dispose_btree_block(
525
	struct xfs_scrub	*sc,
526 527 528
	xfs_fsblock_t		fsbno,
	struct xfs_owner_info	*oinfo,
	enum xfs_ag_resv_type	resv)
529
{
530 531 532 533 534 535
	struct xfs_btree_cur	*cur;
	struct xfs_buf		*agf_bp = NULL;
	xfs_agnumber_t		agno;
	xfs_agblock_t		agbno;
	bool			has_other_rmap;
	int			error;
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557

	agno = XFS_FSB_TO_AGNO(sc->mp, fsbno);
	agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno);

	/*
	 * If we are repairing per-inode metadata, we need to read in the AGF
	 * buffer.  Otherwise, we're repairing a per-AG structure, so reuse
	 * the AGF buffer that the setup functions already grabbed.
	 */
	if (sc->ip) {
		error = xfs_alloc_read_agf(sc->mp, sc->tp, agno, 0, &agf_bp);
		if (error)
			return error;
		if (!agf_bp)
			return -ENOMEM;
	} else {
		agf_bp = sc->sa.agf_bp;
	}
	cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, agf_bp, agno);

	/* Can we find any other rmappings? */
	error = xfs_rmap_has_other_keys(cur, agbno, 1, oinfo, &has_other_rmap);
558
	xfs_btree_del_cursor(cur, error);
559
	if (error)
560
		goto out_free;
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577

	/*
	 * If there are other rmappings, this block is cross linked and must
	 * not be freed.  Remove the reverse mapping and move on.  Otherwise,
	 * we were the only owner of the block, so free the extent, which will
	 * also remove the rmap.
	 *
	 * XXX: XFS doesn't support detecting the case where a single block
	 * metadata structure is crosslinked with a multi-block structure
	 * because the buffer cache doesn't detect aliasing problems, so we
	 * can't fix 100% of crosslinking problems (yet).  The verifiers will
	 * blow on writeout, the filesystem will shut down, and the admin gets
	 * to run xfs_repair.
	 */
	if (has_other_rmap)
		error = xfs_rmap_free(sc->tp, agf_bp, agno, agbno, 1, oinfo);
	else if (resv == XFS_AG_RESV_AGFL)
578
		error = xrep_put_freelist(sc, agbno);
579 580 581 582 583 584 585 586 587
	else
		error = xfs_free_extent(sc->tp, fsbno, 1, oinfo, resv);
	if (agf_bp != sc->sa.agf_bp)
		xfs_trans_brelse(sc->tp, agf_bp);
	if (error)
		return error;

	if (sc->ip)
		return xfs_trans_roll_inode(&sc->tp, sc->ip);
588
	return xrep_roll_ag_trans(sc);
589

590
out_free:
591 592 593 594 595 596 597
	if (agf_bp != sc->sa.agf_bp)
		xfs_trans_brelse(sc->tp, agf_bp);
	return error;
}

/* Dispose of btree blocks from an old per-AG btree. */
int
598
xrep_reap_btree_extents(
599
	struct xfs_scrub	*sc,
600 601 602
	struct xrep_extent_list	*exlist,
	struct xfs_owner_info	*oinfo,
	enum xfs_ag_resv_type	type)
603
{
604 605 606
	struct xrep_extent	*rex;
	struct xrep_extent	*n;
	int			error = 0;
607 608 609 610

	ASSERT(xfs_sb_version_hasrmapbt(&sc->mp->m_sb));

	/* Dispose of every block from the old btree. */
611
	for_each_xrep_extent_safe(rex, n, exlist) {
612 613 614
		ASSERT(sc->ip != NULL ||
		       XFS_FSB_TO_AGNO(sc->mp, rex->fsbno) == sc->sa.agno);

615
		trace_xrep_dispose_btree_extent(sc->mp,
616 617 618 619
				XFS_FSB_TO_AGNO(sc->mp, rex->fsbno),
				XFS_FSB_TO_AGBNO(sc->mp, rex->fsbno), rex->len);

		for (; rex->len > 0; rex->len--, rex->fsbno++) {
620
			error = xrep_dispose_btree_block(sc, rex->fsbno,
621 622 623 624 625 626 627 628 629
					oinfo, type);
			if (error)
				goto out;
		}
		list_del(&rex->list);
		kmem_free(rex);
	}

out:
630
	xrep_cancel_btree_extents(sc, exlist);
631 632
	return error;
}
633 634 635 636 637 638 639 640 641

/*
 * Finding per-AG Btree Roots for AGF/AGI Reconstruction
 *
 * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild
 * the AG headers by using the rmap data to rummage through the AG looking for
 * btree roots.  This is not guaranteed to work if the AG is heavily damaged
 * or the rmap data are corrupt.
 *
642
 * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL
643 644 645 646
 * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the
 * AGI is being rebuilt.  It must maintain these locks until it's safe for
 * other threads to change the btrees' shapes.  The caller provides
 * information about the btrees to look for by passing in an array of
647
 * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set.
648 649 650 651 652 653 654 655 656 657 658 659 660
 * The (root, height) fields will be set on return if anything is found.  The
 * last element of the array should have a NULL buf_ops to mark the end of the
 * array.
 *
 * For every rmapbt record matching any of the rmap owners in btree_info,
 * read each block referenced by the rmap record.  If the block is a btree
 * block from this filesystem matching any of the magic numbers and has a
 * level higher than what we've already seen, remember the block and the
 * height of the tree required to have such a block.  When the call completes,
 * we return the highest block we've found for each btree description; those
 * should be the roots.
 */

661
struct xrep_findroot {
662
	struct xfs_scrub		*sc;
663 664
	struct xfs_buf			*agfl_bp;
	struct xfs_agf			*agf;
665
	struct xrep_find_ag_btree	*btree_info;
666 667 668 669
};

/* See if our block is in the AGFL. */
STATIC int
670
xrep_findroot_agfl_walk(
671 672 673
	struct xfs_mount	*mp,
	xfs_agblock_t		bno,
	void			*priv)
674
{
675
	xfs_agblock_t		*agbno = priv;
676 677 678 679 680 681

	return (*agbno == bno) ? XFS_BTREE_QUERY_RANGE_ABORT : 0;
}

/* Does this block match the btree information passed in? */
STATIC int
682 683 684
xrep_findroot_block(
	struct xrep_findroot		*ri,
	struct xrep_find_ag_btree	*fab,
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
	uint64_t			owner,
	xfs_agblock_t			agbno,
	bool				*found_it)
{
	struct xfs_mount		*mp = ri->sc->mp;
	struct xfs_buf			*bp;
	struct xfs_btree_block		*btblock;
	xfs_daddr_t			daddr;
	int				error;

	daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.agno, agbno);

	/*
	 * Blocks in the AGFL have stale contents that might just happen to
	 * have a matching magic and uuid.  We don't want to pull these blocks
	 * in as part of a tree root, so we have to filter out the AGFL stuff
	 * here.  If the AGFL looks insane we'll just refuse to repair.
	 */
	if (owner == XFS_RMAP_OWN_AG) {
		error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp,
705
				xrep_findroot_agfl_walk, &agbno);
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
		if (error == XFS_BTREE_QUERY_RANGE_ABORT)
			return 0;
		if (error)
			return error;
	}

	error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr,
			mp->m_bsize, 0, &bp, NULL);
	if (error)
		return error;

	/*
	 * Does this look like a block matching our fs and higher than any
	 * other block we've found so far?  If so, reattach buffer verifiers
	 * so the AIL won't complain if the buffer is also dirty.
	 */
	btblock = XFS_BUF_TO_BLOCK(bp);
	if (be32_to_cpu(btblock->bb_magic) != fab->magic)
		goto out;
	if (xfs_sb_version_hascrc(&mp->m_sb) &&
	    !uuid_equal(&btblock->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
		goto out;
	bp->b_ops = fab->buf_ops;

	/* Ignore this block if it's lower in the tree than we've seen. */
	if (fab->root != NULLAGBLOCK &&
	    xfs_btree_get_level(btblock) < fab->height)
		goto out;

	/* Make sure we pass the verifiers. */
	bp->b_ops->verify_read(bp);
	if (bp->b_error)
		goto out;
	fab->root = agbno;
	fab->height = xfs_btree_get_level(btblock) + 1;
	*found_it = true;

743
	trace_xrep_findroot_block(mp, ri->sc->sa.agno, agbno,
744 745 746 747 748 749 750 751 752 753 754
			be32_to_cpu(btblock->bb_magic), fab->height - 1);
out:
	xfs_trans_brelse(ri->sc->tp, bp);
	return error;
}

/*
 * Do any of the blocks in this rmap record match one of the btrees we're
 * looking for?
 */
STATIC int
755
xrep_findroot_rmap(
756 757 758 759
	struct xfs_btree_cur		*cur,
	struct xfs_rmap_irec		*rec,
	void				*priv)
{
760 761
	struct xrep_findroot		*ri = priv;
	struct xrep_find_ag_btree	*fab;
762 763 764 765 766 767 768 769 770 771 772 773 774 775
	xfs_agblock_t			b;
	bool				found_it;
	int				error = 0;

	/* Ignore anything that isn't AG metadata. */
	if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner))
		return 0;

	/* Otherwise scan each block + btree type. */
	for (b = 0; b < rec->rm_blockcount; b++) {
		found_it = false;
		for (fab = ri->btree_info; fab->buf_ops; fab++) {
			if (rec->rm_owner != fab->rmap_owner)
				continue;
776
			error = xrep_findroot_block(ri, fab,
777 778 779 780 781 782 783 784 785 786 787 788 789 790
					rec->rm_owner, rec->rm_startblock + b,
					&found_it);
			if (error)
				return error;
			if (found_it)
				break;
		}
	}

	return 0;
}

/* Find the roots of the per-AG btrees described in btree_info. */
int
791
xrep_find_ag_btree_roots(
792
	struct xfs_scrub		*sc,
793
	struct xfs_buf			*agf_bp,
794
	struct xrep_find_ag_btree	*btree_info,
795 796 797
	struct xfs_buf			*agfl_bp)
{
	struct xfs_mount		*mp = sc->mp;
798 799
	struct xrep_findroot		ri;
	struct xrep_find_ag_btree	*fab;
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
	struct xfs_btree_cur		*cur;
	int				error;

	ASSERT(xfs_buf_islocked(agf_bp));
	ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp));

	ri.sc = sc;
	ri.btree_info = btree_info;
	ri.agf = XFS_BUF_TO_AGF(agf_bp);
	ri.agfl_bp = agfl_bp;
	for (fab = btree_info; fab->buf_ops; fab++) {
		ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG);
		ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner));
		fab->root = NULLAGBLOCK;
		fab->height = 0;
	}

	cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.agno);
818
	error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri);
819
	xfs_btree_del_cursor(cur, error);
820 821 822

	return error;
}
823 824 825

/* Force a quotacheck the next time we mount. */
void
826
xrep_force_quotacheck(
827
	struct xfs_scrub	*sc,
828
	uint			dqtype)
829
{
830
	uint			flag;
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853

	flag = xfs_quota_chkd_flag(dqtype);
	if (!(flag & sc->mp->m_qflags))
		return;

	sc->mp->m_qflags &= ~flag;
	spin_lock(&sc->mp->m_sb_lock);
	sc->mp->m_sb.sb_qflags &= ~flag;
	spin_unlock(&sc->mp->m_sb_lock);
	xfs_log_sb(sc->tp);
}

/*
 * Attach dquots to this inode, or schedule quotacheck to fix them.
 *
 * This function ensures that the appropriate dquots are attached to an inode.
 * We cannot allow the dquot code to allocate an on-disk dquot block here
 * because we're already in transaction context with the inode locked.  The
 * on-disk dquot should already exist anyway.  If the quota code signals
 * corruption or missing quota information, schedule quotacheck, which will
 * repair corruptions in the quota metadata.
 */
int
854
xrep_ino_dqattach(
855
	struct xfs_scrub	*sc)
856
{
857
	int			error;
858 859 860 861 862 863 864 865 866 867

	error = xfs_qm_dqattach_locked(sc->ip, false);
	switch (error) {
	case -EFSBADCRC:
	case -EFSCORRUPTED:
	case -ENOENT:
		xfs_err_ratelimited(sc->mp,
"inode %llu repair encountered quota error %d, quotacheck forced.",
				(unsigned long long)sc->ip->i_ino, error);
		if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot)
868
			xrep_force_quotacheck(sc, XFS_DQ_USER);
869
		if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot)
870
			xrep_force_quotacheck(sc, XFS_DQ_GROUP);
871
		if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot)
872
			xrep_force_quotacheck(sc, XFS_DQ_PROJ);
873 874 875 876 877 878 879 880 881 882
		/* fall through */
	case -ESRCH:
		error = 0;
		break;
	default:
		break;
	}

	return error;
}