repair.c 27.9 KB
Newer Older
D
Dave Chinner 已提交
1
// SPDX-License-Identifier: GPL-2.0+
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright (C) 2018 Oracle.  All Rights Reserved.
 * Author: Darrick J. Wong <darrick.wong@oracle.com>
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_btree.h"
#include "xfs_bit.h"
#include "xfs_log_format.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_inode.h"
#include "xfs_icache.h"
#include "xfs_alloc.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc.h"
#include "xfs_ialloc_btree.h"
#include "xfs_rmap.h"
#include "xfs_rmap_btree.h"
#include "xfs_refcount.h"
#include "xfs_refcount_btree.h"
#include "xfs_extent_busy.h"
#include "xfs_ag_resv.h"
#include "xfs_trans_space.h"
31
#include "xfs_quota.h"
32 33
#include "xfs_attr.h"
#include "xfs_reflink.h"
34 35 36 37 38
#include "scrub/xfs_scrub.h"
#include "scrub/scrub.h"
#include "scrub/common.h"
#include "scrub/trace.h"
#include "scrub/repair.h"
39
#include "scrub/bitmap.h"
40 41 42 43 44 45 46

/*
 * Attempt to repair some metadata, if the metadata is corrupt and userspace
 * told us to fix it.  This function returns -EAGAIN to mean "re-run scrub",
 * and will set *fixed to true if it thinks it repaired anything.
 */
int
47
xrep_attempt(
48
	struct xfs_inode	*ip,
49
	struct xfs_scrub	*sc,
50
	bool			*fixed)
51
{
52
	int			error = 0;
53

54
	trace_xrep_attempt(ip, sc->sm, error);
55

D
Darrick J. Wong 已提交
56
	xchk_ag_btcur_free(&sc->sa);
57 58 59 60

	/* Repair whatever's broken. */
	ASSERT(sc->ops->repair);
	error = sc->ops->repair(sc);
61
	trace_xrep_done(ip, sc->sm, error);
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
	switch (error) {
	case 0:
		/*
		 * Repair succeeded.  Commit the fixes and perform a second
		 * scrub so that we can tell userspace if we fixed the problem.
		 */
		sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
		*fixed = true;
		return -EAGAIN;
	case -EDEADLOCK:
	case -EAGAIN:
		/* Tell the caller to try again having grabbed all the locks. */
		if (!sc->try_harder) {
			sc->try_harder = true;
			return -EAGAIN;
		}
		/*
		 * We tried harder but still couldn't grab all the resources
		 * we needed to fix it.  The corruption has not been fixed,
		 * so report back to userspace.
		 */
		return -EFSCORRUPTED;
	default:
		return error;
	}
}

/*
 * Complain about unfixable problems in the filesystem.  We don't log
 * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver
 * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the
 * administrator isn't running xfs_scrub in no-repairs mode.
 *
 * Use this helper function because _ratelimited silently declares a static
 * structure to track rate limiting information.
 */
void
99
xrep_failure(
100
	struct xfs_mount	*mp)
101 102 103 104 105 106 107 108 109 110
{
	xfs_alert_ratelimited(mp,
"Corruption not fixed during online repair.  Unmount and run xfs_repair.");
}

/*
 * Repair probe -- userspace uses this to probe if we're willing to repair a
 * given mountpoint.
 */
int
111
xrep_probe(
112
	struct xfs_scrub	*sc)
113
{
114
	int			error = 0;
115

D
Darrick J. Wong 已提交
116
	if (xchk_should_terminate(sc, &error))
117 118 119 120
		return error;

	return 0;
}
121 122 123 124 125 126

/*
 * Roll a transaction, keeping the AG headers locked and reinitializing
 * the btree cursors.
 */
int
127
xrep_roll_ag_trans(
128
	struct xfs_scrub	*sc)
129
{
130
	int			error;
131 132

	/* Keep the AG header buffers locked so we can keep going. */
D
Darrick J. Wong 已提交
133 134 135 136 137 138
	if (sc->sa.agi_bp)
		xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
	if (sc->sa.agf_bp)
		xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
	if (sc->sa.agfl_bp)
		xfs_trans_bhold(sc->tp, sc->sa.agfl_bp);
139 140 141 142 143 144 145

	/* Roll the transaction. */
	error = xfs_trans_roll(&sc->tp);
	if (error)
		goto out_release;

	/* Join AG headers to the new transaction. */
D
Darrick J. Wong 已提交
146 147 148 149 150 151
	if (sc->sa.agi_bp)
		xfs_trans_bjoin(sc->tp, sc->sa.agi_bp);
	if (sc->sa.agf_bp)
		xfs_trans_bjoin(sc->tp, sc->sa.agf_bp);
	if (sc->sa.agfl_bp)
		xfs_trans_bjoin(sc->tp, sc->sa.agfl_bp);
152 153 154 155 156 157 158 159 160

	return 0;

out_release:
	/*
	 * Rolling failed, so release the hold on the buffers.  The
	 * buffers will be released during teardown on our way out
	 * of the kernel.
	 */
D
Darrick J. Wong 已提交
161 162 163 164 165 166
	if (sc->sa.agi_bp)
		xfs_trans_bhold_release(sc->tp, sc->sa.agi_bp);
	if (sc->sa.agf_bp)
		xfs_trans_bhold_release(sc->tp, sc->sa.agf_bp);
	if (sc->sa.agfl_bp)
		xfs_trans_bhold_release(sc->tp, sc->sa.agfl_bp);
167 168 169 170 171 172 173 174 175 176

	return error;
}

/*
 * Does the given AG have enough space to rebuild a btree?  Neither AG
 * reservation can be critical, and we must have enough space (factoring
 * in AG reservations) to construct a whole btree.
 */
bool
177
xrep_ag_has_space(
178 179 180
	struct xfs_perag	*pag,
	xfs_extlen_t		nr_blocks,
	enum xfs_ag_resv_type	type)
181 182 183 184 185 186 187 188 189 190 191 192
{
	return  !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) &&
		!xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) &&
		pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks;
}

/*
 * Figure out how many blocks to reserve for an AG repair.  We calculate the
 * worst case estimate for the number of blocks we'd need to rebuild one of
 * any type of per-AG btree.
 */
xfs_extlen_t
193
xrep_calc_ag_resblks(
194
	struct xfs_scrub		*sc)
195 196 197 198 199
{
	struct xfs_mount		*mp = sc->mp;
	struct xfs_scrub_metadata	*sm = sc->sm;
	struct xfs_perag		*pag;
	struct xfs_buf			*bp;
200 201
	xfs_agino_t			icount = NULLAGINO;
	xfs_extlen_t			aglen = NULLAGBLOCK;
202 203 204 205 206 207 208 209 210 211 212 213
	xfs_extlen_t			usedlen;
	xfs_extlen_t			freelen;
	xfs_extlen_t			bnobt_sz;
	xfs_extlen_t			inobt_sz;
	xfs_extlen_t			rmapbt_sz;
	xfs_extlen_t			refcbt_sz;
	int				error;

	if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
		return 0;

	pag = xfs_perag_get(mp, sm->sm_agno);
214 215
	if (pag->pagi_init) {
		/* Use in-core icount if possible. */
216
		icount = pag->pagi_count;
217 218
	} else {
		/* Try to get the actual counters from disk. */
219
		error = xfs_ialloc_read_agi(mp, NULL, sm->sm_agno, &bp);
220
		if (!error) {
221 222 223 224 225 226 227
			icount = pag->pagi_count;
			xfs_buf_relse(bp);
		}
	}

	/* Now grab the block counters from the AGF. */
	error = xfs_alloc_read_agf(mp, NULL, sm->sm_agno, 0, &bp);
228
	if (!error) {
229
		aglen = be32_to_cpu(XFS_BUF_TO_AGF(bp)->agf_length);
230
		freelen = be32_to_cpu(XFS_BUF_TO_AGF(bp)->agf_freeblks);
231 232 233 234 235
		usedlen = aglen - freelen;
		xfs_buf_relse(bp);
	}
	xfs_perag_put(pag);

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
	/* If the icount is impossible, make some worst-case assumptions. */
	if (icount == NULLAGINO ||
	    !xfs_verify_agino(mp, sm->sm_agno, icount)) {
		xfs_agino_t	first, last;

		xfs_agino_range(mp, sm->sm_agno, &first, &last);
		icount = last - first + 1;
	}

	/* If the block counts are impossible, make worst-case assumptions. */
	if (aglen == NULLAGBLOCK ||
	    aglen != xfs_ag_block_count(mp, sm->sm_agno) ||
	    freelen >= aglen) {
		aglen = xfs_ag_block_count(mp, sm->sm_agno);
		freelen = aglen;
		usedlen = aglen;
	}

254
	trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen,
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
			freelen, usedlen);

	/*
	 * Figure out how many blocks we'd need worst case to rebuild
	 * each type of btree.  Note that we can only rebuild the
	 * bnobt/cntbt or inobt/finobt as pairs.
	 */
	bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen);
	if (xfs_sb_version_hassparseinodes(&mp->m_sb))
		inobt_sz = xfs_iallocbt_calc_size(mp, icount /
				XFS_INODES_PER_HOLEMASK_BIT);
	else
		inobt_sz = xfs_iallocbt_calc_size(mp, icount /
				XFS_INODES_PER_CHUNK);
	if (xfs_sb_version_hasfinobt(&mp->m_sb))
		inobt_sz *= 2;
	if (xfs_sb_version_hasreflink(&mp->m_sb))
		refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen);
	else
		refcbt_sz = 0;
	if (xfs_sb_version_hasrmapbt(&mp->m_sb)) {
		/*
		 * Guess how many blocks we need to rebuild the rmapbt.
		 * For non-reflink filesystems we can't have more records than
		 * used blocks.  However, with reflink it's possible to have
		 * more than one rmap record per AG block.  We don't know how
		 * many rmaps there could be in the AG, so we start off with
		 * what we hope is an generous over-estimation.
		 */
		if (xfs_sb_version_hasreflink(&mp->m_sb))
			rmapbt_sz = xfs_rmapbt_calc_size(mp,
					(unsigned long long)aglen * 2);
		else
			rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen);
	} else {
		rmapbt_sz = 0;
	}

293
	trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz,
294 295 296 297
			inobt_sz, rmapbt_sz, refcbt_sz);

	return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz));
}
298 299 300

/* Allocate a block in an AG. */
int
301
xrep_alloc_ag_block(
302 303 304 305
	struct xfs_scrub		*sc,
	const struct xfs_owner_info	*oinfo,
	xfs_fsblock_t			*fsbno,
	enum xfs_ag_resv_type		resv)
306
{
307 308 309
	struct xfs_alloc_arg		args = {0};
	xfs_agblock_t			bno;
	int				error;
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351

	switch (resv) {
	case XFS_AG_RESV_AGFL:
	case XFS_AG_RESV_RMAPBT:
		error = xfs_alloc_get_freelist(sc->tp, sc->sa.agf_bp, &bno, 1);
		if (error)
			return error;
		if (bno == NULLAGBLOCK)
			return -ENOSPC;
		xfs_extent_busy_reuse(sc->mp, sc->sa.agno, bno,
				1, false);
		*fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.agno, bno);
		if (resv == XFS_AG_RESV_RMAPBT)
			xfs_ag_resv_rmapbt_alloc(sc->mp, sc->sa.agno);
		return 0;
	default:
		break;
	}

	args.tp = sc->tp;
	args.mp = sc->mp;
	args.oinfo = *oinfo;
	args.fsbno = XFS_AGB_TO_FSB(args.mp, sc->sa.agno, 0);
	args.minlen = 1;
	args.maxlen = 1;
	args.prod = 1;
	args.type = XFS_ALLOCTYPE_THIS_AG;
	args.resv = resv;

	error = xfs_alloc_vextent(&args);
	if (error)
		return error;
	if (args.fsbno == NULLFSBLOCK)
		return -ENOSPC;
	ASSERT(args.len == 1);
	*fsbno = args.fsbno;

	return 0;
}

/* Initialize a new AG btree root block with zero entries. */
int
352
xrep_init_btblock(
353
	struct xfs_scrub		*sc,
354 355 356 357 358 359 360 361 362
	xfs_fsblock_t			fsb,
	struct xfs_buf			**bpp,
	xfs_btnum_t			btnum,
	const struct xfs_buf_ops	*ops)
{
	struct xfs_trans		*tp = sc->tp;
	struct xfs_mount		*mp = sc->mp;
	struct xfs_buf			*bp;

363
	trace_xrep_init_btblock(mp, XFS_FSB_TO_AGNO(mp, fsb),
364 365 366 367 368 369 370 371 372 373 374 375 376 377
			XFS_FSB_TO_AGBNO(mp, fsb), btnum);

	ASSERT(XFS_FSB_TO_AGNO(mp, fsb) == sc->sa.agno);
	bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, fsb),
			XFS_FSB_TO_BB(mp, 1), 0);
	xfs_buf_zero(bp, 0, BBTOB(bp->b_length));
	xfs_btree_init_block(mp, bp, btnum, 0, 0, sc->sa.agno, 0);
	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_BTREE_BUF);
	xfs_trans_log_buf(tp, bp, 0, bp->b_length);
	bp->b_ops = ops;
	*bpp = bp;

	return 0;
}
378 379 380 381 382 383 384 385 386 387 388 389

/*
 * Reconstructing per-AG Btrees
 *
 * When a space btree is corrupt, we don't bother trying to fix it.  Instead,
 * we scan secondary space metadata to derive the records that should be in
 * the damaged btree, initialize a fresh btree root, and insert the records.
 * Note that for rebuilding the rmapbt we scan all the primary data to
 * generate the new records.
 *
 * However, that leaves the matter of removing all the metadata describing the
 * old broken structure.  For primary metadata we use the rmap data to collect
390
 * every extent with a matching rmap owner (bitmap); we then iterate all other
391
 * metadata structures with the same rmap owner to collect the extents that
392
 * cannot be removed (sublist).  We then subtract sublist from bitmap to
393 394 395 396 397 398
 * derive the blocks that were used by the old btree.  These blocks can be
 * reaped.
 *
 * For rmapbt reconstructions we must use different tactics for extent
 * collection.  First we iterate all primary metadata (this excludes the old
 * rmapbt, obviously) to generate new rmap records.  The gaps in the rmap
399 400
 * records are collected as bitmap.  The bnobt records are collected as
 * sublist.  As with the other btrees we subtract sublist from bitmap, and the
401 402 403
 * result (since the rmapbt lives in the free space) are the blocks from the
 * old rmapbt.
 *
404 405 406 407
 * Disposal of Blocks from Old per-AG Btrees
 *
 * Now that we've constructed a new btree to replace the damaged one, we want
 * to dispose of the blocks that (we think) the old btree was using.
408
 * Previously, we used the rmapbt to collect the extents (bitmap) with the
409 410
 * rmap owner corresponding to the tree we rebuilt, collected extents for any
 * blocks with the same rmap owner that are owned by another data structure
411 412
 * (sublist), and subtracted sublist from bitmap.  In theory the extents
 * remaining in bitmap are the old btree's blocks.
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
 *
 * Unfortunately, it's possible that the btree was crosslinked with other
 * blocks on disk.  The rmap data can tell us if there are multiple owners, so
 * if the rmapbt says there is an owner of this block other than @oinfo, then
 * the block is crosslinked.  Remove the reverse mapping and continue.
 *
 * If there is one rmap record, we can free the block, which removes the
 * reverse mapping but doesn't add the block to the free space.  Our repair
 * strategy is to hope the other metadata objects crosslinked on this block
 * will be rebuilt (atop different blocks), thereby removing all the cross
 * links.
 *
 * If there are no rmap records at all, we also free the block.  If the btree
 * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't
 * supposed to be a rmap record and everything is ok.  For other btrees there
428
 * had to have been an rmap entry for the block to have ended up on @bitmap,
429 430 431 432 433 434 435 436 437 438 439 440
 * so if it's gone now there's something wrong and the fs will shut down.
 *
 * Note: If there are multiple rmap records with only the same rmap owner as
 * the btree we're trying to rebuild and the block is indeed owned by another
 * data structure with the same rmap owner, then the block will be in sublist
 * and therefore doesn't need disposal.  If there are multiple rmap records
 * with only the same rmap owner but the block is not owned by something with
 * the same rmap owner, the block will be freed.
 *
 * The caller is responsible for locking the AG headers for the entire rebuild
 * operation so that nothing else can sneak in and change the AG state while
 * we're not looking.  We also assume that the caller already invalidated any
441
 * buffers associated with @bitmap.
442 443 444 445 446 447 448
 */

/*
 * Invalidate buffers for per-AG btree blocks we're dumping.  This function
 * is not intended for use with file data repairs; we have bunmapi for that.
 */
int
449
xrep_invalidate_blocks(
450
	struct xfs_scrub	*sc,
451
	struct xfs_bitmap	*bitmap)
452
{
453 454
	struct xfs_bitmap_range	*bmr;
	struct xfs_bitmap_range	*n;
455 456
	struct xfs_buf		*bp;
	xfs_fsblock_t		fsbno;
457 458 459 460 461 462 463 464 465

	/*
	 * For each block in each extent, see if there's an incore buffer for
	 * exactly that block; if so, invalidate it.  The buffer cache only
	 * lets us look for one buffer at a time, so we have to look one block
	 * at a time.  Avoid invalidating AG headers and post-EOFS blocks
	 * because we never own those; and if we can't TRYLOCK the buffer we
	 * assume it's owned by someone else.
	 */
466 467 468 469 470 471 472 473 474 475
	for_each_xfs_bitmap_block(fsbno, bmr, n, bitmap) {
		/* Skip AG headers and post-EOFS blocks */
		if (!xfs_verify_fsbno(sc->mp, fsbno))
			continue;
		bp = xfs_buf_incore(sc->mp->m_ddev_targp,
				XFS_FSB_TO_DADDR(sc->mp, fsbno),
				XFS_FSB_TO_BB(sc->mp, 1), XBF_TRYLOCK);
		if (bp) {
			xfs_trans_bjoin(sc->tp, bp);
			xfs_trans_binval(sc->tp, bp);
476 477 478 479 480 481 482 483
		}
	}

	return 0;
}

/* Ensure the freelist is the correct size. */
int
484
xrep_fix_freelist(
485
	struct xfs_scrub	*sc,
486
	bool			can_shrink)
487
{
488
	struct xfs_alloc_arg	args = {0};
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503

	args.mp = sc->mp;
	args.tp = sc->tp;
	args.agno = sc->sa.agno;
	args.alignment = 1;
	args.pag = sc->sa.pag;

	return xfs_alloc_fix_freelist(&args,
			can_shrink ? 0 : XFS_ALLOC_FLAG_NOSHRINK);
}

/*
 * Put a block back on the AGFL.
 */
STATIC int
504
xrep_put_freelist(
505
	struct xfs_scrub	*sc,
506
	xfs_agblock_t		agbno)
507
{
508
	int			error;
509 510

	/* Make sure there's space on the freelist. */
511
	error = xrep_fix_freelist(sc, true);
512 513 514 515 516 517 518 519 520
	if (error)
		return error;

	/*
	 * Since we're "freeing" a lost block onto the AGFL, we have to
	 * create an rmap for the block prior to merging it or else other
	 * parts will break.
	 */
	error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.agno, agbno, 1,
521
			&XFS_RMAP_OINFO_AG);
522 523 524 525 526 527 528 529 530 531 532 533 534 535
	if (error)
		return error;

	/* Put the block on the AGFL. */
	error = xfs_alloc_put_freelist(sc->tp, sc->sa.agf_bp, sc->sa.agfl_bp,
			agbno, 0);
	if (error)
		return error;
	xfs_extent_busy_insert(sc->tp, sc->sa.agno, agbno, 1,
			XFS_EXTENT_BUSY_SKIP_DISCARD);

	return 0;
}

536
/* Dispose of a single block. */
537
STATIC int
538
xrep_reap_block(
539 540 541 542
	struct xfs_scrub		*sc,
	xfs_fsblock_t			fsbno,
	const struct xfs_owner_info	*oinfo,
	enum xfs_ag_resv_type		resv)
543
{
544 545 546 547 548 549
	struct xfs_btree_cur		*cur;
	struct xfs_buf			*agf_bp = NULL;
	xfs_agnumber_t			agno;
	xfs_agblock_t			agbno;
	bool				has_other_rmap;
	int				error;
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571

	agno = XFS_FSB_TO_AGNO(sc->mp, fsbno);
	agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno);

	/*
	 * If we are repairing per-inode metadata, we need to read in the AGF
	 * buffer.  Otherwise, we're repairing a per-AG structure, so reuse
	 * the AGF buffer that the setup functions already grabbed.
	 */
	if (sc->ip) {
		error = xfs_alloc_read_agf(sc->mp, sc->tp, agno, 0, &agf_bp);
		if (error)
			return error;
		if (!agf_bp)
			return -ENOMEM;
	} else {
		agf_bp = sc->sa.agf_bp;
	}
	cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, agf_bp, agno);

	/* Can we find any other rmappings? */
	error = xfs_rmap_has_other_keys(cur, agbno, 1, oinfo, &has_other_rmap);
572
	xfs_btree_del_cursor(cur, error);
573
	if (error)
574
		goto out_free;
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591

	/*
	 * If there are other rmappings, this block is cross linked and must
	 * not be freed.  Remove the reverse mapping and move on.  Otherwise,
	 * we were the only owner of the block, so free the extent, which will
	 * also remove the rmap.
	 *
	 * XXX: XFS doesn't support detecting the case where a single block
	 * metadata structure is crosslinked with a multi-block structure
	 * because the buffer cache doesn't detect aliasing problems, so we
	 * can't fix 100% of crosslinking problems (yet).  The verifiers will
	 * blow on writeout, the filesystem will shut down, and the admin gets
	 * to run xfs_repair.
	 */
	if (has_other_rmap)
		error = xfs_rmap_free(sc->tp, agf_bp, agno, agbno, 1, oinfo);
	else if (resv == XFS_AG_RESV_AGFL)
592
		error = xrep_put_freelist(sc, agbno);
593 594 595 596 597 598 599 600 601
	else
		error = xfs_free_extent(sc->tp, fsbno, 1, oinfo, resv);
	if (agf_bp != sc->sa.agf_bp)
		xfs_trans_brelse(sc->tp, agf_bp);
	if (error)
		return error;

	if (sc->ip)
		return xfs_trans_roll_inode(&sc->tp, sc->ip);
602
	return xrep_roll_ag_trans(sc);
603

604
out_free:
605 606 607 608 609
	if (agf_bp != sc->sa.agf_bp)
		xfs_trans_brelse(sc->tp, agf_bp);
	return error;
}

610
/* Dispose of every block of every extent in the bitmap. */
611
int
612
xrep_reap_extents(
613 614 615 616
	struct xfs_scrub		*sc,
	struct xfs_bitmap		*bitmap,
	const struct xfs_owner_info	*oinfo,
	enum xfs_ag_resv_type		type)
617
{
618 619 620 621
	struct xfs_bitmap_range		*bmr;
	struct xfs_bitmap_range		*n;
	xfs_fsblock_t			fsbno;
	int				error = 0;
622 623 624

	ASSERT(xfs_sb_version_hasrmapbt(&sc->mp->m_sb));

625
	for_each_xfs_bitmap_block(fsbno, bmr, n, bitmap) {
626
		ASSERT(sc->ip != NULL ||
627
		       XFS_FSB_TO_AGNO(sc->mp, fsbno) == sc->sa.agno);
628
		trace_xrep_dispose_btree_extent(sc->mp,
629 630 631 632 633 634
				XFS_FSB_TO_AGNO(sc->mp, fsbno),
				XFS_FSB_TO_AGBNO(sc->mp, fsbno), 1);

		error = xrep_reap_block(sc, fsbno, oinfo, type);
		if (error)
			goto out;
635 636 637
	}

out:
638
	xfs_bitmap_destroy(bitmap);
639 640
	return error;
}
641 642 643 644 645 646 647 648 649

/*
 * Finding per-AG Btree Roots for AGF/AGI Reconstruction
 *
 * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild
 * the AG headers by using the rmap data to rummage through the AG looking for
 * btree roots.  This is not guaranteed to work if the AG is heavily damaged
 * or the rmap data are corrupt.
 *
650
 * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL
651 652 653 654
 * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the
 * AGI is being rebuilt.  It must maintain these locks until it's safe for
 * other threads to change the btrees' shapes.  The caller provides
 * information about the btrees to look for by passing in an array of
655
 * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set.
656 657 658 659 660 661 662 663 664 665 666 667 668
 * The (root, height) fields will be set on return if anything is found.  The
 * last element of the array should have a NULL buf_ops to mark the end of the
 * array.
 *
 * For every rmapbt record matching any of the rmap owners in btree_info,
 * read each block referenced by the rmap record.  If the block is a btree
 * block from this filesystem matching any of the magic numbers and has a
 * level higher than what we've already seen, remember the block and the
 * height of the tree required to have such a block.  When the call completes,
 * we return the highest block we've found for each btree description; those
 * should be the roots.
 */

669
struct xrep_findroot {
670
	struct xfs_scrub		*sc;
671 672
	struct xfs_buf			*agfl_bp;
	struct xfs_agf			*agf;
673
	struct xrep_find_ag_btree	*btree_info;
674 675 676 677
};

/* See if our block is in the AGFL. */
STATIC int
678
xrep_findroot_agfl_walk(
679 680 681
	struct xfs_mount	*mp,
	xfs_agblock_t		bno,
	void			*priv)
682
{
683
	xfs_agblock_t		*agbno = priv;
684 685 686 687 688 689

	return (*agbno == bno) ? XFS_BTREE_QUERY_RANGE_ABORT : 0;
}

/* Does this block match the btree information passed in? */
STATIC int
690 691 692
xrep_findroot_block(
	struct xrep_findroot		*ri,
	struct xrep_find_ag_btree	*fab,
693 694
	uint64_t			owner,
	xfs_agblock_t			agbno,
695
	bool				*done_with_block)
696 697 698 699 700
{
	struct xfs_mount		*mp = ri->sc->mp;
	struct xfs_buf			*bp;
	struct xfs_btree_block		*btblock;
	xfs_daddr_t			daddr;
701
	int				block_level;
702
	int				error = 0;
703 704 705 706 707 708 709 710 711 712 713

	daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.agno, agbno);

	/*
	 * Blocks in the AGFL have stale contents that might just happen to
	 * have a matching magic and uuid.  We don't want to pull these blocks
	 * in as part of a tree root, so we have to filter out the AGFL stuff
	 * here.  If the AGFL looks insane we'll just refuse to repair.
	 */
	if (owner == XFS_RMAP_OWN_AG) {
		error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp,
714
				xrep_findroot_agfl_walk, &agbno);
715 716 717 718 719 720
		if (error == XFS_BTREE_QUERY_RANGE_ABORT)
			return 0;
		if (error)
			return error;
	}

721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
	/*
	 * Read the buffer into memory so that we can see if it's a match for
	 * our btree type.  We have no clue if it is beforehand, and we want to
	 * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which
	 * will cause needless disk reads in subsequent calls to this function)
	 * and logging metadata verifier failures.
	 *
	 * Therefore, pass in NULL buffer ops.  If the buffer was already in
	 * memory from some other caller it will already have b_ops assigned.
	 * If it was in memory from a previous unsuccessful findroot_block
	 * call, the buffer won't have b_ops but it should be clean and ready
	 * for us to try to verify if the read call succeeds.  The same applies
	 * if the buffer wasn't in memory at all.
	 *
	 * Note: If we never match a btree type with this buffer, it will be
	 * left in memory with NULL b_ops.  This shouldn't be a problem unless
	 * the buffer gets written.
	 */
739 740 741 742 743
	error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr,
			mp->m_bsize, 0, &bp, NULL);
	if (error)
		return error;

744
	/* Ensure the block magic matches the btree type we're looking for. */
745
	btblock = XFS_BUF_TO_BLOCK(bp);
746 747
	ASSERT(fab->buf_ops->magic[1] != 0);
	if (btblock->bb_magic != fab->buf_ops->magic[1])
748 749
		goto out;

750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
	/*
	 * If the buffer already has ops applied and they're not the ones for
	 * this btree type, we know this block doesn't match the btree and we
	 * can bail out.
	 *
	 * If the buffer ops match ours, someone else has already validated
	 * the block for us, so we can move on to checking if this is a root
	 * block candidate.
	 *
	 * If the buffer does not have ops, nobody has successfully validated
	 * the contents and the buffer cannot be dirty.  If the magic, uuid,
	 * and structure match this btree type then we'll move on to checking
	 * if it's a root block candidate.  If there is no match, bail out.
	 */
	if (bp->b_ops) {
		if (bp->b_ops != fab->buf_ops)
			goto out;
	} else {
		ASSERT(!xfs_trans_buf_is_dirty(bp));
		if (!uuid_equal(&btblock->bb_u.s.bb_uuid,
				&mp->m_sb.sb_meta_uuid))
			goto out;
772 773 774 775 776 777
		/*
		 * Read verifiers can reference b_ops, so we set the pointer
		 * here.  If the verifier fails we'll reset the buffer state
		 * to what it was before we touched the buffer.
		 */
		bp->b_ops = fab->buf_ops;
778 779
		fab->buf_ops->verify_read(bp);
		if (bp->b_error) {
780
			bp->b_ops = NULL;
781 782 783 784 785 786
			bp->b_error = 0;
			goto out;
		}

		/*
		 * Some read verifiers will (re)set b_ops, so we must be
787
		 * careful not to change b_ops after running the verifier.
788 789
		 */
	}
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831

	/*
	 * This block passes the magic/uuid and verifier tests for this btree
	 * type.  We don't need the caller to try the other tree types.
	 */
	*done_with_block = true;

	/*
	 * Compare this btree block's level to the height of the current
	 * candidate root block.
	 *
	 * If the level matches the root we found previously, throw away both
	 * blocks because there can't be two candidate roots.
	 *
	 * If level is lower in the tree than the root we found previously,
	 * ignore this block.
	 */
	block_level = xfs_btree_get_level(btblock);
	if (block_level + 1 == fab->height) {
		fab->root = NULLAGBLOCK;
		goto out;
	} else if (block_level < fab->height) {
		goto out;
	}

	/*
	 * This is the highest block in the tree that we've found so far.
	 * Update the btree height to reflect what we've learned from this
	 * block.
	 */
	fab->height = block_level + 1;

	/*
	 * If this block doesn't have sibling pointers, then it's the new root
	 * block candidate.  Otherwise, the root will be found farther up the
	 * tree.
	 */
	if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) &&
	    btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
		fab->root = agbno;
	else
		fab->root = NULLAGBLOCK;
832

833
	trace_xrep_findroot_block(mp, ri->sc->sa.agno, agbno,
834 835 836 837 838 839 840 841 842 843 844
			be32_to_cpu(btblock->bb_magic), fab->height - 1);
out:
	xfs_trans_brelse(ri->sc->tp, bp);
	return error;
}

/*
 * Do any of the blocks in this rmap record match one of the btrees we're
 * looking for?
 */
STATIC int
845
xrep_findroot_rmap(
846 847 848 849
	struct xfs_btree_cur		*cur,
	struct xfs_rmap_irec		*rec,
	void				*priv)
{
850 851
	struct xrep_findroot		*ri = priv;
	struct xrep_find_ag_btree	*fab;
852
	xfs_agblock_t			b;
853
	bool				done;
854 855 856 857 858 859 860 861
	int				error = 0;

	/* Ignore anything that isn't AG metadata. */
	if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner))
		return 0;

	/* Otherwise scan each block + btree type. */
	for (b = 0; b < rec->rm_blockcount; b++) {
862
		done = false;
863 864 865
		for (fab = ri->btree_info; fab->buf_ops; fab++) {
			if (rec->rm_owner != fab->rmap_owner)
				continue;
866
			error = xrep_findroot_block(ri, fab,
867
					rec->rm_owner, rec->rm_startblock + b,
868
					&done);
869 870
			if (error)
				return error;
871
			if (done)
872 873 874 875 876 877 878 879 880
				break;
		}
	}

	return 0;
}

/* Find the roots of the per-AG btrees described in btree_info. */
int
881
xrep_find_ag_btree_roots(
882
	struct xfs_scrub		*sc,
883
	struct xfs_buf			*agf_bp,
884
	struct xrep_find_ag_btree	*btree_info,
885 886 887
	struct xfs_buf			*agfl_bp)
{
	struct xfs_mount		*mp = sc->mp;
888 889
	struct xrep_findroot		ri;
	struct xrep_find_ag_btree	*fab;
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
	struct xfs_btree_cur		*cur;
	int				error;

	ASSERT(xfs_buf_islocked(agf_bp));
	ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp));

	ri.sc = sc;
	ri.btree_info = btree_info;
	ri.agf = XFS_BUF_TO_AGF(agf_bp);
	ri.agfl_bp = agfl_bp;
	for (fab = btree_info; fab->buf_ops; fab++) {
		ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG);
		ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner));
		fab->root = NULLAGBLOCK;
		fab->height = 0;
	}

	cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.agno);
908
	error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri);
909
	xfs_btree_del_cursor(cur, error);
910 911 912

	return error;
}
913 914 915

/* Force a quotacheck the next time we mount. */
void
916
xrep_force_quotacheck(
917
	struct xfs_scrub	*sc,
918
	uint			dqtype)
919
{
920
	uint			flag;
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943

	flag = xfs_quota_chkd_flag(dqtype);
	if (!(flag & sc->mp->m_qflags))
		return;

	sc->mp->m_qflags &= ~flag;
	spin_lock(&sc->mp->m_sb_lock);
	sc->mp->m_sb.sb_qflags &= ~flag;
	spin_unlock(&sc->mp->m_sb_lock);
	xfs_log_sb(sc->tp);
}

/*
 * Attach dquots to this inode, or schedule quotacheck to fix them.
 *
 * This function ensures that the appropriate dquots are attached to an inode.
 * We cannot allow the dquot code to allocate an on-disk dquot block here
 * because we're already in transaction context with the inode locked.  The
 * on-disk dquot should already exist anyway.  If the quota code signals
 * corruption or missing quota information, schedule quotacheck, which will
 * repair corruptions in the quota metadata.
 */
int
944
xrep_ino_dqattach(
945
	struct xfs_scrub	*sc)
946
{
947
	int			error;
948 949 950 951 952 953 954 955 956 957

	error = xfs_qm_dqattach_locked(sc->ip, false);
	switch (error) {
	case -EFSBADCRC:
	case -EFSCORRUPTED:
	case -ENOENT:
		xfs_err_ratelimited(sc->mp,
"inode %llu repair encountered quota error %d, quotacheck forced.",
				(unsigned long long)sc->ip->i_ino, error);
		if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot)
958
			xrep_force_quotacheck(sc, XFS_DQ_USER);
959
		if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot)
960
			xrep_force_quotacheck(sc, XFS_DQ_GROUP);
961
		if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot)
962
			xrep_force_quotacheck(sc, XFS_DQ_PROJ);
963 964 965 966 967 968 969 970 971 972
		/* fall through */
	case -ESRCH:
		error = 0;
		break;
	default:
		break;
	}

	return error;
}