mac.c 51.6 KB
Newer Older
1
/* Intel PRO/1000 Linux driver
2
 * Copyright(c) 1999 - 2015 Intel Corporation.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Contact Information:
 * Linux NICS <linux.nics@intel.com>
 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 */
21 22 23 24 25 26 27 28 29 30 31 32 33

#include "e1000.h"

/**
 *  e1000e_get_bus_info_pcie - Get PCIe bus information
 *  @hw: pointer to the HW structure
 *
 *  Determines and stores the system bus information for a particular
 *  network interface.  The following bus information is determined and stored:
 *  bus speed, bus width, type (PCIe), and PCIe function.
 **/
s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
{
34
	struct e1000_mac_info *mac = &hw->mac;
35 36
	struct e1000_bus_info *bus = &hw->bus;
	struct e1000_adapter *adapter = hw->adapter;
37
	u16 pcie_link_status, cap_offset;
38

39
	cap_offset = adapter->pdev->pcie_cap;
40 41 42 43 44 45 46 47 48 49 50
	if (!cap_offset) {
		bus->width = e1000_bus_width_unknown;
	} else {
		pci_read_config_word(adapter->pdev,
				     cap_offset + PCIE_LINK_STATUS,
				     &pcie_link_status);
		bus->width = (enum e1000_bus_width)((pcie_link_status &
						     PCIE_LINK_WIDTH_MASK) >>
						    PCIE_LINK_WIDTH_SHIFT);
	}

51
	mac->ops.set_lan_id(hw);
52 53 54 55

	return 0;
}

56 57 58 59 60 61 62 63 64 65 66 67 68
/**
 *  e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
 *
 *  @hw: pointer to the HW structure
 *
 *  Determines the LAN function id by reading memory-mapped registers
 *  and swaps the port value if requested.
 **/
void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
{
	struct e1000_bus_info *bus = &hw->bus;
	u32 reg;

B
Bruce Allan 已提交
69
	/* The status register reports the correct function number
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
	 * for the device regardless of function swap state.
	 */
	reg = er32(STATUS);
	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
}

/**
 *  e1000_set_lan_id_single_port - Set LAN id for a single port device
 *  @hw: pointer to the HW structure
 *
 *  Sets the LAN function id to zero for a single port device.
 **/
void e1000_set_lan_id_single_port(struct e1000_hw *hw)
{
	struct e1000_bus_info *bus = &hw->bus;

	bus->func = 0;
}

89
/**
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
 *  e1000_clear_vfta_generic - Clear VLAN filter table
 *  @hw: pointer to the HW structure
 *
 *  Clears the register array which contains the VLAN filter table by
 *  setting all the values to 0.
 **/
void e1000_clear_vfta_generic(struct e1000_hw *hw)
{
	u32 offset;

	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
		e1e_flush();
	}
}

/**
 *  e1000_write_vfta_generic - Write value to VLAN filter table
108 109 110 111 112 113 114
 *  @hw: pointer to the HW structure
 *  @offset: register offset in VLAN filter table
 *  @value: register value written to VLAN filter table
 *
 *  Writes value at the given offset in the register array which stores
 *  the VLAN filter table.
 **/
115
void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
116 117 118 119 120 121 122 123 124 125
{
	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
	e1e_flush();
}

/**
 *  e1000e_init_rx_addrs - Initialize receive address's
 *  @hw: pointer to the HW structure
 *  @rar_count: receive address registers
 *
B
Bruce Allan 已提交
126
 *  Setup the receive address registers by setting the base receive address
127 128 129 130 131 132
 *  register to the devices MAC address and clearing all the other receive
 *  address registers to 0.
 **/
void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
{
	u32 i;
133
	u8 mac_addr[ETH_ALEN] = { 0 };
134 135

	/* Setup the receive address */
136
	e_dbg("Programming MAC Address into RAR[0]\n");
137

138
	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
139 140

	/* Zero out the other (rar_entry_count - 1) receive addresses */
141
	e_dbg("Clearing RAR[1-%u]\n", rar_count - 1);
142
	for (i = 1; i < rar_count; i++)
143
		hw->mac.ops.rar_set(hw, mac_addr, i);
144 145
}

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
/**
 *  e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
 *  @hw: pointer to the HW structure
 *
 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
 *  can be setup by pre-boot software and must be treated like a permanent
 *  address and must override the actual permanent MAC address. If an
 *  alternate MAC address is found it is programmed into RAR0, replacing
 *  the permanent address that was installed into RAR0 by the Si on reset.
 *  This function will return SUCCESS unless it encounters an error while
 *  reading the EEPROM.
 **/
s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
{
	u32 i;
161
	s32 ret_val;
162 163 164
	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
	u8 alt_mac_addr[ETH_ALEN];

165 166
	ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
	if (ret_val)
167
		return ret_val;
168

169 170
	/* not supported on 82573 */
	if (hw->mac.type == e1000_82573)
171
		return 0;
172

173
	ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
174
				 &nvm_alt_mac_addr_offset);
175 176
	if (ret_val) {
		e_dbg("NVM Read Error\n");
177
		return ret_val;
178 179
	}

180 181
	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
	    (nvm_alt_mac_addr_offset == 0x0000))
182
		/* There is no Alternate MAC Address */
183
		return 0;
184 185 186 187 188 189 190 191

	if (hw->bus.func == E1000_FUNC_1)
		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
	for (i = 0; i < ETH_ALEN; i += 2) {
		offset = nvm_alt_mac_addr_offset + (i >> 1);
		ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
		if (ret_val) {
			e_dbg("NVM Read Error\n");
192
			return ret_val;
193 194 195 196 197 198 199
		}

		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
	}

	/* if multicast bit is set, the alternate address will not be used */
200
	if (is_multicast_ether_addr(alt_mac_addr)) {
201
		e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
202
		return 0;
203 204
	}

B
Bruce Allan 已提交
205
	/* We have a valid alternate MAC address, and we want to treat it the
206 207 208
	 * same as the normal permanent MAC address stored by the HW into the
	 * RAR. Do this by mapping this address into RAR0.
	 */
209
	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
210

211
	return 0;
212 213
}

214 215 216 217 218
u32 e1000e_rar_get_count_generic(struct e1000_hw *hw)
{
	return hw->mac.rar_entry_count;
}

219
/**
220
 *  e1000e_rar_set_generic - Set receive address register
221 222 223 224 225 226 227
 *  @hw: pointer to the HW structure
 *  @addr: pointer to the receive address
 *  @index: receive address array register
 *
 *  Sets the receive address array register at index to the address passed
 *  in by addr.
 **/
228
int e1000e_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
229 230 231
{
	u32 rar_low, rar_high;

B
Bruce Allan 已提交
232
	/* HW expects these in little endian so we reverse the byte order
233 234
	 * from network order (big endian) to little endian
	 */
235 236
	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
237

238
	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
239

240 241 242
	/* If MAC address zero, no need to set the AV bit */
	if (rar_low || rar_high)
		rar_high |= E1000_RAH_AV;
243

B
Bruce Allan 已提交
244
	/* Some bridges will combine consecutive 32-bit writes into
245 246 247 248 249 250 251
	 * a single burst write, which will malfunction on some parts.
	 * The flushes avoid this.
	 */
	ew32(RAL(index), rar_low);
	e1e_flush();
	ew32(RAH(index), rar_high);
	e1e_flush();
252 253

	return 0;
254 255 256 257 258 259 260 261
}

/**
 *  e1000_hash_mc_addr - Generate a multicast hash value
 *  @hw: pointer to the HW structure
 *  @mc_addr: pointer to a multicast address
 *
 *  Generates a multicast address hash value which is used to determine
262
 *  the multicast filter table array address and new table value.
263 264 265 266 267 268 269 270 271
 **/
static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
{
	u32 hash_value, hash_mask;
	u8 bit_shift = 0;

	/* Register count multiplied by bits per register */
	hash_mask = (hw->mac.mta_reg_count * 32) - 1;

B
Bruce Allan 已提交
272
	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
273 274
	 * where 0xFF would still fall within the hash mask.
	 */
275 276 277
	while (hash_mask >> bit_shift != 0xFF)
		bit_shift++;

B
Bruce Allan 已提交
278
	/* The portion of the address that is used for the hash table
279 280 281 282 283 284 285 286 287 288
	 * is determined by the mc_filter_type setting.
	 * The algorithm is such that there is a total of 8 bits of shifting.
	 * The bit_shift for a mc_filter_type of 0 represents the number of
	 * left-shifts where the MSB of mc_addr[5] would still fall within
	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
	 * of 8 bits of shifting, then mc_addr[4] will shift right the
	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
	 * cases are a variation of this algorithm...essentially raising the
	 * number of bits to shift mc_addr[5] left, while still keeping the
	 * 8-bit shifting total.
289 290
	 *
	 * For example, given the following Destination MAC Address and an
291 292 293 294 295
	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
	 * we can see that the bit_shift for case 0 is 4.  These are the hash
	 * values resulting from each mc_filter_type...
	 * [0] [1] [2] [3] [4] [5]
	 * 01  AA  00  12  34  56
296
	 * LSB           MSB
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
	 *
	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
	 */
	switch (hw->mac.mc_filter_type) {
	default:
	case 0:
		break;
	case 1:
		bit_shift += 1;
		break;
	case 2:
		bit_shift += 2;
		break;
	case 3:
		bit_shift += 4;
		break;
	}

	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
319
				   (((u16)mc_addr[5]) << bit_shift)));
320 321 322 323 324

	return hash_value;
}

/**
325
 *  e1000e_update_mc_addr_list_generic - Update Multicast addresses
326 327 328 329
 *  @hw: pointer to the HW structure
 *  @mc_addr_list: array of multicast addresses to program
 *  @mc_addr_count: number of multicast addresses to program
 *
330
 *  Updates entire Multicast Table Array.
331 332
 *  The caller must have a packed mc_addr_list of multicast addresses.
 **/
333
void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
334
					u8 *mc_addr_list, u32 mc_addr_count)
335
{
336 337
	u32 hash_value, hash_bit, hash_reg;
	int i;
338

339 340
	/* clear mta_shadow */
	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
341

342
	/* update mta_shadow from mc_addr_list */
343
	for (i = 0; (u32)i < mc_addr_count; i++) {
344
		hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
345

346 347 348
		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
		hash_bit = hash_value & 0x1F;

349
		hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit);
350 351
		mc_addr_list += (ETH_ALEN);
	}
352

353 354 355
	/* replace the entire MTA table */
	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
356
	e1e_flush();
357 358 359 360 361 362 363 364 365 366
}

/**
 *  e1000e_clear_hw_cntrs_base - Clear base hardware counters
 *  @hw: pointer to the HW structure
 *
 *  Clears the base hardware counters by reading the counter registers.
 **/
void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
{
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
	er32(CRCERRS);
	er32(SYMERRS);
	er32(MPC);
	er32(SCC);
	er32(ECOL);
	er32(MCC);
	er32(LATECOL);
	er32(COLC);
	er32(DC);
	er32(SEC);
	er32(RLEC);
	er32(XONRXC);
	er32(XONTXC);
	er32(XOFFRXC);
	er32(XOFFTXC);
	er32(FCRUC);
	er32(GPRC);
	er32(BPRC);
	er32(MPRC);
	er32(GPTC);
	er32(GORCL);
	er32(GORCH);
	er32(GOTCL);
	er32(GOTCH);
	er32(RNBC);
	er32(RUC);
	er32(RFC);
	er32(ROC);
	er32(RJC);
	er32(TORL);
	er32(TORH);
	er32(TOTL);
	er32(TOTH);
	er32(TPR);
	er32(TPT);
	er32(MPTC);
	er32(BPTC);
404 405 406 407 408 409 410 411 412
}

/**
 *  e1000e_check_for_copper_link - Check for link (Copper)
 *  @hw: pointer to the HW structure
 *
 *  Checks to see of the link status of the hardware has changed.  If a
 *  change in link status has been detected, then we read the PHY registers
 *  to get the current speed/duplex if link exists.
413 414 415
 *
 *  Returns a negative error code (-E1000_ERR_*) or 0 (link down) or 1 (link
 *  up).
416 417 418 419 420 421 422
 **/
s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;
	bool link;

B
Bruce Allan 已提交
423
	/* We only want to go out to the PHY registers to see if Auto-Neg
424 425 426 427 428
	 * has completed and/or if our link status has changed.  The
	 * get_link_status flag is set upon receiving a Link Status
	 * Change or Rx Sequence Error interrupt.
	 */
	if (!mac->get_link_status)
429
		return 1;
430

B
Bruce Allan 已提交
431
	/* First we want to see if the MII Status Register reports
432 433 434 435 436 437 438 439
	 * link.  If so, then we want to get the current speed/duplex
	 * of the PHY.
	 */
	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
		return ret_val;

	if (!link)
B
Bruce Allan 已提交
440
		return 0;	/* No link detected */
441

442
	mac->get_link_status = false;
443

B
Bruce Allan 已提交
444
	/* Check if there was DownShift, must be checked
445 446
	 * immediately after link-up
	 */
447 448
	e1000e_check_downshift(hw);

B
Bruce Allan 已提交
449
	/* If we are forcing speed/duplex, then we simply return since
450 451
	 * we have already determined whether we have link or not.
	 */
452 453
	if (!mac->autoneg)
		return -E1000_ERR_CONFIG;
454

B
Bruce Allan 已提交
455
	/* Auto-Neg is enabled.  Auto Speed Detection takes care
456 457 458
	 * of MAC speed/duplex configuration.  So we only need to
	 * configure Collision Distance in the MAC.
	 */
459
	mac->ops.config_collision_dist(hw);
460

B
Bruce Allan 已提交
461
	/* Configure Flow Control now that Auto-Neg has completed.
462 463 464 465 466
	 * First, we need to restore the desired flow control
	 * settings because we may have had to re-autoneg with a
	 * different link partner.
	 */
	ret_val = e1000e_config_fc_after_link_up(hw);
467
	if (ret_val) {
468
		e_dbg("Error configuring flow control\n");
469 470
		return ret_val;
	}
471

472
	return 1;
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
}

/**
 *  e1000e_check_for_fiber_link - Check for link (Fiber)
 *  @hw: pointer to the HW structure
 *
 *  Checks for link up on the hardware.  If link is not up and we have
 *  a signal, then we need to force link up.
 **/
s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 rxcw;
	u32 ctrl;
	u32 status;
	s32 ret_val;

	ctrl = er32(CTRL);
	status = er32(STATUS);
	rxcw = er32(RXCW);

B
Bruce Allan 已提交
494
	/* If we don't have link (auto-negotiation failed or link partner
495 496 497 498 499 500 501
	 * cannot auto-negotiate), the cable is plugged in (we have signal),
	 * and our link partner is not trying to auto-negotiate with us (we
	 * are receiving idles or data), we need to force link up. We also
	 * need to give auto-negotiation time to complete, in case the cable
	 * was just plugged in. The autoneg_failed flag does this.
	 */
	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
502 503
	if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
	    !(rxcw & E1000_RXCW_C)) {
504 505
		if (!mac->autoneg_failed) {
			mac->autoneg_failed = true;
506 507
			return 0;
		}
508
		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
509 510 511 512 513 514 515 516 517 518 519 520

		/* Disable auto-negotiation in the TXCW register */
		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));

		/* Force link-up and also force full-duplex. */
		ctrl = er32(CTRL);
		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
		ew32(CTRL, ctrl);

		/* Configure Flow Control after forcing link up. */
		ret_val = e1000e_config_fc_after_link_up(hw);
		if (ret_val) {
521
			e_dbg("Error configuring flow control\n");
522 523 524
			return ret_val;
		}
	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
B
Bruce Allan 已提交
525
		/* If we are forcing link and we are receiving /C/ ordered
526 527 528 529
		 * sets, re-enable auto-negotiation in the TXCW register
		 * and disable forced link in the Device Control register
		 * in an attempt to auto-negotiate with our link partner.
		 */
530
		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
531 532 533
		ew32(TXCW, mac->txcw);
		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));

534
		mac->serdes_has_link = true;
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
	}

	return 0;
}

/**
 *  e1000e_check_for_serdes_link - Check for link (Serdes)
 *  @hw: pointer to the HW structure
 *
 *  Checks for link up on the hardware.  If link is not up and we have
 *  a signal, then we need to force link up.
 **/
s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 rxcw;
	u32 ctrl;
	u32 status;
	s32 ret_val;

	ctrl = er32(CTRL);
	status = er32(STATUS);
	rxcw = er32(RXCW);

B
Bruce Allan 已提交
559
	/* If we don't have link (auto-negotiation failed or link partner
560 561 562 563 564 565
	 * cannot auto-negotiate), and our link partner is not trying to
	 * auto-negotiate with us (we are receiving idles or data),
	 * we need to force link up. We also need to give auto-negotiation
	 * time to complete.
	 */
	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
566
	if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
567 568
		if (!mac->autoneg_failed) {
			mac->autoneg_failed = true;
569 570
			return 0;
		}
571
		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
572 573 574 575 576 577 578 579 580 581 582 583

		/* Disable auto-negotiation in the TXCW register */
		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));

		/* Force link-up and also force full-duplex. */
		ctrl = er32(CTRL);
		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
		ew32(CTRL, ctrl);

		/* Configure Flow Control after forcing link up. */
		ret_val = e1000e_config_fc_after_link_up(hw);
		if (ret_val) {
584
			e_dbg("Error configuring flow control\n");
585 586 587
			return ret_val;
		}
	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
B
Bruce Allan 已提交
588
		/* If we are forcing link and we are receiving /C/ ordered
589 590 591 592
		 * sets, re-enable auto-negotiation in the TXCW register
		 * and disable forced link in the Device Control register
		 * in an attempt to auto-negotiate with our link partner.
		 */
593
		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
594 595 596
		ew32(TXCW, mac->txcw);
		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));

597
		mac->serdes_has_link = true;
598
	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
B
Bruce Allan 已提交
599
		/* If we force link for non-auto-negotiation switch, check
600 601 602 603
		 * link status based on MAC synchronization for internal
		 * serdes media type.
		 */
		/* SYNCH bit and IV bit are sticky. */
604
		usleep_range(10, 20);
605 606
		rxcw = er32(RXCW);
		if (rxcw & E1000_RXCW_SYNCH) {
607
			if (!(rxcw & E1000_RXCW_IV)) {
608
				mac->serdes_has_link = true;
609
				e_dbg("SERDES: Link up - forced.\n");
610 611
			}
		} else {
612
			mac->serdes_has_link = false;
613
			e_dbg("SERDES: Link down - force failed.\n");
614 615 616 617 618
		}
	}

	if (E1000_TXCW_ANE & er32(TXCW)) {
		status = er32(STATUS);
619
		if (status & E1000_STATUS_LU) {
620
			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
621
			usleep_range(10, 20);
622 623 624 625
			rxcw = er32(RXCW);
			if (rxcw & E1000_RXCW_SYNCH) {
				if (!(rxcw & E1000_RXCW_IV)) {
					mac->serdes_has_link = true;
626
					e_dbg("SERDES: Link up - autoneg completed successfully.\n");
627 628
				} else {
					mac->serdes_has_link = false;
629
					e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n");
630 631 632
				}
			} else {
				mac->serdes_has_link = false;
633
				e_dbg("SERDES: Link down - no sync.\n");
634 635 636
			}
		} else {
			mac->serdes_has_link = false;
637
			e_dbg("SERDES: Link down - autoneg failed\n");
638
		}
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
	}

	return 0;
}

/**
 *  e1000_set_default_fc_generic - Set flow control default values
 *  @hw: pointer to the HW structure
 *
 *  Read the EEPROM for the default values for flow control and store the
 *  values.
 **/
static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 nvm_data;

B
Bruce Allan 已提交
656
	/* Read and store word 0x0F of the EEPROM. This word contains bits
657 658 659 660 661 662 663 664 665 666
	 * that determine the hardware's default PAUSE (flow control) mode,
	 * a bit that determines whether the HW defaults to enabling or
	 * disabling auto-negotiation, and the direction of the
	 * SW defined pins. If there is no SW over-ride of the flow
	 * control setting, then the variable hw->fc will
	 * be initialized based on a value in the EEPROM.
	 */
	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);

	if (ret_val) {
667
		e_dbg("NVM Read Error\n");
668 669 670
		return ret_val;
	}

B
Bruce Allan 已提交
671
	if (!(nvm_data & NVM_WORD0F_PAUSE_MASK))
672
		hw->fc.requested_mode = e1000_fc_none;
673
	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
674
		hw->fc.requested_mode = e1000_fc_tx_pause;
675
	else
676
		hw->fc.requested_mode = e1000_fc_full;
677 678 679 680 681

	return 0;
}

/**
682
 *  e1000e_setup_link_generic - Setup flow control and link settings
683 684 685 686 687 688 689 690
 *  @hw: pointer to the HW structure
 *
 *  Determines which flow control settings to use, then configures flow
 *  control.  Calls the appropriate media-specific link configuration
 *  function.  Assuming the adapter has a valid link partner, a valid link
 *  should be established.  Assumes the hardware has previously been reset
 *  and the transmitter and receiver are not enabled.
 **/
691
s32 e1000e_setup_link_generic(struct e1000_hw *hw)
692 693 694
{
	s32 ret_val;

B
Bruce Allan 已提交
695
	/* In the case of the phy reset being blocked, we already have a link.
696 697
	 * We do not need to set it up again.
	 */
698
	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
699 700
		return 0;

B
Bruce Allan 已提交
701
	/* If requested flow control is set to default, set flow control
702
	 * based on the EEPROM flow control settings.
703
	 */
704
	if (hw->fc.requested_mode == e1000_fc_default) {
705 706 707 708
		ret_val = e1000_set_default_fc_generic(hw);
		if (ret_val)
			return ret_val;
	}
709

B
Bruce Allan 已提交
710
	/* Save off the requested flow control mode for use later.  Depending
711
	 * on the link partner's capabilities, we may or may not use this mode.
712
	 */
713
	hw->fc.current_mode = hw->fc.requested_mode;
714

715
	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
716 717

	/* Call the necessary media_type subroutine to configure the link. */
718
	ret_val = hw->mac.ops.setup_physical_interface(hw);
719 720 721
	if (ret_val)
		return ret_val;

B
Bruce Allan 已提交
722
	/* Initialize the flow control address, type, and PAUSE timer
723 724 725 726
	 * registers to their default values.  This is done even if flow
	 * control is disabled, because it does not hurt anything to
	 * initialize these registers.
	 */
727
	e_dbg("Initializing the Flow Control address, type and timer regs\n");
728 729 730 731
	ew32(FCT, FLOW_CONTROL_TYPE);
	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);

732
	ew32(FCTTV, hw->fc.pause_time);
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748

	return e1000e_set_fc_watermarks(hw);
}

/**
 *  e1000_commit_fc_settings_generic - Configure flow control
 *  @hw: pointer to the HW structure
 *
 *  Write the flow control settings to the Transmit Config Word Register (TXCW)
 *  base on the flow control settings in e1000_mac_info.
 **/
static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 txcw;

B
Bruce Allan 已提交
749
	/* Check for a software override of the flow control settings, and
750 751 752 753 754 755 756 757 758 759
	 * setup the device accordingly.  If auto-negotiation is enabled, then
	 * software will have to set the "PAUSE" bits to the correct value in
	 * the Transmit Config Word Register (TXCW) and re-start auto-
	 * negotiation.  However, if auto-negotiation is disabled, then
	 * software will have to manually configure the two flow control enable
	 * bits in the CTRL register.
	 *
	 * The possible values of the "fc" parameter are:
	 *      0:  Flow control is completely disabled
	 *      1:  Rx flow control is enabled (we can receive pause frames,
760
	 *          but not send pause frames).
761
	 *      2:  Tx flow control is enabled (we can send pause frames but we
762
	 *          do not support receiving pause frames).
763
	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
764
	 */
765
	switch (hw->fc.current_mode) {
766 767 768 769 770
	case e1000_fc_none:
		/* Flow control completely disabled by a software over-ride. */
		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
		break;
	case e1000_fc_rx_pause:
B
Bruce Allan 已提交
771
		/* Rx Flow control is enabled and Tx Flow control is disabled
772
		 * by a software over-ride. Since there really isn't a way to
773 774
		 * advertise that we are capable of Rx Pause ONLY, we will
		 * advertise that we support both symmetric and asymmetric Rx
775 776 777 778 779 780
		 * PAUSE.  Later, we will disable the adapter's ability to send
		 * PAUSE frames.
		 */
		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
		break;
	case e1000_fc_tx_pause:
B
Bruce Allan 已提交
781
		/* Tx Flow control is enabled, and Rx Flow control is disabled,
782 783 784 785 786
		 * by a software over-ride.
		 */
		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
		break;
	case e1000_fc_full:
B
Bruce Allan 已提交
787
		/* Flow control (both Rx and Tx) is enabled by a software
788 789 790 791 792
		 * over-ride.
		 */
		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
		break;
	default:
793
		e_dbg("Flow control param set incorrectly\n");
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
		return -E1000_ERR_CONFIG;
	}

	ew32(TXCW, txcw);
	mac->txcw = txcw;

	return 0;
}

/**
 *  e1000_poll_fiber_serdes_link_generic - Poll for link up
 *  @hw: pointer to the HW structure
 *
 *  Polls for link up by reading the status register, if link fails to come
 *  up with auto-negotiation, then the link is forced if a signal is detected.
 **/
static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 i, status;
	s32 ret_val;

B
Bruce Allan 已提交
816
	/* If we have a signal (the cable is plugged in, or assumed true for
817 818 819 820 821 822
	 * serdes media) then poll for a "Link-Up" indication in the Device
	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
	 * seconds (Auto-negotiation should complete in less than 500
	 * milliseconds even if the other end is doing it in SW).
	 */
	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
823
		usleep_range(10000, 20000);
824 825 826 827 828
		status = er32(STATUS);
		if (status & E1000_STATUS_LU)
			break;
	}
	if (i == FIBER_LINK_UP_LIMIT) {
829
		e_dbg("Never got a valid link from auto-neg!!!\n");
830
		mac->autoneg_failed = true;
B
Bruce Allan 已提交
831
		/* AutoNeg failed to achieve a link, so we'll call
832 833 834 835 836 837
		 * mac->check_for_link. This routine will force the
		 * link up if we detect a signal. This will allow us to
		 * communicate with non-autonegotiating link partners.
		 */
		ret_val = mac->ops.check_for_link(hw);
		if (ret_val) {
838
			e_dbg("Error while checking for link\n");
839 840
			return ret_val;
		}
841
		mac->autoneg_failed = false;
842
	} else {
843
		mac->autoneg_failed = false;
844
		e_dbg("Valid Link Found\n");
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
	}

	return 0;
}

/**
 *  e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
 *  @hw: pointer to the HW structure
 *
 *  Configures collision distance and flow control for fiber and serdes
 *  links.  Upon successful setup, poll for link.
 **/
s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val;

	ctrl = er32(CTRL);

	/* Take the link out of reset */
	ctrl &= ~E1000_CTRL_LRST;

867
	hw->mac.ops.config_collision_dist(hw);
868 869 870 871 872

	ret_val = e1000_commit_fc_settings_generic(hw);
	if (ret_val)
		return ret_val;

B
Bruce Allan 已提交
873
	/* Since auto-negotiation is enabled, take the link out of reset (the
874 875 876 877 878
	 * link will be in reset, because we previously reset the chip). This
	 * will restart auto-negotiation.  If auto-negotiation is successful
	 * then the link-up status bit will be set and the flow control enable
	 * bits (RFCE and TFCE) will be set according to their negotiated value.
	 */
879
	e_dbg("Auto-negotiation enabled\n");
880 881 882

	ew32(CTRL, ctrl);
	e1e_flush();
883
	usleep_range(1000, 2000);
884

B
Bruce Allan 已提交
885
	/* For these adapters, the SW definable pin 1 is set when the optics
886 887 888
	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
	 * indication.
	 */
889
	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
890 891 892
	    (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
	} else {
893
		e_dbg("No signal detected\n");
894 895
	}

896
	return ret_val;
897 898 899
}

/**
900
 *  e1000e_config_collision_dist_generic - Configure collision distance
901 902 903
 *  @hw: pointer to the HW structure
 *
 *  Configures the collision distance to the default value and is used
904
 *  during link setup.
905
 **/
906
void e1000e_config_collision_dist_generic(struct e1000_hw *hw)
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
{
	u32 tctl;

	tctl = er32(TCTL);

	tctl &= ~E1000_TCTL_COLD;
	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;

	ew32(TCTL, tctl);
	e1e_flush();
}

/**
 *  e1000e_set_fc_watermarks - Set flow control high/low watermarks
 *  @hw: pointer to the HW structure
 *
 *  Sets the flow control high/low threshold (watermark) registers.  If
 *  flow control XON frame transmission is enabled, then set XON frame
925
 *  transmission as well.
926 927 928 929 930
 **/
s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
{
	u32 fcrtl = 0, fcrth = 0;

B
Bruce Allan 已提交
931
	/* Set the flow control receive threshold registers.  Normally,
932 933 934 935 936
	 * these registers will be set to a default threshold that may be
	 * adjusted later by the driver's runtime code.  However, if the
	 * ability to transmit pause frames is not enabled, then these
	 * registers will be set to 0.
	 */
937
	if (hw->fc.current_mode & e1000_fc_tx_pause) {
B
Bruce Allan 已提交
938
		/* We need to set up the Receive Threshold high and low water
939 940 941
		 * marks as well as (optionally) enabling the transmission of
		 * XON frames.
		 */
942
		fcrtl = hw->fc.low_water;
943 944 945
		if (hw->fc.send_xon)
			fcrtl |= E1000_FCRTL_XONE;

946
		fcrth = hw->fc.high_water;
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
	}
	ew32(FCRTL, fcrtl);
	ew32(FCRTH, fcrth);

	return 0;
}

/**
 *  e1000e_force_mac_fc - Force the MAC's flow control settings
 *  @hw: pointer to the HW structure
 *
 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
 *  device control register to reflect the adapter settings.  TFCE and RFCE
 *  need to be explicitly set by software when a copper PHY is used because
 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
 *  also configure these bits when link is forced on a fiber connection.
 **/
s32 e1000e_force_mac_fc(struct e1000_hw *hw)
{
	u32 ctrl;

	ctrl = er32(CTRL);

B
Bruce Allan 已提交
970
	/* Because we didn't get link via the internal auto-negotiation
971 972 973 974 975
	 * mechanism (we either forced link or we got link via PHY
	 * auto-neg), we have to manually enable/disable transmit an
	 * receive flow control.
	 *
	 * The "Case" statement below enables/disable flow control
976
	 * according to the "hw->fc.current_mode" parameter.
977 978 979 980
	 *
	 * The possible values of the "fc" parameter are:
	 *      0:  Flow control is completely disabled
	 *      1:  Rx flow control is enabled (we can receive pause
981
	 *          frames but not send pause frames).
982
	 *      2:  Tx flow control is enabled (we can send pause frames
983
	 *          frames but we do not receive pause frames).
984
	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
985 986
	 *  other:  No other values should be possible at this point.
	 */
987
	e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
988

989
	switch (hw->fc.current_mode) {
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
	case e1000_fc_none:
		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
		break;
	case e1000_fc_rx_pause:
		ctrl &= (~E1000_CTRL_TFCE);
		ctrl |= E1000_CTRL_RFCE;
		break;
	case e1000_fc_tx_pause:
		ctrl &= (~E1000_CTRL_RFCE);
		ctrl |= E1000_CTRL_TFCE;
		break;
	case e1000_fc_full:
		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
		break;
	default:
1005
		e_dbg("Flow control param set incorrectly\n");
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
		return -E1000_ERR_CONFIG;
	}

	ew32(CTRL, ctrl);

	return 0;
}

/**
 *  e1000e_config_fc_after_link_up - Configures flow control after link
 *  @hw: pointer to the HW structure
 *
 *  Checks the status of auto-negotiation after link up to ensure that the
 *  speed and duplex were not forced.  If the link needed to be forced, then
 *  flow control needs to be forced also.  If auto-negotiation is enabled
 *  and did not fail, then we configure flow control based on our link
 *  partner.
 **/
s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val = 0;
1028
	u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
1029 1030 1031
	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
	u16 speed, duplex;

B
Bruce Allan 已提交
1032
	/* Check for the case where we have fiber media and auto-neg failed
1033 1034 1035 1036
	 * so we had to force link.  In this case, we need to force the
	 * configuration of the MAC to match the "fc" parameter.
	 */
	if (mac->autoneg_failed) {
1037 1038
		if (hw->phy.media_type == e1000_media_type_fiber ||
		    hw->phy.media_type == e1000_media_type_internal_serdes)
1039 1040
			ret_val = e1000e_force_mac_fc(hw);
	} else {
1041
		if (hw->phy.media_type == e1000_media_type_copper)
1042 1043 1044 1045
			ret_val = e1000e_force_mac_fc(hw);
	}

	if (ret_val) {
1046
		e_dbg("Error forcing flow control settings\n");
1047 1048 1049
		return ret_val;
	}

B
Bruce Allan 已提交
1050
	/* Check for the case where we have copper media and auto-neg is
1051 1052 1053 1054
	 * enabled.  In this case, we need to check and see if Auto-Neg
	 * has completed, and if so, how the PHY and link partner has
	 * flow control configured.
	 */
1055
	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
B
Bruce Allan 已提交
1056
		/* Read the MII Status Register and check to see if AutoNeg
1057 1058 1059
		 * has completed.  We read this twice because this reg has
		 * some "sticky" (latched) bits.
		 */
1060
		ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1061 1062
		if (ret_val)
			return ret_val;
1063
		ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1064 1065 1066
		if (ret_val)
			return ret_val;

1067
		if (!(mii_status_reg & BMSR_ANEGCOMPLETE)) {
1068
			e_dbg("Copper PHY and Auto Neg has not completed.\n");
1069 1070 1071
			return ret_val;
		}

B
Bruce Allan 已提交
1072
		/* The AutoNeg process has completed, so we now need to
1073 1074 1075 1076 1077
		 * read both the Auto Negotiation Advertisement
		 * Register (Address 4) and the Auto_Negotiation Base
		 * Page Ability Register (Address 5) to determine how
		 * flow control was negotiated.
		 */
1078
		ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_nway_adv_reg);
1079 1080
		if (ret_val)
			return ret_val;
1081
		ret_val = e1e_rphy(hw, MII_LPA, &mii_nway_lp_ability_reg);
1082 1083 1084
		if (ret_val)
			return ret_val;

B
Bruce Allan 已提交
1085
		/* Two bits in the Auto Negotiation Advertisement Register
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
		 * (Address 4) and two bits in the Auto Negotiation Base
		 * Page Ability Register (Address 5) determine flow control
		 * for both the PHY and the link partner.  The following
		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
		 * 1999, describes these PAUSE resolution bits and how flow
		 * control is determined based upon these settings.
		 * NOTE:  DC = Don't Care
		 *
		 *   LOCAL DEVICE  |   LINK PARTNER
		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
		 *-------|---------|-------|---------|--------------------
		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
		 *   0   |    1    |   0   |   DC    | e1000_fc_none
		 *   0   |    1    |   1   |    0    | e1000_fc_none
		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
		 *   1   |    0    |   0   |   DC    | e1000_fc_none
		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
		 *   1   |    1    |   0   |    0    | e1000_fc_none
		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
		 *
1106
		 * Are both PAUSE bits set to 1?  If so, this implies
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
		 * Symmetric Flow Control is enabled at both ends.  The
		 * ASM_DIR bits are irrelevant per the spec.
		 *
		 * For Symmetric Flow Control:
		 *
		 *   LOCAL DEVICE  |   LINK PARTNER
		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
		 *-------|---------|-------|---------|--------------------
		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
		 *
		 */
1118 1119
		if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
		    (mii_nway_lp_ability_reg & LPA_PAUSE_CAP)) {
B
Bruce Allan 已提交
1120
			/* Now we need to check if the user selected Rx ONLY
1121
			 * of pause frames.  In this case, we had to advertise
1122
			 * FULL flow control because we could not advertise Rx
1123
			 * ONLY. Hence, we must now check to see if we need to
B
Bruce Allan 已提交
1124
			 * turn OFF the TRANSMISSION of PAUSE frames.
1125
			 */
1126 1127
			if (hw->fc.requested_mode == e1000_fc_full) {
				hw->fc.current_mode = e1000_fc_full;
1128
				e_dbg("Flow Control = FULL.\n");
1129
			} else {
1130
				hw->fc.current_mode = e1000_fc_rx_pause;
1131
				e_dbg("Flow Control = Rx PAUSE frames only.\n");
1132 1133
			}
		}
B
Bruce Allan 已提交
1134
		/* For receiving PAUSE frames ONLY.
1135 1136 1137 1138 1139 1140
		 *
		 *   LOCAL DEVICE  |   LINK PARTNER
		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
		 *-------|---------|-------|---------|--------------------
		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
		 */
1141 1142 1143 1144
		else if (!(mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
			 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
			 (mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
			 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1145
			hw->fc.current_mode = e1000_fc_tx_pause;
1146
			e_dbg("Flow Control = Tx PAUSE frames only.\n");
1147
		}
B
Bruce Allan 已提交
1148
		/* For transmitting PAUSE frames ONLY.
1149 1150 1151 1152 1153 1154
		 *
		 *   LOCAL DEVICE  |   LINK PARTNER
		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
		 *-------|---------|-------|---------|--------------------
		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
		 */
1155 1156 1157 1158
		else if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
			 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
			 !(mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
			 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1159
			hw->fc.current_mode = e1000_fc_rx_pause;
1160
			e_dbg("Flow Control = Rx PAUSE frames only.\n");
1161
		} else {
B
Bruce Allan 已提交
1162
			/* Per the IEEE spec, at this point flow control
1163 1164
			 * should be disabled.
			 */
1165
			hw->fc.current_mode = e1000_fc_none;
1166
			e_dbg("Flow Control = NONE.\n");
1167 1168
		}

B
Bruce Allan 已提交
1169
		/* Now we need to do one last check...  If we auto-
1170 1171 1172 1173 1174
		 * negotiated to HALF DUPLEX, flow control should not be
		 * enabled per IEEE 802.3 spec.
		 */
		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
		if (ret_val) {
1175
			e_dbg("Error getting link speed and duplex\n");
1176 1177 1178 1179
			return ret_val;
		}

		if (duplex == HALF_DUPLEX)
1180
			hw->fc.current_mode = e1000_fc_none;
1181

B
Bruce Allan 已提交
1182
		/* Now we call a subroutine to actually force the MAC
1183 1184 1185 1186
		 * controller to use the correct flow control settings.
		 */
		ret_val = e1000e_force_mac_fc(hw);
		if (ret_val) {
1187
			e_dbg("Error forcing flow control settings\n");
1188 1189 1190 1191
			return ret_val;
		}
	}

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
	/* Check for the case where we have SerDes media and auto-neg is
	 * enabled.  In this case, we need to check and see if Auto-Neg
	 * has completed, and if so, how the PHY and link partner has
	 * flow control configured.
	 */
	if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
	    mac->autoneg) {
		/* Read the PCS_LSTS and check to see if AutoNeg
		 * has completed.
		 */
		pcs_status_reg = er32(PCS_LSTAT);

		if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
			e_dbg("PCS Auto Neg has not completed.\n");
			return ret_val;
		}

		/* The AutoNeg process has completed, so we now need to
		 * read both the Auto Negotiation Advertisement
		 * Register (PCS_ANADV) and the Auto_Negotiation Base
		 * Page Ability Register (PCS_LPAB) to determine how
		 * flow control was negotiated.
		 */
		pcs_adv_reg = er32(PCS_ANADV);
		pcs_lp_ability_reg = er32(PCS_LPAB);

		/* Two bits in the Auto Negotiation Advertisement Register
		 * (PCS_ANADV) and two bits in the Auto Negotiation Base
		 * Page Ability Register (PCS_LPAB) determine flow control
		 * for both the PHY and the link partner.  The following
		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
		 * 1999, describes these PAUSE resolution bits and how flow
		 * control is determined based upon these settings.
		 * NOTE:  DC = Don't Care
		 *
		 *   LOCAL DEVICE  |   LINK PARTNER
		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
		 *-------|---------|-------|---------|--------------------
		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
		 *   0   |    1    |   0   |   DC    | e1000_fc_none
		 *   0   |    1    |   1   |    0    | e1000_fc_none
		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
		 *   1   |    0    |   0   |   DC    | e1000_fc_none
		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
		 *   1   |    1    |   0   |    0    | e1000_fc_none
		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
		 *
		 * Are both PAUSE bits set to 1?  If so, this implies
		 * Symmetric Flow Control is enabled at both ends.  The
		 * ASM_DIR bits are irrelevant per the spec.
		 *
		 * For Symmetric Flow Control:
		 *
		 *   LOCAL DEVICE  |   LINK PARTNER
		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
		 *-------|---------|-------|---------|--------------------
		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
		 *
		 */
		if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
		    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
			/* Now we need to check if the user selected Rx ONLY
			 * of pause frames.  In this case, we had to advertise
			 * FULL flow control because we could not advertise Rx
			 * ONLY. Hence, we must now check to see if we need to
			 * turn OFF the TRANSMISSION of PAUSE frames.
			 */
			if (hw->fc.requested_mode == e1000_fc_full) {
				hw->fc.current_mode = e1000_fc_full;
				e_dbg("Flow Control = FULL.\n");
			} else {
				hw->fc.current_mode = e1000_fc_rx_pause;
				e_dbg("Flow Control = Rx PAUSE frames only.\n");
			}
		}
		/* For receiving PAUSE frames ONLY.
		 *
		 *   LOCAL DEVICE  |   LINK PARTNER
		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
		 *-------|---------|-------|---------|--------------------
		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
		 */
		else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
			 (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
			hw->fc.current_mode = e1000_fc_tx_pause;
			e_dbg("Flow Control = Tx PAUSE frames only.\n");
		}
		/* For transmitting PAUSE frames ONLY.
		 *
		 *   LOCAL DEVICE  |   LINK PARTNER
		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
		 *-------|---------|-------|---------|--------------------
		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
		 */
		else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
			 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
			hw->fc.current_mode = e1000_fc_rx_pause;
			e_dbg("Flow Control = Rx PAUSE frames only.\n");
		} else {
			/* Per the IEEE spec, at this point flow control
			 * should be disabled.
			 */
			hw->fc.current_mode = e1000_fc_none;
			e_dbg("Flow Control = NONE.\n");
		}

		/* Now we call a subroutine to actually force the MAC
		 * controller to use the correct flow control settings.
		 */
		pcs_ctrl_reg = er32(PCS_LCTL);
		pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
		ew32(PCS_LCTL, pcs_ctrl_reg);

		ret_val = e1000e_force_mac_fc(hw);
		if (ret_val) {
			e_dbg("Error forcing flow control settings\n");
			return ret_val;
		}
	}

1316 1317 1318 1319
	return 0;
}

/**
1320
 *  e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1321 1322 1323 1324 1325 1326 1327
 *  @hw: pointer to the HW structure
 *  @speed: stores the current speed
 *  @duplex: stores the current duplex
 *
 *  Read the status register for the current speed/duplex and store the current
 *  speed and duplex for copper connections.
 **/
1328 1329
s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
				       u16 *duplex)
1330 1331 1332 1333
{
	u32 status;

	status = er32(STATUS);
J
Joe Perches 已提交
1334
	if (status & E1000_STATUS_SPEED_1000)
1335
		*speed = SPEED_1000;
J
Joe Perches 已提交
1336
	else if (status & E1000_STATUS_SPEED_100)
1337
		*speed = SPEED_100;
J
Joe Perches 已提交
1338
	else
1339 1340
		*speed = SPEED_10;

J
Joe Perches 已提交
1341
	if (status & E1000_STATUS_FD)
1342
		*duplex = FULL_DUPLEX;
J
Joe Perches 已提交
1343
	else
1344
		*duplex = HALF_DUPLEX;
J
Joe Perches 已提交
1345 1346 1347 1348

	e_dbg("%u Mbps, %s Duplex\n",
	      *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
	      *duplex == FULL_DUPLEX ? "Full" : "Half");
1349 1350 1351 1352 1353

	return 0;
}

/**
1354
 *  e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1355 1356 1357 1358 1359 1360 1361
 *  @hw: pointer to the HW structure
 *  @speed: stores the current speed
 *  @duplex: stores the current duplex
 *
 *  Sets the speed and duplex to gigabit full duplex (the only possible option)
 *  for fiber/serdes links.
 **/
1362 1363
s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw __always_unused
					     *hw, u16 *speed, u16 *duplex)
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
{
	*speed = SPEED_1000;
	*duplex = FULL_DUPLEX;

	return 0;
}

/**
 *  e1000e_get_hw_semaphore - Acquire hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Acquire the HW semaphore to access the PHY or NVM
 **/
s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
{
	u32 swsm;
	s32 timeout = hw->nvm.word_size + 1;
	s32 i = 0;

	/* Get the SW semaphore */
	while (i < timeout) {
		swsm = er32(SWSM);
		if (!(swsm & E1000_SWSM_SMBI))
			break;

1389
		usleep_range(50, 100);
1390 1391 1392 1393
		i++;
	}

	if (i == timeout) {
1394
		e_dbg("Driver can't access device - SMBI bit is set.\n");
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
		return -E1000_ERR_NVM;
	}

	/* Get the FW semaphore. */
	for (i = 0; i < timeout; i++) {
		swsm = er32(SWSM);
		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);

		/* Semaphore acquired if bit latched */
		if (er32(SWSM) & E1000_SWSM_SWESMBI)
			break;

1407
		usleep_range(50, 100);
1408 1409 1410 1411 1412
	}

	if (i == timeout) {
		/* Release semaphores */
		e1000e_put_hw_semaphore(hw);
1413
		e_dbg("Driver can't access the NVM\n");
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
		return -E1000_ERR_NVM;
	}

	return 0;
}

/**
 *  e1000e_put_hw_semaphore - Release hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Release hardware semaphore used to access the PHY or NVM
 **/
void e1000e_put_hw_semaphore(struct e1000_hw *hw)
{
	u32 swsm;

	swsm = er32(SWSM);
	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
	ew32(SWSM, swsm);
}

/**
 *  e1000e_get_auto_rd_done - Check for auto read completion
 *  @hw: pointer to the HW structure
 *
 *  Check EEPROM for Auto Read done bit.
 **/
s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
{
	s32 i = 0;

	while (i < AUTO_READ_DONE_TIMEOUT) {
		if (er32(EECD) & E1000_EECD_AUTO_RD)
			break;
1448
		usleep_range(1000, 2000);
1449 1450 1451 1452
		i++;
	}

	if (i == AUTO_READ_DONE_TIMEOUT) {
1453
		e_dbg("Auto read by HW from NVM has not completed.\n");
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
		return -E1000_ERR_RESET;
	}

	return 0;
}

/**
 *  e1000e_valid_led_default - Verify a valid default LED config
 *  @hw: pointer to the HW structure
 *  @data: pointer to the NVM (EEPROM)
 *
 *  Read the EEPROM for the current default LED configuration.  If the
 *  LED configuration is not valid, set to a valid LED configuration.
 **/
s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
{
	s32 ret_val;

	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
	if (ret_val) {
1474
		e_dbg("NVM Read Error\n");
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
		return ret_val;
	}

	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
		*data = ID_LED_DEFAULT;

	return 0;
}

/**
1485
 *  e1000e_id_led_init_generic -
1486 1487 1488
 *  @hw: pointer to the HW structure
 *
 **/
1489
s32 e1000e_id_led_init_generic(struct e1000_hw *hw)
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;
	const u32 ledctl_mask = 0x000000FF;
	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
	u16 data, i, temp;
	const u16 led_mask = 0x0F;

	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
	if (ret_val)
		return ret_val;

	mac->ledctl_default = er32(LEDCTL);
	mac->ledctl_mode1 = mac->ledctl_default;
	mac->ledctl_mode2 = mac->ledctl_default;

	for (i = 0; i < 4; i++) {
		temp = (data >> (i << 2)) & led_mask;
		switch (temp) {
		case ID_LED_ON1_DEF2:
		case ID_LED_ON1_ON2:
		case ID_LED_ON1_OFF2:
			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
			mac->ledctl_mode1 |= ledctl_on << (i << 3);
			break;
		case ID_LED_OFF1_DEF2:
		case ID_LED_OFF1_ON2:
		case ID_LED_OFF1_OFF2:
			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
			mac->ledctl_mode1 |= ledctl_off << (i << 3);
			break;
		default:
			/* Do nothing */
			break;
		}
		switch (temp) {
		case ID_LED_DEF1_ON2:
		case ID_LED_ON1_ON2:
		case ID_LED_OFF1_ON2:
			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
			mac->ledctl_mode2 |= ledctl_on << (i << 3);
			break;
		case ID_LED_DEF1_OFF2:
		case ID_LED_ON1_OFF2:
		case ID_LED_OFF1_OFF2:
			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
			mac->ledctl_mode2 |= ledctl_off << (i << 3);
			break;
		default:
			/* Do nothing */
			break;
		}
	}

	return 0;
}

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
/**
 *  e1000e_setup_led_generic - Configures SW controllable LED
 *  @hw: pointer to the HW structure
 *
 *  This prepares the SW controllable LED for use and saves the current state
 *  of the LED so it can be later restored.
 **/
s32 e1000e_setup_led_generic(struct e1000_hw *hw)
{
	u32 ledctl;

B
Bruce Allan 已提交
1559
	if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
1560 1561 1562 1563 1564 1565
		return -E1000_ERR_CONFIG;

	if (hw->phy.media_type == e1000_media_type_fiber) {
		ledctl = er32(LEDCTL);
		hw->mac.ledctl_default = ledctl;
		/* Turn off LED0 */
1566 1567
		ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
			    E1000_LEDCTL_LED0_MODE_MASK);
1568
		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1569
			   E1000_LEDCTL_LED0_MODE_SHIFT);
1570 1571 1572 1573 1574 1575 1576 1577
		ew32(LEDCTL, ledctl);
	} else if (hw->phy.media_type == e1000_media_type_copper) {
		ew32(LEDCTL, hw->mac.ledctl_mode1);
	}

	return 0;
}

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
/**
 *  e1000e_cleanup_led_generic - Set LED config to default operation
 *  @hw: pointer to the HW structure
 *
 *  Remove the current LED configuration and set the LED configuration
 *  to the default value, saved from the EEPROM.
 **/
s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
{
	ew32(LEDCTL, hw->mac.ledctl_default);
	return 0;
}

/**
1592
 *  e1000e_blink_led_generic - Blink LED
1593 1594
 *  @hw: pointer to the HW structure
 *
1595
 *  Blink the LEDs which are set to be on.
1596
 **/
1597
s32 e1000e_blink_led_generic(struct e1000_hw *hw)
1598 1599 1600 1601
{
	u32 ledctl_blink = 0;
	u32 i;

1602
	if (hw->phy.media_type == e1000_media_type_fiber) {
1603 1604
		/* always blink LED0 for PCI-E fiber */
		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1605
		    (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1606
	} else {
1607 1608 1609 1610 1611
		/* Set the blink bit for each LED that's "on" (0x0E)
		 * (or "off" if inverted) in ledctl_mode2.  The blink
		 * logic in hardware only works when mode is set to "on"
		 * so it must be changed accordingly when the mode is
		 * "off" and inverted.
1612
		 */
1613
		ledctl_blink = hw->mac.ledctl_mode2;
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
		for (i = 0; i < 32; i += 8) {
			u32 mode = (hw->mac.ledctl_mode2 >> i) &
			    E1000_LEDCTL_LED0_MODE_MASK;
			u32 led_default = hw->mac.ledctl_default >> i;

			if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
			     (mode == E1000_LEDCTL_MODE_LED_ON)) ||
			    ((led_default & E1000_LEDCTL_LED0_IVRT) &&
			     (mode == E1000_LEDCTL_MODE_LED_OFF))) {
				ledctl_blink &=
				    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
						 E1000_LEDCTL_MODE_LED_ON) << i;
			}
		}
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
	}

	ew32(LEDCTL, ledctl_blink);

	return 0;
}

/**
 *  e1000e_led_on_generic - Turn LED on
 *  @hw: pointer to the HW structure
 *
 *  Turn LED on.
 **/
s32 e1000e_led_on_generic(struct e1000_hw *hw)
{
	u32 ctrl;

1646
	switch (hw->phy.media_type) {
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
	case e1000_media_type_fiber:
		ctrl = er32(CTRL);
		ctrl &= ~E1000_CTRL_SWDPIN0;
		ctrl |= E1000_CTRL_SWDPIO0;
		ew32(CTRL, ctrl);
		break;
	case e1000_media_type_copper:
		ew32(LEDCTL, hw->mac.ledctl_mode2);
		break;
	default:
		break;
	}

	return 0;
}

/**
 *  e1000e_led_off_generic - Turn LED off
 *  @hw: pointer to the HW structure
 *
 *  Turn LED off.
 **/
s32 e1000e_led_off_generic(struct e1000_hw *hw)
{
	u32 ctrl;

1673
	switch (hw->phy.media_type) {
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
	case e1000_media_type_fiber:
		ctrl = er32(CTRL);
		ctrl |= E1000_CTRL_SWDPIN0;
		ctrl |= E1000_CTRL_SWDPIO0;
		ew32(CTRL, ctrl);
		break;
	case e1000_media_type_copper:
		ew32(LEDCTL, hw->mac.ledctl_mode1);
		break;
	default:
		break;
	}

	return 0;
}

/**
 *  e1000e_set_pcie_no_snoop - Set PCI-express capabilities
 *  @hw: pointer to the HW structure
 *  @no_snoop: bitmap of snoop events
 *
 *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
 **/
void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
{
	u32 gcr;

	if (no_snoop) {
		gcr = er32(GCR);
		gcr &= ~(PCIE_NO_SNOOP_ALL);
		gcr |= no_snoop;
		ew32(GCR, gcr);
	}
}

/**
 *  e1000e_disable_pcie_master - Disables PCI-express master access
 *  @hw: pointer to the HW structure
 *
 *  Returns 0 if successful, else returns -10
1714
 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
 *  the master requests to be disabled.
 *
 *  Disables PCI-Express master access and verifies there are no pending
 *  requests.
 **/
s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 timeout = MASTER_DISABLE_TIMEOUT;

	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
	ew32(CTRL, ctrl);

	while (timeout) {
1730
		if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
1731
			break;
1732
		usleep_range(100, 200);
1733 1734 1735 1736
		timeout--;
	}

	if (!timeout) {
1737
		e_dbg("Master requests are pending.\n");
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
		return -E1000_ERR_MASTER_REQUESTS_PENDING;
	}

	return 0;
}

/**
 *  e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
 *  @hw: pointer to the HW structure
 *
 *  Reset the Adaptive Interframe Spacing throttle to default values.
 **/
void e1000e_reset_adaptive(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;

1754 1755
	if (!mac->adaptive_ifs) {
		e_dbg("Not in Adaptive IFS mode!\n");
1756
		return;
1757 1758
	}

1759 1760 1761 1762 1763 1764
	mac->current_ifs_val = 0;
	mac->ifs_min_val = IFS_MIN;
	mac->ifs_max_val = IFS_MAX;
	mac->ifs_step_size = IFS_STEP;
	mac->ifs_ratio = IFS_RATIO;

1765
	mac->in_ifs_mode = false;
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
	ew32(AIT, 0);
}

/**
 *  e1000e_update_adaptive - Update Adaptive Interframe Spacing
 *  @hw: pointer to the HW structure
 *
 *  Update the Adaptive Interframe Spacing Throttle value based on the
 *  time between transmitted packets and time between collisions.
 **/
void e1000e_update_adaptive(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;

1780 1781
	if (!mac->adaptive_ifs) {
		e_dbg("Not in Adaptive IFS mode!\n");
1782
		return;
1783 1784
	}

1785 1786
	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1787
			mac->in_ifs_mode = true;
1788 1789 1790 1791 1792
			if (mac->current_ifs_val < mac->ifs_max_val) {
				if (!mac->current_ifs_val)
					mac->current_ifs_val = mac->ifs_min_val;
				else
					mac->current_ifs_val +=
1793
					    mac->ifs_step_size;
1794
				ew32(AIT, mac->current_ifs_val);
1795 1796 1797 1798 1799 1800
			}
		}
	} else {
		if (mac->in_ifs_mode &&
		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
			mac->current_ifs_val = 0;
1801
			mac->in_ifs_mode = false;
1802 1803 1804 1805
			ew32(AIT, 0);
		}
	}
}