mac.c 51.7 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
B
Bruce Allan 已提交
4
  Copyright(c) 1999 - 2013 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include "e1000.h"

/**
 *  e1000e_get_bus_info_pcie - Get PCIe bus information
 *  @hw: pointer to the HW structure
 *
 *  Determines and stores the system bus information for a particular
 *  network interface.  The following bus information is determined and stored:
 *  bus speed, bus width, type (PCIe), and PCIe function.
 **/
s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
{
41
	struct e1000_mac_info *mac = &hw->mac;
42 43
	struct e1000_bus_info *bus = &hw->bus;
	struct e1000_adapter *adapter = hw->adapter;
44
	u16 pcie_link_status, cap_offset;
45

46
	cap_offset = adapter->pdev->pcie_cap;
47 48 49 50 51 52 53 54 55 56 57
	if (!cap_offset) {
		bus->width = e1000_bus_width_unknown;
	} else {
		pci_read_config_word(adapter->pdev,
				     cap_offset + PCIE_LINK_STATUS,
				     &pcie_link_status);
		bus->width = (enum e1000_bus_width)((pcie_link_status &
						     PCIE_LINK_WIDTH_MASK) >>
						    PCIE_LINK_WIDTH_SHIFT);
	}

58
	mac->ops.set_lan_id(hw);
59 60 61 62

	return 0;
}

63 64 65 66 67 68 69 70 71 72 73 74 75
/**
 *  e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
 *
 *  @hw: pointer to the HW structure
 *
 *  Determines the LAN function id by reading memory-mapped registers
 *  and swaps the port value if requested.
 **/
void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
{
	struct e1000_bus_info *bus = &hw->bus;
	u32 reg;

B
Bruce Allan 已提交
76
	/* The status register reports the correct function number
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
	 * for the device regardless of function swap state.
	 */
	reg = er32(STATUS);
	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
}

/**
 *  e1000_set_lan_id_single_port - Set LAN id for a single port device
 *  @hw: pointer to the HW structure
 *
 *  Sets the LAN function id to zero for a single port device.
 **/
void e1000_set_lan_id_single_port(struct e1000_hw *hw)
{
	struct e1000_bus_info *bus = &hw->bus;

	bus->func = 0;
}

96
/**
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
 *  e1000_clear_vfta_generic - Clear VLAN filter table
 *  @hw: pointer to the HW structure
 *
 *  Clears the register array which contains the VLAN filter table by
 *  setting all the values to 0.
 **/
void e1000_clear_vfta_generic(struct e1000_hw *hw)
{
	u32 offset;

	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
		e1e_flush();
	}
}

/**
 *  e1000_write_vfta_generic - Write value to VLAN filter table
115 116 117 118 119 120 121
 *  @hw: pointer to the HW structure
 *  @offset: register offset in VLAN filter table
 *  @value: register value written to VLAN filter table
 *
 *  Writes value at the given offset in the register array which stores
 *  the VLAN filter table.
 **/
122
void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
123 124 125 126 127 128 129 130 131 132
{
	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
	e1e_flush();
}

/**
 *  e1000e_init_rx_addrs - Initialize receive address's
 *  @hw: pointer to the HW structure
 *  @rar_count: receive address registers
 *
B
Bruce Allan 已提交
133
 *  Setup the receive address registers by setting the base receive address
134 135 136 137 138 139
 *  register to the devices MAC address and clearing all the other receive
 *  address registers to 0.
 **/
void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
{
	u32 i;
140
	u8 mac_addr[ETH_ALEN] = { 0 };
141 142

	/* Setup the receive address */
143
	e_dbg("Programming MAC Address into RAR[0]\n");
144

145
	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
146 147

	/* Zero out the other (rar_entry_count - 1) receive addresses */
148
	e_dbg("Clearing RAR[1-%u]\n", rar_count - 1);
149
	for (i = 1; i < rar_count; i++)
150
		hw->mac.ops.rar_set(hw, mac_addr, i);
151 152
}

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
/**
 *  e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
 *  @hw: pointer to the HW structure
 *
 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
 *  can be setup by pre-boot software and must be treated like a permanent
 *  address and must override the actual permanent MAC address. If an
 *  alternate MAC address is found it is programmed into RAR0, replacing
 *  the permanent address that was installed into RAR0 by the Si on reset.
 *  This function will return SUCCESS unless it encounters an error while
 *  reading the EEPROM.
 **/
s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
{
	u32 i;
168
	s32 ret_val;
169 170 171
	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
	u8 alt_mac_addr[ETH_ALEN];

172 173
	ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
	if (ret_val)
174
		return ret_val;
175

176 177
	/* not supported on 82573 */
	if (hw->mac.type == e1000_82573)
178
		return 0;
179

180
	ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
181
				 &nvm_alt_mac_addr_offset);
182 183
	if (ret_val) {
		e_dbg("NVM Read Error\n");
184
		return ret_val;
185 186
	}

187 188
	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
	    (nvm_alt_mac_addr_offset == 0x0000))
189
		/* There is no Alternate MAC Address */
190
		return 0;
191 192 193 194 195 196 197 198

	if (hw->bus.func == E1000_FUNC_1)
		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
	for (i = 0; i < ETH_ALEN; i += 2) {
		offset = nvm_alt_mac_addr_offset + (i >> 1);
		ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
		if (ret_val) {
			e_dbg("NVM Read Error\n");
199
			return ret_val;
200 201 202 203 204 205 206
		}

		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
	}

	/* if multicast bit is set, the alternate address will not be used */
207
	if (is_multicast_ether_addr(alt_mac_addr)) {
208
		e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
209
		return 0;
210 211
	}

B
Bruce Allan 已提交
212
	/* We have a valid alternate MAC address, and we want to treat it the
213 214 215
	 * same as the normal permanent MAC address stored by the HW into the
	 * RAR. Do this by mapping this address into RAR0.
	 */
216
	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
217

218
	return 0;
219 220
}

221
/**
222
 *  e1000e_rar_set_generic - Set receive address register
223 224 225 226 227 228 229
 *  @hw: pointer to the HW structure
 *  @addr: pointer to the receive address
 *  @index: receive address array register
 *
 *  Sets the receive address array register at index to the address passed
 *  in by addr.
 **/
230
void e1000e_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
231 232 233
{
	u32 rar_low, rar_high;

B
Bruce Allan 已提交
234
	/* HW expects these in little endian so we reverse the byte order
235 236
	 * from network order (big endian) to little endian
	 */
237 238
	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
239

240
	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
241

242 243 244
	/* If MAC address zero, no need to set the AV bit */
	if (rar_low || rar_high)
		rar_high |= E1000_RAH_AV;
245

B
Bruce Allan 已提交
246
	/* Some bridges will combine consecutive 32-bit writes into
247 248 249 250 251 252 253
	 * a single burst write, which will malfunction on some parts.
	 * The flushes avoid this.
	 */
	ew32(RAL(index), rar_low);
	e1e_flush();
	ew32(RAH(index), rar_high);
	e1e_flush();
254 255 256 257 258 259 260 261
}

/**
 *  e1000_hash_mc_addr - Generate a multicast hash value
 *  @hw: pointer to the HW structure
 *  @mc_addr: pointer to a multicast address
 *
 *  Generates a multicast address hash value which is used to determine
262
 *  the multicast filter table array address and new table value.
263 264 265 266 267 268 269 270 271
 **/
static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
{
	u32 hash_value, hash_mask;
	u8 bit_shift = 0;

	/* Register count multiplied by bits per register */
	hash_mask = (hw->mac.mta_reg_count * 32) - 1;

B
Bruce Allan 已提交
272
	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
273 274
	 * where 0xFF would still fall within the hash mask.
	 */
275 276 277
	while (hash_mask >> bit_shift != 0xFF)
		bit_shift++;

B
Bruce Allan 已提交
278
	/* The portion of the address that is used for the hash table
279 280 281 282 283 284 285 286 287 288
	 * is determined by the mc_filter_type setting.
	 * The algorithm is such that there is a total of 8 bits of shifting.
	 * The bit_shift for a mc_filter_type of 0 represents the number of
	 * left-shifts where the MSB of mc_addr[5] would still fall within
	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
	 * of 8 bits of shifting, then mc_addr[4] will shift right the
	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
	 * cases are a variation of this algorithm...essentially raising the
	 * number of bits to shift mc_addr[5] left, while still keeping the
	 * 8-bit shifting total.
289 290
	 *
	 * For example, given the following Destination MAC Address and an
291 292 293 294 295
	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
	 * we can see that the bit_shift for case 0 is 4.  These are the hash
	 * values resulting from each mc_filter_type...
	 * [0] [1] [2] [3] [4] [5]
	 * 01  AA  00  12  34  56
296
	 * LSB           MSB
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
	 *
	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
	 */
	switch (hw->mac.mc_filter_type) {
	default:
	case 0:
		break;
	case 1:
		bit_shift += 1;
		break;
	case 2:
		bit_shift += 2;
		break;
	case 3:
		bit_shift += 4;
		break;
	}

	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
319
				   (((u16)mc_addr[5]) << bit_shift)));
320 321 322 323 324

	return hash_value;
}

/**
325
 *  e1000e_update_mc_addr_list_generic - Update Multicast addresses
326 327 328 329
 *  @hw: pointer to the HW structure
 *  @mc_addr_list: array of multicast addresses to program
 *  @mc_addr_count: number of multicast addresses to program
 *
330
 *  Updates entire Multicast Table Array.
331 332
 *  The caller must have a packed mc_addr_list of multicast addresses.
 **/
333
void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
334
					u8 *mc_addr_list, u32 mc_addr_count)
335
{
336 337
	u32 hash_value, hash_bit, hash_reg;
	int i;
338

339 340
	/* clear mta_shadow */
	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
341

342
	/* update mta_shadow from mc_addr_list */
343
	for (i = 0; (u32)i < mc_addr_count; i++) {
344
		hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
345

346 347 348
		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
		hash_bit = hash_value & 0x1F;

349 350 351
		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
		mc_addr_list += (ETH_ALEN);
	}
352

353 354 355
	/* replace the entire MTA table */
	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
356
	e1e_flush();
357 358 359 360 361 362 363 364 365 366
}

/**
 *  e1000e_clear_hw_cntrs_base - Clear base hardware counters
 *  @hw: pointer to the HW structure
 *
 *  Clears the base hardware counters by reading the counter registers.
 **/
void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
{
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
	er32(CRCERRS);
	er32(SYMERRS);
	er32(MPC);
	er32(SCC);
	er32(ECOL);
	er32(MCC);
	er32(LATECOL);
	er32(COLC);
	er32(DC);
	er32(SEC);
	er32(RLEC);
	er32(XONRXC);
	er32(XONTXC);
	er32(XOFFRXC);
	er32(XOFFTXC);
	er32(FCRUC);
	er32(GPRC);
	er32(BPRC);
	er32(MPRC);
	er32(GPTC);
	er32(GORCL);
	er32(GORCH);
	er32(GOTCL);
	er32(GOTCH);
	er32(RNBC);
	er32(RUC);
	er32(RFC);
	er32(ROC);
	er32(RJC);
	er32(TORL);
	er32(TORH);
	er32(TOTL);
	er32(TOTH);
	er32(TPR);
	er32(TPT);
	er32(MPTC);
	er32(BPTC);
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
}

/**
 *  e1000e_check_for_copper_link - Check for link (Copper)
 *  @hw: pointer to the HW structure
 *
 *  Checks to see of the link status of the hardware has changed.  If a
 *  change in link status has been detected, then we read the PHY registers
 *  to get the current speed/duplex if link exists.
 **/
s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;
	bool link;

B
Bruce Allan 已提交
420
	/* We only want to go out to the PHY registers to see if Auto-Neg
421 422 423 424 425 426 427
	 * has completed and/or if our link status has changed.  The
	 * get_link_status flag is set upon receiving a Link Status
	 * Change or Rx Sequence Error interrupt.
	 */
	if (!mac->get_link_status)
		return 0;

B
Bruce Allan 已提交
428
	/* First we want to see if the MII Status Register reports
429 430 431 432 433 434 435 436
	 * link.  If so, then we want to get the current speed/duplex
	 * of the PHY.
	 */
	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
		return ret_val;

	if (!link)
B
Bruce Allan 已提交
437
		return 0;	/* No link detected */
438

439
	mac->get_link_status = false;
440

B
Bruce Allan 已提交
441
	/* Check if there was DownShift, must be checked
442 443
	 * immediately after link-up
	 */
444 445
	e1000e_check_downshift(hw);

B
Bruce Allan 已提交
446
	/* If we are forcing speed/duplex, then we simply return since
447 448
	 * we have already determined whether we have link or not.
	 */
449 450
	if (!mac->autoneg)
		return -E1000_ERR_CONFIG;
451

B
Bruce Allan 已提交
452
	/* Auto-Neg is enabled.  Auto Speed Detection takes care
453 454 455
	 * of MAC speed/duplex configuration.  So we only need to
	 * configure Collision Distance in the MAC.
	 */
456
	mac->ops.config_collision_dist(hw);
457

B
Bruce Allan 已提交
458
	/* Configure Flow Control now that Auto-Neg has completed.
459 460 461 462 463
	 * First, we need to restore the desired flow control
	 * settings because we may have had to re-autoneg with a
	 * different link partner.
	 */
	ret_val = e1000e_config_fc_after_link_up(hw);
B
Bruce Allan 已提交
464
	if (ret_val)
465
		e_dbg("Error configuring flow control\n");
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488

	return ret_val;
}

/**
 *  e1000e_check_for_fiber_link - Check for link (Fiber)
 *  @hw: pointer to the HW structure
 *
 *  Checks for link up on the hardware.  If link is not up and we have
 *  a signal, then we need to force link up.
 **/
s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 rxcw;
	u32 ctrl;
	u32 status;
	s32 ret_val;

	ctrl = er32(CTRL);
	status = er32(STATUS);
	rxcw = er32(RXCW);

B
Bruce Allan 已提交
489
	/* If we don't have link (auto-negotiation failed or link partner
490 491 492 493 494 495 496
	 * cannot auto-negotiate), the cable is plugged in (we have signal),
	 * and our link partner is not trying to auto-negotiate with us (we
	 * are receiving idles or data), we need to force link up. We also
	 * need to give auto-negotiation time to complete, in case the cable
	 * was just plugged in. The autoneg_failed flag does this.
	 */
	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
497 498
	if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
	    !(rxcw & E1000_RXCW_C)) {
499 500
		if (!mac->autoneg_failed) {
			mac->autoneg_failed = true;
501 502
			return 0;
		}
503
		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
504 505 506 507 508 509 510 511 512 513 514 515

		/* Disable auto-negotiation in the TXCW register */
		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));

		/* Force link-up and also force full-duplex. */
		ctrl = er32(CTRL);
		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
		ew32(CTRL, ctrl);

		/* Configure Flow Control after forcing link up. */
		ret_val = e1000e_config_fc_after_link_up(hw);
		if (ret_val) {
516
			e_dbg("Error configuring flow control\n");
517 518 519
			return ret_val;
		}
	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
B
Bruce Allan 已提交
520
		/* If we are forcing link and we are receiving /C/ ordered
521 522 523 524
		 * sets, re-enable auto-negotiation in the TXCW register
		 * and disable forced link in the Device Control register
		 * in an attempt to auto-negotiate with our link partner.
		 */
525
		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
526 527 528
		ew32(TXCW, mac->txcw);
		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));

529
		mac->serdes_has_link = true;
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
	}

	return 0;
}

/**
 *  e1000e_check_for_serdes_link - Check for link (Serdes)
 *  @hw: pointer to the HW structure
 *
 *  Checks for link up on the hardware.  If link is not up and we have
 *  a signal, then we need to force link up.
 **/
s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 rxcw;
	u32 ctrl;
	u32 status;
	s32 ret_val;

	ctrl = er32(CTRL);
	status = er32(STATUS);
	rxcw = er32(RXCW);

B
Bruce Allan 已提交
554
	/* If we don't have link (auto-negotiation failed or link partner
555 556 557 558 559 560
	 * cannot auto-negotiate), and our link partner is not trying to
	 * auto-negotiate with us (we are receiving idles or data),
	 * we need to force link up. We also need to give auto-negotiation
	 * time to complete.
	 */
	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
561
	if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
562 563
		if (!mac->autoneg_failed) {
			mac->autoneg_failed = true;
564 565
			return 0;
		}
566
		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
567 568 569 570 571 572 573 574 575 576 577 578

		/* Disable auto-negotiation in the TXCW register */
		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));

		/* Force link-up and also force full-duplex. */
		ctrl = er32(CTRL);
		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
		ew32(CTRL, ctrl);

		/* Configure Flow Control after forcing link up. */
		ret_val = e1000e_config_fc_after_link_up(hw);
		if (ret_val) {
579
			e_dbg("Error configuring flow control\n");
580 581 582
			return ret_val;
		}
	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
B
Bruce Allan 已提交
583
		/* If we are forcing link and we are receiving /C/ ordered
584 585 586 587
		 * sets, re-enable auto-negotiation in the TXCW register
		 * and disable forced link in the Device Control register
		 * in an attempt to auto-negotiate with our link partner.
		 */
588
		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
589 590 591
		ew32(TXCW, mac->txcw);
		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));

592
		mac->serdes_has_link = true;
593
	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
B
Bruce Allan 已提交
594
		/* If we force link for non-auto-negotiation switch, check
595 596 597 598
		 * link status based on MAC synchronization for internal
		 * serdes media type.
		 */
		/* SYNCH bit and IV bit are sticky. */
599
		usleep_range(10, 20);
600 601
		rxcw = er32(RXCW);
		if (rxcw & E1000_RXCW_SYNCH) {
602
			if (!(rxcw & E1000_RXCW_IV)) {
603
				mac->serdes_has_link = true;
604
				e_dbg("SERDES: Link up - forced.\n");
605 606
			}
		} else {
607
			mac->serdes_has_link = false;
608
			e_dbg("SERDES: Link down - force failed.\n");
609 610 611 612 613
		}
	}

	if (E1000_TXCW_ANE & er32(TXCW)) {
		status = er32(STATUS);
614
		if (status & E1000_STATUS_LU) {
615
			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
616
			usleep_range(10, 20);
617 618 619 620
			rxcw = er32(RXCW);
			if (rxcw & E1000_RXCW_SYNCH) {
				if (!(rxcw & E1000_RXCW_IV)) {
					mac->serdes_has_link = true;
621
					e_dbg("SERDES: Link up - autoneg completed successfully.\n");
622 623
				} else {
					mac->serdes_has_link = false;
624
					e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n");
625 626 627
				}
			} else {
				mac->serdes_has_link = false;
628
				e_dbg("SERDES: Link down - no sync.\n");
629 630 631
			}
		} else {
			mac->serdes_has_link = false;
632
			e_dbg("SERDES: Link down - autoneg failed\n");
633
		}
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
	}

	return 0;
}

/**
 *  e1000_set_default_fc_generic - Set flow control default values
 *  @hw: pointer to the HW structure
 *
 *  Read the EEPROM for the default values for flow control and store the
 *  values.
 **/
static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 nvm_data;

B
Bruce Allan 已提交
651
	/* Read and store word 0x0F of the EEPROM. This word contains bits
652 653 654 655 656 657 658 659 660 661
	 * that determine the hardware's default PAUSE (flow control) mode,
	 * a bit that determines whether the HW defaults to enabling or
	 * disabling auto-negotiation, and the direction of the
	 * SW defined pins. If there is no SW over-ride of the flow
	 * control setting, then the variable hw->fc will
	 * be initialized based on a value in the EEPROM.
	 */
	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);

	if (ret_val) {
662
		e_dbg("NVM Read Error\n");
663 664 665
		return ret_val;
	}

B
Bruce Allan 已提交
666
	if (!(nvm_data & NVM_WORD0F_PAUSE_MASK))
667
		hw->fc.requested_mode = e1000_fc_none;
668
	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
669
		hw->fc.requested_mode = e1000_fc_tx_pause;
670
	else
671
		hw->fc.requested_mode = e1000_fc_full;
672 673 674 675 676

	return 0;
}

/**
677
 *  e1000e_setup_link_generic - Setup flow control and link settings
678 679 680 681 682 683 684 685
 *  @hw: pointer to the HW structure
 *
 *  Determines which flow control settings to use, then configures flow
 *  control.  Calls the appropriate media-specific link configuration
 *  function.  Assuming the adapter has a valid link partner, a valid link
 *  should be established.  Assumes the hardware has previously been reset
 *  and the transmitter and receiver are not enabled.
 **/
686
s32 e1000e_setup_link_generic(struct e1000_hw *hw)
687 688 689
{
	s32 ret_val;

B
Bruce Allan 已提交
690
	/* In the case of the phy reset being blocked, we already have a link.
691 692
	 * We do not need to set it up again.
	 */
693
	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
694 695
		return 0;

B
Bruce Allan 已提交
696
	/* If requested flow control is set to default, set flow control
697
	 * based on the EEPROM flow control settings.
698
	 */
699
	if (hw->fc.requested_mode == e1000_fc_default) {
700 701 702 703
		ret_val = e1000_set_default_fc_generic(hw);
		if (ret_val)
			return ret_val;
	}
704

B
Bruce Allan 已提交
705
	/* Save off the requested flow control mode for use later.  Depending
706
	 * on the link partner's capabilities, we may or may not use this mode.
707
	 */
708
	hw->fc.current_mode = hw->fc.requested_mode;
709

710
	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
711 712

	/* Call the necessary media_type subroutine to configure the link. */
713
	ret_val = hw->mac.ops.setup_physical_interface(hw);
714 715 716
	if (ret_val)
		return ret_val;

B
Bruce Allan 已提交
717
	/* Initialize the flow control address, type, and PAUSE timer
718 719 720 721
	 * registers to their default values.  This is done even if flow
	 * control is disabled, because it does not hurt anything to
	 * initialize these registers.
	 */
722
	e_dbg("Initializing the Flow Control address, type and timer regs\n");
723 724 725 726
	ew32(FCT, FLOW_CONTROL_TYPE);
	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);

727
	ew32(FCTTV, hw->fc.pause_time);
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743

	return e1000e_set_fc_watermarks(hw);
}

/**
 *  e1000_commit_fc_settings_generic - Configure flow control
 *  @hw: pointer to the HW structure
 *
 *  Write the flow control settings to the Transmit Config Word Register (TXCW)
 *  base on the flow control settings in e1000_mac_info.
 **/
static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 txcw;

B
Bruce Allan 已提交
744
	/* Check for a software override of the flow control settings, and
745 746 747 748 749 750 751 752 753 754
	 * setup the device accordingly.  If auto-negotiation is enabled, then
	 * software will have to set the "PAUSE" bits to the correct value in
	 * the Transmit Config Word Register (TXCW) and re-start auto-
	 * negotiation.  However, if auto-negotiation is disabled, then
	 * software will have to manually configure the two flow control enable
	 * bits in the CTRL register.
	 *
	 * The possible values of the "fc" parameter are:
	 *      0:  Flow control is completely disabled
	 *      1:  Rx flow control is enabled (we can receive pause frames,
755
	 *          but not send pause frames).
756
	 *      2:  Tx flow control is enabled (we can send pause frames but we
757
	 *          do not support receiving pause frames).
758
	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
759
	 */
760
	switch (hw->fc.current_mode) {
761 762 763 764 765
	case e1000_fc_none:
		/* Flow control completely disabled by a software over-ride. */
		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
		break;
	case e1000_fc_rx_pause:
B
Bruce Allan 已提交
766
		/* Rx Flow control is enabled and Tx Flow control is disabled
767
		 * by a software over-ride. Since there really isn't a way to
768 769
		 * advertise that we are capable of Rx Pause ONLY, we will
		 * advertise that we support both symmetric and asymmetric Rx
770 771 772 773 774 775
		 * PAUSE.  Later, we will disable the adapter's ability to send
		 * PAUSE frames.
		 */
		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
		break;
	case e1000_fc_tx_pause:
B
Bruce Allan 已提交
776
		/* Tx Flow control is enabled, and Rx Flow control is disabled,
777 778 779 780 781
		 * by a software over-ride.
		 */
		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
		break;
	case e1000_fc_full:
B
Bruce Allan 已提交
782
		/* Flow control (both Rx and Tx) is enabled by a software
783 784 785 786 787
		 * over-ride.
		 */
		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
		break;
	default:
788
		e_dbg("Flow control param set incorrectly\n");
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
		return -E1000_ERR_CONFIG;
		break;
	}

	ew32(TXCW, txcw);
	mac->txcw = txcw;

	return 0;
}

/**
 *  e1000_poll_fiber_serdes_link_generic - Poll for link up
 *  @hw: pointer to the HW structure
 *
 *  Polls for link up by reading the status register, if link fails to come
 *  up with auto-negotiation, then the link is forced if a signal is detected.
 **/
static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 i, status;
	s32 ret_val;

B
Bruce Allan 已提交
812
	/* If we have a signal (the cable is plugged in, or assumed true for
813 814 815 816 817 818
	 * serdes media) then poll for a "Link-Up" indication in the Device
	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
	 * seconds (Auto-negotiation should complete in less than 500
	 * milliseconds even if the other end is doing it in SW).
	 */
	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
819
		usleep_range(10000, 20000);
820 821 822 823 824
		status = er32(STATUS);
		if (status & E1000_STATUS_LU)
			break;
	}
	if (i == FIBER_LINK_UP_LIMIT) {
825
		e_dbg("Never got a valid link from auto-neg!!!\n");
826
		mac->autoneg_failed = true;
B
Bruce Allan 已提交
827
		/* AutoNeg failed to achieve a link, so we'll call
828 829 830 831 832 833
		 * mac->check_for_link. This routine will force the
		 * link up if we detect a signal. This will allow us to
		 * communicate with non-autonegotiating link partners.
		 */
		ret_val = mac->ops.check_for_link(hw);
		if (ret_val) {
834
			e_dbg("Error while checking for link\n");
835 836
			return ret_val;
		}
837
		mac->autoneg_failed = false;
838
	} else {
839
		mac->autoneg_failed = false;
840
		e_dbg("Valid Link Found\n");
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
	}

	return 0;
}

/**
 *  e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
 *  @hw: pointer to the HW structure
 *
 *  Configures collision distance and flow control for fiber and serdes
 *  links.  Upon successful setup, poll for link.
 **/
s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val;

	ctrl = er32(CTRL);

	/* Take the link out of reset */
	ctrl &= ~E1000_CTRL_LRST;

863
	hw->mac.ops.config_collision_dist(hw);
864 865 866 867 868

	ret_val = e1000_commit_fc_settings_generic(hw);
	if (ret_val)
		return ret_val;

B
Bruce Allan 已提交
869
	/* Since auto-negotiation is enabled, take the link out of reset (the
870 871 872 873 874
	 * link will be in reset, because we previously reset the chip). This
	 * will restart auto-negotiation.  If auto-negotiation is successful
	 * then the link-up status bit will be set and the flow control enable
	 * bits (RFCE and TFCE) will be set according to their negotiated value.
	 */
875
	e_dbg("Auto-negotiation enabled\n");
876 877 878

	ew32(CTRL, ctrl);
	e1e_flush();
879
	usleep_range(1000, 2000);
880

B
Bruce Allan 已提交
881
	/* For these adapters, the SW definable pin 1 is set when the optics
882 883 884
	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
	 * indication.
	 */
885
	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
886 887 888
	    (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
	} else {
889
		e_dbg("No signal detected\n");
890 891
	}

892
	return ret_val;
893 894 895
}

/**
896
 *  e1000e_config_collision_dist_generic - Configure collision distance
897 898 899
 *  @hw: pointer to the HW structure
 *
 *  Configures the collision distance to the default value and is used
900
 *  during link setup.
901
 **/
902
void e1000e_config_collision_dist_generic(struct e1000_hw *hw)
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
{
	u32 tctl;

	tctl = er32(TCTL);

	tctl &= ~E1000_TCTL_COLD;
	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;

	ew32(TCTL, tctl);
	e1e_flush();
}

/**
 *  e1000e_set_fc_watermarks - Set flow control high/low watermarks
 *  @hw: pointer to the HW structure
 *
 *  Sets the flow control high/low threshold (watermark) registers.  If
 *  flow control XON frame transmission is enabled, then set XON frame
921
 *  transmission as well.
922 923 924 925 926
 **/
s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
{
	u32 fcrtl = 0, fcrth = 0;

B
Bruce Allan 已提交
927
	/* Set the flow control receive threshold registers.  Normally,
928 929 930 931 932
	 * these registers will be set to a default threshold that may be
	 * adjusted later by the driver's runtime code.  However, if the
	 * ability to transmit pause frames is not enabled, then these
	 * registers will be set to 0.
	 */
933
	if (hw->fc.current_mode & e1000_fc_tx_pause) {
B
Bruce Allan 已提交
934
		/* We need to set up the Receive Threshold high and low water
935 936 937
		 * marks as well as (optionally) enabling the transmission of
		 * XON frames.
		 */
938
		fcrtl = hw->fc.low_water;
939 940 941
		if (hw->fc.send_xon)
			fcrtl |= E1000_FCRTL_XONE;

942
		fcrth = hw->fc.high_water;
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
	}
	ew32(FCRTL, fcrtl);
	ew32(FCRTH, fcrth);

	return 0;
}

/**
 *  e1000e_force_mac_fc - Force the MAC's flow control settings
 *  @hw: pointer to the HW structure
 *
 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
 *  device control register to reflect the adapter settings.  TFCE and RFCE
 *  need to be explicitly set by software when a copper PHY is used because
 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
 *  also configure these bits when link is forced on a fiber connection.
 **/
s32 e1000e_force_mac_fc(struct e1000_hw *hw)
{
	u32 ctrl;

	ctrl = er32(CTRL);

B
Bruce Allan 已提交
966
	/* Because we didn't get link via the internal auto-negotiation
967 968 969 970 971
	 * mechanism (we either forced link or we got link via PHY
	 * auto-neg), we have to manually enable/disable transmit an
	 * receive flow control.
	 *
	 * The "Case" statement below enables/disable flow control
972
	 * according to the "hw->fc.current_mode" parameter.
973 974 975 976
	 *
	 * The possible values of the "fc" parameter are:
	 *      0:  Flow control is completely disabled
	 *      1:  Rx flow control is enabled (we can receive pause
977
	 *          frames but not send pause frames).
978
	 *      2:  Tx flow control is enabled (we can send pause frames
979
	 *          frames but we do not receive pause frames).
980
	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
981 982
	 *  other:  No other values should be possible at this point.
	 */
983
	e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
984

985
	switch (hw->fc.current_mode) {
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
	case e1000_fc_none:
		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
		break;
	case e1000_fc_rx_pause:
		ctrl &= (~E1000_CTRL_TFCE);
		ctrl |= E1000_CTRL_RFCE;
		break;
	case e1000_fc_tx_pause:
		ctrl &= (~E1000_CTRL_RFCE);
		ctrl |= E1000_CTRL_TFCE;
		break;
	case e1000_fc_full:
		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
		break;
	default:
1001
		e_dbg("Flow control param set incorrectly\n");
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
		return -E1000_ERR_CONFIG;
	}

	ew32(CTRL, ctrl);

	return 0;
}

/**
 *  e1000e_config_fc_after_link_up - Configures flow control after link
 *  @hw: pointer to the HW structure
 *
 *  Checks the status of auto-negotiation after link up to ensure that the
 *  speed and duplex were not forced.  If the link needed to be forced, then
 *  flow control needs to be forced also.  If auto-negotiation is enabled
 *  and did not fail, then we configure flow control based on our link
 *  partner.
 **/
s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val = 0;
1024
	u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
1025 1026 1027
	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
	u16 speed, duplex;

B
Bruce Allan 已提交
1028
	/* Check for the case where we have fiber media and auto-neg failed
1029 1030 1031 1032
	 * so we had to force link.  In this case, we need to force the
	 * configuration of the MAC to match the "fc" parameter.
	 */
	if (mac->autoneg_failed) {
1033 1034
		if (hw->phy.media_type == e1000_media_type_fiber ||
		    hw->phy.media_type == e1000_media_type_internal_serdes)
1035 1036
			ret_val = e1000e_force_mac_fc(hw);
	} else {
1037
		if (hw->phy.media_type == e1000_media_type_copper)
1038 1039 1040 1041
			ret_val = e1000e_force_mac_fc(hw);
	}

	if (ret_val) {
1042
		e_dbg("Error forcing flow control settings\n");
1043 1044 1045
		return ret_val;
	}

B
Bruce Allan 已提交
1046
	/* Check for the case where we have copper media and auto-neg is
1047 1048 1049 1050
	 * enabled.  In this case, we need to check and see if Auto-Neg
	 * has completed, and if so, how the PHY and link partner has
	 * flow control configured.
	 */
1051
	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
B
Bruce Allan 已提交
1052
		/* Read the MII Status Register and check to see if AutoNeg
1053 1054 1055
		 * has completed.  We read this twice because this reg has
		 * some "sticky" (latched) bits.
		 */
1056
		ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1057 1058
		if (ret_val)
			return ret_val;
1059
		ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1060 1061 1062
		if (ret_val)
			return ret_val;

1063
		if (!(mii_status_reg & BMSR_ANEGCOMPLETE)) {
1064
			e_dbg("Copper PHY and Auto Neg has not completed.\n");
1065 1066 1067
			return ret_val;
		}

B
Bruce Allan 已提交
1068
		/* The AutoNeg process has completed, so we now need to
1069 1070 1071 1072 1073
		 * read both the Auto Negotiation Advertisement
		 * Register (Address 4) and the Auto_Negotiation Base
		 * Page Ability Register (Address 5) to determine how
		 * flow control was negotiated.
		 */
1074
		ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_nway_adv_reg);
1075 1076
		if (ret_val)
			return ret_val;
1077
		ret_val = e1e_rphy(hw, MII_LPA, &mii_nway_lp_ability_reg);
1078 1079 1080
		if (ret_val)
			return ret_val;

B
Bruce Allan 已提交
1081
		/* Two bits in the Auto Negotiation Advertisement Register
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
		 * (Address 4) and two bits in the Auto Negotiation Base
		 * Page Ability Register (Address 5) determine flow control
		 * for both the PHY and the link partner.  The following
		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
		 * 1999, describes these PAUSE resolution bits and how flow
		 * control is determined based upon these settings.
		 * NOTE:  DC = Don't Care
		 *
		 *   LOCAL DEVICE  |   LINK PARTNER
		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
		 *-------|---------|-------|---------|--------------------
		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
		 *   0   |    1    |   0   |   DC    | e1000_fc_none
		 *   0   |    1    |   1   |    0    | e1000_fc_none
		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
		 *   1   |    0    |   0   |   DC    | e1000_fc_none
		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
		 *   1   |    1    |   0   |    0    | e1000_fc_none
		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
		 *
1102
		 * Are both PAUSE bits set to 1?  If so, this implies
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
		 * Symmetric Flow Control is enabled at both ends.  The
		 * ASM_DIR bits are irrelevant per the spec.
		 *
		 * For Symmetric Flow Control:
		 *
		 *   LOCAL DEVICE  |   LINK PARTNER
		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
		 *-------|---------|-------|---------|--------------------
		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
		 *
		 */
1114 1115
		if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
		    (mii_nway_lp_ability_reg & LPA_PAUSE_CAP)) {
B
Bruce Allan 已提交
1116
			/* Now we need to check if the user selected Rx ONLY
1117
			 * of pause frames.  In this case, we had to advertise
1118
			 * FULL flow control because we could not advertise Rx
1119
			 * ONLY. Hence, we must now check to see if we need to
B
Bruce Allan 已提交
1120
			 * turn OFF the TRANSMISSION of PAUSE frames.
1121
			 */
1122 1123
			if (hw->fc.requested_mode == e1000_fc_full) {
				hw->fc.current_mode = e1000_fc_full;
1124
				e_dbg("Flow Control = FULL.\n");
1125
			} else {
1126
				hw->fc.current_mode = e1000_fc_rx_pause;
1127
				e_dbg("Flow Control = Rx PAUSE frames only.\n");
1128 1129
			}
		}
B
Bruce Allan 已提交
1130
		/* For receiving PAUSE frames ONLY.
1131 1132 1133 1134 1135 1136
		 *
		 *   LOCAL DEVICE  |   LINK PARTNER
		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
		 *-------|---------|-------|---------|--------------------
		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
		 */
1137 1138 1139 1140
		else if (!(mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
			 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
			 (mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
			 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1141
			hw->fc.current_mode = e1000_fc_tx_pause;
1142
			e_dbg("Flow Control = Tx PAUSE frames only.\n");
1143
		}
B
Bruce Allan 已提交
1144
		/* For transmitting PAUSE frames ONLY.
1145 1146 1147 1148 1149 1150
		 *
		 *   LOCAL DEVICE  |   LINK PARTNER
		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
		 *-------|---------|-------|---------|--------------------
		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
		 */
1151 1152 1153 1154
		else if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
			 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
			 !(mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
			 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1155
			hw->fc.current_mode = e1000_fc_rx_pause;
1156
			e_dbg("Flow Control = Rx PAUSE frames only.\n");
1157
		} else {
B
Bruce Allan 已提交
1158
			/* Per the IEEE spec, at this point flow control
1159 1160
			 * should be disabled.
			 */
1161
			hw->fc.current_mode = e1000_fc_none;
1162
			e_dbg("Flow Control = NONE.\n");
1163 1164
		}

B
Bruce Allan 已提交
1165
		/* Now we need to do one last check...  If we auto-
1166 1167 1168 1169 1170
		 * negotiated to HALF DUPLEX, flow control should not be
		 * enabled per IEEE 802.3 spec.
		 */
		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
		if (ret_val) {
1171
			e_dbg("Error getting link speed and duplex\n");
1172 1173 1174 1175
			return ret_val;
		}

		if (duplex == HALF_DUPLEX)
1176
			hw->fc.current_mode = e1000_fc_none;
1177

B
Bruce Allan 已提交
1178
		/* Now we call a subroutine to actually force the MAC
1179 1180 1181 1182
		 * controller to use the correct flow control settings.
		 */
		ret_val = e1000e_force_mac_fc(hw);
		if (ret_val) {
1183
			e_dbg("Error forcing flow control settings\n");
1184 1185 1186 1187
			return ret_val;
		}
	}

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	/* Check for the case where we have SerDes media and auto-neg is
	 * enabled.  In this case, we need to check and see if Auto-Neg
	 * has completed, and if so, how the PHY and link partner has
	 * flow control configured.
	 */
	if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
	    mac->autoneg) {
		/* Read the PCS_LSTS and check to see if AutoNeg
		 * has completed.
		 */
		pcs_status_reg = er32(PCS_LSTAT);

		if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
			e_dbg("PCS Auto Neg has not completed.\n");
			return ret_val;
		}

		/* The AutoNeg process has completed, so we now need to
		 * read both the Auto Negotiation Advertisement
		 * Register (PCS_ANADV) and the Auto_Negotiation Base
		 * Page Ability Register (PCS_LPAB) to determine how
		 * flow control was negotiated.
		 */
		pcs_adv_reg = er32(PCS_ANADV);
		pcs_lp_ability_reg = er32(PCS_LPAB);

		/* Two bits in the Auto Negotiation Advertisement Register
		 * (PCS_ANADV) and two bits in the Auto Negotiation Base
		 * Page Ability Register (PCS_LPAB) determine flow control
		 * for both the PHY and the link partner.  The following
		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
		 * 1999, describes these PAUSE resolution bits and how flow
		 * control is determined based upon these settings.
		 * NOTE:  DC = Don't Care
		 *
		 *   LOCAL DEVICE  |   LINK PARTNER
		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
		 *-------|---------|-------|---------|--------------------
		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
		 *   0   |    1    |   0   |   DC    | e1000_fc_none
		 *   0   |    1    |   1   |    0    | e1000_fc_none
		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
		 *   1   |    0    |   0   |   DC    | e1000_fc_none
		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
		 *   1   |    1    |   0   |    0    | e1000_fc_none
		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
		 *
		 * Are both PAUSE bits set to 1?  If so, this implies
		 * Symmetric Flow Control is enabled at both ends.  The
		 * ASM_DIR bits are irrelevant per the spec.
		 *
		 * For Symmetric Flow Control:
		 *
		 *   LOCAL DEVICE  |   LINK PARTNER
		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
		 *-------|---------|-------|---------|--------------------
		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
		 *
		 */
		if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
		    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
			/* Now we need to check if the user selected Rx ONLY
			 * of pause frames.  In this case, we had to advertise
			 * FULL flow control because we could not advertise Rx
			 * ONLY. Hence, we must now check to see if we need to
			 * turn OFF the TRANSMISSION of PAUSE frames.
			 */
			if (hw->fc.requested_mode == e1000_fc_full) {
				hw->fc.current_mode = e1000_fc_full;
				e_dbg("Flow Control = FULL.\n");
			} else {
				hw->fc.current_mode = e1000_fc_rx_pause;
				e_dbg("Flow Control = Rx PAUSE frames only.\n");
			}
		}
		/* For receiving PAUSE frames ONLY.
		 *
		 *   LOCAL DEVICE  |   LINK PARTNER
		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
		 *-------|---------|-------|---------|--------------------
		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
		 */
		else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
			 (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
			hw->fc.current_mode = e1000_fc_tx_pause;
			e_dbg("Flow Control = Tx PAUSE frames only.\n");
		}
		/* For transmitting PAUSE frames ONLY.
		 *
		 *   LOCAL DEVICE  |   LINK PARTNER
		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
		 *-------|---------|-------|---------|--------------------
		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
		 */
		else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
			 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
			hw->fc.current_mode = e1000_fc_rx_pause;
			e_dbg("Flow Control = Rx PAUSE frames only.\n");
		} else {
			/* Per the IEEE spec, at this point flow control
			 * should be disabled.
			 */
			hw->fc.current_mode = e1000_fc_none;
			e_dbg("Flow Control = NONE.\n");
		}

		/* Now we call a subroutine to actually force the MAC
		 * controller to use the correct flow control settings.
		 */
		pcs_ctrl_reg = er32(PCS_LCTL);
		pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
		ew32(PCS_LCTL, pcs_ctrl_reg);

		ret_val = e1000e_force_mac_fc(hw);
		if (ret_val) {
			e_dbg("Error forcing flow control settings\n");
			return ret_val;
		}
	}

1312 1313 1314 1315
	return 0;
}

/**
1316
 *  e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1317 1318 1319 1320 1321 1322 1323
 *  @hw: pointer to the HW structure
 *  @speed: stores the current speed
 *  @duplex: stores the current duplex
 *
 *  Read the status register for the current speed/duplex and store the current
 *  speed and duplex for copper connections.
 **/
1324 1325
s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
				       u16 *duplex)
1326 1327 1328 1329
{
	u32 status;

	status = er32(STATUS);
J
Joe Perches 已提交
1330
	if (status & E1000_STATUS_SPEED_1000)
1331
		*speed = SPEED_1000;
J
Joe Perches 已提交
1332
	else if (status & E1000_STATUS_SPEED_100)
1333
		*speed = SPEED_100;
J
Joe Perches 已提交
1334
	else
1335 1336
		*speed = SPEED_10;

J
Joe Perches 已提交
1337
	if (status & E1000_STATUS_FD)
1338
		*duplex = FULL_DUPLEX;
J
Joe Perches 已提交
1339
	else
1340
		*duplex = HALF_DUPLEX;
J
Joe Perches 已提交
1341 1342 1343 1344

	e_dbg("%u Mbps, %s Duplex\n",
	      *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
	      *duplex == FULL_DUPLEX ? "Full" : "Half");
1345 1346 1347 1348 1349

	return 0;
}

/**
1350
 *  e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1351 1352 1353 1354 1355 1356 1357
 *  @hw: pointer to the HW structure
 *  @speed: stores the current speed
 *  @duplex: stores the current duplex
 *
 *  Sets the speed and duplex to gigabit full duplex (the only possible option)
 *  for fiber/serdes links.
 **/
1358 1359
s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw __always_unused
					     *hw, u16 *speed, u16 *duplex)
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
{
	*speed = SPEED_1000;
	*duplex = FULL_DUPLEX;

	return 0;
}

/**
 *  e1000e_get_hw_semaphore - Acquire hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Acquire the HW semaphore to access the PHY or NVM
 **/
s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
{
	u32 swsm;
	s32 timeout = hw->nvm.word_size + 1;
	s32 i = 0;

	/* Get the SW semaphore */
	while (i < timeout) {
		swsm = er32(SWSM);
		if (!(swsm & E1000_SWSM_SMBI))
			break;

1385
		usleep_range(50, 100);
1386 1387 1388 1389
		i++;
	}

	if (i == timeout) {
1390
		e_dbg("Driver can't access device - SMBI bit is set.\n");
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
		return -E1000_ERR_NVM;
	}

	/* Get the FW semaphore. */
	for (i = 0; i < timeout; i++) {
		swsm = er32(SWSM);
		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);

		/* Semaphore acquired if bit latched */
		if (er32(SWSM) & E1000_SWSM_SWESMBI)
			break;

1403
		usleep_range(50, 100);
1404 1405 1406 1407 1408
	}

	if (i == timeout) {
		/* Release semaphores */
		e1000e_put_hw_semaphore(hw);
1409
		e_dbg("Driver can't access the NVM\n");
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
		return -E1000_ERR_NVM;
	}

	return 0;
}

/**
 *  e1000e_put_hw_semaphore - Release hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Release hardware semaphore used to access the PHY or NVM
 **/
void e1000e_put_hw_semaphore(struct e1000_hw *hw)
{
	u32 swsm;

	swsm = er32(SWSM);
	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
	ew32(SWSM, swsm);
}

/**
 *  e1000e_get_auto_rd_done - Check for auto read completion
 *  @hw: pointer to the HW structure
 *
 *  Check EEPROM for Auto Read done bit.
 **/
s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
{
	s32 i = 0;

	while (i < AUTO_READ_DONE_TIMEOUT) {
		if (er32(EECD) & E1000_EECD_AUTO_RD)
			break;
1444
		usleep_range(1000, 2000);
1445 1446 1447 1448
		i++;
	}

	if (i == AUTO_READ_DONE_TIMEOUT) {
1449
		e_dbg("Auto read by HW from NVM has not completed.\n");
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
		return -E1000_ERR_RESET;
	}

	return 0;
}

/**
 *  e1000e_valid_led_default - Verify a valid default LED config
 *  @hw: pointer to the HW structure
 *  @data: pointer to the NVM (EEPROM)
 *
 *  Read the EEPROM for the current default LED configuration.  If the
 *  LED configuration is not valid, set to a valid LED configuration.
 **/
s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
{
	s32 ret_val;

	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
	if (ret_val) {
1470
		e_dbg("NVM Read Error\n");
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
		return ret_val;
	}

	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
		*data = ID_LED_DEFAULT;

	return 0;
}

/**
1481
 *  e1000e_id_led_init_generic -
1482 1483 1484
 *  @hw: pointer to the HW structure
 *
 **/
1485
s32 e1000e_id_led_init_generic(struct e1000_hw *hw)
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;
	const u32 ledctl_mask = 0x000000FF;
	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
	u16 data, i, temp;
	const u16 led_mask = 0x0F;

	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
	if (ret_val)
		return ret_val;

	mac->ledctl_default = er32(LEDCTL);
	mac->ledctl_mode1 = mac->ledctl_default;
	mac->ledctl_mode2 = mac->ledctl_default;

	for (i = 0; i < 4; i++) {
		temp = (data >> (i << 2)) & led_mask;
		switch (temp) {
		case ID_LED_ON1_DEF2:
		case ID_LED_ON1_ON2:
		case ID_LED_ON1_OFF2:
			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
			mac->ledctl_mode1 |= ledctl_on << (i << 3);
			break;
		case ID_LED_OFF1_DEF2:
		case ID_LED_OFF1_ON2:
		case ID_LED_OFF1_OFF2:
			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
			mac->ledctl_mode1 |= ledctl_off << (i << 3);
			break;
		default:
			/* Do nothing */
			break;
		}
		switch (temp) {
		case ID_LED_DEF1_ON2:
		case ID_LED_ON1_ON2:
		case ID_LED_OFF1_ON2:
			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
			mac->ledctl_mode2 |= ledctl_on << (i << 3);
			break;
		case ID_LED_DEF1_OFF2:
		case ID_LED_ON1_OFF2:
		case ID_LED_OFF1_OFF2:
			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
			mac->ledctl_mode2 |= ledctl_off << (i << 3);
			break;
		default:
			/* Do nothing */
			break;
		}
	}

	return 0;
}

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
/**
 *  e1000e_setup_led_generic - Configures SW controllable LED
 *  @hw: pointer to the HW structure
 *
 *  This prepares the SW controllable LED for use and saves the current state
 *  of the LED so it can be later restored.
 **/
s32 e1000e_setup_led_generic(struct e1000_hw *hw)
{
	u32 ledctl;

B
Bruce Allan 已提交
1555
	if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
1556 1557 1558 1559 1560 1561
		return -E1000_ERR_CONFIG;

	if (hw->phy.media_type == e1000_media_type_fiber) {
		ledctl = er32(LEDCTL);
		hw->mac.ledctl_default = ledctl;
		/* Turn off LED0 */
1562 1563
		ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
			    E1000_LEDCTL_LED0_MODE_MASK);
1564
		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1565
			   E1000_LEDCTL_LED0_MODE_SHIFT);
1566 1567 1568 1569 1570 1571 1572 1573
		ew32(LEDCTL, ledctl);
	} else if (hw->phy.media_type == e1000_media_type_copper) {
		ew32(LEDCTL, hw->mac.ledctl_mode1);
	}

	return 0;
}

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
/**
 *  e1000e_cleanup_led_generic - Set LED config to default operation
 *  @hw: pointer to the HW structure
 *
 *  Remove the current LED configuration and set the LED configuration
 *  to the default value, saved from the EEPROM.
 **/
s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
{
	ew32(LEDCTL, hw->mac.ledctl_default);
	return 0;
}

/**
1588
 *  e1000e_blink_led_generic - Blink LED
1589 1590
 *  @hw: pointer to the HW structure
 *
1591
 *  Blink the LEDs which are set to be on.
1592
 **/
1593
s32 e1000e_blink_led_generic(struct e1000_hw *hw)
1594 1595 1596 1597
{
	u32 ledctl_blink = 0;
	u32 i;

1598
	if (hw->phy.media_type == e1000_media_type_fiber) {
1599 1600
		/* always blink LED0 for PCI-E fiber */
		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1601
		    (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1602
	} else {
1603 1604 1605 1606 1607
		/* Set the blink bit for each LED that's "on" (0x0E)
		 * (or "off" if inverted) in ledctl_mode2.  The blink
		 * logic in hardware only works when mode is set to "on"
		 * so it must be changed accordingly when the mode is
		 * "off" and inverted.
1608
		 */
1609
		ledctl_blink = hw->mac.ledctl_mode2;
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
		for (i = 0; i < 32; i += 8) {
			u32 mode = (hw->mac.ledctl_mode2 >> i) &
			    E1000_LEDCTL_LED0_MODE_MASK;
			u32 led_default = hw->mac.ledctl_default >> i;

			if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
			     (mode == E1000_LEDCTL_MODE_LED_ON)) ||
			    ((led_default & E1000_LEDCTL_LED0_IVRT) &&
			     (mode == E1000_LEDCTL_MODE_LED_OFF))) {
				ledctl_blink &=
				    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
						 E1000_LEDCTL_MODE_LED_ON) << i;
			}
		}
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
	}

	ew32(LEDCTL, ledctl_blink);

	return 0;
}

/**
 *  e1000e_led_on_generic - Turn LED on
 *  @hw: pointer to the HW structure
 *
 *  Turn LED on.
 **/
s32 e1000e_led_on_generic(struct e1000_hw *hw)
{
	u32 ctrl;

1642
	switch (hw->phy.media_type) {
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
	case e1000_media_type_fiber:
		ctrl = er32(CTRL);
		ctrl &= ~E1000_CTRL_SWDPIN0;
		ctrl |= E1000_CTRL_SWDPIO0;
		ew32(CTRL, ctrl);
		break;
	case e1000_media_type_copper:
		ew32(LEDCTL, hw->mac.ledctl_mode2);
		break;
	default:
		break;
	}

	return 0;
}

/**
 *  e1000e_led_off_generic - Turn LED off
 *  @hw: pointer to the HW structure
 *
 *  Turn LED off.
 **/
s32 e1000e_led_off_generic(struct e1000_hw *hw)
{
	u32 ctrl;

1669
	switch (hw->phy.media_type) {
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
	case e1000_media_type_fiber:
		ctrl = er32(CTRL);
		ctrl |= E1000_CTRL_SWDPIN0;
		ctrl |= E1000_CTRL_SWDPIO0;
		ew32(CTRL, ctrl);
		break;
	case e1000_media_type_copper:
		ew32(LEDCTL, hw->mac.ledctl_mode1);
		break;
	default:
		break;
	}

	return 0;
}

/**
 *  e1000e_set_pcie_no_snoop - Set PCI-express capabilities
 *  @hw: pointer to the HW structure
 *  @no_snoop: bitmap of snoop events
 *
 *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
 **/
void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
{
	u32 gcr;

	if (no_snoop) {
		gcr = er32(GCR);
		gcr &= ~(PCIE_NO_SNOOP_ALL);
		gcr |= no_snoop;
		ew32(GCR, gcr);
	}
}

/**
 *  e1000e_disable_pcie_master - Disables PCI-express master access
 *  @hw: pointer to the HW structure
 *
 *  Returns 0 if successful, else returns -10
1710
 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
 *  the master requests to be disabled.
 *
 *  Disables PCI-Express master access and verifies there are no pending
 *  requests.
 **/
s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 timeout = MASTER_DISABLE_TIMEOUT;

	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
	ew32(CTRL, ctrl);

	while (timeout) {
1726
		if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
1727
			break;
1728
		usleep_range(100, 200);
1729 1730 1731 1732
		timeout--;
	}

	if (!timeout) {
1733
		e_dbg("Master requests are pending.\n");
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
		return -E1000_ERR_MASTER_REQUESTS_PENDING;
	}

	return 0;
}

/**
 *  e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
 *  @hw: pointer to the HW structure
 *
 *  Reset the Adaptive Interframe Spacing throttle to default values.
 **/
void e1000e_reset_adaptive(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;

1750 1751
	if (!mac->adaptive_ifs) {
		e_dbg("Not in Adaptive IFS mode!\n");
1752
		return;
1753 1754
	}

1755 1756 1757 1758 1759 1760
	mac->current_ifs_val = 0;
	mac->ifs_min_val = IFS_MIN;
	mac->ifs_max_val = IFS_MAX;
	mac->ifs_step_size = IFS_STEP;
	mac->ifs_ratio = IFS_RATIO;

1761
	mac->in_ifs_mode = false;
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
	ew32(AIT, 0);
}

/**
 *  e1000e_update_adaptive - Update Adaptive Interframe Spacing
 *  @hw: pointer to the HW structure
 *
 *  Update the Adaptive Interframe Spacing Throttle value based on the
 *  time between transmitted packets and time between collisions.
 **/
void e1000e_update_adaptive(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;

1776 1777
	if (!mac->adaptive_ifs) {
		e_dbg("Not in Adaptive IFS mode!\n");
1778
		return;
1779 1780
	}

1781 1782
	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1783
			mac->in_ifs_mode = true;
1784 1785 1786 1787 1788
			if (mac->current_ifs_val < mac->ifs_max_val) {
				if (!mac->current_ifs_val)
					mac->current_ifs_val = mac->ifs_min_val;
				else
					mac->current_ifs_val +=
1789
					    mac->ifs_step_size;
1790
				ew32(AIT, mac->current_ifs_val);
1791 1792 1793 1794 1795 1796
			}
		}
	} else {
		if (mac->in_ifs_mode &&
		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
			mac->current_ifs_val = 0;
1797
			mac->in_ifs_mode = false;
1798 1799 1800 1801
			ew32(AIT, 0);
		}
	}
}