nvram.c 21.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  c 2001 PPC 64 Team, IBM Corp
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 *
 * /dev/nvram driver for PPC64
 *
 * This perhaps should live in drivers/char
 */


#include <linux/types.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/spinlock.h>
19 20
#include <linux/slab.h>
#include <linux/kmsg_dump.h>
21
#include <linux/pstore.h>
22 23
#include <linux/ctype.h>
#include <linux/zlib.h>
L
Linus Torvalds 已提交
24 25 26 27 28 29
#include <asm/uaccess.h>
#include <asm/nvram.h>
#include <asm/rtas.h>
#include <asm/prom.h>
#include <asm/machdep.h>

30 31 32
/* Max bytes to read/write in one go */
#define NVRW_CNT 0x20

33 34 35 36 37 38 39
/*
 * Set oops header version to distingush between old and new format header.
 * lnx,oops-log partition max size is 4000, header version > 4000 will
 * help in identifying new header.
 */
#define OOPS_HDR_VERSION 5000

L
Linus Torvalds 已提交
40 41 42 43 44
static unsigned int nvram_size;
static int nvram_fetch, nvram_store;
static char nvram_buf[NVRW_CNT];	/* assume this is in the first 4GB */
static DEFINE_SPINLOCK(nvram_lock);

45 46 47 48 49
struct err_log_info {
	int error_type;
	unsigned int seq_num;
};

50 51 52 53
struct nvram_os_partition {
	const char *name;
	int req_size;	/* desired size, in bytes */
	int min_size;	/* minimum acceptable size (0 means req_size) */
54
	long size;	/* size of data portion (excluding err_log_info) */
55
	long index;	/* offset of data portion of partition */
56
	bool os_partition; /* partition initialized by OS, not FW */
57 58 59 60 61 62
};

static struct nvram_os_partition rtas_log_partition = {
	.name = "ibm,rtas-log",
	.req_size = 2079,
	.min_size = 1055,
63 64
	.index = -1,
	.os_partition = true
65 66
};

67 68 69 70
static struct nvram_os_partition oops_log_partition = {
	.name = "lnx,oops-log",
	.req_size = 4000,
	.min_size = 2000,
71 72
	.index = -1,
	.os_partition = true
73 74
};

75 76
static const char *pseries_nvram_os_partitions[] = {
	"ibm,rtas-log",
77
	"lnx,oops-log",
78 79
	NULL
};
80

81 82 83 84 85 86
struct oops_log_info {
	u16 version;
	u16 report_length;
	u64 timestamp;
} __attribute__((packed));

87
static void oops_to_nvram(struct kmsg_dumper *dumper,
88
			  enum kmsg_dump_reason reason);
89 90 91 92 93 94 95 96 97

static struct kmsg_dumper nvram_kmsg_dumper = {
	.dump = oops_to_nvram
};

/* See clobbering_unread_rtas_event() */
#define NVRAM_RTAS_READ_TIMEOUT 5		/* seconds */
static unsigned long last_unread_rtas_event;	/* timestamp */

98 99 100 101 102
/*
 * For capturing and compressing an oops or panic report...

 * big_oops_buf[] holds the uncompressed text we're capturing.
 *
103 104 105 106 107
 * oops_buf[] holds the compressed text, preceded by a oops header.
 * oops header has u16 holding the version of oops header (to differentiate
 * between old and new format header) followed by u16 holding the length of
 * the compressed* text (*Or uncompressed, if compression fails.) and u64
 * holding the timestamp. oops_buf[] gets written to NVRAM.
108
 *
109
 * oops_log_info points to the header. oops_data points to the compressed text.
110 111
 *
 * +- oops_buf
112 113 114 115 116 117
 * |                                   +- oops_data
 * v                                   v
 * +-----------+-----------+-----------+------------------------+
 * | version   | length    | timestamp | text                   |
 * | (2 bytes) | (2 bytes) | (8 bytes) | (oops_data_sz bytes)   |
 * +-----------+-----------+-----------+------------------------+
118
 * ^
119
 * +- oops_log_info
120 121 122 123 124 125 126 127 128 129 130 131 132
 *
 * We preallocate these buffers during init to avoid kmalloc during oops/panic.
 */
static size_t big_oops_buf_sz;
static char *big_oops_buf, *oops_buf;
static char *oops_data;
static size_t oops_data_sz;

/* Compression parameters */
#define COMPR_LEVEL 6
#define WINDOW_BITS 12
#define MEM_LEVEL 4
static struct z_stream_s stream;
133

134
#ifdef CONFIG_PSTORE
135 136 137 138 139 140
static struct nvram_os_partition of_config_partition = {
	.name = "of-config",
	.index = -1,
	.os_partition = false
};

141 142
static enum pstore_type_id nvram_type_ids[] = {
	PSTORE_TYPE_DMESG,
143
	PSTORE_TYPE_PPC_RTAS,
144
	PSTORE_TYPE_PPC_OF,
145 146 147
	-1
};
static int read_type;
148
static unsigned long last_rtas_event;
149 150
#endif

L
Linus Torvalds 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
static ssize_t pSeries_nvram_read(char *buf, size_t count, loff_t *index)
{
	unsigned int i;
	unsigned long len;
	int done;
	unsigned long flags;
	char *p = buf;


	if (nvram_size == 0 || nvram_fetch == RTAS_UNKNOWN_SERVICE)
		return -ENODEV;

	if (*index >= nvram_size)
		return 0;

	i = *index;
	if (i + count > nvram_size)
		count = nvram_size - i;

	spin_lock_irqsave(&nvram_lock, flags);

	for (; count != 0; count -= len) {
		len = count;
		if (len > NVRW_CNT)
			len = NVRW_CNT;
		
		if ((rtas_call(nvram_fetch, 3, 2, &done, i, __pa(nvram_buf),
			       len) != 0) || len != done) {
			spin_unlock_irqrestore(&nvram_lock, flags);
			return -EIO;
		}
		
		memcpy(p, nvram_buf, len);

		p += len;
		i += len;
	}

	spin_unlock_irqrestore(&nvram_lock, flags);
	
	*index = i;
	return p - buf;
}

static ssize_t pSeries_nvram_write(char *buf, size_t count, loff_t *index)
{
	unsigned int i;
	unsigned long len;
	int done;
	unsigned long flags;
	const char *p = buf;

	if (nvram_size == 0 || nvram_store == RTAS_UNKNOWN_SERVICE)
		return -ENODEV;

	if (*index >= nvram_size)
		return 0;

	i = *index;
	if (i + count > nvram_size)
		count = nvram_size - i;

	spin_lock_irqsave(&nvram_lock, flags);

	for (; count != 0; count -= len) {
		len = count;
		if (len > NVRW_CNT)
			len = NVRW_CNT;

		memcpy(nvram_buf, p, len);

		if ((rtas_call(nvram_store, 3, 2, &done, i, __pa(nvram_buf),
			       len) != 0) || len != done) {
			spin_unlock_irqrestore(&nvram_lock, flags);
			return -EIO;
		}
		
		p += len;
		i += len;
	}
	spin_unlock_irqrestore(&nvram_lock, flags);
	
	*index = i;
	return p - buf;
}

static ssize_t pSeries_nvram_get_size(void)
{
	return nvram_size ? nvram_size : -ENODEV;
}

242

243
/* nvram_write_os_partition, nvram_write_error_log
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
 *
 * We need to buffer the error logs into nvram to ensure that we have
 * the failure information to decode.  If we have a severe error there
 * is no way to guarantee that the OS or the machine is in a state to
 * get back to user land and write the error to disk.  For example if
 * the SCSI device driver causes a Machine Check by writing to a bad
 * IO address, there is no way of guaranteeing that the device driver
 * is in any state that is would also be able to write the error data
 * captured to disk, thus we buffer it in NVRAM for analysis on the
 * next boot.
 *
 * In NVRAM the partition containing the error log buffer will looks like:
 * Header (in bytes):
 * +-----------+----------+--------+------------+------------------+
 * | signature | checksum | length | name       | data             |
 * |0          |1         |2      3|4         15|16        length-1|
 * +-----------+----------+--------+------------+------------------+
 *
 * The 'data' section would look like (in bytes):
 * +--------------+------------+-----------------------------------+
 * | event_logged | sequence # | error log                         |
265
 * |0            3|4          7|8                  error_log_size-1|
266 267 268 269 270 271
 * +--------------+------------+-----------------------------------+
 *
 * event_logged: 0 if event has not been logged to syslog, 1 if it has
 * sequence #: The unique sequence # for each event. (until it wraps)
 * error log: The error log from event_scan
 */
272 273
int nvram_write_os_partition(struct nvram_os_partition *part, char * buff,
		int length, unsigned int err_type, unsigned int error_log_cnt)
274 275 276 277 278
{
	int rc;
	loff_t tmp_index;
	struct err_log_info info;
	
279
	if (part->index == -1) {
280 281 282
		return -ESPIPE;
	}

283 284
	if (length > part->size) {
		length = part->size;
285 286 287 288 289
	}

	info.error_type = err_type;
	info.seq_num = error_log_cnt;

290
	tmp_index = part->index;
291 292 293

	rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info), &tmp_index);
	if (rc <= 0) {
294
		pr_err("%s: Failed nvram_write (%d)\n", __FUNCTION__, rc);
295 296 297 298 299
		return rc;
	}

	rc = ppc_md.nvram_write(buff, length, &tmp_index);
	if (rc <= 0) {
300
		pr_err("%s: Failed nvram_write (%d)\n", __FUNCTION__, rc);
301 302 303 304 305 306
		return rc;
	}
	
	return 0;
}

307 308 309
int nvram_write_error_log(char * buff, int length,
                          unsigned int err_type, unsigned int error_log_cnt)
{
310
	int rc = nvram_write_os_partition(&rtas_log_partition, buff, length,
311
						err_type, error_log_cnt);
312
	if (!rc) {
313
		last_unread_rtas_event = get_seconds();
314 315 316 317 318
#ifdef CONFIG_PSTORE
		last_rtas_event = get_seconds();
#endif
	}

319
	return rc;
320 321
}

322
/* nvram_read_partition
323
 *
324
 * Reads nvram partition for at most 'length'
325
 */
326 327 328
int nvram_read_partition(struct nvram_os_partition *part, char *buff,
			int length, unsigned int *err_type,
			unsigned int *error_log_cnt)
329 330 331 332 333
{
	int rc;
	loff_t tmp_index;
	struct err_log_info info;
	
334
	if (part->index == -1)
335 336
		return -1;

337 338
	if (length > part->size)
		length = part->size;
339

340
	tmp_index = part->index;
341

342 343 344 345 346 347 348 349 350
	if (part->os_partition) {
		rc = ppc_md.nvram_read((char *)&info,
					sizeof(struct err_log_info),
					&tmp_index);
		if (rc <= 0) {
			pr_err("%s: Failed nvram_read (%d)\n", __FUNCTION__,
									rc);
			return rc;
		}
351 352 353 354
	}

	rc = ppc_md.nvram_read(buff, length, &tmp_index);
	if (rc <= 0) {
355
		pr_err("%s: Failed nvram_read (%d)\n", __FUNCTION__, rc);
356 357 358
		return rc;
	}

359 360 361 362
	if (part->os_partition) {
		*error_log_cnt = info.seq_num;
		*err_type = info.error_type;
	}
363 364 365 366

	return 0;
}

367 368 369 370 371 372 373 374 375 376 377
/* nvram_read_error_log
 *
 * Reads nvram for error log for at most 'length'
 */
int nvram_read_error_log(char *buff, int length,
			unsigned int *err_type, unsigned int *error_log_cnt)
{
	return nvram_read_partition(&rtas_log_partition, buff, length,
						err_type, error_log_cnt);
}

378 379 380 381 382 383 384 385 386
/* This doesn't actually zero anything, but it sets the event_logged
 * word to tell that this event is safely in syslog.
 */
int nvram_clear_error_log(void)
{
	loff_t tmp_index;
	int clear_word = ERR_FLAG_ALREADY_LOGGED;
	int rc;

387
	if (rtas_log_partition.index == -1)
388 389
		return -1;

390
	tmp_index = rtas_log_partition.index;
391 392 393 394 395 396
	
	rc = ppc_md.nvram_write((char *)&clear_word, sizeof(int), &tmp_index);
	if (rc <= 0) {
		printk(KERN_ERR "nvram_clear_error_log: Failed nvram_write (%d)\n", rc);
		return rc;
	}
397
	last_unread_rtas_event = 0;
398 399 400 401

	return 0;
}

402
/* pseries_nvram_init_os_partition
403
 *
404
 * This sets up a partition with an "OS" signature.
405 406
 *
 * The general strategy is the following:
407 408 409 410 411 412 413 414 415 416 417
 * 1.) If a partition with the indicated name already exists...
 *	- If it's large enough, use it.
 *	- Otherwise, recycle it and keep going.
 * 2.) Search for a free partition that is large enough.
 * 3.) If there's not a free partition large enough, recycle any obsolete
 * OS partitions and try again.
 * 4.) Will first try getting a chunk that will satisfy the requested size.
 * 5.) If a chunk of the requested size cannot be allocated, then try finding
 * a chunk that will satisfy the minum needed.
 *
 * Returns 0 on success, else -1.
418
 */
419 420
static int __init pseries_nvram_init_os_partition(struct nvram_os_partition
									*part)
421 422 423 424 425 426 427
{
	loff_t p;
	int size;

	/* Scan nvram for partitions */
	nvram_scan_partitions();

428 429
	/* Look for ours */
	p = nvram_find_partition(part->name, NVRAM_SIG_OS, &size);
430 431

	/* Found one but too small, remove it */
432 433 434 435
	if (p && size < part->min_size) {
		pr_info("nvram: Found too small %s partition,"
					" removing it...\n", part->name);
		nvram_remove_partition(part->name, NVRAM_SIG_OS, NULL);
436 437 438 439 440
		p = 0;
	}

	/* Create one if we didn't find */
	if (!p) {
441 442
		p = nvram_create_partition(part->name, NVRAM_SIG_OS,
					part->req_size, part->min_size);
443
		if (p == -ENOSPC) {
444 445 446 447 448 449 450
			pr_info("nvram: No room to create %s partition, "
				"deleting any obsolete OS partitions...\n",
				part->name);
			nvram_remove_partition(NULL, NVRAM_SIG_OS,
						pseries_nvram_os_partitions);
			p = nvram_create_partition(part->name, NVRAM_SIG_OS,
					part->req_size, part->min_size);
451 452 453 454
		}
	}

	if (p <= 0) {
455 456 457
		pr_err("nvram: Failed to find or create %s"
		       " partition, err %d\n", part->name, (int)p);
		return -1;
458 459
	}

460 461
	part->index = p;
	part->size = nvram_get_partition_size(p) - sizeof(struct err_log_info);
462 463 464
	
	return 0;
}
465

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
/*
 * Are we using the ibm,rtas-log for oops/panic reports?  And if so,
 * would logging this oops/panic overwrite an RTAS event that rtas_errd
 * hasn't had a chance to read and process?  Return 1 if so, else 0.
 *
 * We assume that if rtas_errd hasn't read the RTAS event in
 * NVRAM_RTAS_READ_TIMEOUT seconds, it's probably not going to.
 */
static int clobbering_unread_rtas_event(void)
{
	return (oops_log_partition.index == rtas_log_partition.index
		&& last_unread_rtas_event
		&& get_seconds() - last_unread_rtas_event <=
						NVRAM_RTAS_READ_TIMEOUT);
}

#ifdef CONFIG_PSTORE
static int nvram_pstore_open(struct pstore_info *psi)
{
	/* Reset the iterator to start reading partitions again */
	read_type = -1;
	return 0;
}

/**
 * nvram_pstore_write - pstore write callback for nvram
 * @type:               Type of message logged
 * @reason:             reason behind dump (oops/panic)
 * @id:                 identifier to indicate the write performed
 * @part:               pstore writes data to registered buffer in parts,
 *                      part number will indicate the same.
 * @count:              Indicates oops count
 * @size:               number of bytes written to the registered buffer
 * @psi:                registered pstore_info structure
 *
 * Called by pstore_dump() when an oops or panic report is logged in the
 * printk buffer.
 * Returns 0 on successful write.
 */
static int nvram_pstore_write(enum pstore_type_id type,
				enum kmsg_dump_reason reason,
				u64 *id, unsigned int part, int count,
				size_t size, struct pstore_info *psi)
{
	int rc;
	struct oops_log_info *oops_hdr = (struct oops_log_info *) oops_buf;

	/* part 1 has the recent messages from printk buffer */
	if (part > 1 || type != PSTORE_TYPE_DMESG ||
				clobbering_unread_rtas_event())
		return -1;

	oops_hdr->version = OOPS_HDR_VERSION;
	oops_hdr->report_length = (u16) size;
	oops_hdr->timestamp = get_seconds();
	rc = nvram_write_os_partition(&oops_log_partition, oops_buf,
		(int) (sizeof(*oops_hdr) + size), ERR_TYPE_KERNEL_PANIC,
		count);

	if (rc != 0)
		return rc;

	*id = part;
	return 0;
}

/*
533
 * Reads the oops/panic report, rtas and of-config partition.
534 535 536 537 538 539 540 541
 * Returns the length of the data we read from each partition.
 * Returns 0 if we've been called before.
 */
static ssize_t nvram_pstore_read(u64 *id, enum pstore_type_id *type,
				int *count, struct timespec *time, char **buf,
				struct pstore_info *psi)
{
	struct oops_log_info *oops_hdr;
542
	unsigned int err_type, id_no, size = 0;
543 544
	struct nvram_os_partition *part = NULL;
	char *buff = NULL;
545 546
	int sig = 0;
	loff_t p;
547 548 549 550 551 552 553 554

	read_type++;

	switch (nvram_type_ids[read_type]) {
	case PSTORE_TYPE_DMESG:
		part = &oops_log_partition;
		*type = PSTORE_TYPE_DMESG;
		break;
555 556 557 558 559 560
	case PSTORE_TYPE_PPC_RTAS:
		part = &rtas_log_partition;
		*type = PSTORE_TYPE_PPC_RTAS;
		time->tv_sec = last_rtas_event;
		time->tv_nsec = 0;
		break;
561 562 563 564 565 566 567 568
	case PSTORE_TYPE_PPC_OF:
		sig = NVRAM_SIG_OF;
		part = &of_config_partition;
		*type = PSTORE_TYPE_PPC_OF;
		*id = PSTORE_TYPE_PPC_OF;
		time->tv_sec = 0;
		time->tv_nsec = 0;
		break;
569 570 571 572
	default:
		return 0;
	}

573 574 575 576 577 578 579 580 581 582 583
	if (!part->os_partition) {
		p = nvram_find_partition(part->name, sig, &size);
		if (p <= 0) {
			pr_err("nvram: Failed to find partition %s, "
				"err %d\n", part->name, (int)p);
			return 0;
		}
		part->index = p;
		part->size = size;
	}

584 585 586 587 588 589 590 591 592 593 594
	buff = kmalloc(part->size, GFP_KERNEL);

	if (!buff)
		return -ENOMEM;

	if (nvram_read_partition(part, buff, part->size, &err_type, &id_no)) {
		kfree(buff);
		return 0;
	}

	*count = 0;
595 596 597

	if (part->os_partition)
		*id = id_no;
598 599 600 601 602 603 604 605 606 607 608

	if (nvram_type_ids[read_type] == PSTORE_TYPE_DMESG) {
		oops_hdr = (struct oops_log_info *)buff;
		*buf = buff + sizeof(*oops_hdr);
		time->tv_sec = oops_hdr->timestamp;
		time->tv_nsec = 0;
		return oops_hdr->report_length;
	}

	*buf = buff;
	return part->size;
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
}

static struct pstore_info nvram_pstore_info = {
	.owner = THIS_MODULE,
	.name = "nvram",
	.open = nvram_pstore_open,
	.read = nvram_pstore_read,
	.write = nvram_pstore_write,
};

static int nvram_pstore_init(void)
{
	int rc = 0;

	nvram_pstore_info.buf = oops_data;
	nvram_pstore_info.bufsize = oops_data_sz;

	rc = pstore_register(&nvram_pstore_info);
	if (rc != 0)
		pr_err("nvram: pstore_register() failed, defaults to "
				"kmsg_dump; returned %d\n", rc);
	else
		/*TODO: Support compression when pstore is configured */
		pr_info("nvram: Compression of oops text supported only when "
				"pstore is not configured");

	return rc;
}
#else
static int nvram_pstore_init(void)
{
	return -1;
}
#endif

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
static void __init nvram_init_oops_partition(int rtas_partition_exists)
{
	int rc;

	rc = pseries_nvram_init_os_partition(&oops_log_partition);
	if (rc != 0) {
		if (!rtas_partition_exists)
			return;
		pr_notice("nvram: Using %s partition to log both"
			" RTAS errors and oops/panic reports\n",
			rtas_log_partition.name);
		memcpy(&oops_log_partition, &rtas_log_partition,
						sizeof(rtas_log_partition));
	}
	oops_buf = kmalloc(oops_log_partition.size, GFP_KERNEL);
659 660 661 662 663
	if (!oops_buf) {
		pr_err("nvram: No memory for %s partition\n",
						oops_log_partition.name);
		return;
	}
664 665
	oops_data = oops_buf + sizeof(struct oops_log_info);
	oops_data_sz = oops_log_partition.size - sizeof(struct oops_log_info);
666

667 668 669 670 671
	rc = nvram_pstore_init();

	if (!rc)
		return;

672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
	/*
	 * Figure compression (preceded by elimination of each line's <n>
	 * severity prefix) will reduce the oops/panic report to at most
	 * 45% of its original size.
	 */
	big_oops_buf_sz = (oops_data_sz * 100) / 45;
	big_oops_buf = kmalloc(big_oops_buf_sz, GFP_KERNEL);
	if (big_oops_buf) {
		stream.workspace = kmalloc(zlib_deflate_workspacesize(
				WINDOW_BITS, MEM_LEVEL), GFP_KERNEL);
		if (!stream.workspace) {
			pr_err("nvram: No memory for compression workspace; "
				"skipping compression of %s partition data\n",
				oops_log_partition.name);
			kfree(big_oops_buf);
			big_oops_buf = NULL;
		}
	} else {
		pr_err("No memory for uncompressed %s data; "
			"skipping compression\n", oops_log_partition.name);
		stream.workspace = NULL;
	}

695 696 697 698
	rc = kmsg_dump_register(&nvram_kmsg_dumper);
	if (rc != 0) {
		pr_err("nvram: kmsg_dump_register() failed; returned %d\n", rc);
		kfree(oops_buf);
699 700
		kfree(big_oops_buf);
		kfree(stream.workspace);
701 702 703
	}
}

704 705
static int __init pseries_nvram_init_log_partitions(void)
{
706 707 708 709
	int rc;

	rc = pseries_nvram_init_os_partition(&rtas_log_partition);
	nvram_init_oops_partition(rc == 0);
710 711 712
	return 0;
}
machine_arch_initcall(pseries, pseries_nvram_init_log_partitions);
713

L
Linus Torvalds 已提交
714 715 716
int __init pSeries_nvram_init(void)
{
	struct device_node *nvram;
717 718
	const unsigned int *nbytes_p;
	unsigned int proplen;
L
Linus Torvalds 已提交
719 720 721 722 723

	nvram = of_find_node_by_type(NULL, "nvram");
	if (nvram == NULL)
		return -ENODEV;

724
	nbytes_p = of_get_property(nvram, "#bytes", &proplen);
725 726
	if (nbytes_p == NULL || proplen != sizeof(unsigned int)) {
		of_node_put(nvram);
L
Linus Torvalds 已提交
727
		return -EIO;
728
	}
L
Linus Torvalds 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741 742

	nvram_size = *nbytes_p;

	nvram_fetch = rtas_token("nvram-fetch");
	nvram_store = rtas_token("nvram-store");
	printk(KERN_INFO "PPC64 nvram contains %d bytes\n", nvram_size);
	of_node_put(nvram);

	ppc_md.nvram_read	= pSeries_nvram_read;
	ppc_md.nvram_write	= pSeries_nvram_write;
	ppc_md.nvram_size	= pSeries_nvram_get_size;

	return 0;
}
743 744


745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
/* Derived from logfs_compress() */
static int nvram_compress(const void *in, void *out, size_t inlen,
							size_t outlen)
{
	int err, ret;

	ret = -EIO;
	err = zlib_deflateInit2(&stream, COMPR_LEVEL, Z_DEFLATED, WINDOW_BITS,
						MEM_LEVEL, Z_DEFAULT_STRATEGY);
	if (err != Z_OK)
		goto error;

	stream.next_in = in;
	stream.avail_in = inlen;
	stream.total_in = 0;
	stream.next_out = out;
	stream.avail_out = outlen;
	stream.total_out = 0;

	err = zlib_deflate(&stream, Z_FINISH);
	if (err != Z_STREAM_END)
		goto error;

	err = zlib_deflateEnd(&stream);
	if (err != Z_OK)
		goto error;

	if (stream.total_out >= stream.total_in)
		goto error;

	ret = stream.total_out;
error:
	return ret;
}

/* Compress the text from big_oops_buf into oops_buf. */
static int zip_oops(size_t text_len)
{
783
	struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
784 785 786 787 788 789 790
	int zipped_len = nvram_compress(big_oops_buf, oops_data, text_len,
								oops_data_sz);
	if (zipped_len < 0) {
		pr_err("nvram: compression failed; returned %d\n", zipped_len);
		pr_err("nvram: logging uncompressed oops/panic report\n");
		return -1;
	}
791 792 793
	oops_hdr->version = OOPS_HDR_VERSION;
	oops_hdr->report_length = (u16) zipped_len;
	oops_hdr->timestamp = get_seconds();
794 795 796 797 798 799 800 801 802 803
	return 0;
}

/*
 * This is our kmsg_dump callback, called after an oops or panic report
 * has been written to the printk buffer.  We want to capture as much
 * of the printk buffer as possible.  First, capture as much as we can
 * that we think will compress sufficiently to fit in the lnx,oops-log
 * partition.  If that's too much, go back and capture uncompressed text.
 */
804
static void oops_to_nvram(struct kmsg_dumper *dumper,
805
			  enum kmsg_dump_reason reason)
806
{
807
	struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
808
	static unsigned int oops_count = 0;
809
	static bool panicking = false;
810 811
	static DEFINE_SPINLOCK(lock);
	unsigned long flags;
812
	size_t text_len;
813 814
	unsigned int err_type = ERR_TYPE_KERNEL_PANIC_GZ;
	int rc = -1;
815

816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
	switch (reason) {
	case KMSG_DUMP_RESTART:
	case KMSG_DUMP_HALT:
	case KMSG_DUMP_POWEROFF:
		/* These are almost always orderly shutdowns. */
		return;
	case KMSG_DUMP_OOPS:
		break;
	case KMSG_DUMP_PANIC:
		panicking = true;
		break;
	case KMSG_DUMP_EMERG:
		if (panicking)
			/* Panic report already captured. */
			return;
		break;
	default:
		pr_err("%s: ignoring unrecognized KMSG_DUMP_* reason %d\n",
						__FUNCTION__, (int) reason);
		return;
	}

838 839 840
	if (clobbering_unread_rtas_event())
		return;

841 842 843
	if (!spin_trylock_irqsave(&lock, flags))
		return;

844
	if (big_oops_buf) {
845 846
		kmsg_dump_get_buffer(dumper, false,
				     big_oops_buf, big_oops_buf_sz, &text_len);
847 848 849
		rc = zip_oops(text_len);
	}
	if (rc != 0) {
850
		kmsg_dump_rewind(dumper);
851
		kmsg_dump_get_buffer(dumper, false,
852
				     oops_data, oops_data_sz, &text_len);
853
		err_type = ERR_TYPE_KERNEL_PANIC;
854 855 856
		oops_hdr->version = OOPS_HDR_VERSION;
		oops_hdr->report_length = (u16) text_len;
		oops_hdr->timestamp = get_seconds();
857 858
	}

859
	(void) nvram_write_os_partition(&oops_log_partition, oops_buf,
860 861
		(int) (sizeof(*oops_hdr) + oops_hdr->report_length), err_type,
		++oops_count);
862 863

	spin_unlock_irqrestore(&lock, flags);
864
}