nvram.c 16.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  c 2001 PPC 64 Team, IBM Corp
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 *
 * /dev/nvram driver for PPC64
 *
 * This perhaps should live in drivers/char
 */


#include <linux/types.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/spinlock.h>
19 20
#include <linux/slab.h>
#include <linux/kmsg_dump.h>
21 22
#include <linux/ctype.h>
#include <linux/zlib.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28
#include <asm/uaccess.h>
#include <asm/nvram.h>
#include <asm/rtas.h>
#include <asm/prom.h>
#include <asm/machdep.h>

29 30 31
/* Max bytes to read/write in one go */
#define NVRW_CNT 0x20

L
Linus Torvalds 已提交
32 33 34 35 36
static unsigned int nvram_size;
static int nvram_fetch, nvram_store;
static char nvram_buf[NVRW_CNT];	/* assume this is in the first 4GB */
static DEFINE_SPINLOCK(nvram_lock);

37 38 39 40 41
struct err_log_info {
	int error_type;
	unsigned int seq_num;
};

42 43 44 45
struct nvram_os_partition {
	const char *name;
	int req_size;	/* desired size, in bytes */
	int min_size;	/* minimum acceptable size (0 means req_size) */
46
	long size;	/* size of data portion (excluding err_log_info) */
47 48 49 50 51 52 53 54 55 56
	long index;	/* offset of data portion of partition */
};

static struct nvram_os_partition rtas_log_partition = {
	.name = "ibm,rtas-log",
	.req_size = 2079,
	.min_size = 1055,
	.index = -1
};

57 58 59 60 61 62 63
static struct nvram_os_partition oops_log_partition = {
	.name = "lnx,oops-log",
	.req_size = 4000,
	.min_size = 2000,
	.index = -1
};

64 65
static const char *pseries_nvram_os_partitions[] = {
	"ibm,rtas-log",
66
	"lnx,oops-log",
67 68
	NULL
};
69

70
static void oops_to_nvram(struct kmsg_dumper *dumper,
71
			  enum kmsg_dump_reason reason);
72 73 74 75 76 77 78 79 80

static struct kmsg_dumper nvram_kmsg_dumper = {
	.dump = oops_to_nvram
};

/* See clobbering_unread_rtas_event() */
#define NVRAM_RTAS_READ_TIMEOUT 5		/* seconds */
static unsigned long last_unread_rtas_event;	/* timestamp */

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
/*
 * For capturing and compressing an oops or panic report...

 * big_oops_buf[] holds the uncompressed text we're capturing.
 *
 * oops_buf[] holds the compressed text, preceded by a prefix.
 * The prefix is just a u16 holding the length of the compressed* text.
 * (*Or uncompressed, if compression fails.)  oops_buf[] gets written
 * to NVRAM.
 *
 * oops_len points to the prefix.  oops_data points to the compressed text.
 *
 * +- oops_buf
 * |		+- oops_data
 * v		v
 * +------------+-----------------------------------------------+
 * | length	| text                                          |
 * | (2 bytes)	| (oops_data_sz bytes)                          |
 * +------------+-----------------------------------------------+
 * ^
 * +- oops_len
 *
 * We preallocate these buffers during init to avoid kmalloc during oops/panic.
 */
static size_t big_oops_buf_sz;
static char *big_oops_buf, *oops_buf;
static u16 *oops_len;
static char *oops_data;
static size_t oops_data_sz;

/* Compression parameters */
#define COMPR_LEVEL 6
#define WINDOW_BITS 12
#define MEM_LEVEL 4
static struct z_stream_s stream;
116

L
Linus Torvalds 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
static ssize_t pSeries_nvram_read(char *buf, size_t count, loff_t *index)
{
	unsigned int i;
	unsigned long len;
	int done;
	unsigned long flags;
	char *p = buf;


	if (nvram_size == 0 || nvram_fetch == RTAS_UNKNOWN_SERVICE)
		return -ENODEV;

	if (*index >= nvram_size)
		return 0;

	i = *index;
	if (i + count > nvram_size)
		count = nvram_size - i;

	spin_lock_irqsave(&nvram_lock, flags);

	for (; count != 0; count -= len) {
		len = count;
		if (len > NVRW_CNT)
			len = NVRW_CNT;
		
		if ((rtas_call(nvram_fetch, 3, 2, &done, i, __pa(nvram_buf),
			       len) != 0) || len != done) {
			spin_unlock_irqrestore(&nvram_lock, flags);
			return -EIO;
		}
		
		memcpy(p, nvram_buf, len);

		p += len;
		i += len;
	}

	spin_unlock_irqrestore(&nvram_lock, flags);
	
	*index = i;
	return p - buf;
}

static ssize_t pSeries_nvram_write(char *buf, size_t count, loff_t *index)
{
	unsigned int i;
	unsigned long len;
	int done;
	unsigned long flags;
	const char *p = buf;

	if (nvram_size == 0 || nvram_store == RTAS_UNKNOWN_SERVICE)
		return -ENODEV;

	if (*index >= nvram_size)
		return 0;

	i = *index;
	if (i + count > nvram_size)
		count = nvram_size - i;

	spin_lock_irqsave(&nvram_lock, flags);

	for (; count != 0; count -= len) {
		len = count;
		if (len > NVRW_CNT)
			len = NVRW_CNT;

		memcpy(nvram_buf, p, len);

		if ((rtas_call(nvram_store, 3, 2, &done, i, __pa(nvram_buf),
			       len) != 0) || len != done) {
			spin_unlock_irqrestore(&nvram_lock, flags);
			return -EIO;
		}
		
		p += len;
		i += len;
	}
	spin_unlock_irqrestore(&nvram_lock, flags);
	
	*index = i;
	return p - buf;
}

static ssize_t pSeries_nvram_get_size(void)
{
	return nvram_size ? nvram_size : -ENODEV;
}

208

209
/* nvram_write_os_partition, nvram_write_error_log
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
 *
 * We need to buffer the error logs into nvram to ensure that we have
 * the failure information to decode.  If we have a severe error there
 * is no way to guarantee that the OS or the machine is in a state to
 * get back to user land and write the error to disk.  For example if
 * the SCSI device driver causes a Machine Check by writing to a bad
 * IO address, there is no way of guaranteeing that the device driver
 * is in any state that is would also be able to write the error data
 * captured to disk, thus we buffer it in NVRAM for analysis on the
 * next boot.
 *
 * In NVRAM the partition containing the error log buffer will looks like:
 * Header (in bytes):
 * +-----------+----------+--------+------------+------------------+
 * | signature | checksum | length | name       | data             |
 * |0          |1         |2      3|4         15|16        length-1|
 * +-----------+----------+--------+------------+------------------+
 *
 * The 'data' section would look like (in bytes):
 * +--------------+------------+-----------------------------------+
 * | event_logged | sequence # | error log                         |
231
 * |0            3|4          7|8                  error_log_size-1|
232 233 234 235 236 237
 * +--------------+------------+-----------------------------------+
 *
 * event_logged: 0 if event has not been logged to syslog, 1 if it has
 * sequence #: The unique sequence # for each event. (until it wraps)
 * error log: The error log from event_scan
 */
238 239
int nvram_write_os_partition(struct nvram_os_partition *part, char * buff,
		int length, unsigned int err_type, unsigned int error_log_cnt)
240 241 242 243 244
{
	int rc;
	loff_t tmp_index;
	struct err_log_info info;
	
245
	if (part->index == -1) {
246 247 248
		return -ESPIPE;
	}

249 250
	if (length > part->size) {
		length = part->size;
251 252 253 254 255
	}

	info.error_type = err_type;
	info.seq_num = error_log_cnt;

256
	tmp_index = part->index;
257 258 259

	rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info), &tmp_index);
	if (rc <= 0) {
260
		pr_err("%s: Failed nvram_write (%d)\n", __FUNCTION__, rc);
261 262 263 264 265
		return rc;
	}

	rc = ppc_md.nvram_write(buff, length, &tmp_index);
	if (rc <= 0) {
266
		pr_err("%s: Failed nvram_write (%d)\n", __FUNCTION__, rc);
267 268 269 270 271 272
		return rc;
	}
	
	return 0;
}

273 274 275
int nvram_write_error_log(char * buff, int length,
                          unsigned int err_type, unsigned int error_log_cnt)
{
276
	int rc = nvram_write_os_partition(&rtas_log_partition, buff, length,
277
						err_type, error_log_cnt);
278 279 280
	if (!rc)
		last_unread_rtas_event = get_seconds();
	return rc;
281 282
}

283 284 285 286 287 288 289 290 291 292 293
/* nvram_read_error_log
 *
 * Reads nvram for error log for at most 'length'
 */
int nvram_read_error_log(char * buff, int length,
                         unsigned int * err_type, unsigned int * error_log_cnt)
{
	int rc;
	loff_t tmp_index;
	struct err_log_info info;
	
294
	if (rtas_log_partition.index == -1)
295 296
		return -1;

297 298
	if (length > rtas_log_partition.size)
		length = rtas_log_partition.size;
299

300
	tmp_index = rtas_log_partition.index;
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328

	rc = ppc_md.nvram_read((char *)&info, sizeof(struct err_log_info), &tmp_index);
	if (rc <= 0) {
		printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc);
		return rc;
	}

	rc = ppc_md.nvram_read(buff, length, &tmp_index);
	if (rc <= 0) {
		printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc);
		return rc;
	}

	*error_log_cnt = info.seq_num;
	*err_type = info.error_type;

	return 0;
}

/* This doesn't actually zero anything, but it sets the event_logged
 * word to tell that this event is safely in syslog.
 */
int nvram_clear_error_log(void)
{
	loff_t tmp_index;
	int clear_word = ERR_FLAG_ALREADY_LOGGED;
	int rc;

329
	if (rtas_log_partition.index == -1)
330 331
		return -1;

332
	tmp_index = rtas_log_partition.index;
333 334 335 336 337 338
	
	rc = ppc_md.nvram_write((char *)&clear_word, sizeof(int), &tmp_index);
	if (rc <= 0) {
		printk(KERN_ERR "nvram_clear_error_log: Failed nvram_write (%d)\n", rc);
		return rc;
	}
339
	last_unread_rtas_event = 0;
340 341 342 343

	return 0;
}

344
/* pseries_nvram_init_os_partition
345
 *
346
 * This sets up a partition with an "OS" signature.
347 348
 *
 * The general strategy is the following:
349 350 351 352 353 354 355 356 357 358 359
 * 1.) If a partition with the indicated name already exists...
 *	- If it's large enough, use it.
 *	- Otherwise, recycle it and keep going.
 * 2.) Search for a free partition that is large enough.
 * 3.) If there's not a free partition large enough, recycle any obsolete
 * OS partitions and try again.
 * 4.) Will first try getting a chunk that will satisfy the requested size.
 * 5.) If a chunk of the requested size cannot be allocated, then try finding
 * a chunk that will satisfy the minum needed.
 *
 * Returns 0 on success, else -1.
360
 */
361 362
static int __init pseries_nvram_init_os_partition(struct nvram_os_partition
									*part)
363 364 365 366 367 368 369
{
	loff_t p;
	int size;

	/* Scan nvram for partitions */
	nvram_scan_partitions();

370 371
	/* Look for ours */
	p = nvram_find_partition(part->name, NVRAM_SIG_OS, &size);
372 373

	/* Found one but too small, remove it */
374 375 376 377
	if (p && size < part->min_size) {
		pr_info("nvram: Found too small %s partition,"
					" removing it...\n", part->name);
		nvram_remove_partition(part->name, NVRAM_SIG_OS, NULL);
378 379 380 381 382
		p = 0;
	}

	/* Create one if we didn't find */
	if (!p) {
383 384
		p = nvram_create_partition(part->name, NVRAM_SIG_OS,
					part->req_size, part->min_size);
385
		if (p == -ENOSPC) {
386 387 388 389 390 391 392
			pr_info("nvram: No room to create %s partition, "
				"deleting any obsolete OS partitions...\n",
				part->name);
			nvram_remove_partition(NULL, NVRAM_SIG_OS,
						pseries_nvram_os_partitions);
			p = nvram_create_partition(part->name, NVRAM_SIG_OS,
					part->req_size, part->min_size);
393 394 395 396
		}
	}

	if (p <= 0) {
397 398 399
		pr_err("nvram: Failed to find or create %s"
		       " partition, err %d\n", part->name, (int)p);
		return -1;
400 401
	}

402 403
	part->index = p;
	part->size = nvram_get_partition_size(p) - sizeof(struct err_log_info);
404 405 406
	
	return 0;
}
407

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
static void __init nvram_init_oops_partition(int rtas_partition_exists)
{
	int rc;

	rc = pseries_nvram_init_os_partition(&oops_log_partition);
	if (rc != 0) {
		if (!rtas_partition_exists)
			return;
		pr_notice("nvram: Using %s partition to log both"
			" RTAS errors and oops/panic reports\n",
			rtas_log_partition.name);
		memcpy(&oops_log_partition, &rtas_log_partition,
						sizeof(rtas_log_partition));
	}
	oops_buf = kmalloc(oops_log_partition.size, GFP_KERNEL);
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
	if (!oops_buf) {
		pr_err("nvram: No memory for %s partition\n",
						oops_log_partition.name);
		return;
	}
	oops_len = (u16*) oops_buf;
	oops_data = oops_buf + sizeof(u16);
	oops_data_sz = oops_log_partition.size - sizeof(u16);

	/*
	 * Figure compression (preceded by elimination of each line's <n>
	 * severity prefix) will reduce the oops/panic report to at most
	 * 45% of its original size.
	 */
	big_oops_buf_sz = (oops_data_sz * 100) / 45;
	big_oops_buf = kmalloc(big_oops_buf_sz, GFP_KERNEL);
	if (big_oops_buf) {
		stream.workspace = kmalloc(zlib_deflate_workspacesize(
				WINDOW_BITS, MEM_LEVEL), GFP_KERNEL);
		if (!stream.workspace) {
			pr_err("nvram: No memory for compression workspace; "
				"skipping compression of %s partition data\n",
				oops_log_partition.name);
			kfree(big_oops_buf);
			big_oops_buf = NULL;
		}
	} else {
		pr_err("No memory for uncompressed %s data; "
			"skipping compression\n", oops_log_partition.name);
		stream.workspace = NULL;
	}

455 456 457 458
	rc = kmsg_dump_register(&nvram_kmsg_dumper);
	if (rc != 0) {
		pr_err("nvram: kmsg_dump_register() failed; returned %d\n", rc);
		kfree(oops_buf);
459 460
		kfree(big_oops_buf);
		kfree(stream.workspace);
461 462 463
	}
}

464 465
static int __init pseries_nvram_init_log_partitions(void)
{
466 467 468 469
	int rc;

	rc = pseries_nvram_init_os_partition(&rtas_log_partition);
	nvram_init_oops_partition(rc == 0);
470 471 472
	return 0;
}
machine_arch_initcall(pseries, pseries_nvram_init_log_partitions);
473

L
Linus Torvalds 已提交
474 475 476
int __init pSeries_nvram_init(void)
{
	struct device_node *nvram;
477 478
	const unsigned int *nbytes_p;
	unsigned int proplen;
L
Linus Torvalds 已提交
479 480 481 482 483

	nvram = of_find_node_by_type(NULL, "nvram");
	if (nvram == NULL)
		return -ENODEV;

484
	nbytes_p = of_get_property(nvram, "#bytes", &proplen);
485 486
	if (nbytes_p == NULL || proplen != sizeof(unsigned int)) {
		of_node_put(nvram);
L
Linus Torvalds 已提交
487
		return -EIO;
488
	}
L
Linus Torvalds 已提交
489 490 491 492 493 494 495 496 497 498 499 500 501 502

	nvram_size = *nbytes_p;

	nvram_fetch = rtas_token("nvram-fetch");
	nvram_store = rtas_token("nvram-store");
	printk(KERN_INFO "PPC64 nvram contains %d bytes\n", nvram_size);
	of_node_put(nvram);

	ppc_md.nvram_read	= pSeries_nvram_read;
	ppc_md.nvram_write	= pSeries_nvram_write;
	ppc_md.nvram_size	= pSeries_nvram_get_size;

	return 0;
}
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519

/*
 * Are we using the ibm,rtas-log for oops/panic reports?  And if so,
 * would logging this oops/panic overwrite an RTAS event that rtas_errd
 * hasn't had a chance to read and process?  Return 1 if so, else 0.
 *
 * We assume that if rtas_errd hasn't read the RTAS event in
 * NVRAM_RTAS_READ_TIMEOUT seconds, it's probably not going to.
 */
static int clobbering_unread_rtas_event(void)
{
	return (oops_log_partition.index == rtas_log_partition.index
		&& last_unread_rtas_event
		&& get_seconds() - last_unread_rtas_event <=
						NVRAM_RTAS_READ_TIMEOUT);
}

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
/* Derived from logfs_compress() */
static int nvram_compress(const void *in, void *out, size_t inlen,
							size_t outlen)
{
	int err, ret;

	ret = -EIO;
	err = zlib_deflateInit2(&stream, COMPR_LEVEL, Z_DEFLATED, WINDOW_BITS,
						MEM_LEVEL, Z_DEFAULT_STRATEGY);
	if (err != Z_OK)
		goto error;

	stream.next_in = in;
	stream.avail_in = inlen;
	stream.total_in = 0;
	stream.next_out = out;
	stream.avail_out = outlen;
	stream.total_out = 0;

	err = zlib_deflate(&stream, Z_FINISH);
	if (err != Z_STREAM_END)
		goto error;

	err = zlib_deflateEnd(&stream);
	if (err != Z_OK)
		goto error;

	if (stream.total_out >= stream.total_in)
		goto error;

	ret = stream.total_out;
error:
	return ret;
}

/* Compress the text from big_oops_buf into oops_buf. */
static int zip_oops(size_t text_len)
{
	int zipped_len = nvram_compress(big_oops_buf, oops_data, text_len,
								oops_data_sz);
	if (zipped_len < 0) {
		pr_err("nvram: compression failed; returned %d\n", zipped_len);
		pr_err("nvram: logging uncompressed oops/panic report\n");
		return -1;
	}
	*oops_len = (u16) zipped_len;
	return 0;
}

/*
 * This is our kmsg_dump callback, called after an oops or panic report
 * has been written to the printk buffer.  We want to capture as much
 * of the printk buffer as possible.  First, capture as much as we can
 * that we think will compress sufficiently to fit in the lnx,oops-log
 * partition.  If that's too much, go back and capture uncompressed text.
 */
576
static void oops_to_nvram(struct kmsg_dumper *dumper,
577
			  enum kmsg_dump_reason reason)
578 579
{
	static unsigned int oops_count = 0;
580
	static bool panicking = false;
581 582
	static DEFINE_SPINLOCK(lock);
	unsigned long flags;
583
	size_t text_len;
584 585
	unsigned int err_type = ERR_TYPE_KERNEL_PANIC_GZ;
	int rc = -1;
586

587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
	switch (reason) {
	case KMSG_DUMP_RESTART:
	case KMSG_DUMP_HALT:
	case KMSG_DUMP_POWEROFF:
		/* These are almost always orderly shutdowns. */
		return;
	case KMSG_DUMP_OOPS:
		break;
	case KMSG_DUMP_PANIC:
		panicking = true;
		break;
	case KMSG_DUMP_EMERG:
		if (panicking)
			/* Panic report already captured. */
			return;
		break;
	default:
		pr_err("%s: ignoring unrecognized KMSG_DUMP_* reason %d\n",
						__FUNCTION__, (int) reason);
		return;
	}

609 610 611
	if (clobbering_unread_rtas_event())
		return;

612 613 614
	if (!spin_trylock_irqsave(&lock, flags))
		return;

615
	if (big_oops_buf) {
616 617
		kmsg_dump_get_buffer(dumper, false,
				     big_oops_buf, big_oops_buf_sz, &text_len);
618 619 620
		rc = zip_oops(text_len);
	}
	if (rc != 0) {
621
		kmsg_dump_rewind(dumper);
622
		kmsg_dump_get_buffer(dumper, false,
623
				     oops_data, oops_data_sz, &text_len);
624 625 626 627
		err_type = ERR_TYPE_KERNEL_PANIC;
		*oops_len = (u16) text_len;
	}

628
	(void) nvram_write_os_partition(&oops_log_partition, oops_buf,
629
		(int) (sizeof(*oops_len) + *oops_len), err_type, ++oops_count);
630 631

	spin_unlock_irqrestore(&lock, flags);
632
}