nvram.c 13.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  c 2001 PPC 64 Team, IBM Corp
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 *
 * /dev/nvram driver for PPC64
 *
 * This perhaps should live in drivers/char
 */


#include <linux/types.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/spinlock.h>
19 20
#include <linux/slab.h>
#include <linux/kmsg_dump.h>
L
Linus Torvalds 已提交
21 22 23 24 25 26
#include <asm/uaccess.h>
#include <asm/nvram.h>
#include <asm/rtas.h>
#include <asm/prom.h>
#include <asm/machdep.h>

27 28 29
/* Max bytes to read/write in one go */
#define NVRW_CNT 0x20

L
Linus Torvalds 已提交
30 31 32 33 34
static unsigned int nvram_size;
static int nvram_fetch, nvram_store;
static char nvram_buf[NVRW_CNT];	/* assume this is in the first 4GB */
static DEFINE_SPINLOCK(nvram_lock);

35 36 37 38 39
struct err_log_info {
	int error_type;
	unsigned int seq_num;
};

40 41 42 43
struct nvram_os_partition {
	const char *name;
	int req_size;	/* desired size, in bytes */
	int min_size;	/* minimum acceptable size (0 means req_size) */
44
	long size;	/* size of data portion (excluding err_log_info) */
45 46 47 48 49 50 51 52 53 54
	long index;	/* offset of data portion of partition */
};

static struct nvram_os_partition rtas_log_partition = {
	.name = "ibm,rtas-log",
	.req_size = 2079,
	.min_size = 1055,
	.index = -1
};

55 56 57 58 59 60 61
static struct nvram_os_partition oops_log_partition = {
	.name = "lnx,oops-log",
	.req_size = 4000,
	.min_size = 2000,
	.index = -1
};

62 63
static const char *pseries_nvram_os_partitions[] = {
	"ibm,rtas-log",
64
	"lnx,oops-log",
65 66
	NULL
};
67

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
static void oops_to_nvram(struct kmsg_dumper *dumper,
		enum kmsg_dump_reason reason,
		const char *old_msgs, unsigned long old_len,
		const char *new_msgs, unsigned long new_len);

static struct kmsg_dumper nvram_kmsg_dumper = {
	.dump = oops_to_nvram
};

/* See clobbering_unread_rtas_event() */
#define NVRAM_RTAS_READ_TIMEOUT 5		/* seconds */
static unsigned long last_unread_rtas_event;	/* timestamp */

/* We preallocate oops_buf during init to avoid kmalloc during oops/panic. */
static char *oops_buf;

L
Linus Torvalds 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
static ssize_t pSeries_nvram_read(char *buf, size_t count, loff_t *index)
{
	unsigned int i;
	unsigned long len;
	int done;
	unsigned long flags;
	char *p = buf;


	if (nvram_size == 0 || nvram_fetch == RTAS_UNKNOWN_SERVICE)
		return -ENODEV;

	if (*index >= nvram_size)
		return 0;

	i = *index;
	if (i + count > nvram_size)
		count = nvram_size - i;

	spin_lock_irqsave(&nvram_lock, flags);

	for (; count != 0; count -= len) {
		len = count;
		if (len > NVRW_CNT)
			len = NVRW_CNT;
		
		if ((rtas_call(nvram_fetch, 3, 2, &done, i, __pa(nvram_buf),
			       len) != 0) || len != done) {
			spin_unlock_irqrestore(&nvram_lock, flags);
			return -EIO;
		}
		
		memcpy(p, nvram_buf, len);

		p += len;
		i += len;
	}

	spin_unlock_irqrestore(&nvram_lock, flags);
	
	*index = i;
	return p - buf;
}

static ssize_t pSeries_nvram_write(char *buf, size_t count, loff_t *index)
{
	unsigned int i;
	unsigned long len;
	int done;
	unsigned long flags;
	const char *p = buf;

	if (nvram_size == 0 || nvram_store == RTAS_UNKNOWN_SERVICE)
		return -ENODEV;

	if (*index >= nvram_size)
		return 0;

	i = *index;
	if (i + count > nvram_size)
		count = nvram_size - i;

	spin_lock_irqsave(&nvram_lock, flags);

	for (; count != 0; count -= len) {
		len = count;
		if (len > NVRW_CNT)
			len = NVRW_CNT;

		memcpy(nvram_buf, p, len);

		if ((rtas_call(nvram_store, 3, 2, &done, i, __pa(nvram_buf),
			       len) != 0) || len != done) {
			spin_unlock_irqrestore(&nvram_lock, flags);
			return -EIO;
		}
		
		p += len;
		i += len;
	}
	spin_unlock_irqrestore(&nvram_lock, flags);
	
	*index = i;
	return p - buf;
}

static ssize_t pSeries_nvram_get_size(void)
{
	return nvram_size ? nvram_size : -ENODEV;
}

175

176
/* nvram_write_os_partition, nvram_write_error_log
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
 *
 * We need to buffer the error logs into nvram to ensure that we have
 * the failure information to decode.  If we have a severe error there
 * is no way to guarantee that the OS or the machine is in a state to
 * get back to user land and write the error to disk.  For example if
 * the SCSI device driver causes a Machine Check by writing to a bad
 * IO address, there is no way of guaranteeing that the device driver
 * is in any state that is would also be able to write the error data
 * captured to disk, thus we buffer it in NVRAM for analysis on the
 * next boot.
 *
 * In NVRAM the partition containing the error log buffer will looks like:
 * Header (in bytes):
 * +-----------+----------+--------+------------+------------------+
 * | signature | checksum | length | name       | data             |
 * |0          |1         |2      3|4         15|16        length-1|
 * +-----------+----------+--------+------------+------------------+
 *
 * The 'data' section would look like (in bytes):
 * +--------------+------------+-----------------------------------+
 * | event_logged | sequence # | error log                         |
198
 * |0            3|4          7|8                  error_log_size-1|
199 200 201 202 203 204
 * +--------------+------------+-----------------------------------+
 *
 * event_logged: 0 if event has not been logged to syslog, 1 if it has
 * sequence #: The unique sequence # for each event. (until it wraps)
 * error log: The error log from event_scan
 */
205 206
int nvram_write_os_partition(struct nvram_os_partition *part, char * buff,
		int length, unsigned int err_type, unsigned int error_log_cnt)
207 208 209 210 211
{
	int rc;
	loff_t tmp_index;
	struct err_log_info info;
	
212
	if (part->index == -1) {
213 214 215
		return -ESPIPE;
	}

216 217
	if (length > part->size) {
		length = part->size;
218 219 220 221 222
	}

	info.error_type = err_type;
	info.seq_num = error_log_cnt;

223
	tmp_index = part->index;
224 225 226

	rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info), &tmp_index);
	if (rc <= 0) {
227
		pr_err("%s: Failed nvram_write (%d)\n", __FUNCTION__, rc);
228 229 230 231 232
		return rc;
	}

	rc = ppc_md.nvram_write(buff, length, &tmp_index);
	if (rc <= 0) {
233
		pr_err("%s: Failed nvram_write (%d)\n", __FUNCTION__, rc);
234 235 236 237 238 239
		return rc;
	}
	
	return 0;
}

240 241 242
int nvram_write_error_log(char * buff, int length,
                          unsigned int err_type, unsigned int error_log_cnt)
{
243
	int rc = nvram_write_os_partition(&rtas_log_partition, buff, length,
244
						err_type, error_log_cnt);
245 246 247
	if (!rc)
		last_unread_rtas_event = get_seconds();
	return rc;
248 249
}

250 251 252 253 254 255 256 257 258 259 260
/* nvram_read_error_log
 *
 * Reads nvram for error log for at most 'length'
 */
int nvram_read_error_log(char * buff, int length,
                         unsigned int * err_type, unsigned int * error_log_cnt)
{
	int rc;
	loff_t tmp_index;
	struct err_log_info info;
	
261
	if (rtas_log_partition.index == -1)
262 263
		return -1;

264 265
	if (length > rtas_log_partition.size)
		length = rtas_log_partition.size;
266

267
	tmp_index = rtas_log_partition.index;
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295

	rc = ppc_md.nvram_read((char *)&info, sizeof(struct err_log_info), &tmp_index);
	if (rc <= 0) {
		printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc);
		return rc;
	}

	rc = ppc_md.nvram_read(buff, length, &tmp_index);
	if (rc <= 0) {
		printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc);
		return rc;
	}

	*error_log_cnt = info.seq_num;
	*err_type = info.error_type;

	return 0;
}

/* This doesn't actually zero anything, but it sets the event_logged
 * word to tell that this event is safely in syslog.
 */
int nvram_clear_error_log(void)
{
	loff_t tmp_index;
	int clear_word = ERR_FLAG_ALREADY_LOGGED;
	int rc;

296
	if (rtas_log_partition.index == -1)
297 298
		return -1;

299
	tmp_index = rtas_log_partition.index;
300 301 302 303 304 305
	
	rc = ppc_md.nvram_write((char *)&clear_word, sizeof(int), &tmp_index);
	if (rc <= 0) {
		printk(KERN_ERR "nvram_clear_error_log: Failed nvram_write (%d)\n", rc);
		return rc;
	}
306
	last_unread_rtas_event = 0;
307 308 309 310

	return 0;
}

311
/* pseries_nvram_init_os_partition
312
 *
313
 * This sets up a partition with an "OS" signature.
314 315
 *
 * The general strategy is the following:
316 317 318 319 320 321 322 323 324 325 326
 * 1.) If a partition with the indicated name already exists...
 *	- If it's large enough, use it.
 *	- Otherwise, recycle it and keep going.
 * 2.) Search for a free partition that is large enough.
 * 3.) If there's not a free partition large enough, recycle any obsolete
 * OS partitions and try again.
 * 4.) Will first try getting a chunk that will satisfy the requested size.
 * 5.) If a chunk of the requested size cannot be allocated, then try finding
 * a chunk that will satisfy the minum needed.
 *
 * Returns 0 on success, else -1.
327
 */
328 329
static int __init pseries_nvram_init_os_partition(struct nvram_os_partition
									*part)
330 331 332 333 334 335 336
{
	loff_t p;
	int size;

	/* Scan nvram for partitions */
	nvram_scan_partitions();

337 338
	/* Look for ours */
	p = nvram_find_partition(part->name, NVRAM_SIG_OS, &size);
339 340

	/* Found one but too small, remove it */
341 342 343 344
	if (p && size < part->min_size) {
		pr_info("nvram: Found too small %s partition,"
					" removing it...\n", part->name);
		nvram_remove_partition(part->name, NVRAM_SIG_OS, NULL);
345 346 347 348 349
		p = 0;
	}

	/* Create one if we didn't find */
	if (!p) {
350 351
		p = nvram_create_partition(part->name, NVRAM_SIG_OS,
					part->req_size, part->min_size);
352
		if (p == -ENOSPC) {
353 354 355 356 357 358 359
			pr_info("nvram: No room to create %s partition, "
				"deleting any obsolete OS partitions...\n",
				part->name);
			nvram_remove_partition(NULL, NVRAM_SIG_OS,
						pseries_nvram_os_partitions);
			p = nvram_create_partition(part->name, NVRAM_SIG_OS,
					part->req_size, part->min_size);
360 361 362 363
		}
	}

	if (p <= 0) {
364 365 366
		pr_err("nvram: Failed to find or create %s"
		       " partition, err %d\n", part->name, (int)p);
		return -1;
367 368
	}

369 370
	part->index = p;
	part->size = nvram_get_partition_size(p) - sizeof(struct err_log_info);
371 372 373
	
	return 0;
}
374

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
static void __init nvram_init_oops_partition(int rtas_partition_exists)
{
	int rc;

	rc = pseries_nvram_init_os_partition(&oops_log_partition);
	if (rc != 0) {
		if (!rtas_partition_exists)
			return;
		pr_notice("nvram: Using %s partition to log both"
			" RTAS errors and oops/panic reports\n",
			rtas_log_partition.name);
		memcpy(&oops_log_partition, &rtas_log_partition,
						sizeof(rtas_log_partition));
	}
	oops_buf = kmalloc(oops_log_partition.size, GFP_KERNEL);
	rc = kmsg_dump_register(&nvram_kmsg_dumper);
	if (rc != 0) {
		pr_err("nvram: kmsg_dump_register() failed; returned %d\n", rc);
		kfree(oops_buf);
		return;
	}
}

398 399
static int __init pseries_nvram_init_log_partitions(void)
{
400 401 402 403
	int rc;

	rc = pseries_nvram_init_os_partition(&rtas_log_partition);
	nvram_init_oops_partition(rc == 0);
404 405 406
	return 0;
}
machine_arch_initcall(pseries, pseries_nvram_init_log_partitions);
407

L
Linus Torvalds 已提交
408 409 410
int __init pSeries_nvram_init(void)
{
	struct device_node *nvram;
411 412
	const unsigned int *nbytes_p;
	unsigned int proplen;
L
Linus Torvalds 已提交
413 414 415 416 417

	nvram = of_find_node_by_type(NULL, "nvram");
	if (nvram == NULL)
		return -ENODEV;

418
	nbytes_p = of_get_property(nvram, "#bytes", &proplen);
419 420
	if (nbytes_p == NULL || proplen != sizeof(unsigned int)) {
		of_node_put(nvram);
L
Linus Torvalds 已提交
421
		return -EIO;
422
	}
L
Linus Torvalds 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435 436

	nvram_size = *nbytes_p;

	nvram_fetch = rtas_token("nvram-fetch");
	nvram_store = rtas_token("nvram-store");
	printk(KERN_INFO "PPC64 nvram contains %d bytes\n", nvram_size);
	of_node_put(nvram);

	ppc_md.nvram_read	= pSeries_nvram_read;
	ppc_md.nvram_write	= pSeries_nvram_write;
	ppc_md.nvram_size	= pSeries_nvram_get_size;

	return 0;
}
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482

/*
 * Try to capture the last capture_len bytes of the printk buffer.  Return
 * the amount actually captured.
 */
static size_t capture_last_msgs(const char *old_msgs, size_t old_len,
				const char *new_msgs, size_t new_len,
				char *captured, size_t capture_len)
{
	if (new_len >= capture_len) {
		memcpy(captured, new_msgs + (new_len - capture_len),
								capture_len);
		return capture_len;
	} else {
		/* Grab the end of old_msgs. */
		size_t old_tail_len = min(old_len, capture_len - new_len);
		memcpy(captured, old_msgs + (old_len - old_tail_len),
								old_tail_len);
		memcpy(captured + old_tail_len, new_msgs, new_len);
		return old_tail_len + new_len;
	}
}

/*
 * Are we using the ibm,rtas-log for oops/panic reports?  And if so,
 * would logging this oops/panic overwrite an RTAS event that rtas_errd
 * hasn't had a chance to read and process?  Return 1 if so, else 0.
 *
 * We assume that if rtas_errd hasn't read the RTAS event in
 * NVRAM_RTAS_READ_TIMEOUT seconds, it's probably not going to.
 */
static int clobbering_unread_rtas_event(void)
{
	return (oops_log_partition.index == rtas_log_partition.index
		&& last_unread_rtas_event
		&& get_seconds() - last_unread_rtas_event <=
						NVRAM_RTAS_READ_TIMEOUT);
}

/* our kmsg_dump callback */
static void oops_to_nvram(struct kmsg_dumper *dumper,
		enum kmsg_dump_reason reason,
		const char *old_msgs, unsigned long old_len,
		const char *new_msgs, unsigned long new_len)
{
	static unsigned int oops_count = 0;
483
	static bool panicking = false;
484 485
	size_t text_len;

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
	switch (reason) {
	case KMSG_DUMP_RESTART:
	case KMSG_DUMP_HALT:
	case KMSG_DUMP_POWEROFF:
		/* These are almost always orderly shutdowns. */
		return;
	case KMSG_DUMP_OOPS:
	case KMSG_DUMP_KEXEC:
		break;
	case KMSG_DUMP_PANIC:
		panicking = true;
		break;
	case KMSG_DUMP_EMERG:
		if (panicking)
			/* Panic report already captured. */
			return;
		break;
	default:
		pr_err("%s: ignoring unrecognized KMSG_DUMP_* reason %d\n",
						__FUNCTION__, (int) reason);
		return;
	}

509 510 511 512 513 514 515 516
	if (clobbering_unread_rtas_event())
		return;

	text_len = capture_last_msgs(old_msgs, old_len, new_msgs, new_len,
					oops_buf, oops_log_partition.size);
	(void) nvram_write_os_partition(&oops_log_partition, oops_buf,
		(int) text_len, ERR_TYPE_KERNEL_PANIC, ++oops_count);
}