hclgevf_main.c 98.0 KB
Newer Older
1 2 3 4
// SPDX-License-Identifier: GPL-2.0+
// Copyright (c) 2016-2017 Hisilicon Limited.

#include <linux/etherdevice.h>
5
#include <linux/iopoll.h>
6
#include <net/rtnetlink.h>
7 8 9 10 11 12 13
#include "hclgevf_cmd.h"
#include "hclgevf_main.h"
#include "hclge_mbx.h"
#include "hnae3.h"

#define HCLGEVF_NAME	"hclgevf"

14 15
#define HCLGEVF_RESET_MAX_FAIL_CNT	5

16
static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 18
static struct hnae3_ae_algo ae_algovf;

19 20
static struct workqueue_struct *hclgevf_wq;

21
static const struct pci_device_id ae_algovf_pci_tbl[] = {
22 23 24
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
25 26 27 28
	/* required last entry */
	{0, }
};

29 30 31 32 33 34 35 36
static const u8 hclgevf_hash_key[] = {
	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
};

37 38
MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);

39 40 41 42 43 44 45 46 47 48 49
static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
					 HCLGEVF_CMDQ_TX_DEPTH_REG,
					 HCLGEVF_CMDQ_TX_TAIL_REG,
					 HCLGEVF_CMDQ_TX_HEAD_REG,
					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
					 HCLGEVF_CMDQ_RX_DEPTH_REG,
					 HCLGEVF_CMDQ_RX_TAIL_REG,
					 HCLGEVF_CMDQ_RX_HEAD_REG,
					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
50
					 HCLGEVF_VECTOR0_CMDQ_STATE_REG,
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
					 HCLGEVF_CMDQ_INTR_EN_REG,
					 HCLGEVF_CMDQ_INTR_GEN_REG};

static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
					   HCLGEVF_RST_ING,
					   HCLGEVF_GRO_EN_REG};

static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
					 HCLGEVF_RING_RX_ADDR_H_REG,
					 HCLGEVF_RING_RX_BD_NUM_REG,
					 HCLGEVF_RING_RX_BD_LENGTH_REG,
					 HCLGEVF_RING_RX_MERGE_EN_REG,
					 HCLGEVF_RING_RX_TAIL_REG,
					 HCLGEVF_RING_RX_HEAD_REG,
					 HCLGEVF_RING_RX_FBD_NUM_REG,
					 HCLGEVF_RING_RX_OFFSET_REG,
					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
					 HCLGEVF_RING_RX_STASH_REG,
					 HCLGEVF_RING_RX_BD_ERR_REG,
					 HCLGEVF_RING_TX_ADDR_L_REG,
					 HCLGEVF_RING_TX_ADDR_H_REG,
					 HCLGEVF_RING_TX_BD_NUM_REG,
					 HCLGEVF_RING_TX_PRIORITY_REG,
					 HCLGEVF_RING_TX_TC_REG,
					 HCLGEVF_RING_TX_MERGE_EN_REG,
					 HCLGEVF_RING_TX_TAIL_REG,
					 HCLGEVF_RING_TX_HEAD_REG,
					 HCLGEVF_RING_TX_FBD_NUM_REG,
					 HCLGEVF_RING_TX_OFFSET_REG,
					 HCLGEVF_RING_TX_EBD_NUM_REG,
					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
					 HCLGEVF_RING_TX_BD_ERR_REG,
					 HCLGEVF_RING_EN_REG};

static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
					     HCLGEVF_TQP_INTR_GL0_REG,
					     HCLGEVF_TQP_INTR_GL1_REG,
					     HCLGEVF_TQP_INTR_GL2_REG,
					     HCLGEVF_TQP_INTR_RL_REG};

91
static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
92
{
93 94 95 96 97 98
	if (!handle->client)
		return container_of(handle, struct hclgevf_dev, nic);
	else if (handle->client->type == HNAE3_CLIENT_ROCE)
		return container_of(handle, struct hclgevf_dev, roce);
	else
		return container_of(handle, struct hclgevf_dev, nic);
99 100 101 102
}

static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
{
103
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
104 105 106 107 108 109
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hclgevf_desc desc;
	struct hclgevf_tqp *tqp;
	int status;
	int i;

110 111
	for (i = 0; i < kinfo->num_tqps; i++) {
		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
112 113 114 115 116 117 118 119 120 121 122 123 124
		hclgevf_cmd_setup_basic_desc(&desc,
					     HCLGEVF_OPC_QUERY_RX_STATUS,
					     true);

		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
		if (status) {
			dev_err(&hdev->pdev->dev,
				"Query tqp stat fail, status = %d,queue = %d\n",
				status,	i);
			return status;
		}
		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
125
			le32_to_cpu(desc.data[1]);
126 127 128 129 130 131 132 133 134 135 136 137 138

		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
					     true);

		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
		if (status) {
			dev_err(&hdev->pdev->dev,
				"Query tqp stat fail, status = %d,queue = %d\n",
				status, i);
			return status;
		}
		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
139
			le32_to_cpu(desc.data[1]);
140 141 142 143 144 145 146 147 148 149 150 151
	}

	return 0;
}

static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
{
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
	struct hclgevf_tqp *tqp;
	u64 *buff = data;
	int i;

152 153
	for (i = 0; i < kinfo->num_tqps; i++) {
		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
154 155 156
		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
	}
	for (i = 0; i < kinfo->num_tqps; i++) {
157
		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
158 159 160 161 162 163 164 165
		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
	}

	return buff;
}

static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
{
166
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
167

168
	return kinfo->num_tqps * 2;
169 170 171 172
}

static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
{
173
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
174
	u8 *buff = data;
175
	int i;
176

177 178 179
	for (i = 0; i < kinfo->num_tqps; i++) {
		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
						       struct hclgevf_tqp, q);
180
		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
181 182 183 184
			 tqp->index);
		buff += ETH_GSTRING_LEN;
	}

185 186 187
	for (i = 0; i < kinfo->num_tqps; i++) {
		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
						       struct hclgevf_tqp, q);
188
		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
			 tqp->index);
		buff += ETH_GSTRING_LEN;
	}

	return buff;
}

static void hclgevf_update_stats(struct hnae3_handle *handle,
				 struct net_device_stats *net_stats)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int status;

	status = hclgevf_tqps_update_stats(handle);
	if (status)
		dev_err(&hdev->pdev->dev,
			"VF update of TQPS stats fail, status = %d.\n",
			status);
}

static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
{
	if (strset == ETH_SS_TEST)
		return -EOPNOTSUPP;
	else if (strset == ETH_SS_STATS)
		return hclgevf_tqps_get_sset_count(handle, strset);

	return 0;
}

static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
				u8 *data)
{
	u8 *p = (char *)data;

	if (strset == ETH_SS_STATS)
		p = hclgevf_tqps_get_strings(handle, p);
}

static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
{
	hclgevf_tqps_get_stats(handle, data);
}

233 234 235 236 237 238 239 240 241 242
static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
				   u8 subcode)
{
	if (msg) {
		memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
		msg->code = code;
		msg->subcode = subcode;
	}
}

243 244
static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
{
245
	struct hclge_vf_to_pf_msg send_msg;
246 247 248
	u8 resp_msg;
	int status;

249 250 251
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_TCINFO, 0);
	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
				      sizeof(resp_msg));
252 253 254 255 256 257 258 259 260 261 262 263
	if (status) {
		dev_err(&hdev->pdev->dev,
			"VF request to get TC info from PF failed %d",
			status);
		return status;
	}

	hdev->hw_tc_map = resp_msg;

	return 0;
}

264 265 266
static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *nic = &hdev->nic;
267
	struct hclge_vf_to_pf_msg send_msg;
268 269 270
	u8 resp_msg;
	int ret;

271 272 273 274
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
			       HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
				   sizeof(u8));
275 276 277 278 279 280 281 282 283 284 285 286
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"VF request to get port based vlan state failed %d",
			ret);
		return ret;
	}

	nic->port_base_vlan_state = resp_msg;

	return 0;
}

287
static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
288
{
289
#define HCLGEVF_TQPS_RSS_INFO_LEN	6
290 291 292 293
#define HCLGEVF_TQPS_ALLOC_OFFSET	0
#define HCLGEVF_TQPS_RSS_SIZE_OFFSET	2
#define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET	4

294
	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
295
	struct hclge_vf_to_pf_msg send_msg;
296 297
	int status;

298 299
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
300 301 302 303 304 305 306 307
				      HCLGEVF_TQPS_RSS_INFO_LEN);
	if (status) {
		dev_err(&hdev->pdev->dev,
			"VF request to get tqp info from PF failed %d",
			status);
		return status;
	}

308 309 310 311 312 313
	memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET],
	       sizeof(u16));
	memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET],
	       sizeof(u16));
	memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET],
	       sizeof(u16));
314 315 316 317 318 319 320

	return 0;
}

static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
{
#define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
321 322 323
#define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET	0
#define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET	2

324
	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
325
	struct hclge_vf_to_pf_msg send_msg;
326 327
	int ret;

328 329
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
330 331 332 333 334 335 336 337
				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"VF request to get tqp depth info from PF failed %d",
			ret);
		return ret;
	}

338 339 340 341
	memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET],
	       sizeof(u16));
	memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET],
	       sizeof(u16));
342 343 344 345

	return 0;
}

346 347 348
static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
349
	struct hclge_vf_to_pf_msg send_msg;
350
	u16 qid_in_pf = 0;
351
	u8 resp_data[2];
352 353
	int ret;

354 355 356
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
357
				   sizeof(resp_data));
358 359 360 361 362 363
	if (!ret)
		qid_in_pf = *(u16 *)resp_data;

	return qid_in_pf;
}

364 365
static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
{
366
	struct hclge_vf_to_pf_msg send_msg;
367
	u8 resp_msg[2];
368 369
	int ret;

370 371 372
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
				   sizeof(resp_msg));
373 374 375 376 377 378 379
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"VF request to get the pf port media type failed %d",
			ret);
		return ret;
	}

380 381
	hdev->hw.mac.media_type = resp_msg[0];
	hdev->hw.mac.module_type = resp_msg[1];
382 383 384 385

	return 0;
}

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
{
	struct hclgevf_tqp *tqp;
	int i;

	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
	if (!hdev->htqp)
		return -ENOMEM;

	tqp = hdev->htqp;

	for (i = 0; i < hdev->num_tqps; i++) {
		tqp->dev = &hdev->pdev->dev;
		tqp->index = i;

		tqp->q.ae_algo = &ae_algovf;
		tqp->q.buf_size = hdev->rx_buf_len;
404 405
		tqp->q.tx_desc_num = hdev->num_tx_desc;
		tqp->q.rx_desc_num = hdev->num_rx_desc;
406 407 408 409 410 411 412 413 414 415 416 417 418 419
		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
			i * HCLGEVF_TQP_REG_SIZE;

		tqp++;
	}

	return 0;
}

static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *nic = &hdev->nic;
	struct hnae3_knic_private_info *kinfo;
	u16 new_tqps = hdev->num_tqps;
420
	unsigned int i;
421 422 423

	kinfo = &nic->kinfo;
	kinfo->num_tc = 0;
424 425
	kinfo->num_tx_desc = hdev->num_tx_desc;
	kinfo->num_rx_desc = hdev->num_rx_desc;
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
	kinfo->rx_buf_len = hdev->rx_buf_len;
	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
		if (hdev->hw_tc_map & BIT(i))
			kinfo->num_tc++;

	kinfo->rss_size
		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
	new_tqps = kinfo->rss_size * kinfo->num_tc;
	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);

	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
				  sizeof(struct hnae3_queue *), GFP_KERNEL);
	if (!kinfo->tqp)
		return -ENOMEM;

	for (i = 0; i < kinfo->num_tqps; i++) {
		hdev->htqp[i].q.handle = &hdev->nic;
		hdev->htqp[i].q.tqp_index = i;
		kinfo->tqp[i] = &hdev->htqp[i].q;
	}

447 448 449 450 451 452 453
	/* after init the max rss_size and tqps, adjust the default tqp numbers
	 * and rss size with the actual vector numbers
	 */
	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
	kinfo->rss_size = min_t(u16, kinfo->num_tqps / kinfo->num_tc,
				kinfo->rss_size);

454 455 456 457 458
	return 0;
}

static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
{
459
	struct hclge_vf_to_pf_msg send_msg;
460 461
	int status;

462 463
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
	status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
464 465 466 467 468 469 470
	if (status)
		dev_err(&hdev->pdev->dev,
			"VF failed to fetch link status(%d) from PF", status);
}

void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
{
471
	struct hnae3_handle *rhandle = &hdev->roce;
472
	struct hnae3_handle *handle = &hdev->nic;
473
	struct hnae3_client *rclient;
474 475
	struct hnae3_client *client;

476 477 478
	if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
		return;

479
	client = handle->client;
480
	rclient = hdev->roce_client;
481

482 483 484
	link_state =
		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;

485 486
	if (link_state != hdev->hw.mac.link) {
		client->ops->link_status_change(handle, !!link_state);
487 488
		if (rclient && rclient->ops->link_status_change)
			rclient->ops->link_status_change(rhandle, !!link_state);
489 490
		hdev->hw.mac.link = link_state;
	}
491 492

	clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
493 494
}

495
static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
496
{
497 498 499 500
#define HCLGEVF_ADVERTISING	0
#define HCLGEVF_SUPPORTED	1

	struct hclge_vf_to_pf_msg send_msg;
501

502 503 504 505 506
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
	send_msg.data[0] = HCLGEVF_ADVERTISING;
	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
	send_msg.data[0] = HCLGEVF_SUPPORTED;
	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
507 508
}

509 510 511 512 513 514 515 516
static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *nic = &hdev->nic;
	int ret;

	nic->ae_algo = &ae_algovf;
	nic->pdev = hdev->pdev;
	nic->numa_node_mask = hdev->numa_node_mask;
517
	nic->flags |= HNAE3_SUPPORT_VF;
518 519 520 521 522 523 524 525 526 527

	ret = hclgevf_knic_setup(hdev);
	if (ret)
		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
			ret);
	return ret;
}

static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
{
528 529 530 531 532 533
	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
		dev_warn(&hdev->pdev->dev,
			 "vector(vector_id %d) has been freed.\n", vector_id);
		return;
	}

534 535 536 537 538 539 540 541 542 543 544 545 546
	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
	hdev->num_msi_left += 1;
	hdev->num_msi_used -= 1;
}

static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
			      struct hnae3_vector_info *vector_info)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hnae3_vector_info *vector = vector_info;
	int alloc = 0;
	int i, j;

547
	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
	vector_num = min(hdev->num_msi_left, vector_num);

	for (j = 0; j < vector_num; j++) {
		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
				vector->vector = pci_irq_vector(hdev->pdev, i);
				vector->io_addr = hdev->hw.io_base +
					HCLGEVF_VECTOR_REG_BASE +
					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
				hdev->vector_status[i] = 0;
				hdev->vector_irq[i] = vector->vector;

				vector++;
				alloc++;

				break;
			}
		}
	}
	hdev->num_msi_left -= alloc;
	hdev->num_msi_used += alloc;

	return alloc;
}

static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
{
	int i;

	for (i = 0; i < hdev->num_msi; i++)
		if (vector == hdev->vector_irq[i])
			return i;

	return -EINVAL;
}

584 585 586 587
static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
				    const u8 hfunc, const u8 *key)
{
	struct hclgevf_rss_config_cmd *req;
588
	unsigned int key_offset = 0;
589
	struct hclgevf_desc desc;
590
	int key_counts;
591 592 593
	int key_size;
	int ret;

594
	key_counts = HCLGEVF_RSS_KEY_SIZE;
595 596
	req = (struct hclgevf_rss_config_cmd *)desc.data;

597
	while (key_counts) {
598 599 600 601 602 603 604 605
		hclgevf_cmd_setup_basic_desc(&desc,
					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
					     false);

		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
		req->hash_config |=
			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);

606
		key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
607 608 609
		memcpy(req->hash_key,
		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);

610 611
		key_counts -= key_size;
		key_offset++;
612 613 614 615 616 617 618 619 620 621 622 623
		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
		if (ret) {
			dev_err(&hdev->pdev->dev,
				"Configure RSS config fail, status = %d\n",
				ret);
			return ret;
		}
	}

	return 0;
}

624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
{
	return HCLGEVF_RSS_KEY_SIZE;
}

static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
{
	return HCLGEVF_RSS_IND_TBL_SIZE;
}

static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
{
	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
	struct hclgevf_rss_indirection_table_cmd *req;
	struct hclgevf_desc desc;
	int status;
	int i, j;

	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;

	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
					     false);
		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
			req->rss_result[j] =
				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];

		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
		if (status) {
			dev_err(&hdev->pdev->dev,
				"VF failed(=%d) to set RSS indirection table\n",
				status);
			return status;
		}
	}

	return 0;
}

static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
{
	struct hclgevf_rss_tc_mode_cmd *req;
	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
	u16 tc_size[HCLGEVF_MAX_TC_NUM];
	struct hclgevf_desc desc;
	u16 roundup_size;
673
	unsigned int i;
674
	int status;
675 676 677 678 679 680 681 682 683 684 685 686 687 688

	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;

	roundup_size = roundup_pow_of_two(rss_size);
	roundup_size = ilog2(roundup_size);

	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
		tc_size[i] = roundup_size;
		tc_offset[i] = rss_size * i;
	}

	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
P
Peng Li 已提交
689 690 691 692 693 694
		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
			      (tc_valid[i] & 0x1));
		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
695 696 697 698 699 700 701 702 703
	}
	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (status)
		dev_err(&hdev->pdev->dev,
			"VF failed(=%d) to set rss tc mode\n", status);

	return status;
}

J
Jian Shen 已提交
704 705 706 707 708 709
/* for revision 0x20, vf shared the same rss config with pf */
static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
{
#define HCLGEVF_RSS_MBX_RESP_LEN	8
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
710
	struct hclge_vf_to_pf_msg send_msg;
J
Jian Shen 已提交
711 712 713 714
	u16 msg_num, hash_key_index;
	u8 index;
	int ret;

715
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
J
Jian Shen 已提交
716 717 718
	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
			HCLGEVF_RSS_MBX_RESP_LEN;
	for (index = 0; index < msg_num; index++) {
719 720
		send_msg.data[0] = index;
		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
J
Jian Shen 已提交
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
					   HCLGEVF_RSS_MBX_RESP_LEN);
		if (ret) {
			dev_err(&hdev->pdev->dev,
				"VF get rss hash key from PF failed, ret=%d",
				ret);
			return ret;
		}

		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
		if (index == msg_num - 1)
			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
			       &resp_msg[0],
			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
		else
			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
	}

	return 0;
}

742 743
static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
			   u8 *hfunc)
744 745
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
746
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
J
Jian Shen 已提交
747
	int i, ret;
748

749
	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
750 751 752 753 754 755 756 757 758 759 760 761 762
		/* Get hash algorithm */
		if (hfunc) {
			switch (rss_cfg->hash_algo) {
			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
				*hfunc = ETH_RSS_HASH_TOP;
				break;
			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
				*hfunc = ETH_RSS_HASH_XOR;
				break;
			default:
				*hfunc = ETH_RSS_HASH_UNKNOWN;
				break;
			}
763 764
		}

765
		/* Get the RSS Key required by the user */
766
		if (key)
767 768
			memcpy(key, rss_cfg->rss_hash_key,
			       HCLGEVF_RSS_KEY_SIZE);
J
Jian Shen 已提交
769 770 771 772 773 774 775 776 777 778
	} else {
		if (hfunc)
			*hfunc = ETH_RSS_HASH_TOP;
		if (key) {
			ret = hclgevf_get_rss_hash_key(hdev);
			if (ret)
				return ret;
			memcpy(key, rss_cfg->rss_hash_key,
			       HCLGEVF_RSS_KEY_SIZE);
		}
779 780 781 782 783 784
	}

	if (indir)
		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
			indir[i] = rss_cfg->rss_indirection_tbl[i];

785
	return 0;
786 787 788
}

static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
789
			   const u8 *key, const u8 hfunc)
790 791 792
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
793 794
	int ret, i;

795
	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
		/* Set the RSS Hash Key if specififed by the user */
		if (key) {
			switch (hfunc) {
			case ETH_RSS_HASH_TOP:
				rss_cfg->hash_algo =
					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
				break;
			case ETH_RSS_HASH_XOR:
				rss_cfg->hash_algo =
					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
				break;
			case ETH_RSS_HASH_NO_CHANGE:
				break;
			default:
				return -EINVAL;
			}

			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
						       key);
			if (ret)
				return ret;

			/* Update the shadow RSS key with user specified qids */
			memcpy(rss_cfg->rss_hash_key, key,
			       HCLGEVF_RSS_KEY_SIZE);
		}
	}
823 824 825 826 827 828 829 830 831

	/* update the shadow RSS table with user specified qids */
	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
		rss_cfg->rss_indirection_tbl[i] = indir[i];

	/* update the hardware */
	return hclgevf_set_rss_indir_table(hdev);
}

832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
{
	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;

	if (nfc->data & RXH_L4_B_2_3)
		hash_sets |= HCLGEVF_D_PORT_BIT;
	else
		hash_sets &= ~HCLGEVF_D_PORT_BIT;

	if (nfc->data & RXH_IP_SRC)
		hash_sets |= HCLGEVF_S_IP_BIT;
	else
		hash_sets &= ~HCLGEVF_S_IP_BIT;

	if (nfc->data & RXH_IP_DST)
		hash_sets |= HCLGEVF_D_IP_BIT;
	else
		hash_sets &= ~HCLGEVF_D_IP_BIT;

	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
		hash_sets |= HCLGEVF_V_TAG_BIT;

	return hash_sets;
}

static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
				 struct ethtool_rxnfc *nfc)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
	struct hclgevf_rss_input_tuple_cmd *req;
	struct hclgevf_desc desc;
	u8 tuple_sets;
	int ret;

867
	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
		return -EOPNOTSUPP;

	if (nfc->data &
	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
		return -EINVAL;

	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);

	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;

	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
	switch (nfc->flow_type) {
	case TCP_V4_FLOW:
		req->ipv4_tcp_en = tuple_sets;
		break;
	case TCP_V6_FLOW:
		req->ipv6_tcp_en = tuple_sets;
		break;
	case UDP_V4_FLOW:
		req->ipv4_udp_en = tuple_sets;
		break;
	case UDP_V6_FLOW:
		req->ipv6_udp_en = tuple_sets;
		break;
	case SCTP_V4_FLOW:
		req->ipv4_sctp_en = tuple_sets;
		break;
	case SCTP_V6_FLOW:
904 905
		if (hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
		    (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)))
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
			return -EINVAL;

		req->ipv6_sctp_en = tuple_sets;
		break;
	case IPV4_FLOW:
		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		break;
	case IPV6_FLOW:
		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		break;
	default:
		return -EINVAL;
	}

	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"Set rss tuple fail, status = %d\n", ret);
		return ret;
	}

	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
	return 0;
}

static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
				 struct ethtool_rxnfc *nfc)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
	u8 tuple_sets;

945
	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
		return -EOPNOTSUPP;

	nfc->data = 0;

	switch (nfc->flow_type) {
	case TCP_V4_FLOW:
		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
		break;
	case UDP_V4_FLOW:
		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
		break;
	case TCP_V6_FLOW:
		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
		break;
	case UDP_V6_FLOW:
		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
		break;
	case SCTP_V4_FLOW:
		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
		break;
	case SCTP_V6_FLOW:
		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
		break;
	case IPV4_FLOW:
	case IPV6_FLOW:
		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
		break;
	default:
		return -EINVAL;
	}

	if (!tuple_sets)
		return 0;

	if (tuple_sets & HCLGEVF_D_PORT_BIT)
		nfc->data |= RXH_L4_B_2_3;
	if (tuple_sets & HCLGEVF_S_PORT_BIT)
		nfc->data |= RXH_L4_B_0_1;
	if (tuple_sets & HCLGEVF_D_IP_BIT)
		nfc->data |= RXH_IP_DST;
	if (tuple_sets & HCLGEVF_S_IP_BIT)
		nfc->data |= RXH_IP_SRC;

	return 0;
}

static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
				       struct hclgevf_rss_cfg *rss_cfg)
{
	struct hclgevf_rss_input_tuple_cmd *req;
	struct hclgevf_desc desc;
	int ret;

	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);

	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;

	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;

	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"Configure rss input fail, status = %d\n", ret);
	return ret;
}

1019 1020 1021 1022 1023 1024 1025 1026 1027
static int hclgevf_get_tc_size(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;

	return rss_cfg->rss_size;
}

static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
1028
				       int vector_id,
1029 1030 1031
				       struct hnae3_ring_chain_node *ring_chain)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1032
	struct hclge_vf_to_pf_msg send_msg;
1033 1034
	struct hnae3_ring_chain_node *node;
	int status;
1035
	int i = 0;
1036

1037 1038
	memset(&send_msg, 0, sizeof(send_msg));
	send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
1039
		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1040
	send_msg.vector_id = vector_id;
1041 1042

	for (node = ring_chain; node; node = node->next) {
1043
		send_msg.param[i].ring_type =
P
Peng Li 已提交
1044
				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1045 1046 1047 1048 1049 1050

		send_msg.param[i].tqp_index = node->tqp_index;
		send_msg.param[i].int_gl_index =
					hnae3_get_field(node->int_gl_idx,
							HNAE3_RING_GL_IDX_M,
							HNAE3_RING_GL_IDX_S);
1051 1052

		i++;
1053 1054
		if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
			send_msg.ring_num = i;
1055

1056 1057
			status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
						      NULL, 0);
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
			if (status) {
				dev_err(&hdev->pdev->dev,
					"Map TQP fail, status is %d.\n",
					status);
				return status;
			}
			i = 0;
		}
	}

	return 0;
}

static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
				      struct hnae3_ring_chain_node *ring_chain)
{
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int vector_id;

	vector_id = hclgevf_get_vector_index(hdev, vector);
	if (vector_id < 0) {
		dev_err(&handle->pdev->dev,
			"Get vector index fail. ret =%d\n", vector_id);
		return vector_id;
	}

	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
}

static int hclgevf_unmap_ring_from_vector(
				struct hnae3_handle *handle,
				int vector,
				struct hnae3_ring_chain_node *ring_chain)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int ret, vector_id;

1095 1096 1097
	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
		return 0;

1098 1099 1100 1101 1102 1103 1104
	vector_id = hclgevf_get_vector_index(hdev, vector);
	if (vector_id < 0) {
		dev_err(&handle->pdev->dev,
			"Get vector index fail. ret =%d\n", vector_id);
		return vector_id;
	}

1105
	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1106
	if (ret)
1107 1108 1109 1110
		dev_err(&handle->pdev->dev,
			"Unmap ring from vector fail. vector=%d, ret =%d\n",
			vector_id,
			ret);
1111 1112 1113 1114 1115 1116 1117

	return ret;
}

static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1118 1119 1120 1121 1122 1123 1124 1125 1126
	int vector_id;

	vector_id = hclgevf_get_vector_index(hdev, vector);
	if (vector_id < 0) {
		dev_err(&handle->pdev->dev,
			"hclgevf_put_vector get vector index fail. ret =%d\n",
			vector_id);
		return vector_id;
	}
1127

1128
	hclgevf_free_vector(hdev, vector_id);
1129 1130 1131 1132

	return 0;
}

1133
static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1134
					bool en_uc_pmc, bool en_mc_pmc,
1135
					bool en_bc_pmc)
1136
{
1137
	struct hclge_vf_to_pf_msg send_msg;
1138
	int ret;
1139

1140 1141 1142 1143 1144 1145 1146
	memset(&send_msg, 0, sizeof(send_msg));
	send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
	send_msg.en_bc = en_bc_pmc ? 1 : 0;
	send_msg.en_uc = en_uc_pmc ? 1 : 0;
	send_msg.en_mc = en_mc_pmc ? 1 : 0;

	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1147
	if (ret)
1148
		dev_err(&hdev->pdev->dev,
1149
			"Set promisc mode fail, status is %d.\n", ret);
1150

1151
	return ret;
1152 1153
}

1154 1155
static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
				    bool en_mc_pmc)
1156
{
1157 1158 1159
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	bool en_bc_pmc;

1160
	en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
1161 1162 1163

	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
					    en_bc_pmc);
1164 1165
}

1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
}

static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *handle = &hdev->nic;
	bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
	bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
	int ret;

	if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
		ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
		if (!ret)
			clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
	}
}

1187
static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, unsigned int tqp_id,
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
			      int stream_id, bool enable)
{
	struct hclgevf_cfg_com_tqp_queue_cmd *req;
	struct hclgevf_desc desc;
	int status;

	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;

	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
				     false);
	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
	req->stream_id = cpu_to_le16(stream_id);
1200 1201
	if (enable)
		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212

	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (status)
		dev_err(&hdev->pdev->dev,
			"TQP enable fail, status =%d.\n", status);

	return status;
}

static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
{
1213
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1214 1215 1216
	struct hclgevf_tqp *tqp;
	int i;

1217 1218
	for (i = 0; i < kinfo->num_tqps; i++) {
		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1219 1220 1221 1222
		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
	}
}

1223 1224
static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
{
1225
	struct hclge_vf_to_pf_msg send_msg;
1226 1227 1228
	u8 host_mac[ETH_ALEN];
	int status;

1229 1230 1231
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
				      ETH_ALEN);
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
	if (status) {
		dev_err(&hdev->pdev->dev,
			"fail to get VF MAC from host %d", status);
		return status;
	}

	ether_addr_copy(p, host_mac);

	return 0;
}

1243 1244 1245
static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1246
	u8 host_mac_addr[ETH_ALEN];
1247

1248 1249 1250 1251 1252 1253 1254 1255
	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
		return;

	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
	if (hdev->has_pf_mac)
		ether_addr_copy(p, host_mac_addr);
	else
		ether_addr_copy(p, hdev->hw.mac.mac_addr);
1256 1257
}

1258 1259
static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
				bool is_first)
1260 1261 1262
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1263
	struct hclge_vf_to_pf_msg send_msg;
1264 1265 1266
	u8 *new_mac_addr = (u8 *)p;
	int status;

1267
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
1268
	send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1269
	ether_addr_copy(send_msg.data, new_mac_addr);
1270 1271 1272 1273
	if (is_first && !hdev->has_pf_mac)
		eth_zero_addr(&send_msg.data[ETH_ALEN]);
	else
		ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
1274
	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1275 1276 1277 1278 1279 1280
	if (!status)
		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);

	return status;
}

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
static struct hclgevf_mac_addr_node *
hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
{
	struct hclgevf_mac_addr_node *mac_node, *tmp;

	list_for_each_entry_safe(mac_node, tmp, list, node)
		if (ether_addr_equal(mac_addr, mac_node->mac_addr))
			return mac_node;

	return NULL;
}

static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
				    enum HCLGEVF_MAC_NODE_STATE state)
{
	switch (state) {
	/* from set_rx_mode or tmp_add_list */
	case HCLGEVF_MAC_TO_ADD:
		if (mac_node->state == HCLGEVF_MAC_TO_DEL)
			mac_node->state = HCLGEVF_MAC_ACTIVE;
		break;
	/* only from set_rx_mode */
	case HCLGEVF_MAC_TO_DEL:
		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
			list_del(&mac_node->node);
			kfree(mac_node);
		} else {
			mac_node->state = HCLGEVF_MAC_TO_DEL;
		}
		break;
	/* only from tmp_add_list, the mac_node->state won't be
	 * HCLGEVF_MAC_ACTIVE
	 */
	case HCLGEVF_MAC_ACTIVE:
		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
			mac_node->state = HCLGEVF_MAC_ACTIVE;
		break;
	}
}

static int hclgevf_update_mac_list(struct hnae3_handle *handle,
				   enum HCLGEVF_MAC_NODE_STATE state,
				   enum HCLGEVF_MAC_ADDR_TYPE mac_type,
				   const unsigned char *addr)
1325 1326
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1327 1328
	struct hclgevf_mac_addr_node *mac_node;
	struct list_head *list;
1329

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
	       &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;

	spin_lock_bh(&hdev->mac_table.mac_list_lock);

	/* if the mac addr is already in the mac list, no need to add a new
	 * one into it, just check the mac addr state, convert it to a new
	 * new state, or just remove it, or do nothing.
	 */
	mac_node = hclgevf_find_mac_node(list, addr);
	if (mac_node) {
		hclgevf_update_mac_node(mac_node, state);
		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
		return 0;
	}
	/* if this address is never added, unnecessary to delete */
	if (state == HCLGEVF_MAC_TO_DEL) {
		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
		return -ENOENT;
	}

	mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
	if (!mac_node) {
		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
		return -ENOMEM;
	}

	mac_node->state = state;
	ether_addr_copy(mac_node->mac_addr, addr);
	list_add_tail(&mac_node->node, list);

	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
	return 0;
}

static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
			       const unsigned char *addr)
{
	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
				       HCLGEVF_MAC_ADDR_UC, addr);
1370 1371 1372 1373 1374
}

static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
			      const unsigned char *addr)
{
1375 1376
	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
				       HCLGEVF_MAC_ADDR_UC, addr);
1377 1378 1379 1380 1381
}

static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
			       const unsigned char *addr)
{
1382 1383
	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
				       HCLGEVF_MAC_ADDR_MC, addr);
1384 1385 1386 1387 1388
}

static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
			      const unsigned char *addr)
{
1389 1390 1391 1392 1393 1394 1395 1396
	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
				       HCLGEVF_MAC_ADDR_MC, addr);
}

static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
				    struct hclgevf_mac_addr_node *mac_node,
				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
{
1397
	struct hclge_vf_to_pf_msg send_msg;
1398
	u8 code, subcode;
1399

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
	if (mac_type == HCLGEVF_MAC_ADDR_UC) {
		code = HCLGE_MBX_SET_UNICAST;
		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
			subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
		else
			subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
	} else {
		code = HCLGE_MBX_SET_MULTICAST;
		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
			subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
		else
			subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
	}

	hclgevf_build_send_msg(&send_msg, code, subcode);
	ether_addr_copy(send_msg.data, mac_node->mac_addr);
1416
	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1417 1418
}

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
				    struct list_head *list,
				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
{
	struct hclgevf_mac_addr_node *mac_node, *tmp;
	int ret;

	list_for_each_entry_safe(mac_node, tmp, list, node) {
		ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
		if  (ret) {
			dev_err(&hdev->pdev->dev,
				"failed to configure mac %pM, state = %d, ret = %d\n",
				mac_node->mac_addr, mac_node->state, ret);
			return;
		}
		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
			mac_node->state = HCLGEVF_MAC_ACTIVE;
		} else {
			list_del(&mac_node->node);
			kfree(mac_node);
		}
	}
}

static void hclgevf_sync_from_add_list(struct list_head *add_list,
				       struct list_head *mac_list)
{
	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;

	list_for_each_entry_safe(mac_node, tmp, add_list, node) {
		/* if the mac address from tmp_add_list is not in the
		 * uc/mc_mac_list, it means have received a TO_DEL request
		 * during the time window of sending mac config request to PF
		 * If mac_node state is ACTIVE, then change its state to TO_DEL,
		 * then it will be removed at next time. If is TO_ADD, it means
		 * send TO_ADD request failed, so just remove the mac node.
		 */
		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
		if (new_node) {
			hclgevf_update_mac_node(new_node, mac_node->state);
			list_del(&mac_node->node);
			kfree(mac_node);
		} else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
			mac_node->state = HCLGEVF_MAC_TO_DEL;
			list_del(&mac_node->node);
			list_add_tail(&mac_node->node, mac_list);
		} else {
			list_del(&mac_node->node);
			kfree(mac_node);
		}
	}
}

static void hclgevf_sync_from_del_list(struct list_head *del_list,
				       struct list_head *mac_list)
{
	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;

	list_for_each_entry_safe(mac_node, tmp, del_list, node) {
		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
		if (new_node) {
			/* If the mac addr is exist in the mac list, it means
			 * received a new request TO_ADD during the time window
			 * of sending mac addr configurrequest to PF, so just
			 * change the mac state to ACTIVE.
			 */
			new_node->state = HCLGEVF_MAC_ACTIVE;
			list_del(&mac_node->node);
			kfree(mac_node);
		} else {
			list_del(&mac_node->node);
			list_add_tail(&mac_node->node, mac_list);
		}
	}
}

static void hclgevf_clear_list(struct list_head *list)
{
	struct hclgevf_mac_addr_node *mac_node, *tmp;

	list_for_each_entry_safe(mac_node, tmp, list, node) {
		list_del(&mac_node->node);
		kfree(mac_node);
	}
}

static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
				  enum HCLGEVF_MAC_ADDR_TYPE mac_type)
{
	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
	struct list_head tmp_add_list, tmp_del_list;
	struct list_head *list;

	INIT_LIST_HEAD(&tmp_add_list);
	INIT_LIST_HEAD(&tmp_del_list);

	/* move the mac addr to the tmp_add_list and tmp_del_list, then
	 * we can add/delete these mac addr outside the spin lock
	 */
	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
		&hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;

	spin_lock_bh(&hdev->mac_table.mac_list_lock);

	list_for_each_entry_safe(mac_node, tmp, list, node) {
		switch (mac_node->state) {
		case HCLGEVF_MAC_TO_DEL:
			list_del(&mac_node->node);
			list_add_tail(&mac_node->node, &tmp_del_list);
			break;
		case HCLGEVF_MAC_TO_ADD:
			new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
			if (!new_node)
				goto stop_traverse;

			ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
			new_node->state = mac_node->state;
			list_add_tail(&new_node->node, &tmp_add_list);
			break;
		default:
			break;
		}
	}

stop_traverse:
	spin_unlock_bh(&hdev->mac_table.mac_list_lock);

	/* delete first, in order to get max mac table space for adding */
	hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
	hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);

	/* if some mac addresses were added/deleted fail, move back to the
	 * mac_list, and retry at next time.
	 */
	spin_lock_bh(&hdev->mac_table.mac_list_lock);

	hclgevf_sync_from_del_list(&tmp_del_list, list);
	hclgevf_sync_from_add_list(&tmp_add_list, list);

	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
}

static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
{
	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
}

static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
{
	spin_lock_bh(&hdev->mac_table.mac_list_lock);

	hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
	hclgevf_clear_list(&hdev->mac_table.mc_mac_list);

	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
}

1577 1578 1579 1580
static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
				   __be16 proto, u16 vlan_id,
				   bool is_kill)
{
1581 1582 1583 1584
#define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET	0
#define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET	1
#define HCLGEVF_VLAN_MBX_PROTO_OFFSET	3

1585
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1586
	struct hclge_vf_to_pf_msg send_msg;
1587
	int ret;
1588

1589
	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1590 1591 1592 1593 1594
		return -EINVAL;

	if (proto != htons(ETH_P_8021Q))
		return -EPROTONOSUPPORT;

1595 1596
	/* When device is resetting or reset failed, firmware is unable to
	 * handle mailbox. Just record the vlan id, and remove it after
1597 1598
	 * reset finished.
	 */
1599 1600
	if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
	     test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1601 1602 1603 1604
		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
		return -EBUSY;
	}

1605 1606 1607 1608 1609 1610 1611
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
			       HCLGE_MBX_VLAN_FILTER);
	send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill;
	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id,
	       sizeof(vlan_id));
	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto,
	       sizeof(proto));
G
Guojia Liao 已提交
1612
	/* when remove hw vlan filter failed, record the vlan id,
1613 1614 1615
	 * and try to remove it from hw later, to be consistence
	 * with stack.
	 */
1616
	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
	if (is_kill && ret)
		set_bit(vlan_id, hdev->vlan_del_fail_bmap);

	return ret;
}

static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
{
#define HCLGEVF_MAX_SYNC_COUNT	60
	struct hnae3_handle *handle = &hdev->nic;
	int ret, sync_cnt = 0;
	u16 vlan_id;

	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
	while (vlan_id != VLAN_N_VID) {
		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
					      vlan_id, true);
		if (ret)
			return;

		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
		sync_cnt++;
		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
			return;

		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
	}
1644 1645
}

1646 1647 1648
static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1649
	struct hclge_vf_to_pf_msg send_msg;
1650

1651 1652 1653 1654
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
			       HCLGE_MBX_VLAN_RX_OFF_CFG);
	send_msg.data[0] = enable ? 1 : 0;
	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1655 1656
}

1657
static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1658 1659
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1660
	struct hclge_vf_to_pf_msg send_msg;
1661
	int ret;
1662

1663 1664 1665
	/* disable vf queue before send queue reset msg to PF */
	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
	if (ret)
1666
		return ret;
1667

1668 1669 1670
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1671 1672
}

1673 1674 1675
static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1676
	struct hclge_vf_to_pf_msg send_msg;
1677

1678 1679 1680
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
	memcpy(send_msg.data, &new_mtu, sizeof(new_mtu));
	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1681 1682
}

1683 1684 1685 1686 1687
static int hclgevf_notify_client(struct hclgevf_dev *hdev,
				 enum hnae3_reset_notify_type type)
{
	struct hnae3_client *client = hdev->nic_client;
	struct hnae3_handle *handle = &hdev->nic;
1688
	int ret;
1689

1690 1691 1692 1693
	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
	    !client)
		return 0;

1694 1695 1696
	if (!client->ops->reset_notify)
		return -EOPNOTSUPP;

1697 1698 1699 1700 1701 1702
	ret = client->ops->reset_notify(handle, type);
	if (ret)
		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
			type, ret);

	return ret;
1703 1704
}

1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
				      enum hnae3_reset_notify_type type)
{
	struct hnae3_client *client = hdev->roce_client;
	struct hnae3_handle *handle = &hdev->roce;
	int ret;

	if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
		return 0;

	if (!client->ops->reset_notify)
		return -EOPNOTSUPP;

	ret = client->ops->reset_notify(handle, type);
	if (ret)
		dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
			type, ret);
	return ret;
}

1725 1726
static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
{
1727 1728 1729 1730 1731 1732 1733
#define HCLGEVF_RESET_WAIT_US	20000
#define HCLGEVF_RESET_WAIT_CNT	2000
#define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)

	u32 val;
	int ret;
1734

1735
	if (hdev->reset_type == HNAE3_VF_RESET)
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
		ret = readl_poll_timeout(hdev->hw.io_base +
					 HCLGEVF_VF_RST_ING, val,
					 !(val & HCLGEVF_VF_RST_ING_BIT),
					 HCLGEVF_RESET_WAIT_US,
					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
	else
		ret = readl_poll_timeout(hdev->hw.io_base +
					 HCLGEVF_RST_ING, val,
					 !(val & HCLGEVF_RST_ING_BITS),
					 HCLGEVF_RESET_WAIT_US,
					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1747 1748

	/* hardware completion status should be available by this time */
1749 1750
	if (ret) {
		dev_err(&hdev->pdev->dev,
1751
			"couldn't get reset done status from h/w, timeout!\n");
1752
		return ret;
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
	}

	/* we will wait a bit more to let reset of the stack to complete. This
	 * might happen in case reset assertion was made by PF. Yes, this also
	 * means we might end up waiting bit more even for VF reset.
	 */
	msleep(5000);

	return 0;
}

1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
{
	u32 reg_val;

	reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
	if (enable)
		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
	else
		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;

	hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
			  reg_val);
}

1778 1779
static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
{
1780 1781
	int ret;

1782
	/* uninitialize the nic client */
1783 1784 1785
	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
	if (ret)
		return ret;
1786

1787
	/* re-initialize the hclge device */
1788
	ret = hclgevf_reset_hdev(hdev);
1789 1790 1791 1792 1793
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"hclge device re-init failed, VF is disabled!\n");
		return ret;
	}
1794 1795

	/* bring up the nic client again */
1796 1797 1798
	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
	if (ret)
		return ret;
1799

1800 1801 1802
	/* clear handshake status with IMP */
	hclgevf_reset_handshake(hdev, false);

1803 1804
	/* bring up the nic to enable TX/RX again */
	return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1805 1806
}

1807 1808
static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
{
1809 1810
#define HCLGEVF_RESET_SYNC_TIME 100

1811
	if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1812 1813 1814
		struct hclge_vf_to_pf_msg send_msg;
		int ret;

1815 1816
		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1817 1818 1819 1820 1821
		if (ret) {
			dev_err(&hdev->pdev->dev,
				"failed to assert VF reset, ret = %d\n", ret);
			return ret;
		}
1822
		hdev->rst_stats.vf_func_rst_cnt++;
1823 1824
	}

1825
	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1826 1827
	/* inform hardware that preparatory work is done */
	msleep(HCLGEVF_RESET_SYNC_TIME);
1828
	hclgevf_reset_handshake(hdev, true);
1829 1830
	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
		 hdev->reset_type);
1831

1832
	return 0;
1833 1834
}

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
{
	dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
		 hdev->rst_stats.vf_func_rst_cnt);
	dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
		 hdev->rst_stats.flr_rst_cnt);
	dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
		 hdev->rst_stats.vf_rst_cnt);
	dev_info(&hdev->pdev->dev, "reset done count: %u\n",
		 hdev->rst_stats.rst_done_cnt);
	dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
		 hdev->rst_stats.hw_rst_done_cnt);
	dev_info(&hdev->pdev->dev, "reset count: %u\n",
		 hdev->rst_stats.rst_cnt);
	dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
		 hdev->rst_stats.rst_fail_cnt);
	dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
		 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
	dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1854
		 hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STATE_REG));
1855 1856 1857 1858 1859 1860 1861
	dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
		 hclgevf_read_dev(&hdev->hw, HCLGEVF_CMDQ_TX_DEPTH_REG));
	dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
		 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
	dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
}

1862 1863
static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
{
1864 1865
	/* recover handshake status with IMP when reset fail */
	hclgevf_reset_handshake(hdev, true);
1866
	hdev->rst_stats.rst_fail_cnt++;
1867
	dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1868 1869 1870 1871 1872 1873 1874 1875
		hdev->rst_stats.rst_fail_cnt);

	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
		set_bit(hdev->reset_type, &hdev->reset_pending);

	if (hclgevf_is_reset_pending(hdev)) {
		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
		hclgevf_reset_task_schedule(hdev);
1876
	} else {
1877
		set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1878
		hclgevf_dump_rst_info(hdev);
1879 1880 1881
	}
}

1882
static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1883 1884 1885
{
	int ret;

1886
	hdev->rst_stats.rst_cnt++;
1887

1888 1889 1890 1891 1892
	/* perform reset of the stack & ae device for a client */
	ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
	if (ret)
		return ret;

1893
	rtnl_lock();
1894
	/* bring down the nic to stop any ongoing TX/RX */
1895
	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1896
	rtnl_unlock();
1897
	if (ret)
1898
		return ret;
1899

1900 1901 1902 1903 1904 1905
	return hclgevf_reset_prepare_wait(hdev);
}

static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
{
	int ret;
1906

1907
	hdev->rst_stats.hw_rst_done_cnt++;
1908 1909 1910
	ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
	if (ret)
		return ret;
1911

1912
	rtnl_lock();
G
Guojia Liao 已提交
1913
	/* now, re-initialize the nic client and ae device */
1914
	ret = hclgevf_reset_stack(hdev);
1915
	rtnl_unlock();
1916
	if (ret) {
1917
		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1918
		return ret;
1919
	}
1920

1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
	ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
	/* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
	 * times
	 */
	if (ret &&
	    hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
		return ret;

	ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
	if (ret)
		return ret;

1933
	hdev->last_reset_time = jiffies;
1934
	hdev->rst_stats.rst_done_cnt++;
1935
	hdev->rst_stats.rst_fail_cnt = 0;
1936
	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1937

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
	return 0;
}

static void hclgevf_reset(struct hclgevf_dev *hdev)
{
	if (hclgevf_reset_prepare(hdev))
		goto err_reset;

	/* check if VF could successfully fetch the hardware reset completion
	 * status from the hardware
	 */
	if (hclgevf_reset_wait(hdev)) {
		/* can't do much in this situation, will disable VF */
		dev_err(&hdev->pdev->dev,
			"failed to fetch H/W reset completion status\n");
		goto err_reset;
	}

	if (hclgevf_reset_rebuild(hdev))
		goto err_reset;

	return;

1961
err_reset:
1962
	hclgevf_reset_err_handle(hdev);
1963 1964
}

1965 1966 1967 1968 1969
static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
						     unsigned long *addr)
{
	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;

1970
	/* return the highest priority reset level amongst all */
1971 1972 1973 1974 1975 1976
	if (test_bit(HNAE3_VF_RESET, addr)) {
		rst_level = HNAE3_VF_RESET;
		clear_bit(HNAE3_VF_RESET, addr);
		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
		clear_bit(HNAE3_VF_FUNC_RESET, addr);
	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1977 1978 1979
		rst_level = HNAE3_VF_FULL_RESET;
		clear_bit(HNAE3_VF_FULL_RESET, addr);
		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1980 1981 1982 1983
	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
		rst_level = HNAE3_VF_PF_FUNC_RESET;
		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1984 1985 1986
	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
		rst_level = HNAE3_VF_FUNC_RESET;
		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1987 1988 1989
	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
		rst_level = HNAE3_FLR_RESET;
		clear_bit(HNAE3_FLR_RESET, addr);
1990 1991 1992 1993 1994
	}

	return rst_level;
}

1995 1996
static void hclgevf_reset_event(struct pci_dev *pdev,
				struct hnae3_handle *handle)
1997
{
1998 1999
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
	struct hclgevf_dev *hdev = ae_dev->priv;
2000 2001 2002

	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");

2003
	if (hdev->default_reset_request)
2004
		hdev->reset_level =
2005 2006 2007
			hclgevf_get_reset_level(hdev,
						&hdev->default_reset_request);
	else
2008
		hdev->reset_level = HNAE3_VF_FUNC_RESET;
2009

2010 2011 2012
	/* reset of this VF requested */
	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
	hclgevf_reset_task_schedule(hdev);
2013

2014
	hdev->last_reset_time = jiffies;
2015 2016
}

2017 2018 2019 2020 2021 2022 2023 2024
static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
					  enum hnae3_reset_type rst_type)
{
	struct hclgevf_dev *hdev = ae_dev->priv;

	set_bit(rst_type, &hdev->default_reset_request);
}

2025 2026 2027 2028 2029
static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
{
	writel(en ? 1 : 0, vector->addr);
}

2030 2031
static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
{
2032 2033 2034
#define HCLGEVF_FLR_RETRY_WAIT_MS	500
#define HCLGEVF_FLR_RETRY_CNT		5

2035
	struct hclgevf_dev *hdev = ae_dev->priv;
2036 2037
	int retry_cnt = 0;
	int ret;
2038

2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
retry:
	down(&hdev->reset_sem);
	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
	hdev->reset_type = HNAE3_FLR_RESET;
	ret = hclgevf_reset_prepare(hdev);
	if (ret) {
		dev_err(&hdev->pdev->dev, "fail to prepare FLR, ret=%d\n",
			ret);
		if (hdev->reset_pending ||
		    retry_cnt++ < HCLGEVF_FLR_RETRY_CNT) {
			dev_err(&hdev->pdev->dev,
				"reset_pending:0x%lx, retry_cnt:%d\n",
				hdev->reset_pending, retry_cnt);
			clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
			up(&hdev->reset_sem);
			msleep(HCLGEVF_FLR_RETRY_WAIT_MS);
			goto retry;
		}
	}
2058

2059 2060 2061 2062
	/* disable misc vector before FLR done */
	hclgevf_enable_vector(&hdev->misc_vector, false);
	hdev->rst_stats.flr_rst_cnt++;
}
2063

2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
{
	struct hclgevf_dev *hdev = ae_dev->priv;
	int ret;

	hclgevf_enable_vector(&hdev->misc_vector, true);

	ret = hclgevf_reset_rebuild(hdev);
	if (ret)
		dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
			 ret);

	hdev->reset_type = HNAE3_NONE_RESET;
	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
	up(&hdev->reset_sem);
2079 2080
}

2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return hdev->fw_version;
}

static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
{
	struct hclgevf_misc_vector *vector = &hdev->misc_vector;

	vector->vector_irq = pci_irq_vector(hdev->pdev,
					    HCLGEVF_MISC_VECTOR_NUM);
	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
	/* vector status always valid for Vector 0 */
	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;

	hdev->num_msi_left -= 1;
	hdev->num_msi_used += 1;
}

2103 2104
void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
{
2105 2106 2107
	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
	    !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
			      &hdev->state))
2108
		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2109 2110
}

2111
void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
2112
{
2113 2114 2115
	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
	    !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
			      &hdev->state))
2116
		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2117 2118
}

2119 2120
static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
				  unsigned long delay)
2121
{
2122 2123
	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
	    !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2124
		mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
2125 2126
}

2127
static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
2128
{
2129 2130
#define	HCLGEVF_MAX_RESET_ATTEMPTS_CNT	3

2131
	if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
2132 2133
		return;

2134 2135
	down(&hdev->reset_sem);
	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2136

2137 2138 2139
	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
			       &hdev->reset_state)) {
		/* PF has initmated that it is about to reset the hardware.
2140 2141 2142
		 * We now have to poll & check if hardware has actually
		 * completed the reset sequence. On hardware reset completion,
		 * VF needs to reset the client and ae device.
2143 2144 2145
		 */
		hdev->reset_attempts = 0;

2146 2147 2148
		hdev->last_reset_time = jiffies;
		while ((hdev->reset_type =
			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
2149 2150
		       != HNAE3_NONE_RESET)
			hclgevf_reset(hdev);
2151 2152 2153
	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
				      &hdev->reset_state)) {
		/* we could be here when either of below happens:
2154
		 * 1. reset was initiated due to watchdog timeout caused by
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
		 *    a. IMP was earlier reset and our TX got choked down and
		 *       which resulted in watchdog reacting and inducing VF
		 *       reset. This also means our cmdq would be unreliable.
		 *    b. problem in TX due to other lower layer(example link
		 *       layer not functioning properly etc.)
		 * 2. VF reset might have been initiated due to some config
		 *    change.
		 *
		 * NOTE: Theres no clear way to detect above cases than to react
		 * to the response of PF for this reset request. PF will ack the
		 * 1b and 2. cases but we will not get any intimation about 1a
		 * from PF as cmdq would be in unreliable state i.e. mailbox
		 * communication between PF and VF would be broken.
G
Guojia Liao 已提交
2168 2169
		 *
		 * if we are never geting into pending state it means either:
2170 2171 2172 2173 2174 2175
		 * 1. PF is not receiving our request which could be due to IMP
		 *    reset
		 * 2. PF is screwed
		 * We cannot do much for 2. but to check first we can try reset
		 * our PCIe + stack and see if it alleviates the problem.
		 */
2176
		if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
2177
			/* prepare for full reset of stack + pcie interface */
2178
			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
2179 2180 2181 2182 2183 2184

			/* "defer" schedule the reset task again */
			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
		} else {
			hdev->reset_attempts++;

2185 2186
			set_bit(hdev->reset_level, &hdev->reset_pending);
			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2187
		}
2188
		hclgevf_reset_task_schedule(hdev);
2189
	}
2190

2191
	hdev->reset_type = HNAE3_NONE_RESET;
2192
	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2193
	up(&hdev->reset_sem);
2194 2195
}

2196
static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
2197
{
2198 2199
	if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
		return;
2200 2201 2202 2203

	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
		return;

2204
	hclgevf_mbx_async_handler(hdev);
2205 2206 2207 2208

	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
}

2209
static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
2210
{
2211
	struct hclge_vf_to_pf_msg send_msg;
2212 2213
	int ret;

2214
	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
2215 2216
		return;

2217 2218
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2219 2220 2221 2222 2223
	if (ret)
		dev_err(&hdev->pdev->dev,
			"VF sends keep alive cmd failed(=%d)\n", ret);
}

2224
static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
2225
{
2226 2227
	unsigned long delta = round_jiffies_relative(HZ);
	struct hnae3_handle *handle = &hdev->nic;
2228

2229 2230 2231
	if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
		return;

2232 2233
	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
		delta = jiffies - hdev->last_serv_processed;
2234

2235 2236 2237 2238
		if (delta < round_jiffies_relative(HZ)) {
			delta = round_jiffies_relative(HZ) - delta;
			goto out;
		}
2239
	}
2240

2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
	hdev->serv_processed_cnt++;
	if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
		hclgevf_keep_alive(hdev);

	if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
		hdev->last_serv_processed = jiffies;
		goto out;
	}

	if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
		hclgevf_tqps_update_stats(handle);

2253 2254 2255 2256 2257
	/* request the link status from the PF. PF would be able to tell VF
	 * about such updates in future so we might remove this later
	 */
	hclgevf_request_link_info(hdev);

2258 2259
	hclgevf_update_link_mode(hdev);

2260 2261
	hclgevf_sync_vlan_filter(hdev);

2262 2263
	hclgevf_sync_mac_table(hdev);

2264 2265
	hclgevf_sync_promisc_mode(hdev);

2266
	hdev->last_serv_processed = jiffies;
2267

2268 2269 2270 2271 2272 2273 2274 2275
out:
	hclgevf_task_schedule(hdev, delta);
}

static void hclgevf_service_task(struct work_struct *work)
{
	struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
						service_task.work);
2276

2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
	hclgevf_reset_service_task(hdev);
	hclgevf_mailbox_service_task(hdev);
	hclgevf_periodic_service_task(hdev);

	/* Handle reset and mbx again in case periodical task delays the
	 * handling by calling hclgevf_task_schedule() in
	 * hclgevf_periodic_service_task()
	 */
	hclgevf_reset_service_task(hdev);
	hclgevf_mailbox_service_task(hdev);
2287 2288 2289 2290 2291 2292 2293
}

static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
{
	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
}

2294 2295
static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
						      u32 *clearval)
2296
{
2297
	u32 val, cmdq_stat_reg, rst_ing_reg;
2298 2299

	/* fetch the events from their corresponding regs */
2300
	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
2301
					 HCLGEVF_VECTOR0_CMDQ_STATE_REG);
2302

2303
	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
2304 2305 2306 2307 2308
		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
		dev_info(&hdev->pdev->dev,
			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2309
		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
2310
		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
2311
		hdev->rst_stats.vf_rst_cnt++;
2312 2313 2314 2315 2316 2317
		/* set up VF hardware reset status, its PF will clear
		 * this status when PF has initialized done.
		 */
		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
				  val | HCLGEVF_VF_RST_ING_BIT);
2318 2319 2320
		return HCLGEVF_VECTOR0_EVENT_RST;
	}

2321
	/* check for vector0 mailbox(=CMDQ RX) event source */
2322 2323 2324 2325 2326 2327 2328 2329
	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
		/* for revision 0x21, clearing interrupt is writing bit 0
		 * to the clear register, writing bit 1 means to keep the
		 * old value.
		 * for revision 0x20, the clear register is a read & write
		 * register, so we should just write 0 to the bit we are
		 * handling, and keep other bits as cmdq_stat_reg.
		 */
2330
		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2331 2332 2333 2334 2335
			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
		else
			*clearval = cmdq_stat_reg &
				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);

2336
		return HCLGEVF_VECTOR0_EVENT_MBX;
2337 2338
	}

2339 2340 2341 2342
	/* print other vector0 event source */
	dev_info(&hdev->pdev->dev,
		 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
		 cmdq_stat_reg);
2343

2344
	return HCLGEVF_VECTOR0_EVENT_OTHER;
2345 2346 2347 2348
}

static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
{
2349
	enum hclgevf_evt_cause event_cause;
2350 2351 2352 2353
	struct hclgevf_dev *hdev = data;
	u32 clearval;

	hclgevf_enable_vector(&hdev->misc_vector, false);
2354
	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2355

2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
	switch (event_cause) {
	case HCLGEVF_VECTOR0_EVENT_RST:
		hclgevf_reset_task_schedule(hdev);
		break;
	case HCLGEVF_VECTOR0_EVENT_MBX:
		hclgevf_mbx_handler(hdev);
		break;
	default:
		break;
	}
2366

2367 2368 2369 2370
	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
		hclgevf_clear_event_cause(hdev, clearval);
		hclgevf_enable_vector(&hdev->misc_vector, true);
	}
2371 2372 2373 2374 2375 2376 2377 2378

	return IRQ_HANDLED;
}

static int hclgevf_configure(struct hclgevf_dev *hdev)
{
	int ret;

2379 2380 2381 2382 2383
	/* get current port based vlan state from PF */
	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
	if (ret)
		return ret;

2384
	/* get queue configuration from PF */
2385
	ret = hclgevf_get_queue_info(hdev);
2386 2387
	if (ret)
		return ret;
2388 2389 2390 2391 2392 2393

	/* get queue depth info from PF */
	ret = hclgevf_get_queue_depth(hdev);
	if (ret)
		return ret;

2394 2395 2396 2397
	ret = hclgevf_get_pf_media_type(hdev);
	if (ret)
		return ret;

2398 2399 2400 2401
	/* get tc configuration from PF */
	return hclgevf_get_tc_info(hdev);
}

2402 2403 2404
static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
{
	struct pci_dev *pdev = ae_dev->pdev;
2405
	struct hclgevf_dev *hdev;
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417

	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
	if (!hdev)
		return -ENOMEM;

	hdev->pdev = pdev;
	hdev->ae_dev = ae_dev;
	ae_dev->priv = hdev;

	return 0;
}

2418 2419 2420 2421 2422
static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *roce = &hdev->roce;
	struct hnae3_handle *nic = &hdev->nic;

2423
	roce->rinfo.num_vectors = hdev->num_roce_msix;
2424 2425 2426 2427 2428

	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
	    hdev->num_msi_left == 0)
		return -EINVAL;

2429
	roce->rinfo.base_vector = hdev->roce_base_vector;
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440

	roce->rinfo.netdev = nic->kinfo.netdev;
	roce->rinfo.roce_io_base = hdev->hw.io_base;

	roce->pdev = nic->pdev;
	roce->ae_algo = nic->ae_algo;
	roce->numa_node_mask = nic->numa_node_mask;

	return 0;
}

2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
{
	struct hclgevf_cfg_gro_status_cmd *req;
	struct hclgevf_desc desc;
	int ret;

	if (!hnae3_dev_gro_supported(hdev))
		return 0;

	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
				     false);
	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;

2454
	req->gro_en = en ? 1 : 0;
2455 2456 2457 2458 2459 2460 2461 2462 2463

	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"VF GRO hardware config cmd failed, ret = %d.\n", ret);

	return ret;
}

2464
static void hclgevf_rss_init_cfg(struct hclgevf_dev *hdev)
2465 2466
{
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2467
	struct hclgevf_rss_tuple_cfg *tuple_sets;
2468
	u32 i;
2469

2470
	rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
2471
	rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2472
	tuple_sets = &rss_cfg->rss_tuple_sets;
2473
	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2474 2475 2476
		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
		       HCLGEVF_RSS_KEY_SIZE);
2477

2478 2479 2480 2481 2482 2483
		tuple_sets->ipv4_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		tuple_sets->ipv4_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		tuple_sets->ipv4_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
		tuple_sets->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		tuple_sets->ipv6_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		tuple_sets->ipv6_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2484 2485 2486 2487
		tuple_sets->ipv6_sctp_en =
			hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 ?
					HCLGEVF_RSS_INPUT_TUPLE_SCTP_NO_PORT :
					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
		tuple_sets->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
	}

	/* Initialize RSS indirect table */
	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
		rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
}

static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
{
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
	int ret;

2501
	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2502 2503 2504 2505
		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
					       rss_cfg->rss_hash_key);
		if (ret)
			return ret;
2506 2507 2508 2509

		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
		if (ret)
			return ret;
2510 2511
	}

2512 2513 2514 2515
	ret = hclgevf_set_rss_indir_table(hdev);
	if (ret)
		return ret;

2516
	return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2517 2518 2519 2520 2521 2522 2523 2524
}

static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
{
	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
				       false);
}

2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
{
#define HCLGEVF_FLUSH_LINK_TIMEOUT	100000

	unsigned long last = hdev->serv_processed_cnt;
	int i = 0;

	while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
	       i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
	       last == hdev->serv_processed_cnt)
		usleep_range(1, 1);
}

2538 2539 2540 2541 2542
static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	if (enable) {
2543
		hclgevf_task_schedule(hdev, 0);
2544
	} else {
2545
		set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2546 2547 2548 2549

		/* flush memory to make sure DOWN is seen by service task */
		smp_mb__before_atomic();
		hclgevf_flush_link_update(hdev);
2550 2551 2552
	}
}

2553 2554 2555 2556
static int hclgevf_ae_start(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

2557 2558
	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);

2559 2560 2561 2562
	hclgevf_reset_tqp_stats(handle);

	hclgevf_request_link_info(hdev);

2563 2564
	hclgevf_update_link_mode(hdev);

2565 2566 2567 2568 2569 2570
	return 0;
}

static void hclgevf_ae_stop(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2571
	int i;
2572

2573 2574
	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);

2575 2576 2577 2578
	if (hdev->reset_type != HNAE3_VF_RESET)
		for (i = 0; i < handle->kinfo.num_tqps; i++)
			if (hclgevf_reset_tqp(handle, i))
				break;
2579

2580
	hclgevf_reset_tqp_stats(handle);
2581
	hclgevf_update_link_status(hdev, 0);
2582 2583
}

2584 2585
static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
{
2586 2587 2588
#define HCLGEVF_STATE_ALIVE	1
#define HCLGEVF_STATE_NOT_ALIVE	0

2589
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2590
	struct hclge_vf_to_pf_msg send_msg;
2591

2592 2593 2594 2595
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
	send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
				HCLGEVF_STATE_NOT_ALIVE;
	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2596 2597 2598 2599
}

static int hclgevf_client_start(struct hnae3_handle *handle)
{
2600
	return hclgevf_set_alive(handle, true);
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
}

static void hclgevf_client_stop(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int ret;

	ret = hclgevf_set_alive(handle, false);
	if (ret)
		dev_warn(&hdev->pdev->dev,
			 "%s failed %d\n", __func__, ret);
}

2614 2615 2616 2617
static void hclgevf_state_init(struct hclgevf_dev *hdev)
{
	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2618
	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2619

2620
	INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2621

2622
	mutex_init(&hdev->mbx_resp.mbx_mutex);
2623
	sema_init(&hdev->reset_sem, 1);
2624

2625 2626 2627 2628
	spin_lock_init(&hdev->mac_table.mac_list_lock);
	INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
	INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);

2629 2630 2631 2632 2633 2634 2635
	/* bring the device down */
	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
}

static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
{
	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2636
	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2637

2638 2639
	if (hdev->service_task.work.func)
		cancel_delayed_work_sync(&hdev->service_task);
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649

	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
}

static int hclgevf_init_msi(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;
	int vectors;
	int i;

2650
	if (hnae3_dev_roce_supported(hdev))
2651 2652 2653 2654 2655
		vectors = pci_alloc_irq_vectors(pdev,
						hdev->roce_base_msix_offset + 1,
						hdev->num_msi,
						PCI_IRQ_MSIX);
	else
2656 2657
		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
						hdev->num_msi,
2658
						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2659 2660 2661 2662 2663 2664 2665 2666 2667

	if (vectors < 0) {
		dev_err(&pdev->dev,
			"failed(%d) to allocate MSI/MSI-X vectors\n",
			vectors);
		return vectors;
	}
	if (vectors < hdev->num_msi)
		dev_warn(&hdev->pdev->dev,
2668
			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2669 2670 2671 2672
			 hdev->num_msi, vectors);

	hdev->num_msi = vectors;
	hdev->num_msi_left = vectors;
2673

2674
	hdev->base_msi_vector = pdev->irq;
2675
	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689

	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
					   sizeof(u16), GFP_KERNEL);
	if (!hdev->vector_status) {
		pci_free_irq_vectors(pdev);
		return -ENOMEM;
	}

	for (i = 0; i < hdev->num_msi; i++)
		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;

	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
					sizeof(int), GFP_KERNEL);
	if (!hdev->vector_irq) {
2690
		devm_kfree(&pdev->dev, hdev->vector_status);
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
		pci_free_irq_vectors(pdev);
		return -ENOMEM;
	}

	return 0;
}

static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;

2702 2703
	devm_kfree(&pdev->dev, hdev->vector_status);
	devm_kfree(&pdev->dev, hdev->vector_irq);
2704 2705 2706 2707 2708
	pci_free_irq_vectors(pdev);
}

static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
{
2709
	int ret;
2710 2711 2712

	hclgevf_get_misc_vector(hdev);

2713 2714
	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
		 HCLGEVF_NAME, pci_name(hdev->pdev));
2715
	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2716
			  0, hdev->misc_vector.name, hdev);
2717 2718 2719 2720 2721 2722
	if (ret) {
		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
			hdev->misc_vector.vector_irq);
		return ret;
	}

2723 2724
	hclgevf_clear_event_cause(hdev, 0);

2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
	/* enable misc. vector(vector 0) */
	hclgevf_enable_vector(&hdev->misc_vector, true);

	return ret;
}

static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
{
	/* disable misc vector(vector 0) */
	hclgevf_enable_vector(&hdev->misc_vector, false);
2735
	synchronize_irq(hdev->misc_vector.vector_irq);
2736 2737 2738 2739
	free_irq(hdev->misc_vector.vector_irq, hdev);
	hclgevf_free_vector(hdev, 0);
}

2740 2741 2742 2743 2744 2745
static void hclgevf_info_show(struct hclgevf_dev *hdev)
{
	struct device *dev = &hdev->pdev->dev;

	dev_info(dev, "VF info begin:\n");

2746 2747 2748 2749 2750 2751
	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
	dev_info(dev, "PF media type of this VF: %u\n",
2752 2753 2754 2755 2756
		 hdev->hw.mac.media_type);

	dev_info(dev, "VF info end.\n");
}

2757 2758 2759 2760
static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
					    struct hnae3_client *client)
{
	struct hclgevf_dev *hdev = ae_dev->priv;
2761
	int rst_cnt = hdev->rst_stats.rst_cnt;
2762 2763 2764 2765 2766 2767 2768
	int ret;

	ret = client->ops->init_instance(&hdev->nic);
	if (ret)
		return ret;

	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2769 2770 2771 2772 2773 2774 2775 2776
	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
	    rst_cnt != hdev->rst_stats.rst_cnt) {
		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);

		client->ops->uninit_instance(&hdev->nic, 0);
		return -EBUSY;
	}

2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
	hnae3_set_client_init_flag(client, ae_dev, 1);

	if (netif_msg_drv(&hdev->nic))
		hclgevf_info_show(hdev);

	return 0;
}

static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
					     struct hnae3_client *client)
{
	struct hclgevf_dev *hdev = ae_dev->priv;
	int ret;

	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
	    !hdev->nic_client)
		return 0;

	ret = hclgevf_init_roce_base_info(hdev);
	if (ret)
		return ret;

	ret = client->ops->init_instance(&hdev->roce);
	if (ret)
		return ret;

2803
	set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2804 2805 2806 2807 2808
	hnae3_set_client_init_flag(client, ae_dev, 1);

	return 0;
}

2809 2810
static int hclgevf_init_client_instance(struct hnae3_client *client,
					struct hnae3_ae_dev *ae_dev)
2811
{
2812
	struct hclgevf_dev *hdev = ae_dev->priv;
2813 2814 2815 2816 2817 2818 2819
	int ret;

	switch (client->type) {
	case HNAE3_CLIENT_KNIC:
		hdev->nic_client = client;
		hdev->nic.client = client;

2820
		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2821
		if (ret)
2822
			goto clear_nic;
2823

2824 2825 2826 2827
		ret = hclgevf_init_roce_client_instance(ae_dev,
							hdev->roce_client);
		if (ret)
			goto clear_roce;
2828

2829 2830
		break;
	case HNAE3_CLIENT_ROCE:
2831 2832 2833 2834
		if (hnae3_dev_roce_supported(hdev)) {
			hdev->roce_client = client;
			hdev->roce.client = client;
		}
2835

2836 2837 2838
		ret = hclgevf_init_roce_client_instance(ae_dev, client);
		if (ret)
			goto clear_roce;
2839

2840 2841 2842
		break;
	default:
		return -EINVAL;
2843 2844 2845
	}

	return 0;
2846 2847 2848 2849 2850 2851 2852 2853 2854

clear_nic:
	hdev->nic_client = NULL;
	hdev->nic.client = NULL;
	return ret;
clear_roce:
	hdev->roce_client = NULL;
	hdev->roce.client = NULL;
	return ret;
2855 2856
}

2857 2858
static void hclgevf_uninit_client_instance(struct hnae3_client *client,
					   struct hnae3_ae_dev *ae_dev)
2859
{
2860 2861
	struct hclgevf_dev *hdev = ae_dev->priv;

2862
	/* un-init roce, if it exists */
2863
	if (hdev->roce_client) {
2864
		clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2865
		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2866 2867 2868
		hdev->roce_client = NULL;
		hdev->roce.client = NULL;
	}
2869 2870

	/* un-init nic/unic, if this was not called by roce client */
2871 2872
	if (client->ops->uninit_instance && hdev->nic_client &&
	    client->type != HNAE3_CLIENT_ROCE) {
2873 2874
		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);

2875
		client->ops->uninit_instance(&hdev->nic, 0);
2876 2877 2878
		hdev->nic_client = NULL;
		hdev->nic.client = NULL;
	}
2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
}

static int hclgevf_pci_init(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;
	struct hclgevf_hw *hw;
	int ret;

	ret = pci_enable_device(pdev);
	if (ret) {
		dev_err(&pdev->dev, "failed to enable PCI device\n");
2890
		return ret;
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
	}

	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
	if (ret) {
		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
		goto err_disable_device;
	}

	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
	if (ret) {
		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
		goto err_disable_device;
	}

	pci_set_master(pdev);
	hw = &hdev->hw;
	hw->hdev = hdev;
P
Peng Li 已提交
2908
	hw->io_base = pci_iomap(pdev, 2, 0);
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
	if (!hw->io_base) {
		dev_err(&pdev->dev, "can't map configuration register space\n");
		ret = -ENOMEM;
		goto err_clr_master;
	}

	return 0;

err_clr_master:
	pci_clear_master(pdev);
	pci_release_regions(pdev);
err_disable_device:
	pci_disable_device(pdev);
2922

2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
	return ret;
}

static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;

	pci_iounmap(pdev, hdev->hw.io_base);
	pci_clear_master(pdev);
	pci_release_regions(pdev);
	pci_disable_device(pdev);
}

2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
{
	struct hclgevf_query_res_cmd *req;
	struct hclgevf_desc desc;
	int ret;

	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"query vf resource failed, ret = %d.\n", ret);
		return ret;
	}

	req = (struct hclgevf_query_res_cmd *)desc.data;

2952
	if (hnae3_dev_roce_supported(hdev)) {
2953
		hdev->roce_base_msix_offset =
2954
		hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
2955 2956 2957
				HCLGEVF_MSIX_OFT_ROCEE_M,
				HCLGEVF_MSIX_OFT_ROCEE_S);
		hdev->num_roce_msix =
2958
		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2959 2960
				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);

2961 2962 2963
		/* nic's msix numbers is always equals to the roce's. */
		hdev->num_nic_msix = hdev->num_roce_msix;

2964 2965 2966 2967 2968 2969 2970
		/* VF should have NIC vectors and Roce vectors, NIC vectors
		 * are queued before Roce vectors. The offset is fixed to 64.
		 */
		hdev->num_msi = hdev->num_roce_msix +
				hdev->roce_base_msix_offset;
	} else {
		hdev->num_msi =
2971
		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2972
				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2973 2974 2975 2976 2977 2978 2979 2980 2981

		hdev->num_nic_msix = hdev->num_msi;
	}

	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
		dev_err(&hdev->pdev->dev,
			"Just %u msi resources, not enough for vf(min:2).\n",
			hdev->num_nic_msix);
		return -EINVAL;
2982 2983 2984 2985 2986
	}

	return 0;
}

2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
{
#define HCLGEVF_MAX_NON_TSO_BD_NUM			8U

	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);

	ae_dev->dev_specs.max_non_tso_bd_num =
					HCLGEVF_MAX_NON_TSO_BD_NUM;
	ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
	ae_dev->dev_specs.rss_key_size = HCLGEVF_RSS_KEY_SIZE;
}

static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
				    struct hclgevf_desc *desc)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
	struct hclgevf_dev_specs_0_cmd *req0;

	req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;

	ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
	ae_dev->dev_specs.rss_ind_tbl_size =
					le16_to_cpu(req0->rss_ind_tbl_size);
	ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
}

3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
{
	struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;

	if (!dev_specs->max_non_tso_bd_num)
		dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
	if (!dev_specs->rss_ind_tbl_size)
		dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
	if (!dev_specs->rss_key_size)
		dev_specs->rss_key_size = HCLGEVF_RSS_KEY_SIZE;
}

3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
{
	struct hclgevf_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
	int ret;
	int i;

	/* set default specifications as devices lower than version V3 do not
	 * support querying specifications from firmware.
	 */
	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
		hclgevf_set_default_dev_specs(hdev);
		return 0;
	}

	for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
		hclgevf_cmd_setup_basic_desc(&desc[i],
					     HCLGEVF_OPC_QUERY_DEV_SPECS, true);
		desc[i].flag |= cpu_to_le16(HCLGEVF_CMD_FLAG_NEXT);
	}
	hclgevf_cmd_setup_basic_desc(&desc[i], HCLGEVF_OPC_QUERY_DEV_SPECS,
				     true);

	ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
	if (ret)
		return ret;

	hclgevf_parse_dev_specs(hdev, desc);
3052
	hclgevf_check_dev_specs(hdev);
3053 3054 3055 3056

	return 0;
}

3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;
	int ret = 0;

	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
		hclgevf_misc_irq_uninit(hdev);
		hclgevf_uninit_msi(hdev);
		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
	}

	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
		pci_set_master(pdev);
		ret = hclgevf_init_msi(hdev);
		if (ret) {
			dev_err(&pdev->dev,
				"failed(%d) to init MSI/MSI-X\n", ret);
			return ret;
		}

		ret = hclgevf_misc_irq_init(hdev);
		if (ret) {
			hclgevf_uninit_msi(hdev);
			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
				ret);
			return ret;
		}

		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
	}

	return ret;
}

3092 3093 3094 3095 3096 3097 3098 3099 3100
static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
{
	struct hclge_vf_to_pf_msg send_msg;

	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
			       HCLGE_MBX_VPORT_LIST_CLEAR);
	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
}

3101
static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
3102
{
3103
	struct pci_dev *pdev = hdev->pdev;
3104 3105
	int ret;

3106 3107 3108 3109 3110 3111
	ret = hclgevf_pci_reset(hdev);
	if (ret) {
		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
		return ret;
	}

3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124
	ret = hclgevf_cmd_init(hdev);
	if (ret) {
		dev_err(&pdev->dev, "cmd failed %d\n", ret);
		return ret;
	}

	ret = hclgevf_rss_init_hw(hdev);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed(%d) to initialize RSS\n", ret);
		return ret;
	}

3125 3126 3127 3128
	ret = hclgevf_config_gro(hdev, true);
	if (ret)
		return ret;

3129 3130 3131 3132 3133
	ret = hclgevf_init_vlan_config(hdev);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed(%d) to initialize VLAN config\n", ret);
		return ret;
3134
	}
3135

3136 3137
	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);

3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
	dev_info(&hdev->pdev->dev, "Reset done\n");

	return 0;
}

static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;
	int ret;

3148
	ret = hclgevf_pci_init(hdev);
3149
	if (ret)
3150 3151
		return ret;

3152
	ret = hclgevf_cmd_queue_init(hdev);
3153
	if (ret)
3154 3155
		goto err_cmd_queue_init;

3156 3157 3158 3159 3160 3161
	ret = hclgevf_cmd_init(hdev);
	if (ret)
		goto err_cmd_init;

	/* Get vf resource */
	ret = hclgevf_query_vf_resource(hdev);
3162
	if (ret)
3163
		goto err_cmd_init;
3164

3165 3166 3167 3168 3169 3170 3171
	ret = hclgevf_query_dev_specs(hdev);
	if (ret) {
		dev_err(&pdev->dev,
			"failed to query dev specifications, ret = %d\n", ret);
		goto err_cmd_init;
	}

3172 3173 3174
	ret = hclgevf_init_msi(hdev);
	if (ret) {
		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
3175
		goto err_cmd_init;
3176 3177 3178
	}

	hclgevf_state_init(hdev);
3179
	hdev->reset_level = HNAE3_VF_FUNC_RESET;
3180
	hdev->reset_type = HNAE3_NONE_RESET;
3181 3182

	ret = hclgevf_misc_irq_init(hdev);
3183
	if (ret)
3184 3185
		goto err_misc_irq_init;

3186 3187
	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);

3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
	ret = hclgevf_configure(hdev);
	if (ret) {
		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
		goto err_config;
	}

	ret = hclgevf_alloc_tqps(hdev);
	if (ret) {
		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
		goto err_config;
	}

	ret = hclgevf_set_handle_info(hdev);
3201
	if (ret)
3202 3203
		goto err_config;

3204 3205 3206 3207
	ret = hclgevf_config_gro(hdev, true);
	if (ret)
		goto err_config;

3208
	/* Initialize RSS for this VF */
3209
	hclgevf_rss_init_cfg(hdev);
3210 3211 3212 3213 3214 3215 3216
	ret = hclgevf_rss_init_hw(hdev);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed(%d) to initialize RSS\n", ret);
		goto err_config;
	}

3217 3218 3219 3220 3221 3222 3223 3224 3225
	/* ensure vf tbl list as empty before init*/
	ret = hclgevf_clear_vport_list(hdev);
	if (ret) {
		dev_err(&pdev->dev,
			"failed to clear tbl list configuration, ret = %d.\n",
			ret);
		goto err_config;
	}

3226 3227 3228 3229 3230 3231 3232
	ret = hclgevf_init_vlan_config(hdev);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed(%d) to initialize VLAN config\n", ret);
		goto err_config;
	}

3233
	hdev->last_reset_time = jiffies;
3234 3235
	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
		 HCLGEVF_DRIVER_NAME);
3236

3237 3238
	hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));

3239 3240 3241 3242 3243 3244 3245
	return 0;

err_config:
	hclgevf_misc_irq_uninit(hdev);
err_misc_irq_init:
	hclgevf_state_uninit(hdev);
	hclgevf_uninit_msi(hdev);
3246
err_cmd_init:
3247 3248
	hclgevf_cmd_uninit(hdev);
err_cmd_queue_init:
3249
	hclgevf_pci_uninit(hdev);
3250
	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3251 3252 3253
	return ret;
}

3254
static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3255
{
3256 3257
	struct hclge_vf_to_pf_msg send_msg;

3258
	hclgevf_state_uninit(hdev);
3259

3260 3261
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3262

3263 3264 3265 3266 3267
	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
		hclgevf_misc_irq_uninit(hdev);
		hclgevf_uninit_msi(hdev);
	}

3268
	hclgevf_cmd_uninit(hdev);
3269
	hclgevf_pci_uninit(hdev);
3270
	hclgevf_uninit_mac_list(hdev);
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
}

static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
{
	struct pci_dev *pdev = ae_dev->pdev;
	int ret;

	ret = hclgevf_alloc_hdev(ae_dev);
	if (ret) {
		dev_err(&pdev->dev, "hclge device allocation failed\n");
		return ret;
	}

	ret = hclgevf_init_hdev(ae_dev->priv);
3285
	if (ret) {
3286
		dev_err(&pdev->dev, "hclge device initialization failed\n");
3287 3288
		return ret;
	}
3289

3290
	return 0;
3291 3292 3293 3294 3295 3296 3297
}

static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
{
	struct hclgevf_dev *hdev = ae_dev->priv;

	hclgevf_uninit_hdev(hdev);
3298 3299 3300
	ae_dev->priv = NULL;
}

3301 3302 3303 3304 3305
static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *nic = &hdev->nic;
	struct hnae3_knic_private_info *kinfo = &nic->kinfo;

3306 3307
	return min_t(u32, hdev->rss_size_max,
		     hdev->num_tqps / kinfo->num_tc);
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
}

/**
 * hclgevf_get_channels - Get the current channels enabled and max supported.
 * @handle: hardware information for network interface
 * @ch: ethtool channels structure
 *
 * We don't support separate tx and rx queues as channels. The other count
 * represents how many queues are being used for control. max_combined counts
 * how many queue pairs we can support. They may not be mapped 1 to 1 with
 * q_vectors since we support a lot more queue pairs than q_vectors.
 **/
static void hclgevf_get_channels(struct hnae3_handle *handle,
				 struct ethtool_channels *ch)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	ch->max_combined = hclgevf_get_max_channels(hdev);
	ch->other_count = 0;
	ch->max_other = 0;
3328
	ch->combined_count = handle->kinfo.rss_size;
3329 3330
}

3331
static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3332
					  u16 *alloc_tqps, u16 *max_rss_size)
3333 3334 3335
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

3336
	*alloc_tqps = hdev->num_tqps;
3337 3338 3339
	*max_rss_size = hdev->rss_size_max;
}

3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
static void hclgevf_update_rss_size(struct hnae3_handle *handle,
				    u32 new_tqps_num)
{
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	u16 max_rss_size;

	kinfo->req_rss_size = new_tqps_num;

	max_rss_size = min_t(u16, hdev->rss_size_max,
			     hdev->num_tqps / kinfo->num_tc);

	/* Use the user's configuration when it is not larger than
	 * max_rss_size, otherwise, use the maximum specification value.
	 */
	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
	    kinfo->req_rss_size <= max_rss_size)
		kinfo->rss_size = kinfo->req_rss_size;
	else if (kinfo->rss_size > max_rss_size ||
		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
		kinfo->rss_size = max_rss_size;

	kinfo->num_tqps = kinfo->num_tc * kinfo->rss_size;
}

static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
				bool rxfh_configured)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
	u16 cur_rss_size = kinfo->rss_size;
	u16 cur_tqps = kinfo->num_tqps;
	u32 *rss_indir;
	unsigned int i;
	int ret;

	hclgevf_update_rss_size(handle, new_tqps_num);

	ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
	if (ret)
		return ret;

	/* RSS indirection table has been configuared by user */
	if (rxfh_configured)
		goto out;

	/* Reinitializes the rss indirect table according to the new RSS size */
	rss_indir = kcalloc(HCLGEVF_RSS_IND_TBL_SIZE, sizeof(u32), GFP_KERNEL);
	if (!rss_indir)
		return -ENOMEM;

	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
		rss_indir[i] = i % kinfo->rss_size;

3394 3395
	hdev->rss_cfg.rss_size = kinfo->rss_size;

3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
	if (ret)
		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
			ret);

	kfree(rss_indir);

out:
	if (!ret)
		dev_info(&hdev->pdev->dev,
			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
			 cur_rss_size, kinfo->rss_size,
			 cur_tqps, kinfo->rss_size * kinfo->num_tc);

	return ret;
}

3413 3414 3415 3416 3417 3418 3419
static int hclgevf_get_status(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return hdev->hw.mac.link;
}

3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
					    u8 *auto_neg, u32 *speed,
					    u8 *duplex)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	if (speed)
		*speed = hdev->hw.mac.speed;
	if (duplex)
		*duplex = hdev->hw.mac.duplex;
	if (auto_neg)
		*auto_neg = AUTONEG_DISABLE;
}

void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
				 u8 duplex)
{
	hdev->hw.mac.speed = speed;
	hdev->hw.mac.duplex = duplex;
}

3441
static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3442 3443 3444 3445 3446 3447
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return hclgevf_config_gro(hdev, enable);
}

3448 3449
static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
				   u8 *module_type)
3450 3451
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3452

3453 3454
	if (media_type)
		*media_type = hdev->hw.mac.media_type;
3455 3456 3457

	if (module_type)
		*module_type = hdev->hw.mac.module_type;
3458 3459
}

3460 3461 3462 3463
static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

3464
	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3465 3466
}

3467 3468 3469 3470 3471 3472 3473
static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
}

3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
}

static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

3485
	return hdev->rst_stats.hw_rst_done_cnt;
3486 3487
}

3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
static void hclgevf_get_link_mode(struct hnae3_handle *handle,
				  unsigned long *supported,
				  unsigned long *advertising)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	*supported = hdev->hw.mac.supported;
	*advertising = hdev->hw.mac.advertising;
}

3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
#define MAX_SEPARATE_NUM	4
#define SEPARATOR_VALUE		0xFFFFFFFF
#define REG_NUM_PER_LINE	4
#define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))

static int hclgevf_get_regs_len(struct hnae3_handle *handle)
{
	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;

	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
}

static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
			     void *data)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int i, j, reg_um, separator_num;
	u32 *reg = data;

	*version = hdev->fw_version;

	/* fetching per-VF registers values from VF PCIe register space */
	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
	for (i = 0; i < reg_um; i++)
		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
	for (i = 0; i < separator_num; i++)
		*reg++ = SEPARATOR_VALUE;

	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
	for (i = 0; i < reg_um; i++)
		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
	for (i = 0; i < separator_num; i++)
		*reg++ = SEPARATOR_VALUE;

	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
	for (j = 0; j < hdev->num_tqps; j++) {
		for (i = 0; i < reg_um; i++)
			*reg++ = hclgevf_read_dev(&hdev->hw,
						  ring_reg_addr_list[i] +
						  0x200 * j);
		for (i = 0; i < separator_num; i++)
			*reg++ = SEPARATOR_VALUE;
	}

	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
	for (j = 0; j < hdev->num_msi_used - 1; j++) {
		for (i = 0; i < reg_um; i++)
			*reg++ = hclgevf_read_dev(&hdev->hw,
						  tqp_intr_reg_addr_list[i] +
						  4 * j);
		for (i = 0; i < separator_num; i++)
			*reg++ = SEPARATOR_VALUE;
	}
}

3564 3565 3566 3567
void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
					u8 *port_base_vlan_info, u8 data_size)
{
	struct hnae3_handle *nic = &hdev->nic;
3568
	struct hclge_vf_to_pf_msg send_msg;
3569
	int ret;
3570 3571

	rtnl_lock();
3572

3573 3574
	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
	    test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
		dev_warn(&hdev->pdev->dev,
			 "is resetting when updating port based vlan info\n");
		rtnl_unlock();
		return;
	}

	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
	if (ret) {
		rtnl_unlock();
		return;
	}
3586 3587

	/* send msg to PF and wait update port based vlan info */
3588 3589 3590
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
			       HCLGE_MBX_PORT_BASE_VLAN_CFG);
	memcpy(send_msg.data, port_base_vlan_info, data_size);
3591 3592 3593 3594 3595 3596 3597
	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
	if (!ret) {
		if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
			nic->port_base_vlan_state = state;
		else
			nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
	}
3598 3599 3600 3601 3602

	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
	rtnl_unlock();
}

3603 3604 3605
static const struct hnae3_ae_ops hclgevf_ops = {
	.init_ae_dev = hclgevf_init_ae_dev,
	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3606 3607
	.flr_prepare = hclgevf_flr_prepare,
	.flr_done = hclgevf_flr_done,
3608 3609
	.init_client_instance = hclgevf_init_client_instance,
	.uninit_client_instance = hclgevf_uninit_client_instance,
3610 3611
	.start = hclgevf_ae_start,
	.stop = hclgevf_ae_stop,
3612 3613
	.client_start = hclgevf_client_start,
	.client_stop = hclgevf_client_stop,
3614 3615 3616
	.map_ring_to_vector = hclgevf_map_ring_to_vector,
	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
	.get_vector = hclgevf_get_vector,
3617
	.put_vector = hclgevf_put_vector,
3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
	.reset_queue = hclgevf_reset_tqp,
	.get_mac_addr = hclgevf_get_mac_addr,
	.set_mac_addr = hclgevf_set_mac_addr,
	.add_uc_addr = hclgevf_add_uc_addr,
	.rm_uc_addr = hclgevf_rm_uc_addr,
	.add_mc_addr = hclgevf_add_mc_addr,
	.rm_mc_addr = hclgevf_rm_mc_addr,
	.get_stats = hclgevf_get_stats,
	.update_stats = hclgevf_update_stats,
	.get_strings = hclgevf_get_strings,
	.get_sset_count = hclgevf_get_sset_count,
	.get_rss_key_size = hclgevf_get_rss_key_size,
	.get_rss_indir_size = hclgevf_get_rss_indir_size,
	.get_rss = hclgevf_get_rss,
	.set_rss = hclgevf_set_rss,
3633 3634
	.get_rss_tuple = hclgevf_get_rss_tuple,
	.set_rss_tuple = hclgevf_set_rss_tuple,
3635 3636 3637
	.get_tc_size = hclgevf_get_tc_size,
	.get_fw_version = hclgevf_get_fw_version,
	.set_vlan_filter = hclgevf_set_vlan_filter,
3638
	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3639
	.reset_event = hclgevf_reset_event,
3640
	.set_default_reset_request = hclgevf_set_def_reset_request,
3641
	.set_channels = hclgevf_set_channels,
3642
	.get_channels = hclgevf_get_channels,
3643
	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3644 3645
	.get_regs_len = hclgevf_get_regs_len,
	.get_regs = hclgevf_get_regs,
3646
	.get_status = hclgevf_get_status,
3647
	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3648
	.get_media_type = hclgevf_get_media_type,
3649 3650 3651
	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
	.ae_dev_resetting = hclgevf_ae_dev_resetting,
	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3652
	.set_gro_en = hclgevf_gro_en,
3653
	.set_mtu = hclgevf_set_mtu,
3654
	.get_global_queue_id = hclgevf_get_qid_global,
3655
	.set_timer_task = hclgevf_set_timer_task,
3656
	.get_link_mode = hclgevf_get_link_mode,
3657
	.set_promisc_mode = hclgevf_set_promisc_mode,
3658
	.request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3659
	.get_cmdq_stat = hclgevf_get_cmdq_stat,
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
};

static struct hnae3_ae_algo ae_algovf = {
	.ops = &hclgevf_ops,
	.pdev_id_table = ae_algovf_pci_tbl,
};

static int hclgevf_init(void)
{
	pr_info("%s is initializing\n", HCLGEVF_NAME);

3671
	hclgevf_wq = alloc_workqueue("%s", 0, 0, HCLGEVF_NAME);
3672 3673 3674 3675 3676
	if (!hclgevf_wq) {
		pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
		return -ENOMEM;
	}

3677 3678 3679
	hnae3_register_ae_algo(&ae_algovf);

	return 0;
3680 3681 3682 3683 3684
}

static void hclgevf_exit(void)
{
	hnae3_unregister_ae_algo(&ae_algovf);
3685
	destroy_workqueue(hclgevf_wq);
3686 3687 3688 3689 3690 3691 3692 3693
}
module_init(hclgevf_init);
module_exit(hclgevf_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
MODULE_DESCRIPTION("HCLGEVF Driver");
MODULE_VERSION(HCLGEVF_MOD_VERSION);