qla_sup.c 83.7 KB
Newer Older
A
Andrew Vasquez 已提交
1 2
/*
 * QLogic Fibre Channel HBA Driver
3
 * Copyright (c)  2003-2014 QLogic Corporation
L
Linus Torvalds 已提交
4
 *
A
Andrew Vasquez 已提交
5 6
 * See LICENSE.qla2xxx for copyright and licensing details.
 */
L
Linus Torvalds 已提交
7 8 9
#include "qla_def.h"

#include <linux/delay.h>
10
#include <linux/slab.h>
11
#include <linux/vmalloc.h>
12
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
13 14 15 16 17 18

/*
 * NVRAM support routines
 */

/**
A
Andrew Vasquez 已提交
19
 * qla2x00_lock_nvram_access() -
L
Linus Torvalds 已提交
20 21
 * @ha: HA context
 */
A
Adrian Bunk 已提交
22
static void
23
qla2x00_lock_nvram_access(struct qla_hw_data *ha)
L
Linus Torvalds 已提交
24 25
{
	uint16_t data;
26
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
		data = RD_REG_WORD(&reg->nvram);
		while (data & NVR_BUSY) {
			udelay(100);
			data = RD_REG_WORD(&reg->nvram);
		}

		/* Lock resource */
		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
		udelay(5);
		data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
		while ((data & BIT_0) == 0) {
			/* Lock failed */
			udelay(100);
			WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
			RD_REG_WORD(&reg->u.isp2300.host_semaphore);
			udelay(5);
			data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
		}
	}
}

/**
A
Andrew Vasquez 已提交
52
 * qla2x00_unlock_nvram_access() -
L
Linus Torvalds 已提交
53 54
 * @ha: HA context
 */
A
Adrian Bunk 已提交
55
static void
56
qla2x00_unlock_nvram_access(struct qla_hw_data *ha)
L
Linus Torvalds 已提交
57
{
58
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
L
Linus Torvalds 已提交
59 60 61 62 63 64 65

	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
	}
}

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
/**
 * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
 * @ha: HA context
 * @data: Serial interface selector
 */
static void
qla2x00_nv_write(struct qla_hw_data *ha, uint16_t data)
{
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_CLOCK |
	    NVR_WRT_ENABLE);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
}

/**
 * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
 *	NVRAM.
 * @ha: HA context
 * @nv_cmd: NVRAM command
 *
 * Bit definitions for NVRAM command:
 *
 *	Bit 26     = start bit
 *	Bit 25, 24 = opcode
 *	Bit 23-16  = address
 *	Bit 15-0   = write data
 *
 * Returns the word read from nvram @addr.
 */
static uint16_t
qla2x00_nvram_request(struct qla_hw_data *ha, uint32_t nv_cmd)
{
	uint8_t		cnt;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
	uint16_t	data = 0;
	uint16_t	reg_data;

	/* Send command to NVRAM. */
	nv_cmd <<= 5;
	for (cnt = 0; cnt < 11; cnt++) {
		if (nv_cmd & BIT_31)
			qla2x00_nv_write(ha, NVR_DATA_OUT);
		else
			qla2x00_nv_write(ha, 0);
		nv_cmd <<= 1;
	}

	/* Read data from NVRAM. */
	for (cnt = 0; cnt < 16; cnt++) {
		WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
		NVRAM_DELAY();
		data <<= 1;
		reg_data = RD_REG_WORD(&reg->nvram);
		if (reg_data & NVR_DATA_IN)
			data |= BIT_0;
		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
		NVRAM_DELAY();
	}

	/* Deselect chip. */
	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();

	return data;
}


L
Linus Torvalds 已提交
144 145 146 147 148 149 150 151
/**
 * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
 *	request routine to get the word from NVRAM.
 * @ha: HA context
 * @addr: Address in NVRAM to read
 *
 * Returns the word read from nvram @addr.
 */
A
Adrian Bunk 已提交
152
static uint16_t
153
qla2x00_get_nvram_word(struct qla_hw_data *ha, uint32_t addr)
L
Linus Torvalds 已提交
154 155 156 157 158 159 160 161 162 163 164
{
	uint16_t	data;
	uint32_t	nv_cmd;

	nv_cmd = addr << 16;
	nv_cmd |= NV_READ_OP;
	data = qla2x00_nvram_request(ha, nv_cmd);

	return (data);
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178
/**
 * qla2x00_nv_deselect() - Deselect NVRAM operations.
 * @ha: HA context
 */
static void
qla2x00_nv_deselect(struct qla_hw_data *ha)
{
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
}

L
Linus Torvalds 已提交
179 180 181 182 183 184
/**
 * qla2x00_write_nvram_word() - Write NVRAM data.
 * @ha: HA context
 * @addr: Address in NVRAM to write
 * @data: word to program
 */
A
Adrian Bunk 已提交
185
static void
186
qla2x00_write_nvram_word(struct qla_hw_data *ha, uint32_t addr, uint16_t data)
L
Linus Torvalds 已提交
187 188 189
{
	int count;
	uint16_t word;
190
	uint32_t nv_cmd, wait_cnt;
191
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
192
	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
L
Linus Torvalds 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219

	qla2x00_nv_write(ha, NVR_DATA_OUT);
	qla2x00_nv_write(ha, 0);
	qla2x00_nv_write(ha, 0);

	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT);

	qla2x00_nv_deselect(ha);

	/* Write data */
	nv_cmd = (addr << 16) | NV_WRITE_OP;
	nv_cmd |= data;
	nv_cmd <<= 5;
	for (count = 0; count < 27; count++) {
		if (nv_cmd & BIT_31)
			qla2x00_nv_write(ha, NVR_DATA_OUT);
		else
			qla2x00_nv_write(ha, 0);

		nv_cmd <<= 1;
	}

	qla2x00_nv_deselect(ha);

	/* Wait for NVRAM to become ready */
	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
220
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
221
	wait_cnt = NVR_WAIT_CNT;
L
Linus Torvalds 已提交
222
	do {
223
		if (!--wait_cnt) {
224 225
			ql_dbg(ql_dbg_user, vha, 0x708d,
			    "NVRAM didn't go ready...\n");
226 227
			break;
		}
L
Linus Torvalds 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241
		NVRAM_DELAY();
		word = RD_REG_WORD(&reg->nvram);
	} while ((word & NVR_DATA_IN) == 0);

	qla2x00_nv_deselect(ha);

	/* Disable writes */
	qla2x00_nv_write(ha, NVR_DATA_OUT);
	for (count = 0; count < 10; count++)
		qla2x00_nv_write(ha, 0);

	qla2x00_nv_deselect(ha);
}

242
static int
243 244
qla2x00_write_nvram_word_tmo(struct qla_hw_data *ha, uint32_t addr,
	uint16_t data, uint32_t tmo)
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
{
	int ret, count;
	uint16_t word;
	uint32_t nv_cmd;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	ret = QLA_SUCCESS;

	qla2x00_nv_write(ha, NVR_DATA_OUT);
	qla2x00_nv_write(ha, 0);
	qla2x00_nv_write(ha, 0);

	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT);

	qla2x00_nv_deselect(ha);

	/* Write data */
	nv_cmd = (addr << 16) | NV_WRITE_OP;
	nv_cmd |= data;
	nv_cmd <<= 5;
	for (count = 0; count < 27; count++) {
		if (nv_cmd & BIT_31)
			qla2x00_nv_write(ha, NVR_DATA_OUT);
		else
			qla2x00_nv_write(ha, 0);

		nv_cmd <<= 1;
	}

	qla2x00_nv_deselect(ha);

	/* Wait for NVRAM to become ready */
	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
279
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
	do {
		NVRAM_DELAY();
		word = RD_REG_WORD(&reg->nvram);
		if (!--tmo) {
			ret = QLA_FUNCTION_FAILED;
			break;
		}
	} while ((word & NVR_DATA_IN) == 0);

	qla2x00_nv_deselect(ha);

	/* Disable writes */
	qla2x00_nv_write(ha, NVR_DATA_OUT);
	for (count = 0; count < 10; count++)
		qla2x00_nv_write(ha, 0);

	qla2x00_nv_deselect(ha);

	return ret;
}

/**
 * qla2x00_clear_nvram_protection() -
 * @ha: HA context
 */
static int
306
qla2x00_clear_nvram_protection(struct qla_hw_data *ha)
307 308 309
{
	int ret, stat;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
310
	uint32_t word, wait_cnt;
311
	uint16_t wprot, wprot_old;
312
	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
313 314 315

	/* Clear NVRAM write protection. */
	ret = QLA_FUNCTION_FAILED;
316 317 318

	wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
	stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
319
					    cpu_to_le16(0x1234), 100000);
320 321
	wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
	if (stat != QLA_SUCCESS || wprot != 0x1234) {
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
		/* Write enable. */
		qla2x00_nv_write(ha, NVR_DATA_OUT);
		qla2x00_nv_write(ha, 0);
		qla2x00_nv_write(ha, 0);
		for (word = 0; word < 8; word++)
			qla2x00_nv_write(ha, NVR_DATA_OUT);

		qla2x00_nv_deselect(ha);

		/* Enable protection register. */
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		qla2x00_nv_write(ha, NVR_PR_ENABLE);
		qla2x00_nv_write(ha, NVR_PR_ENABLE);
		for (word = 0; word < 8; word++)
			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);

		qla2x00_nv_deselect(ha);

		/* Clear protection register (ffff is cleared). */
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		for (word = 0; word < 8; word++)
			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);

		qla2x00_nv_deselect(ha);

		/* Wait for NVRAM to become ready. */
		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
351
		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
352
		wait_cnt = NVR_WAIT_CNT;
353
		do {
354
			if (!--wait_cnt) {
355 356
				ql_dbg(ql_dbg_user, vha, 0x708e,
				    "NVRAM didn't go ready...\n");
357 358
				break;
			}
359 360 361 362
			NVRAM_DELAY();
			word = RD_REG_WORD(&reg->nvram);
		} while ((word & NVR_DATA_IN) == 0);

363 364
		if (wait_cnt)
			ret = QLA_SUCCESS;
365
	} else
366
		qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
367 368 369 370 371

	return ret;
}

static void
372
qla2x00_set_nvram_protection(struct qla_hw_data *ha, int stat)
373 374
{
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
375
	uint32_t word, wait_cnt;
376
	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410

	if (stat != QLA_SUCCESS)
		return;

	/* Set NVRAM write protection. */
	/* Write enable. */
	qla2x00_nv_write(ha, NVR_DATA_OUT);
	qla2x00_nv_write(ha, 0);
	qla2x00_nv_write(ha, 0);
	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT);

	qla2x00_nv_deselect(ha);

	/* Enable protection register. */
	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
	qla2x00_nv_write(ha, NVR_PR_ENABLE);
	qla2x00_nv_write(ha, NVR_PR_ENABLE);
	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);

	qla2x00_nv_deselect(ha);

	/* Enable protection register. */
	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
	qla2x00_nv_write(ha, NVR_PR_ENABLE);
	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_PR_ENABLE);

	qla2x00_nv_deselect(ha);

	/* Wait for NVRAM to become ready. */
	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
411
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
412
	wait_cnt = NVR_WAIT_CNT;
413
	do {
414
		if (!--wait_cnt) {
415 416
			ql_dbg(ql_dbg_user, vha, 0x708f,
			    "NVRAM didn't go ready...\n");
417 418
			break;
		}
419 420 421 422 423 424 425 426 427 428 429
		NVRAM_DELAY();
		word = RD_REG_WORD(&reg->nvram);
	} while ((word & NVR_DATA_IN) == 0);
}


/*****************************************************************************/
/* Flash Manipulation Routines                                               */
/*****************************************************************************/

static inline uint32_t
430
flash_conf_addr(struct qla_hw_data *ha, uint32_t faddr)
431
{
432
	return ha->flash_conf_off | faddr;
433 434 435
}

static inline uint32_t
436
flash_data_addr(struct qla_hw_data *ha, uint32_t faddr)
437
{
438
	return ha->flash_data_off | faddr;
439 440 441
}

static inline uint32_t
442
nvram_conf_addr(struct qla_hw_data *ha, uint32_t naddr)
443
{
444
	return ha->nvram_conf_off | naddr;
445 446 447
}

static inline uint32_t
448
nvram_data_addr(struct qla_hw_data *ha, uint32_t naddr)
449
{
450
	return ha->nvram_data_off | naddr;
451 452
}

453
static uint32_t
454
qla24xx_read_flash_dword(struct qla_hw_data *ha, uint32_t addr)
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
{
	int rval;
	uint32_t cnt, data;
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
	/* Wait for READ cycle to complete. */
	rval = QLA_SUCCESS;
	for (cnt = 3000;
	    (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
	    rval == QLA_SUCCESS; cnt--) {
		if (cnt)
			udelay(10);
		else
			rval = QLA_FUNCTION_TIMEOUT;
470
		cond_resched();
471 472 473 474 475 476 477 478 479 480 481
	}

	/* TODO: What happens if we time out? */
	data = 0xDEADDEAD;
	if (rval == QLA_SUCCESS)
		data = RD_REG_DWORD(&reg->flash_data);

	return data;
}

uint32_t *
482
qla24xx_read_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
483 484 485
    uint32_t dwords)
{
	uint32_t i;
486 487
	struct qla_hw_data *ha = vha->hw;

488 489
	/* Dword reads to flash. */
	for (i = 0; i < dwords; i++, faddr++)
490 491
		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
		    flash_data_addr(ha, faddr)));
492 493 494 495

	return dwptr;
}

496
static int
497
qla24xx_write_flash_dword(struct qla_hw_data *ha, uint32_t addr, uint32_t data)
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
{
	int rval;
	uint32_t cnt;
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	WRT_REG_DWORD(&reg->flash_data, data);
	RD_REG_DWORD(&reg->flash_data);		/* PCI Posting. */
	WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
	/* Wait for Write cycle to complete. */
	rval = QLA_SUCCESS;
	for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
	    rval == QLA_SUCCESS; cnt--) {
		if (cnt)
			udelay(10);
		else
			rval = QLA_FUNCTION_TIMEOUT;
514
		cond_resched();
515 516 517 518
	}
	return rval;
}

519
static void
520
qla24xx_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
521 522 523 524
    uint8_t *flash_id)
{
	uint32_t ids;

525
	ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x03ab));
526 527
	*man_id = LSB(ids);
	*flash_id = MSB(ids);
528 529 530 531 532 533 534 535 536

	/* Check if man_id and flash_id are valid. */
	if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
		/* Read information using 0x9f opcode
		 * Device ID, Mfg ID would be read in the format:
		 *   <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
		 * Example: ATMEL 0x00 01 45 1F
		 * Extract MFG and Dev ID from last two bytes.
		 */
537
		ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x009f));
538 539 540
		*man_id = LSB(ids);
		*flash_id = MSB(ids);
	}
541 542
}

543
static int
544
qla2xxx_find_flt_start(scsi_qla_host_t *vha, uint32_t *start)
545 546 547 548 549 550 551
{
	const char *loc, *locations[] = { "DEF", "PCI" };
	uint32_t pcihdr, pcids;
	uint32_t *dcode;
	uint8_t *buf, *bcode, last_image;
	uint16_t cnt, chksum, *wptr;
	struct qla_flt_location *fltl;
552
	struct qla_hw_data *ha = vha->hw;
553
	struct req_que *req = ha->req_q_map[0];
554 555 556 557 558 559 560

	/*
	 * FLT-location structure resides after the last PCI region.
	 */

	/* Begin with sane defaults. */
	loc = locations[0];
561 562 563 564 565 566 567
	*start = 0;
	if (IS_QLA24XX_TYPE(ha))
		*start = FA_FLASH_LAYOUT_ADDR_24;
	else if (IS_QLA25XX(ha))
		*start = FA_FLASH_LAYOUT_ADDR;
	else if (IS_QLA81XX(ha))
		*start = FA_FLASH_LAYOUT_ADDR_81;
568
	else if (IS_P3P_TYPE(ha)) {
569 570
		*start = FA_FLASH_LAYOUT_ADDR_82;
		goto end;
571
	} else if (IS_QLA83XX(ha) || IS_QLA27XX(ha)) {
572 573
		*start = FA_FLASH_LAYOUT_ADDR_83;
		goto end;
574
	}
575
	/* Begin with first PCI expansion ROM header. */
576 577
	buf = (uint8_t *)req->ring;
	dcode = (uint32_t *)req->ring;
578 579 580 581
	pcihdr = 0;
	last_image = 1;
	do {
		/* Verify PCI expansion ROM header. */
582
		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
583 584 585 586 587 588
		bcode = buf + (pcihdr % 4);
		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa)
			goto end;

		/* Locate PCI data structure. */
		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
589
		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
590 591 592 593 594 595 596 597 598 599 600 601 602 603
		bcode = buf + (pcihdr % 4);

		/* Validate signature of PCI data structure. */
		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
		    bcode[0x2] != 'I' || bcode[0x3] != 'R')
			goto end;

		last_image = bcode[0x15] & BIT_7;

		/* Locate next PCI expansion ROM. */
		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
	} while (!last_image);

	/* Now verify FLT-location structure. */
604 605
	fltl = (struct qla_flt_location *)req->ring;
	qla24xx_read_flash_data(vha, dcode, pcihdr >> 2,
606 607 608 609 610
	    sizeof(struct qla_flt_location) >> 2);
	if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' ||
	    fltl->sig[2] != 'L' || fltl->sig[3] != 'T')
		goto end;

611
	wptr = (uint16_t *)req->ring;
612
	cnt = sizeof(struct qla_flt_location) >> 1;
613 614
	for (chksum = 0; cnt--; wptr++)
		chksum += le16_to_cpu(*wptr);
615
	if (chksum) {
616
		ql_log(ql_log_fatal, vha, 0x0045,
617
		    "Inconsistent FLTL detected: checksum=0x%x.\n", chksum);
618 619
		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x010e,
		    buf, sizeof(struct qla_flt_location));
620 621 622 623 624
		return QLA_FUNCTION_FAILED;
	}

	/* Good data.  Use specified location. */
	loc = locations[1];
625 626
	*start = (le16_to_cpu(fltl->start_hi) << 16 |
	    le16_to_cpu(fltl->start_lo)) >> 2;
627
end:
628 629 630
	ql_dbg(ql_dbg_init, vha, 0x0046,
	    "FLTL[%s] = 0x%x.\n",
	    loc, *start);
631 632 633 634
	return QLA_SUCCESS;
}

static void
635
qla2xxx_get_flt_info(scsi_qla_host_t *vha, uint32_t flt_addr)
636 637
{
	const char *loc, *locations[] = { "DEF", "FLT" };
638 639 640 641 642 643
	const uint32_t def_fw[] =
		{ FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR_81 };
	const uint32_t def_boot[] =
		{ FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR_81 };
	const uint32_t def_vpd_nvram[] =
		{ FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR_81 };
644 645 646 647 648 649 650 651
	const uint32_t def_vpd0[] =
		{ 0, 0, FA_VPD0_ADDR_81 };
	const uint32_t def_vpd1[] =
		{ 0, 0, FA_VPD1_ADDR_81 };
	const uint32_t def_nvram0[] =
		{ 0, 0, FA_NVRAM0_ADDR_81 };
	const uint32_t def_nvram1[] =
		{ 0, 0, FA_NVRAM1_ADDR_81 };
652 653 654 655 656 657 658 659 660
	const uint32_t def_fdt[] =
		{ FA_FLASH_DESCR_ADDR_24, FA_FLASH_DESCR_ADDR,
			FA_FLASH_DESCR_ADDR_81 };
	const uint32_t def_npiv_conf0[] =
		{ FA_NPIV_CONF0_ADDR_24, FA_NPIV_CONF0_ADDR,
			FA_NPIV_CONF0_ADDR_81 };
	const uint32_t def_npiv_conf1[] =
		{ FA_NPIV_CONF1_ADDR_24, FA_NPIV_CONF1_ADDR,
			FA_NPIV_CONF1_ADDR_81 };
S
Sarang Radke 已提交
661 662 663 664 665 666
	const uint32_t fcp_prio_cfg0[] =
		{ FA_FCP_PRIO0_ADDR, FA_FCP_PRIO0_ADDR_25,
			0 };
	const uint32_t fcp_prio_cfg1[] =
		{ FA_FCP_PRIO1_ADDR, FA_FCP_PRIO1_ADDR_25,
			0 };
667
	uint32_t def;
668 669 670 671 672
	uint16_t *wptr;
	uint16_t cnt, chksum;
	uint32_t start;
	struct qla_flt_header *flt;
	struct qla_flt_region *region;
673
	struct qla_hw_data *ha = vha->hw;
674
	struct req_que *req = ha->req_q_map[0];
675

676 677 678 679 680
	def = 0;
	if (IS_QLA25XX(ha))
		def = 1;
	else if (IS_QLA81XX(ha))
		def = 2;
681 682 683 684

	/* Assign FCP prio region since older adapters may not have FLT, or
	   FCP prio region in it's FLT.
	 */
685
	ha->flt_region_fcp_prio = (ha->port_no == 0) ?
686 687
	    fcp_prio_cfg0[def] : fcp_prio_cfg1[def];

688
	ha->flt_region_flt = flt_addr;
689 690
	wptr = (uint16_t *)req->ring;
	flt = (struct qla_flt_header *)req->ring;
691
	region = (struct qla_flt_region *)&flt[1];
692
	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
693
	    flt_addr << 2, OPTROM_BURST_SIZE);
694
	if (*wptr == cpu_to_le16(0xffff))
695
		goto no_flash_data;
696
	if (flt->version != cpu_to_le16(1)) {
697 698
		ql_log(ql_log_warn, vha, 0x0047,
		    "Unsupported FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
699
		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
700
		    le16_to_cpu(flt->checksum));
701 702 703 704
		goto no_flash_data;
	}

	cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1;
705 706
	for (chksum = 0; cnt--; wptr++)
		chksum += le16_to_cpu(*wptr);
707
	if (chksum) {
708 709
		ql_log(ql_log_fatal, vha, 0x0048,
		    "Inconsistent FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
710
		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
711
		    le16_to_cpu(flt->checksum));
712 713 714 715 716 717 718 719
		goto no_flash_data;
	}

	loc = locations[1];
	cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region);
	for ( ; cnt; cnt--, region++) {
		/* Store addresses as DWORD offsets. */
		start = le32_to_cpu(region->start) >> 2;
720 721
		ql_dbg(ql_dbg_init, vha, 0x0049,
		    "FLT[%02x]: start=0x%x "
722
		    "end=0x%x size=0x%x.\n", le32_to_cpu(region->code) & 0xff,
723 724
		    start, le32_to_cpu(region->end) >> 2,
		    le32_to_cpu(region->size));
725

726
		switch (le32_to_cpu(region->code) & 0xff) {
727 728 729 730 731
		case FLT_REG_FCOE_FW:
			if (!IS_QLA8031(ha))
				break;
			ha->flt_region_fw = start;
			break;
732
		case FLT_REG_FW:
733 734
			if (IS_QLA8031(ha))
				break;
735 736 737 738 739 740
			ha->flt_region_fw = start;
			break;
		case FLT_REG_BOOT_CODE:
			ha->flt_region_boot = start;
			break;
		case FLT_REG_VPD_0:
741 742
			if (IS_QLA8031(ha))
				break;
743
			ha->flt_region_vpd_nvram = start;
744
			if (IS_P3P_TYPE(ha))
745
				break;
746
			if (ha->port_no == 0)
747 748 749
				ha->flt_region_vpd = start;
			break;
		case FLT_REG_VPD_1:
750
			if (IS_P3P_TYPE(ha) || IS_QLA8031(ha))
751
				break;
752 753 754 755 756 757 758 759 760 761 762 763 764
			if (ha->port_no == 1)
				ha->flt_region_vpd = start;
			break;
		case FLT_REG_VPD_2:
			if (!IS_QLA27XX(ha))
				break;
			if (ha->port_no == 2)
				ha->flt_region_vpd = start;
			break;
		case FLT_REG_VPD_3:
			if (!IS_QLA27XX(ha))
				break;
			if (ha->port_no == 3)
765 766 767
				ha->flt_region_vpd = start;
			break;
		case FLT_REG_NVRAM_0:
768 769
			if (IS_QLA8031(ha))
				break;
770
			if (ha->port_no == 0)
771 772 773
				ha->flt_region_nvram = start;
			break;
		case FLT_REG_NVRAM_1:
774 775
			if (IS_QLA8031(ha))
				break;
776 777 778 779 780 781 782 783 784 785 786 787 788
			if (ha->port_no == 1)
				ha->flt_region_nvram = start;
			break;
		case FLT_REG_NVRAM_2:
			if (!IS_QLA27XX(ha))
				break;
			if (ha->port_no == 2)
				ha->flt_region_nvram = start;
			break;
		case FLT_REG_NVRAM_3:
			if (!IS_QLA27XX(ha))
				break;
			if (ha->port_no == 3)
789
				ha->flt_region_nvram = start;
790 791 792 793
			break;
		case FLT_REG_FDT:
			ha->flt_region_fdt = start;
			break;
794
		case FLT_REG_NPIV_CONF_0:
795
			if (ha->port_no == 0)
796 797 798
				ha->flt_region_npiv_conf = start;
			break;
		case FLT_REG_NPIV_CONF_1:
799
			if (ha->port_no == 1)
800 801
				ha->flt_region_npiv_conf = start;
			break;
802 803 804
		case FLT_REG_GOLD_FW:
			ha->flt_region_gold_fw = start;
			break;
S
Sarang Radke 已提交
805
		case FLT_REG_FCP_PRIO_0:
806
			if (ha->port_no == 0)
S
Sarang Radke 已提交
807 808 809
				ha->flt_region_fcp_prio = start;
			break;
		case FLT_REG_FCP_PRIO_1:
810
			if (ha->port_no == 1)
S
Sarang Radke 已提交
811 812
				ha->flt_region_fcp_prio = start;
			break;
813 814 815
		case FLT_REG_BOOT_CODE_82XX:
			ha->flt_region_boot = start;
			break;
816 817 818 819
		case FLT_REG_BOOT_CODE_8044:
			if (IS_QLA8044(ha))
				ha->flt_region_boot = start;
			break;
820 821 822
		case FLT_REG_FW_82XX:
			ha->flt_region_fw = start;
			break;
823 824 825 826
		case FLT_REG_CNA_FW:
			if (IS_CNA_CAPABLE(ha))
				ha->flt_region_fw = start;
			break;
827 828 829 830 831 832
		case FLT_REG_GOLD_FW_82XX:
			ha->flt_region_gold_fw = start;
			break;
		case FLT_REG_BOOTLOAD_82XX:
			ha->flt_region_bootload = start;
			break;
833 834
		case FLT_REG_VPD_8XXX:
			if (IS_CNA_CAPABLE(ha))
835 836 837
				ha->flt_region_vpd = start;
			break;
		case FLT_REG_FCOE_NVRAM_0:
838
			if (!(IS_QLA8031(ha) || IS_QLA8044(ha)))
839
				break;
840
			if (ha->port_no == 0)
841 842 843
				ha->flt_region_nvram = start;
			break;
		case FLT_REG_FCOE_NVRAM_1:
844
			if (!(IS_QLA8031(ha) || IS_QLA8044(ha)))
845
				break;
846
			if (ha->port_no == 1)
847 848
				ha->flt_region_nvram = start;
			break;
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
		case FLT_REG_IMG_PRI_27XX:
			if (IS_QLA27XX(ha))
				ha->flt_region_img_status_pri = start;
			break;
		case FLT_REG_IMG_SEC_27XX:
			if (IS_QLA27XX(ha))
				ha->flt_region_img_status_sec = start;
			break;
		case FLT_REG_FW_SEC_27XX:
			if (IS_QLA27XX(ha))
				ha->flt_region_fw_sec = start;
			break;
		case FLT_REG_BOOTLOAD_SEC_27XX:
			if (IS_QLA27XX(ha))
				ha->flt_region_boot_sec = start;
			break;
		case FLT_REG_VPD_SEC_27XX_0:
			if (IS_QLA27XX(ha))
				ha->flt_region_vpd_sec = start;
			break;
		case FLT_REG_VPD_SEC_27XX_1:
			if (IS_QLA27XX(ha))
				ha->flt_region_vpd_sec = start;
			break;
		case FLT_REG_VPD_SEC_27XX_2:
			if (IS_QLA27XX(ha))
				ha->flt_region_vpd_sec = start;
			break;
		case FLT_REG_VPD_SEC_27XX_3:
			if (IS_QLA27XX(ha))
				ha->flt_region_vpd_sec = start;
			break;
881 882 883 884 885 886 887
		}
	}
	goto done;

no_flash_data:
	/* Use hardcoded defaults. */
	loc = locations[0];
888 889 890
	ha->flt_region_fw = def_fw[def];
	ha->flt_region_boot = def_boot[def];
	ha->flt_region_vpd_nvram = def_vpd_nvram[def];
891
	ha->flt_region_vpd = (ha->port_no == 0) ?
S
Sarang Radke 已提交
892
	    def_vpd0[def] : def_vpd1[def];
893
	ha->flt_region_nvram = (ha->port_no == 0) ?
S
Sarang Radke 已提交
894
	    def_nvram0[def] : def_nvram1[def];
895
	ha->flt_region_fdt = def_fdt[def];
896
	ha->flt_region_npiv_conf = (ha->port_no == 0) ?
S
Sarang Radke 已提交
897
	    def_npiv_conf0[def] : def_npiv_conf1[def];
898
done:
899
	ql_dbg(ql_dbg_init, vha, 0x004a,
900 901 902 903 904 905
	    "FLT[%s]: boot=0x%x fw=0x%x vpd_nvram=0x%x vpd=0x%x nvram=0x%x "
	    "fdt=0x%x flt=0x%x npiv=0x%x fcp_prif_cfg=0x%x.\n",
	    loc, ha->flt_region_boot, ha->flt_region_fw,
	    ha->flt_region_vpd_nvram, ha->flt_region_vpd, ha->flt_region_nvram,
	    ha->flt_region_fdt, ha->flt_region_flt, ha->flt_region_npiv_conf,
	    ha->flt_region_fcp_prio);
906 907 908
}

static void
909
qla2xxx_get_fdt_info(scsi_qla_host_t *vha)
910
{
911
#define FLASH_BLK_SIZE_4K	0x1000
912 913
#define FLASH_BLK_SIZE_32K	0x8000
#define FLASH_BLK_SIZE_64K	0x10000
914
	const char *loc, *locations[] = { "MID", "FDT" };
915 916 917 918
	uint16_t cnt, chksum;
	uint16_t *wptr;
	struct qla_fdt_layout *fdt;
	uint8_t	man_id, flash_id;
919
	uint16_t mid = 0, fid = 0;
920
	struct qla_hw_data *ha = vha->hw;
921
	struct req_que *req = ha->req_q_map[0];
922

923 924 925
	wptr = (uint16_t *)req->ring;
	fdt = (struct qla_fdt_layout *)req->ring;
	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
926
	    ha->flt_region_fdt << 2, OPTROM_BURST_SIZE);
927
	if (*wptr == cpu_to_le16(0xffff))
928 929 930 931 932
		goto no_flash_data;
	if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
	    fdt->sig[3] != 'D')
		goto no_flash_data;

933 934
	for (cnt = 0, chksum = 0; cnt < sizeof(*fdt) >> 1; cnt++, wptr++)
		chksum += le16_to_cpu(*wptr);
935
	if (chksum) {
936 937 938 939 940 941
		ql_dbg(ql_dbg_init, vha, 0x004c,
		    "Inconsistent FDT detected:"
		    " checksum=0x%x id=%c version0x%x.\n", chksum,
		    fdt->sig[0], le16_to_cpu(fdt->version));
		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x0113,
		    (uint8_t *)fdt, sizeof(*fdt));
942 943 944
		goto no_flash_data;
	}

945 946 947
	loc = locations[1];
	mid = le16_to_cpu(fdt->man_id);
	fid = le16_to_cpu(fdt->id);
948
	ha->fdt_wrt_disable = fdt->wrt_disable_bits;
949 950 951 952 953 954 955
	ha->fdt_wrt_enable = fdt->wrt_enable_bits;
	ha->fdt_wrt_sts_reg_cmd = fdt->wrt_sts_reg_cmd;
	if (IS_QLA8044(ha))
		ha->fdt_erase_cmd = fdt->erase_cmd;
	else
		ha->fdt_erase_cmd =
		    flash_conf_addr(ha, 0x0300 | fdt->erase_cmd);
956 957
	ha->fdt_block_size = le32_to_cpu(fdt->block_size);
	if (fdt->unprotect_sec_cmd) {
958
		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0300 |
959 960
		    fdt->unprotect_sec_cmd);
		ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
961 962
		    flash_conf_addr(ha, 0x0300 | fdt->protect_sec_cmd):
		    flash_conf_addr(ha, 0x0336);
963
	}
964
	goto done;
965
no_flash_data:
966
	loc = locations[0];
967
	if (IS_P3P_TYPE(ha)) {
968 969 970
		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
		goto done;
	}
971
	qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
972 973
	mid = man_id;
	fid = flash_id;
974
	ha->fdt_wrt_disable = 0x9c;
975
	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x03d8);
976 977 978 979 980 981 982 983
	switch (man_id) {
	case 0xbf: /* STT flash. */
		if (flash_id == 0x8e)
			ha->fdt_block_size = FLASH_BLK_SIZE_64K;
		else
			ha->fdt_block_size = FLASH_BLK_SIZE_32K;

		if (flash_id == 0x80)
984
			ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0352);
985 986 987 988 989
		break;
	case 0x13: /* ST M25P80. */
		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
		break;
	case 0x1f: /* Atmel 26DF081A. */
990
		ha->fdt_block_size = FLASH_BLK_SIZE_4K;
991 992 993
		ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0320);
		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0339);
		ha->fdt_protect_sec_cmd = flash_conf_addr(ha, 0x0336);
994 995 996 997 998 999
		break;
	default:
		/* Default to 64 kb sector size. */
		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
		break;
	}
1000
done:
1001
	ql_dbg(ql_dbg_init, vha, 0x004d,
1002 1003 1004
	    "FDT[%s]: (0x%x/0x%x) erase=0x%x "
	    "pr=%x wrtd=0x%x blk=0x%x.\n",
	    loc, mid, fid,
1005
	    ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd,
1006 1007
	    ha->fdt_wrt_disable, ha->fdt_block_size);

1008 1009
}

1010 1011 1012 1013 1014 1015 1016 1017
static void
qla2xxx_get_idc_param(scsi_qla_host_t *vha)
{
#define QLA82XX_IDC_PARAM_ADDR       0x003e885c
	uint32_t *wptr;
	struct qla_hw_data *ha = vha->hw;
	struct req_que *req = ha->req_q_map[0];

1018
	if (!(IS_P3P_TYPE(ha)))
1019 1020 1021 1022 1023 1024
		return;

	wptr = (uint32_t *)req->ring;
	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
		QLA82XX_IDC_PARAM_ADDR , 8);

1025
	if (*wptr == cpu_to_le32(0xffffffff)) {
1026 1027
		ha->fcoe_dev_init_timeout = QLA82XX_ROM_DEV_INIT_TIMEOUT;
		ha->fcoe_reset_timeout = QLA82XX_ROM_DRV_RESET_ACK_TIMEOUT;
1028
	} else {
1029 1030
		ha->fcoe_dev_init_timeout = le32_to_cpu(*wptr);
		wptr++;
1031
		ha->fcoe_reset_timeout = le32_to_cpu(*wptr);
1032
	}
1033
	ql_dbg(ql_dbg_init, vha, 0x004e,
1034 1035 1036
	    "fcoe_dev_init_timeout=%d "
	    "fcoe_reset_timeout=%d.\n", ha->fcoe_dev_init_timeout,
	    ha->fcoe_reset_timeout);
1037 1038 1039
	return;
}

1040
int
1041
qla2xxx_get_flash_info(scsi_qla_host_t *vha)
1042 1043 1044
{
	int ret;
	uint32_t flt_addr;
1045
	struct qla_hw_data *ha = vha->hw;
1046

1047
	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) &&
1048
	    !IS_CNA_CAPABLE(ha) && !IS_QLA2031(ha) && !IS_QLA27XX(ha))
1049 1050
		return QLA_SUCCESS;

1051
	ret = qla2xxx_find_flt_start(vha, &flt_addr);
1052 1053 1054
	if (ret != QLA_SUCCESS)
		return ret;

1055 1056
	qla2xxx_get_flt_info(vha, flt_addr);
	qla2xxx_get_fdt_info(vha);
1057
	qla2xxx_get_idc_param(vha);
1058 1059 1060 1061

	return QLA_SUCCESS;
}

1062
void
1063
qla2xxx_flash_npiv_conf(scsi_qla_host_t *vha)
1064 1065 1066 1067 1068
{
#define NPIV_CONFIG_SIZE	(16*1024)
	void *data;
	uint16_t *wptr;
	uint16_t cnt, chksum;
1069
	int i;
1070 1071
	struct qla_npiv_header hdr;
	struct qla_npiv_entry *entry;
1072
	struct qla_hw_data *ha = vha->hw;
1073

1074 1075
	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) &&
	    !IS_CNA_CAPABLE(ha) && !IS_QLA2031(ha))
1076 1077
		return;

1078
	if (ha->flags.nic_core_reset_hdlr_active)
1079 1080
		return;

1081 1082 1083
	if (IS_QLA8044(ha))
		return;

1084
	ha->isp_ops->read_optrom(vha, (uint8_t *)&hdr,
1085
	    ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header));
1086
	if (hdr.version == cpu_to_le16(0xffff))
1087
		return;
1088
	if (hdr.version != cpu_to_le16(1)) {
1089 1090
		ql_dbg(ql_dbg_user, vha, 0x7090,
		    "Unsupported NPIV-Config "
1091 1092
		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
1093
		    le16_to_cpu(hdr.checksum));
1094 1095 1096 1097 1098
		return;
	}

	data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL);
	if (!data) {
1099 1100
		ql_log(ql_log_warn, vha, 0x7091,
		    "Unable to allocate memory for data.\n");
1101 1102 1103
		return;
	}

1104
	ha->isp_ops->read_optrom(vha, (uint8_t *)data,
1105 1106
	    ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE);

1107 1108 1109
	cnt = (sizeof(hdr) + le16_to_cpu(hdr.entries) * sizeof(*entry)) >> 1;
	for (wptr = data, chksum = 0; cnt--; wptr++)
		chksum += le16_to_cpu(*wptr);
1110
	if (chksum) {
1111 1112
		ql_dbg(ql_dbg_user, vha, 0x7092,
		    "Inconsistent NPIV-Config "
1113 1114
		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
1115
		    le16_to_cpu(hdr.checksum));
1116 1117 1118 1119 1120
		goto done;
	}

	entry = data + sizeof(struct qla_npiv_header);
	cnt = le16_to_cpu(hdr.entries);
1121
	for (i = 0; cnt; cnt--, entry++, i++) {
1122 1123 1124 1125
		uint16_t flags;
		struct fc_vport_identifiers vid;
		struct fc_vport *vport;

1126 1127
		memcpy(&ha->npiv_info[i], entry, sizeof(struct qla_npiv_entry));

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
		flags = le16_to_cpu(entry->flags);
		if (flags == 0xffff)
			continue;
		if ((flags & BIT_0) == 0)
			continue;

		memset(&vid, 0, sizeof(vid));
		vid.roles = FC_PORT_ROLE_FCP_INITIATOR;
		vid.vport_type = FC_PORTTYPE_NPIV;
		vid.disable = false;
		vid.port_name = wwn_to_u64(entry->port_name);
		vid.node_name = wwn_to_u64(entry->node_name);

1141 1142 1143 1144 1145 1146 1147
		ql_dbg(ql_dbg_user, vha, 0x7093,
		    "NPIV[%02x]: wwpn=%llx "
		    "wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt,
		    (unsigned long long)vid.port_name,
		    (unsigned long long)vid.node_name,
		    le16_to_cpu(entry->vf_id),
		    entry->q_qos, entry->f_qos);
1148 1149 1150 1151

		if (i < QLA_PRECONFIG_VPORTS) {
			vport = fc_vport_create(vha->host, 0, &vid);
			if (!vport)
1152 1153 1154 1155 1156
				ql_log(ql_log_warn, vha, 0x7094,
				    "NPIV-Config Failed to create vport [%02x]: "
				    "wwpn=%llx wwnn=%llx.\n", cnt,
				    (unsigned long long)vid.port_name,
				    (unsigned long long)vid.node_name);
1157
		}
1158 1159 1160 1161 1162
	}
done:
	kfree(data);
}

1163 1164
static int
qla24xx_unprotect_flash(scsi_qla_host_t *vha)
1165
{
1166
	struct qla_hw_data *ha = vha->hw;
1167 1168
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

1169 1170 1171
	if (ha->flags.fac_supported)
		return qla81xx_fac_do_write_enable(vha, 1);

1172 1173 1174 1175 1176
	/* Enable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */

1177
	if (!ha->fdt_wrt_disable)
1178
		goto done;
1179

1180
	/* Disable flash write-protection, first clear SR protection bit */
1181
	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1182
	/* Then write zero again to clear remaining SR bits.*/
1183
	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1184 1185
done:
	return QLA_SUCCESS;
1186 1187
}

1188 1189
static int
qla24xx_protect_flash(scsi_qla_host_t *vha)
1190 1191
{
	uint32_t cnt;
1192
	struct qla_hw_data *ha = vha->hw;
1193 1194
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

1195 1196 1197
	if (ha->flags.fac_supported)
		return qla81xx_fac_do_write_enable(vha, 0);

1198 1199 1200
	if (!ha->fdt_wrt_disable)
		goto skip_wrt_protect;

1201
	/* Enable flash write-protection and wait for completion. */
1202
	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101),
1203
	    ha->fdt_wrt_disable);
1204
	for (cnt = 300; cnt &&
1205
	    qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x005)) & BIT_0;
1206 1207 1208 1209
	    cnt--) {
		udelay(10);
	}

1210
skip_wrt_protect:
1211 1212 1213 1214
	/* Disable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234

	return QLA_SUCCESS;
}

static int
qla24xx_erase_sector(scsi_qla_host_t *vha, uint32_t fdata)
{
	struct qla_hw_data *ha = vha->hw;
	uint32_t start, finish;

	if (ha->flags.fac_supported) {
		start = fdata >> 2;
		finish = start + (ha->fdt_block_size >> 2) - 1;
		return qla81xx_fac_erase_sector(vha, flash_data_addr(ha,
		    start), flash_data_addr(ha, finish));
	}

	return qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
	    (fdata & 0xff00) | ((fdata << 16) & 0xff0000) |
	    ((fdata >> 16) & 0xff));
1235 1236
}

1237
static int
1238
qla24xx_write_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
1239 1240 1241
    uint32_t dwords)
{
	int ret;
1242
	uint32_t liter;
1243
	uint32_t sec_mask, rest_addr;
1244
	uint32_t fdata;
1245 1246
	dma_addr_t optrom_dma;
	void *optrom = NULL;
1247
	struct qla_hw_data *ha = vha->hw;
1248

1249
	/* Prepare burst-capable write on supported ISPs. */
1250 1251
	if ((IS_QLA25XX(ha) || IS_QLA81XX(ha) || IS_QLA83XX(ha) ||
	    IS_QLA27XX(ha)) &&
1252
	    !(faddr & 0xfff) && dwords > OPTROM_BURST_DWORDS) {
1253 1254 1255
		optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
		    &optrom_dma, GFP_KERNEL);
		if (!optrom) {
1256 1257 1258 1259
			ql_log(ql_log_warn, vha, 0x7095,
			    "Unable to allocate "
			    "memory for optrom burst write (%x KB).\n",
			    OPTROM_BURST_SIZE / 1024);
1260 1261 1262
		}
	}

1263
	rest_addr = (ha->fdt_block_size >> 2) - 1;
1264
	sec_mask = ~rest_addr;
1265

1266 1267
	ret = qla24xx_unprotect_flash(vha);
	if (ret != QLA_SUCCESS) {
1268
		ql_log(ql_log_warn, vha, 0x7096,
1269 1270 1271
		    "Unable to unprotect flash for update.\n");
		goto done;
	}
1272

1273
	for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
1274
		fdata = (faddr & sec_mask) << 2;
1275

1276
		/* Are we at the beginning of a sector? */
1277
		if ((faddr & rest_addr) == 0) {
1278 1279
			/* Do sector unprotect. */
			if (ha->fdt_unprotect_sec_cmd)
1280
				qla24xx_write_flash_dword(ha,
1281
				    ha->fdt_unprotect_sec_cmd,
1282
				    (fdata & 0xff00) | ((fdata << 16) &
1283
				    0xff0000) | ((fdata >> 16) & 0xff));
1284
			ret = qla24xx_erase_sector(vha, fdata);
1285
			if (ret != QLA_SUCCESS) {
1286 1287 1288
				ql_dbg(ql_dbg_user, vha, 0x7007,
				    "Unable to erase erase sector: address=%x.\n",
				    faddr);
1289
				break;
1290
			}
1291 1292 1293
		}

		/* Go with burst-write. */
1294
		if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
1295
			/* Copy data to DMA'ble buffer. */
1296
			memcpy(optrom, dwptr, OPTROM_BURST_SIZE);
1297

1298
			ret = qla2x00_load_ram(vha, optrom_dma,
1299
			    flash_data_addr(ha, faddr),
1300
			    OPTROM_BURST_DWORDS);
1301
			if (ret != QLA_SUCCESS) {
1302
				ql_log(ql_log_warn, vha, 0x7097,
1303 1304
				    "Unable to burst-write optrom segment "
				    "(%x/%x/%llx).\n", ret,
1305
				    flash_data_addr(ha, faddr),
A
Andrew Morton 已提交
1306
				    (unsigned long long)optrom_dma);
1307
				ql_log(ql_log_warn, vha, 0x7098,
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
				    "Reverting to slow-write.\n");

				dma_free_coherent(&ha->pdev->dev,
				    OPTROM_BURST_SIZE, optrom, optrom_dma);
				optrom = NULL;
			} else {
				liter += OPTROM_BURST_DWORDS - 1;
				faddr += OPTROM_BURST_DWORDS - 1;
				dwptr += OPTROM_BURST_DWORDS - 1;
				continue;
1318
			}
1319
		}
1320

1321
		ret = qla24xx_write_flash_dword(ha,
1322
		    flash_data_addr(ha, faddr), cpu_to_le32(*dwptr));
1323
		if (ret != QLA_SUCCESS) {
1324 1325 1326
			ql_dbg(ql_dbg_user, vha, 0x7006,
			    "Unable to program flash address=%x data=%x.\n",
			    faddr, *dwptr);
1327
			break;
1328
		}
1329

1330 1331
		/* Do sector protect. */
		if (ha->fdt_unprotect_sec_cmd &&
1332 1333
		    ((faddr & rest_addr) == rest_addr))
			qla24xx_write_flash_dword(ha,
1334
			    ha->fdt_protect_sec_cmd,
1335 1336 1337
			    (fdata & 0xff00) | ((fdata << 16) &
			    0xff0000) | ((fdata >> 16) & 0xff));
	}
1338

1339 1340
	ret = qla24xx_protect_flash(vha);
	if (ret != QLA_SUCCESS)
1341
		ql_log(ql_log_warn, vha, 0x7099,
1342 1343
		    "Unable to protect flash after update.\n");
done:
1344 1345 1346 1347
	if (optrom)
		dma_free_coherent(&ha->pdev->dev,
		    OPTROM_BURST_SIZE, optrom, optrom_dma);

1348 1349 1350 1351
	return ret;
}

uint8_t *
1352
qla2x00_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1353 1354 1355 1356
    uint32_t bytes)
{
	uint32_t i;
	uint16_t *wptr;
1357
	struct qla_hw_data *ha = vha->hw;
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370

	/* Word reads to NVRAM via registers. */
	wptr = (uint16_t *)buf;
	qla2x00_lock_nvram_access(ha);
	for (i = 0; i < bytes >> 1; i++, naddr++)
		wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
		    naddr));
	qla2x00_unlock_nvram_access(ha);

	return buf;
}

uint8_t *
1371
qla24xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1372 1373 1374 1375
    uint32_t bytes)
{
	uint32_t i;
	uint32_t *dwptr;
1376
	struct qla_hw_data *ha = vha->hw;
1377

1378
	if (IS_P3P_TYPE(ha))
1379 1380
		return  buf;

1381 1382 1383
	/* Dword reads to flash. */
	dwptr = (uint32_t *)buf;
	for (i = 0; i < bytes >> 2; i++, naddr++)
1384 1385
		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
		    nvram_data_addr(ha, naddr)));
1386 1387 1388 1389 1390

	return buf;
}

int
1391
qla2x00_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1392 1393 1394 1395 1396
    uint32_t bytes)
{
	int ret, stat;
	uint32_t i;
	uint16_t *wptr;
1397
	unsigned long flags;
1398
	struct qla_hw_data *ha = vha->hw;
1399 1400 1401

	ret = QLA_SUCCESS;

1402
	spin_lock_irqsave(&ha->hardware_lock, flags);
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
	qla2x00_lock_nvram_access(ha);

	/* Disable NVRAM write-protection. */
	stat = qla2x00_clear_nvram_protection(ha);

	wptr = (uint16_t *)buf;
	for (i = 0; i < bytes >> 1; i++, naddr++) {
		qla2x00_write_nvram_word(ha, naddr,
		    cpu_to_le16(*wptr));
		wptr++;
	}

	/* Enable NVRAM write-protection. */
	qla2x00_set_nvram_protection(ha, stat);

	qla2x00_unlock_nvram_access(ha);
1419
	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1420 1421 1422 1423 1424

	return ret;
}

int
1425
qla24xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1426 1427 1428 1429 1430
    uint32_t bytes)
{
	int ret;
	uint32_t i;
	uint32_t *dwptr;
1431
	struct qla_hw_data *ha = vha->hw;
1432 1433 1434 1435
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	ret = QLA_SUCCESS;

1436
	if (IS_P3P_TYPE(ha))
1437 1438
		return ret;

1439 1440 1441 1442 1443 1444
	/* Enable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */

	/* Disable NVRAM write-protection. */
1445 1446
	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1447 1448 1449 1450 1451

	/* Dword writes to flash. */
	dwptr = (uint32_t *)buf;
	for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
		ret = qla24xx_write_flash_dword(ha,
1452
		    nvram_data_addr(ha, naddr), cpu_to_le32(*dwptr));
1453
		if (ret != QLA_SUCCESS) {
1454
			ql_dbg(ql_dbg_user, vha, 0x709a,
1455
			    "Unable to program nvram address=%x data=%x.\n",
1456
			    naddr, *dwptr);
1457 1458 1459 1460 1461
			break;
		}
	}

	/* Enable NVRAM write-protection. */
1462
	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0x8c);
1463 1464 1465 1466 1467 1468 1469 1470

	/* Disable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */

	return ret;
}
1471

1472
uint8_t *
1473
qla25xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1474 1475 1476 1477
    uint32_t bytes)
{
	uint32_t i;
	uint32_t *dwptr;
1478
	struct qla_hw_data *ha = vha->hw;
1479 1480 1481 1482 1483

	/* Dword reads to flash. */
	dwptr = (uint32_t *)buf;
	for (i = 0; i < bytes >> 2; i++, naddr++)
		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1484
		    flash_data_addr(ha, ha->flt_region_vpd_nvram | naddr)));
1485 1486 1487 1488 1489

	return buf;
}

int
1490
qla25xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1491 1492
    uint32_t bytes)
{
1493
	struct qla_hw_data *ha = vha->hw;
1494 1495 1496 1497 1498 1499
#define RMW_BUFFER_SIZE	(64 * 1024)
	uint8_t *dbuf;

	dbuf = vmalloc(RMW_BUFFER_SIZE);
	if (!dbuf)
		return QLA_MEMORY_ALLOC_FAILED;
1500
	ha->isp_ops->read_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1501 1502
	    RMW_BUFFER_SIZE);
	memcpy(dbuf + (naddr << 2), buf, bytes);
1503
	ha->isp_ops->write_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1504 1505 1506 1507
	    RMW_BUFFER_SIZE);
	vfree(dbuf);

	return QLA_SUCCESS;
1508
}
1509 1510

static inline void
1511
qla2x00_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
{
	if (IS_QLA2322(ha)) {
		/* Flip all colors. */
		if (ha->beacon_color_state == QLA_LED_ALL_ON) {
			/* Turn off. */
			ha->beacon_color_state = 0;
			*pflags = GPIO_LED_ALL_OFF;
		} else {
			/* Turn on. */
			ha->beacon_color_state = QLA_LED_ALL_ON;
			*pflags = GPIO_LED_RGA_ON;
		}
	} else {
		/* Flip green led only. */
		if (ha->beacon_color_state == QLA_LED_GRN_ON) {
			/* Turn off. */
			ha->beacon_color_state = 0;
			*pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
		} else {
			/* Turn on. */
			ha->beacon_color_state = QLA_LED_GRN_ON;
			*pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
		}
	}
}

1538 1539
#define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))

1540
void
1541
qla2x00_beacon_blink(struct scsi_qla_host *vha)
1542 1543 1544 1545 1546
{
	uint16_t gpio_enable;
	uint16_t gpio_data;
	uint16_t led_color = 0;
	unsigned long flags;
1547
	struct qla_hw_data *ha = vha->hw;
1548 1549
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

1550
	if (IS_P3P_TYPE(ha))
1551 1552
		return;

1553 1554 1555 1556
	spin_lock_irqsave(&ha->hardware_lock, flags);

	/* Save the Original GPIOE. */
	if (ha->pio_address) {
1557 1558
		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1559 1560 1561 1562 1563 1564 1565 1566 1567
	} else {
		gpio_enable = RD_REG_WORD(&reg->gpioe);
		gpio_data = RD_REG_WORD(&reg->gpiod);
	}

	/* Set the modified gpio_enable values */
	gpio_enable |= GPIO_LED_MASK;

	if (ha->pio_address) {
1568
		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
	} else {
		WRT_REG_WORD(&reg->gpioe, gpio_enable);
		RD_REG_WORD(&reg->gpioe);
	}

	qla2x00_flip_colors(ha, &led_color);

	/* Clear out any previously set LED color. */
	gpio_data &= ~GPIO_LED_MASK;

	/* Set the new input LED color to GPIOD. */
	gpio_data |= led_color;

	/* Set the modified gpio_data values */
	if (ha->pio_address) {
1584
		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1585 1586 1587 1588 1589 1590 1591 1592 1593
	} else {
		WRT_REG_WORD(&reg->gpiod, gpio_data);
		RD_REG_WORD(&reg->gpiod);
	}

	spin_unlock_irqrestore(&ha->hardware_lock, flags);
}

int
1594
qla2x00_beacon_on(struct scsi_qla_host *vha)
1595 1596 1597 1598
{
	uint16_t gpio_enable;
	uint16_t gpio_data;
	unsigned long flags;
1599
	struct qla_hw_data *ha = vha->hw;
1600 1601 1602 1603 1604
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
	ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;

1605
	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1606
		ql_log(ql_log_warn, vha, 0x709b,
1607 1608 1609 1610 1611 1612 1613
		    "Unable to update fw options (beacon on).\n");
		return QLA_FUNCTION_FAILED;
	}

	/* Turn off LEDs. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	if (ha->pio_address) {
1614 1615
		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1616 1617 1618 1619 1620 1621 1622 1623
	} else {
		gpio_enable = RD_REG_WORD(&reg->gpioe);
		gpio_data = RD_REG_WORD(&reg->gpiod);
	}
	gpio_enable |= GPIO_LED_MASK;

	/* Set the modified gpio_enable values. */
	if (ha->pio_address) {
1624
		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1625 1626 1627 1628 1629 1630 1631 1632
	} else {
		WRT_REG_WORD(&reg->gpioe, gpio_enable);
		RD_REG_WORD(&reg->gpioe);
	}

	/* Clear out previously set LED colour. */
	gpio_data &= ~GPIO_LED_MASK;
	if (ha->pio_address) {
1633
		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
	} else {
		WRT_REG_WORD(&reg->gpiod, gpio_data);
		RD_REG_WORD(&reg->gpiod);
	}
	spin_unlock_irqrestore(&ha->hardware_lock, flags);

	/*
	 * Let the per HBA timer kick off the blinking process based on
	 * the following flags. No need to do anything else now.
	 */
	ha->beacon_blink_led = 1;
	ha->beacon_color_state = 0;

	return QLA_SUCCESS;
}

int
1651
qla2x00_beacon_off(struct scsi_qla_host *vha)
1652 1653
{
	int rval = QLA_SUCCESS;
1654
	struct qla_hw_data *ha = vha->hw;
1655 1656 1657 1658 1659 1660 1661 1662 1663

	ha->beacon_blink_led = 0;

	/* Set the on flag so when it gets flipped it will be off. */
	if (IS_QLA2322(ha))
		ha->beacon_color_state = QLA_LED_ALL_ON;
	else
		ha->beacon_color_state = QLA_LED_GRN_ON;

1664
	ha->isp_ops->beacon_blink(vha);	/* This turns green LED off */
1665 1666 1667 1668

	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
	ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;

1669
	rval = qla2x00_set_fw_options(vha, ha->fw_options);
1670
	if (rval != QLA_SUCCESS)
1671
		ql_log(ql_log_warn, vha, 0x709c,
1672 1673 1674 1675 1676 1677
		    "Unable to update fw options (beacon off).\n");
	return rval;
}


static inline void
1678
qla24xx_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
{
	/* Flip all colors. */
	if (ha->beacon_color_state == QLA_LED_ALL_ON) {
		/* Turn off. */
		ha->beacon_color_state = 0;
		*pflags = 0;
	} else {
		/* Turn on. */
		ha->beacon_color_state = QLA_LED_ALL_ON;
		*pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
	}
}

void
1693
qla24xx_beacon_blink(struct scsi_qla_host *vha)
1694 1695 1696 1697
{
	uint16_t led_color = 0;
	uint32_t gpio_data;
	unsigned long flags;
1698
	struct qla_hw_data *ha = vha->hw;
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	/* Save the Original GPIOD. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	gpio_data = RD_REG_DWORD(&reg->gpiod);

	/* Enable the gpio_data reg for update. */
	gpio_data |= GPDX_LED_UPDATE_MASK;

	WRT_REG_DWORD(&reg->gpiod, gpio_data);
	gpio_data = RD_REG_DWORD(&reg->gpiod);

	/* Set the color bits. */
	qla24xx_flip_colors(ha, &led_color);

	/* Clear out any previously set LED color. */
	gpio_data &= ~GPDX_LED_COLOR_MASK;

	/* Set the new input LED color to GPIOD. */
	gpio_data |= led_color;

	/* Set the modified gpio_data values. */
	WRT_REG_DWORD(&reg->gpiod, gpio_data);
	gpio_data = RD_REG_DWORD(&reg->gpiod);
	spin_unlock_irqrestore(&ha->hardware_lock, flags);
}

1726 1727 1728 1729 1730
static uint32_t
qla83xx_select_led_port(struct qla_hw_data *ha)
{
	uint32_t led_select_value = 0;

1731
	if (!IS_QLA83XX(ha) && !IS_QLA27XX(ha))
1732 1733
		goto out;

1734
	if (ha->port_no == 0)
1735 1736 1737 1738 1739 1740 1741 1742
		led_select_value = QLA83XX_LED_PORT0;
	else
		led_select_value = QLA83XX_LED_PORT1;

out:
	return led_select_value;
}

1743 1744 1745 1746 1747 1748 1749
void
qla83xx_beacon_blink(struct scsi_qla_host *vha)
{
	uint32_t led_select_value;
	struct qla_hw_data *ha = vha->hw;
	uint16_t led_cfg[6];
	uint16_t orig_led_cfg[6];
1750
	uint32_t led_10_value, led_43_value;
1751

1752
	if (!IS_QLA83XX(ha) && !IS_QLA81XX(ha) && !IS_QLA27XX(ha))
1753 1754
		return;

1755 1756 1757
	if (!ha->beacon_blink_led)
		return;

1758 1759 1760 1761
	if (IS_QLA27XX(ha)) {
		qla2x00_write_ram_word(vha, 0x1003, 0x40000230);
		qla2x00_write_ram_word(vha, 0x1004, 0x40000230);
	} else if (IS_QLA2031(ha)) {
1762
		led_select_value = qla83xx_select_led_port(ha);
1763

1764 1765
		qla83xx_wr_reg(vha, led_select_value, 0x40000230);
		qla83xx_wr_reg(vha, led_select_value + 4, 0x40000230);
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
	} else if (IS_QLA8031(ha)) {
		led_select_value = qla83xx_select_led_port(ha);

		qla83xx_rd_reg(vha, led_select_value, &led_10_value);
		qla83xx_rd_reg(vha, led_select_value + 0x10, &led_43_value);
		qla83xx_wr_reg(vha, led_select_value, 0x01f44000);
		msleep(500);
		qla83xx_wr_reg(vha, led_select_value, 0x400001f4);
		msleep(1000);
		qla83xx_wr_reg(vha, led_select_value, led_10_value);
		qla83xx_wr_reg(vha, led_select_value + 0x10, led_43_value);
	} else if (IS_QLA81XX(ha)) {
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
		int rval;

		/* Save Current */
		rval = qla81xx_get_led_config(vha, orig_led_cfg);
		/* Do the blink */
		if (rval == QLA_SUCCESS) {
			if (IS_QLA81XX(ha)) {
				led_cfg[0] = 0x4000;
				led_cfg[1] = 0x2000;
				led_cfg[2] = 0;
				led_cfg[3] = 0;
				led_cfg[4] = 0;
				led_cfg[5] = 0;
			} else {
				led_cfg[0] = 0x4000;
				led_cfg[1] = 0x4000;
				led_cfg[2] = 0x4000;
				led_cfg[3] = 0x2000;
				led_cfg[4] = 0;
				led_cfg[5] = 0x2000;
			}
			rval = qla81xx_set_led_config(vha, led_cfg);
			msleep(1000);
			if (IS_QLA81XX(ha)) {
				led_cfg[0] = 0x4000;
				led_cfg[1] = 0x2000;
				led_cfg[2] = 0;
			} else {
				led_cfg[0] = 0x4000;
				led_cfg[1] = 0x2000;
				led_cfg[2] = 0x4000;
				led_cfg[3] = 0x4000;
				led_cfg[4] = 0;
				led_cfg[5] = 0x2000;
			}
			rval = qla81xx_set_led_config(vha, led_cfg);
		}
		/* On exit, restore original (presumes no status change) */
		qla81xx_set_led_config(vha, orig_led_cfg);
	}
}

1820
int
1821
qla24xx_beacon_on(struct scsi_qla_host *vha)
1822 1823 1824
{
	uint32_t gpio_data;
	unsigned long flags;
1825
	struct qla_hw_data *ha = vha->hw;
1826 1827
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

1828
	if (IS_P3P_TYPE(ha))
1829 1830
		return QLA_SUCCESS;

1831 1832 1833
	if (IS_QLA8031(ha) || IS_QLA81XX(ha))
		goto skip_gpio; /* let blink handle it */

1834 1835 1836 1837
	if (ha->beacon_blink_led == 0) {
		/* Enable firmware for update */
		ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;

1838
		if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS)
1839 1840
			return QLA_FUNCTION_FAILED;

1841
		if (qla2x00_get_fw_options(vha, ha->fw_options) !=
1842
		    QLA_SUCCESS) {
1843
			ql_log(ql_log_warn, vha, 0x7009,
1844 1845 1846 1847
			    "Unable to update fw options (beacon on).\n");
			return QLA_FUNCTION_FAILED;
		}

1848
		if (IS_QLA2031(ha) || IS_QLA27XX(ha))
1849 1850
			goto skip_gpio;

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
		spin_lock_irqsave(&ha->hardware_lock, flags);
		gpio_data = RD_REG_DWORD(&reg->gpiod);

		/* Enable the gpio_data reg for update. */
		gpio_data |= GPDX_LED_UPDATE_MASK;
		WRT_REG_DWORD(&reg->gpiod, gpio_data);
		RD_REG_DWORD(&reg->gpiod);

		spin_unlock_irqrestore(&ha->hardware_lock, flags);
	}

	/* So all colors blink together. */
	ha->beacon_color_state = 0;

1865
skip_gpio:
1866 1867 1868 1869 1870 1871 1872
	/* Let the per HBA timer kick off the blinking process. */
	ha->beacon_blink_led = 1;

	return QLA_SUCCESS;
}

int
1873
qla24xx_beacon_off(struct scsi_qla_host *vha)
1874 1875 1876
{
	uint32_t gpio_data;
	unsigned long flags;
1877
	struct qla_hw_data *ha = vha->hw;
1878 1879
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

1880
	if (IS_P3P_TYPE(ha))
1881 1882
		return QLA_SUCCESS;

1883
	ha->beacon_blink_led = 0;
1884

1885
	if (IS_QLA2031(ha) || IS_QLA27XX(ha))
1886 1887 1888 1889 1890
		goto set_fw_options;

	if (IS_QLA8031(ha) || IS_QLA81XX(ha))
		return QLA_SUCCESS;

1891 1892
	ha->beacon_color_state = QLA_LED_ALL_ON;

1893
	ha->isp_ops->beacon_blink(vha);	/* Will flip to all off. */
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904

	/* Give control back to firmware. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	gpio_data = RD_REG_DWORD(&reg->gpiod);

	/* Disable the gpio_data reg for update. */
	gpio_data &= ~GPDX_LED_UPDATE_MASK;
	WRT_REG_DWORD(&reg->gpiod, gpio_data);
	RD_REG_DWORD(&reg->gpiod);
	spin_unlock_irqrestore(&ha->hardware_lock, flags);

1905
set_fw_options:
1906 1907
	ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;

1908
	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1909 1910
		ql_log(ql_log_warn, vha, 0x704d,
		    "Unable to update fw options (beacon on).\n");
1911 1912 1913
		return QLA_FUNCTION_FAILED;
	}

1914
	if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1915 1916
		ql_log(ql_log_warn, vha, 0x704e,
		    "Unable to update fw options (beacon on).\n");
1917 1918 1919 1920 1921
		return QLA_FUNCTION_FAILED;
	}

	return QLA_SUCCESS;
}
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932


/*
 * Flash support routines
 */

/**
 * qla2x00_flash_enable() - Setup flash for reading and writing.
 * @ha: HA context
 */
static void
1933
qla2x00_flash_enable(struct qla_hw_data *ha)
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
{
	uint16_t data;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	data = RD_REG_WORD(&reg->ctrl_status);
	data |= CSR_FLASH_ENABLE;
	WRT_REG_WORD(&reg->ctrl_status, data);
	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
}

/**
 * qla2x00_flash_disable() - Disable flash and allow RISC to run.
 * @ha: HA context
 */
static void
1949
qla2x00_flash_disable(struct qla_hw_data *ha)
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
{
	uint16_t data;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	data = RD_REG_WORD(&reg->ctrl_status);
	data &= ~(CSR_FLASH_ENABLE);
	WRT_REG_WORD(&reg->ctrl_status, data);
	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
}

/**
 * qla2x00_read_flash_byte() - Reads a byte from flash
 * @ha: HA context
 * @addr: Address in flash to read
 *
 * A word is read from the chip, but, only the lower byte is valid.
 *
 * Returns the byte read from flash @addr.
 */
static uint8_t
1970
qla2x00_read_flash_byte(struct qla_hw_data *ha, uint32_t addr)
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
{
	uint16_t data;
	uint16_t bank_select;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	bank_select = RD_REG_WORD(&reg->ctrl_status);

	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
		/* Specify 64K address range: */
		/*  clear out Module Select and Flash Address bits [19:16]. */
		bank_select &= ~0xf8;
		bank_select |= addr >> 12 & 0xf0;
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */

		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		data = RD_REG_WORD(&reg->flash_data);

		return (uint8_t)data;
	}

	/* Setup bit 16 of flash address. */
	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	} else if (((addr & BIT_16) == 0) &&
	    (bank_select & CSR_FLASH_64K_BANK)) {
		bank_select &= ~(CSR_FLASH_64K_BANK);
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	}

	/* Always perform IO mapped accesses to the FLASH registers. */
	if (ha->pio_address) {
		uint16_t data2;

2009
		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
2010
		do {
2011
			data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
2012 2013
			barrier();
			cpu_relax();
2014
			data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
		} while (data != data2);
	} else {
		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		data = qla2x00_debounce_register(&reg->flash_data);
	}

	return (uint8_t)data;
}

/**
 * qla2x00_write_flash_byte() - Write a byte to flash
 * @ha: HA context
 * @addr: Address in flash to write
 * @data: Data to write
 */
static void
2031
qla2x00_write_flash_byte(struct qla_hw_data *ha, uint32_t addr, uint8_t data)
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
{
	uint16_t bank_select;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	bank_select = RD_REG_WORD(&reg->ctrl_status);
	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
		/* Specify 64K address range: */
		/*  clear out Module Select and Flash Address bits [19:16]. */
		bank_select &= ~0xf8;
		bank_select |= addr >> 12 & 0xf0;
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */

		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */

		return;
	}

	/* Setup bit 16 of flash address. */
	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	} else if (((addr & BIT_16) == 0) &&
	    (bank_select & CSR_FLASH_64K_BANK)) {
		bank_select &= ~(CSR_FLASH_64K_BANK);
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	}

	/* Always perform IO mapped accesses to the FLASH registers. */
	if (ha->pio_address) {
2068 2069
		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
		WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
	} else {
		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
	}
}

/**
 * qla2x00_poll_flash() - Polls flash for completion.
 * @ha: HA context
 * @addr: Address in flash to poll
 * @poll_data: Data to be polled
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * This function polls the device until bit 7 of what is read matches data
 * bit 7 or until data bit 5 becomes a 1.  If that hapens, the flash ROM timed
 * out (a fatal error).  The flash book recommeds reading bit 7 again after
 * reading bit 5 as a 1.
 *
 * Returns 0 on success, else non-zero.
 */
static int
2094
qla2x00_poll_flash(struct qla_hw_data *ha, uint32_t addr, uint8_t poll_data,
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
    uint8_t man_id, uint8_t flash_id)
{
	int status;
	uint8_t flash_data;
	uint32_t cnt;

	status = 1;

	/* Wait for 30 seconds for command to finish. */
	poll_data &= BIT_7;
	for (cnt = 3000000; cnt; cnt--) {
		flash_data = qla2x00_read_flash_byte(ha, addr);
		if ((flash_data & BIT_7) == poll_data) {
			status = 0;
			break;
		}

		if (man_id != 0x40 && man_id != 0xda) {
			if ((flash_data & BIT_5) && cnt > 2)
				cnt = 2;
		}
		udelay(10);
		barrier();
2118
		cond_resched();
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
	}
	return status;
}

/**
 * qla2x00_program_flash_address() - Programs a flash address
 * @ha: HA context
 * @addr: Address in flash to program
 * @data: Data to be written in flash
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * Returns 0 on success, else non-zero.
 */
static int
2134 2135
qla2x00_program_flash_address(struct qla_hw_data *ha, uint32_t addr,
    uint8_t data, uint8_t man_id, uint8_t flash_id)
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
{
	/* Write Program Command Sequence. */
	if (IS_OEM_001(ha)) {
		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
		qla2x00_write_flash_byte(ha, 0x555, 0x55);
		qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
		qla2x00_write_flash_byte(ha, addr, data);
	} else {
		if (man_id == 0xda && flash_id == 0xc1) {
			qla2x00_write_flash_byte(ha, addr, data);
			if (addr & 0x7e)
				return 0;
		} else {
			qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
			qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
			qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
			qla2x00_write_flash_byte(ha, addr, data);
		}
	}

	udelay(150);

	/* Wait for write to complete. */
	return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
}

/**
 * qla2x00_erase_flash() - Erase the flash.
 * @ha: HA context
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * Returns 0 on success, else non-zero.
 */
static int
2171
qla2x00_erase_flash(struct qla_hw_data *ha, uint8_t man_id, uint8_t flash_id)
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
{
	/* Individual Sector Erase Command Sequence */
	if (IS_OEM_001(ha)) {
		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
		qla2x00_write_flash_byte(ha, 0x555, 0x55);
		qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
		qla2x00_write_flash_byte(ha, 0x555, 0x55);
		qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
	} else {
		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
		qla2x00_write_flash_byte(ha, 0x5555, 0x80);
		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
		qla2x00_write_flash_byte(ha, 0x5555, 0x10);
	}

	udelay(150);

	/* Wait for erase to complete. */
	return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
}

/**
 * qla2x00_erase_flash_sector() - Erase a flash sector.
 * @ha: HA context
 * @addr: Flash sector to erase
 * @sec_mask: Sector address mask
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * Returns 0 on success, else non-zero.
 */
static int
2207
qla2x00_erase_flash_sector(struct qla_hw_data *ha, uint32_t addr,
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
    uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
{
	/* Individual Sector Erase Command Sequence */
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	qla2x00_write_flash_byte(ha, 0x5555, 0x80);
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	if (man_id == 0x1f && flash_id == 0x13)
		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
	else
		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);

	udelay(150);

	/* Wait for erase to complete. */
	return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
}

/**
 * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
2229
 * @ha:
2230 2231 2232 2233
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 */
static void
2234
qla2x00_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
    uint8_t *flash_id)
{
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	qla2x00_write_flash_byte(ha, 0x5555, 0x90);
	*man_id = qla2x00_read_flash_byte(ha, 0x0000);
	*flash_id = qla2x00_read_flash_byte(ha, 0x0001);
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
}

2247
static void
2248 2249
qla2x00_read_flash_data(struct qla_hw_data *ha, uint8_t *tmp_buf,
	uint32_t saddr, uint32_t length)
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
{
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
	uint32_t midpoint, ilength;
	uint8_t data;

	midpoint = length / 2;

	WRT_REG_WORD(&reg->nvram, 0);
	RD_REG_WORD(&reg->nvram);
	for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
		if (ilength == midpoint) {
			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
			RD_REG_WORD(&reg->nvram);
		}
		data = qla2x00_read_flash_byte(ha, saddr);
		if (saddr % 100)
			udelay(10);
		*tmp_buf = data;
2268
		cond_resched();
2269 2270
	}
}
2271 2272

static inline void
2273
qla2x00_suspend_hba(struct scsi_qla_host *vha)
2274 2275 2276
{
	int cnt;
	unsigned long flags;
2277
	struct qla_hw_data *ha = vha->hw;
2278 2279 2280
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	/* Suspend HBA. */
2281
	scsi_block_requests(vha->host);
2282
	ha->isp_ops->disable_intrs(ha);
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);

	/* Pause RISC. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
	RD_REG_WORD(&reg->hccr);
	if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
		for (cnt = 0; cnt < 30000; cnt++) {
			if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
				break;
			udelay(100);
		}
	} else {
		udelay(10);
	}
	spin_unlock_irqrestore(&ha->hardware_lock, flags);
}

static inline void
2302
qla2x00_resume_hba(struct scsi_qla_host *vha)
2303
{
2304 2305
	struct qla_hw_data *ha = vha->hw;

2306 2307
	/* Resume HBA. */
	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2308 2309
	set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
	qla2xxx_wake_dpc(vha);
2310
	qla2x00_wait_for_chip_reset(vha);
2311
	scsi_unblock_requests(vha->host);
2312 2313 2314
}

uint8_t *
2315
qla2x00_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2316 2317 2318 2319
    uint32_t offset, uint32_t length)
{
	uint32_t addr, midpoint;
	uint8_t *data;
2320
	struct qla_hw_data *ha = vha->hw;
2321 2322 2323
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	/* Suspend HBA. */
2324
	qla2x00_suspend_hba(vha);
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342

	/* Go with read. */
	midpoint = ha->optrom_size / 2;

	qla2x00_flash_enable(ha);
	WRT_REG_WORD(&reg->nvram, 0);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	for (addr = offset, data = buf; addr < length; addr++, data++) {
		if (addr == midpoint) {
			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
			RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
		}

		*data = qla2x00_read_flash_byte(ha, addr);
	}
	qla2x00_flash_disable(ha);

	/* Resume HBA. */
2343
	qla2x00_resume_hba(vha);
2344 2345 2346 2347 2348

	return buf;
}

int
2349
qla2x00_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2350 2351 2352 2353 2354 2355 2356
    uint32_t offset, uint32_t length)
{

	int rval;
	uint8_t man_id, flash_id, sec_number, data;
	uint16_t wd;
	uint32_t addr, liter, sec_mask, rest_addr;
2357
	struct qla_hw_data *ha = vha->hw;
2358 2359 2360
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	/* Suspend HBA. */
2361
	qla2x00_suspend_hba(vha);
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391

	rval = QLA_SUCCESS;
	sec_number = 0;

	/* Reset ISP chip. */
	WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
	pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);

	/* Go with write. */
	qla2x00_flash_enable(ha);
	do {	/* Loop once to provide quick error exit */
		/* Structure of flash memory based on manufacturer */
		if (IS_OEM_001(ha)) {
			/* OEM variant with special flash part. */
			man_id = flash_id = 0;
			rest_addr = 0xffff;
			sec_mask   = 0x10000;
			goto update_flash;
		}
		qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
		switch (man_id) {
		case 0x20: /* ST flash. */
			if (flash_id == 0xd2 || flash_id == 0xe3) {
				/*
				 * ST m29w008at part - 64kb sector size with
				 * 32kb,8kb,8kb,16kb sectors at memory address
				 * 0xf0000.
				 */
				rest_addr = 0xffff;
				sec_mask = 0x10000;
2392
				break;
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
			}
			/*
			 * ST m29w010b part - 16kb sector size
			 * Default to 16kb sectors
			 */
			rest_addr = 0x3fff;
			sec_mask = 0x1c000;
			break;
		case 0x40: /* Mostel flash. */
			/* Mostel v29c51001 part - 512 byte sector size. */
			rest_addr = 0x1ff;
			sec_mask = 0x1fe00;
			break;
		case 0xbf: /* SST flash. */
			/* SST39sf10 part - 4kb sector size. */
			rest_addr = 0xfff;
			sec_mask = 0x1f000;
			break;
		case 0xda: /* Winbond flash. */
			/* Winbond W29EE011 part - 256 byte sector size. */
			rest_addr = 0x7f;
			sec_mask = 0x1ff80;
			break;
		case 0xc2: /* Macronix flash. */
			/* 64k sector size. */
			if (flash_id == 0x38 || flash_id == 0x4f) {
				rest_addr = 0xffff;
				sec_mask = 0x10000;
				break;
			}
			/* Fall through... */

		case 0x1f: /* Atmel flash. */
			/* 512k sector size. */
			if (flash_id == 0x13) {
				rest_addr = 0x7fffffff;
				sec_mask =   0x80000000;
				break;
			}
			/* Fall through... */

		case 0x01: /* AMD flash. */
			if (flash_id == 0x38 || flash_id == 0x40 ||
			    flash_id == 0x4f) {
				/* Am29LV081 part - 64kb sector size. */
				/* Am29LV002BT part - 64kb sector size. */
				rest_addr = 0xffff;
				sec_mask = 0x10000;
				break;
			} else if (flash_id == 0x3e) {
				/*
				 * Am29LV008b part - 64kb sector size with
				 * 32kb,8kb,8kb,16kb sector at memory address
				 * h0xf0000.
				 */
				rest_addr = 0xffff;
				sec_mask = 0x10000;
				break;
			} else if (flash_id == 0x20 || flash_id == 0x6e) {
				/*
				 * Am29LV010 part or AM29f010 - 16kb sector
				 * size.
				 */
				rest_addr = 0x3fff;
				sec_mask = 0x1c000;
				break;
			} else if (flash_id == 0x6d) {
				/* Am29LV001 part - 8kb sector size. */
				rest_addr = 0x1fff;
				sec_mask = 0x1e000;
				break;
			}
2465
			/* fall through */
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
		default:
			/* Default to 16 kb sector size. */
			rest_addr = 0x3fff;
			sec_mask = 0x1c000;
			break;
		}

update_flash:
		if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
			if (qla2x00_erase_flash(ha, man_id, flash_id)) {
				rval = QLA_FUNCTION_FAILED;
				break;
			}
		}

		for (addr = offset, liter = 0; liter < length; liter++,
		    addr++) {
			data = buf[liter];
			/* Are we at the beginning of a sector? */
			if ((addr & rest_addr) == 0) {
				if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
					if (addr >= 0x10000UL) {
						if (((addr >> 12) & 0xf0) &&
						    ((man_id == 0x01 &&
							flash_id == 0x3e) ||
						     (man_id == 0x20 &&
							 flash_id == 0xd2))) {
							sec_number++;
							if (sec_number == 1) {
								rest_addr =
								    0x7fff;
								sec_mask =
								    0x18000;
							} else if (
							    sec_number == 2 ||
							    sec_number == 3) {
								rest_addr =
								    0x1fff;
								sec_mask =
								    0x1e000;
							} else if (
							    sec_number == 4) {
								rest_addr =
								    0x3fff;
								sec_mask =
								    0x1c000;
							}
						}
					}
				} else if (addr == ha->optrom_size / 2) {
					WRT_REG_WORD(&reg->nvram, NVR_SELECT);
					RD_REG_WORD(&reg->nvram);
				}

				if (flash_id == 0xda && man_id == 0xc1) {
					qla2x00_write_flash_byte(ha, 0x5555,
					    0xaa);
					qla2x00_write_flash_byte(ha, 0x2aaa,
					    0x55);
					qla2x00_write_flash_byte(ha, 0x5555,
					    0xa0);
				} else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
					/* Then erase it */
					if (qla2x00_erase_flash_sector(ha,
					    addr, sec_mask, man_id,
					    flash_id)) {
						rval = QLA_FUNCTION_FAILED;
						break;
					}
					if (man_id == 0x01 && flash_id == 0x6d)
						sec_number++;
				}
			}

			if (man_id == 0x01 && flash_id == 0x6d) {
				if (sec_number == 1 &&
				    addr == (rest_addr - 1)) {
					rest_addr = 0x0fff;
					sec_mask   = 0x1f000;
				} else if (sec_number == 3 && (addr & 0x7ffe)) {
					rest_addr = 0x3fff;
					sec_mask   = 0x1c000;
				}
			}

			if (qla2x00_program_flash_address(ha, addr, data,
			    man_id, flash_id)) {
				rval = QLA_FUNCTION_FAILED;
				break;
			}
2556
			cond_resched();
2557 2558 2559 2560 2561
		}
	} while (0);
	qla2x00_flash_disable(ha);

	/* Resume HBA. */
2562
	qla2x00_resume_hba(vha);
2563 2564 2565 2566 2567

	return rval;
}

uint8_t *
2568
qla24xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2569 2570
    uint32_t offset, uint32_t length)
{
2571 2572
	struct qla_hw_data *ha = vha->hw;

2573
	/* Suspend HBA. */
2574
	scsi_block_requests(vha->host);
2575 2576 2577
	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);

	/* Go with read. */
2578
	qla24xx_read_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2);
2579 2580 2581

	/* Resume HBA. */
	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2582
	scsi_unblock_requests(vha->host);
2583 2584 2585 2586 2587

	return buf;
}

int
2588
qla24xx_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2589 2590 2591
    uint32_t offset, uint32_t length)
{
	int rval;
2592
	struct qla_hw_data *ha = vha->hw;
2593 2594

	/* Suspend HBA. */
2595
	scsi_block_requests(vha->host);
2596 2597 2598
	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);

	/* Go with write. */
2599
	rval = qla24xx_write_flash_data(vha, (uint32_t *)buf, offset >> 2,
2600 2601 2602
	    length >> 2);

	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2603
	scsi_unblock_requests(vha->host);
2604 2605 2606

	return rval;
}
2607

2608
uint8_t *
2609
qla25xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2610 2611 2612 2613 2614 2615 2616
    uint32_t offset, uint32_t length)
{
	int rval;
	dma_addr_t optrom_dma;
	void *optrom;
	uint8_t *pbuf;
	uint32_t faddr, left, burst;
2617
	struct qla_hw_data *ha = vha->hw;
2618

2619 2620
	if (IS_QLA25XX(ha) || IS_QLA81XX(ha) || IS_QLA83XX(ha) ||
	    IS_QLA27XX(ha))
2621
		goto try_fast;
2622
	if (offset & 0xfff)
2623 2624 2625 2626
		goto slow_read;
	if (length < OPTROM_BURST_SIZE)
		goto slow_read;

2627
try_fast:
2628 2629 2630
	optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
	    &optrom_dma, GFP_KERNEL);
	if (!optrom) {
2631 2632 2633
		ql_log(ql_log_warn, vha, 0x00cc,
		    "Unable to allocate memory for optrom burst read (%x KB).\n",
		    OPTROM_BURST_SIZE / 1024);
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
		goto slow_read;
	}

	pbuf = buf;
	faddr = offset >> 2;
	left = length >> 2;
	burst = OPTROM_BURST_DWORDS;
	while (left != 0) {
		if (burst > left)
			burst = left;

2645
		rval = qla2x00_dump_ram(vha, optrom_dma,
2646
		    flash_data_addr(ha, faddr), burst);
2647
		if (rval) {
2648 2649 2650
			ql_log(ql_log_warn, vha, 0x00f5,
			    "Unable to burst-read optrom segment (%x/%x/%llx).\n",
			    rval, flash_data_addr(ha, faddr),
A
Andrew Morton 已提交
2651
			    (unsigned long long)optrom_dma);
2652
			ql_log(ql_log_warn, vha, 0x00f6,
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
			    "Reverting to slow-read.\n");

			dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
			    optrom, optrom_dma);
			goto slow_read;
		}

		memcpy(pbuf, optrom, burst * 4);

		left -= burst;
		faddr += burst;
		pbuf += burst * 4;
	}

	dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
	    optrom_dma);

	return buf;

slow_read:
2673
    return qla24xx_read_optrom_data(vha, buf, offset, length);
2674 2675
}

2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
/**
 * qla2x00_get_fcode_version() - Determine an FCODE image's version.
 * @ha: HA context
 * @pcids: Pointer to the FCODE PCI data structure
 *
 * The process of retrieving the FCODE version information is at best
 * described as interesting.
 *
 * Within the first 100h bytes of the image an ASCII string is present
 * which contains several pieces of information including the FCODE
 * version.  Unfortunately it seems the only reliable way to retrieve
 * the version is by scanning for another sentinel within the string,
 * the FCODE build date:
 *
 *	... 2.00.02 10/17/02 ...
 *
 * Returns QLA_SUCCESS on successful retrieval of version.
 */
static void
2695
qla2x00_get_fcode_version(struct qla_hw_data *ha, uint32_t pcids)
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
{
	int ret = QLA_FUNCTION_FAILED;
	uint32_t istart, iend, iter, vend;
	uint8_t do_next, rbyte, *vbyte;

	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));

	/* Skip the PCI data structure. */
	istart = pcids +
	    ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
		qla2x00_read_flash_byte(ha, pcids + 0x0A));
	iend = istart + 0x100;
	do {
		/* Scan for the sentinel date string...eeewww. */
		do_next = 0;
		iter = istart;
		while ((iter < iend) && !do_next) {
			iter++;
			if (qla2x00_read_flash_byte(ha, iter) == '/') {
				if (qla2x00_read_flash_byte(ha, iter + 2) ==
				    '/')
					do_next++;
				else if (qla2x00_read_flash_byte(ha,
				    iter + 3) == '/')
					do_next++;
			}
		}
		if (!do_next)
			break;

		/* Backtrack to previous ' ' (space). */
		do_next = 0;
		while ((iter > istart) && !do_next) {
			iter--;
			if (qla2x00_read_flash_byte(ha, iter) == ' ')
				do_next++;
		}
		if (!do_next)
			break;

		/*
		 * Mark end of version tag, and find previous ' ' (space) or
		 * string length (recent FCODE images -- major hack ahead!!!).
		 */
		vend = iter - 1;
		do_next = 0;
		while ((iter > istart) && !do_next) {
			iter--;
			rbyte = qla2x00_read_flash_byte(ha, iter);
			if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
				do_next++;
		}
		if (!do_next)
			break;

		/* Mark beginning of version tag, and copy data. */
		iter++;
		if ((vend - iter) &&
		    ((vend - iter) < sizeof(ha->fcode_revision))) {
			vbyte = ha->fcode_revision;
			while (iter <= vend) {
				*vbyte++ = qla2x00_read_flash_byte(ha, iter);
				iter++;
			}
			ret = QLA_SUCCESS;
		}
	} while (0);

	if (ret != QLA_SUCCESS)
		memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
}

int
2769
qla2x00_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2770 2771 2772 2773 2774 2775
{
	int ret = QLA_SUCCESS;
	uint8_t code_type, last_image;
	uint32_t pcihdr, pcids;
	uint8_t *dbyte;
	uint16_t *dcode;
2776
	struct qla_hw_data *ha = vha->hw;
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795

	if (!ha->pio_address || !mbuf)
		return QLA_FUNCTION_FAILED;

	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));

	qla2x00_flash_enable(ha);

	/* Begin with first PCI expansion ROM header. */
	pcihdr = 0;
	last_image = 1;
	do {
		/* Verify PCI expansion ROM header. */
		if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
		    qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
			/* No signature */
2796 2797
			ql_log(ql_log_fatal, vha, 0x0050,
			    "No matching ROM signature.\n");
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Locate PCI data structure. */
		pcids = pcihdr +
		    ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
			qla2x00_read_flash_byte(ha, pcihdr + 0x18));

		/* Validate signature of PCI data structure. */
		if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
		    qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
		    qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
		    qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
			/* Incorrect header. */
2813 2814
			ql_log(ql_log_fatal, vha, 0x0051,
			    "PCI data struct not found pcir_adr=%x.\n", pcids);
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Read version */
		code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
		switch (code_type) {
		case ROM_CODE_TYPE_BIOS:
			/* Intel x86, PC-AT compatible. */
			ha->bios_revision[0] =
			    qla2x00_read_flash_byte(ha, pcids + 0x12);
			ha->bios_revision[1] =
			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2828 2829 2830
			ql_dbg(ql_dbg_init, vha, 0x0052,
			    "Read BIOS %d.%d.\n",
			    ha->bios_revision[1], ha->bios_revision[0]);
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
			break;
		case ROM_CODE_TYPE_FCODE:
			/* Open Firmware standard for PCI (FCode). */
			/* Eeeewww... */
			qla2x00_get_fcode_version(ha, pcids);
			break;
		case ROM_CODE_TYPE_EFI:
			/* Extensible Firmware Interface (EFI). */
			ha->efi_revision[0] =
			    qla2x00_read_flash_byte(ha, pcids + 0x12);
			ha->efi_revision[1] =
			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2843 2844 2845
			ql_dbg(ql_dbg_init, vha, 0x0053,
			    "Read EFI %d.%d.\n",
			    ha->efi_revision[1], ha->efi_revision[0]);
2846 2847
			break;
		default:
2848 2849 2850
			ql_log(ql_log_warn, vha, 0x0054,
			    "Unrecognized code type %x at pcids %x.\n",
			    code_type, pcids);
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
			break;
		}

		last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;

		/* Locate next PCI expansion ROM. */
		pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
		    qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
	} while (!last_image);

	if (IS_QLA2322(ha)) {
		/* Read firmware image information. */
		memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
		dbyte = mbuf;
		memset(dbyte, 0, 8);
		dcode = (uint16_t *)dbyte;

2868
		qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10,
2869
		    8);
2870 2871 2872 2873 2874
		ql_dbg(ql_dbg_init + ql_dbg_buffer, vha, 0x010a,
		    "Dumping fw "
		    "ver from flash:.\n");
		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x010b,
		    (uint8_t *)dbyte, 8);
2875 2876 2877 2878 2879

		if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
		    dcode[2] == 0xffff && dcode[3] == 0xffff) ||
		    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
		    dcode[3] == 0)) {
2880 2881 2882
			ql_log(ql_log_warn, vha, 0x0057,
			    "Unrecognized fw revision at %x.\n",
			    ha->flt_region_fw * 4);
2883 2884 2885 2886 2887
		} else {
			/* values are in big endian */
			ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
			ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
			ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
2888 2889 2890 2891
			ql_dbg(ql_dbg_init, vha, 0x0058,
			    "FW Version: "
			    "%d.%d.%d.\n", ha->fw_revision[0],
			    ha->fw_revision[1], ha->fw_revision[2]);
2892 2893 2894 2895 2896 2897 2898 2899
		}
	}

	qla2x00_flash_disable(ha);

	return ret;
}

2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
int
qla82xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
{
	int ret = QLA_SUCCESS;
	uint32_t pcihdr, pcids;
	uint32_t *dcode;
	uint8_t *bcode;
	uint8_t code_type, last_image;
	struct qla_hw_data *ha = vha->hw;

	if (!mbuf)
		return QLA_FUNCTION_FAILED;

	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));

	dcode = mbuf;

	/* Begin with first PCI expansion ROM header. */
	pcihdr = ha->flt_region_boot << 2;
	last_image = 1;
	do {
		/* Verify PCI expansion ROM header. */
		ha->isp_ops->read_optrom(vha, (uint8_t *)dcode, pcihdr,
		    0x20 * 4);
		bcode = mbuf + (pcihdr % 4);
		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
			/* No signature */
			ql_log(ql_log_fatal, vha, 0x0154,
			    "No matching ROM signature.\n");
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Locate PCI data structure. */
		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);

		ha->isp_ops->read_optrom(vha, (uint8_t *)dcode, pcids,
		    0x20 * 4);
		bcode = mbuf + (pcihdr % 4);

		/* Validate signature of PCI data structure. */
		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
		    bcode[0x2] != 'I' || bcode[0x3] != 'R') {
			/* Incorrect header. */
			ql_log(ql_log_fatal, vha, 0x0155,
			    "PCI data struct not found pcir_adr=%x.\n", pcids);
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Read version */
		code_type = bcode[0x14];
		switch (code_type) {
		case ROM_CODE_TYPE_BIOS:
			/* Intel x86, PC-AT compatible. */
			ha->bios_revision[0] = bcode[0x12];
			ha->bios_revision[1] = bcode[0x13];
			ql_dbg(ql_dbg_init, vha, 0x0156,
			    "Read BIOS %d.%d.\n",
			    ha->bios_revision[1], ha->bios_revision[0]);
			break;
		case ROM_CODE_TYPE_FCODE:
			/* Open Firmware standard for PCI (FCode). */
			ha->fcode_revision[0] = bcode[0x12];
			ha->fcode_revision[1] = bcode[0x13];
			ql_dbg(ql_dbg_init, vha, 0x0157,
			    "Read FCODE %d.%d.\n",
			    ha->fcode_revision[1], ha->fcode_revision[0]);
			break;
		case ROM_CODE_TYPE_EFI:
			/* Extensible Firmware Interface (EFI). */
			ha->efi_revision[0] = bcode[0x12];
			ha->efi_revision[1] = bcode[0x13];
			ql_dbg(ql_dbg_init, vha, 0x0158,
			    "Read EFI %d.%d.\n",
			    ha->efi_revision[1], ha->efi_revision[0]);
			break;
		default:
			ql_log(ql_log_warn, vha, 0x0159,
			    "Unrecognized code type %x at pcids %x.\n",
			    code_type, pcids);
			break;
		}

		last_image = bcode[0x15] & BIT_7;

		/* Locate next PCI expansion ROM. */
		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
	} while (!last_image);

	/* Read firmware image information. */
	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
	dcode = mbuf;
	ha->isp_ops->read_optrom(vha, (uint8_t *)dcode, ha->flt_region_fw << 2,
	    0x20);
	bcode = mbuf + (pcihdr % 4);

	/* Validate signature of PCI data structure. */
	if (bcode[0x0] == 0x3 && bcode[0x1] == 0x0 &&
	    bcode[0x2] == 0x40 && bcode[0x3] == 0x40) {
		ha->fw_revision[0] = bcode[0x4];
		ha->fw_revision[1] = bcode[0x5];
		ha->fw_revision[2] = bcode[0x6];
3006
		ql_dbg(ql_dbg_init, vha, 0x0153,
3007 3008 3009 3010 3011 3012 3013 3014
		    "Firmware revision %d.%d.%d\n",
		    ha->fw_revision[0], ha->fw_revision[1],
		    ha->fw_revision[2]);
	}

	return ret;
}

3015
int
3016
qla24xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
3017 3018 3019 3020 3021 3022 3023
{
	int ret = QLA_SUCCESS;
	uint32_t pcihdr, pcids;
	uint32_t *dcode;
	uint8_t *bcode;
	uint8_t code_type, last_image;
	int i;
3024
	struct qla_hw_data *ha = vha->hw;
3025 3026 3027
	uint32_t faddr = 0;

	pcihdr = pcids = 0;
3028

3029
	if (IS_P3P_TYPE(ha))
3030 3031
		return ret;

3032 3033 3034 3035 3036 3037 3038 3039 3040
	if (!mbuf)
		return QLA_FUNCTION_FAILED;

	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));

	dcode = mbuf;
3041
	pcihdr = ha->flt_region_boot << 2;
3042 3043 3044 3045
	if (IS_QLA27XX(ha) &&
	    qla27xx_find_valid_image(vha) == QLA27XX_SECONDARY_IMAGE)
		pcihdr = ha->flt_region_boot_sec << 2;

3046 3047 3048
	last_image = 1;
	do {
		/* Verify PCI expansion ROM header. */
3049
		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
3050 3051 3052
		bcode = mbuf + (pcihdr % 4);
		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
			/* No signature */
3053 3054
			ql_log(ql_log_fatal, vha, 0x0059,
			    "No matching ROM signature.\n");
3055 3056 3057 3058 3059 3060 3061
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Locate PCI data structure. */
		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);

3062
		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
3063 3064 3065 3066 3067 3068
		bcode = mbuf + (pcihdr % 4);

		/* Validate signature of PCI data structure. */
		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
		    bcode[0x2] != 'I' || bcode[0x3] != 'R') {
			/* Incorrect header. */
3069 3070
			ql_log(ql_log_fatal, vha, 0x005a,
			    "PCI data struct not found pcir_adr=%x.\n", pcids);
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Read version */
		code_type = bcode[0x14];
		switch (code_type) {
		case ROM_CODE_TYPE_BIOS:
			/* Intel x86, PC-AT compatible. */
			ha->bios_revision[0] = bcode[0x12];
			ha->bios_revision[1] = bcode[0x13];
3082 3083 3084
			ql_dbg(ql_dbg_init, vha, 0x005b,
			    "Read BIOS %d.%d.\n",
			    ha->bios_revision[1], ha->bios_revision[0]);
3085 3086 3087 3088 3089
			break;
		case ROM_CODE_TYPE_FCODE:
			/* Open Firmware standard for PCI (FCode). */
			ha->fcode_revision[0] = bcode[0x12];
			ha->fcode_revision[1] = bcode[0x13];
3090 3091 3092
			ql_dbg(ql_dbg_init, vha, 0x005c,
			    "Read FCODE %d.%d.\n",
			    ha->fcode_revision[1], ha->fcode_revision[0]);
3093 3094 3095 3096 3097
			break;
		case ROM_CODE_TYPE_EFI:
			/* Extensible Firmware Interface (EFI). */
			ha->efi_revision[0] = bcode[0x12];
			ha->efi_revision[1] = bcode[0x13];
3098 3099 3100
			ql_dbg(ql_dbg_init, vha, 0x005d,
			    "Read EFI %d.%d.\n",
			    ha->efi_revision[1], ha->efi_revision[0]);
3101 3102
			break;
		default:
3103 3104 3105
			ql_log(ql_log_warn, vha, 0x005e,
			    "Unrecognized code type %x at pcids %x.\n",
			    code_type, pcids);
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
			break;
		}

		last_image = bcode[0x15] & BIT_7;

		/* Locate next PCI expansion ROM. */
		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
	} while (!last_image);

	/* Read firmware image information. */
	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
	dcode = mbuf;
3118 3119 3120 3121
	faddr = ha->flt_region_fw;
	if (IS_QLA27XX(ha) &&
	    qla27xx_find_valid_image(vha) == QLA27XX_SECONDARY_IMAGE)
		faddr = ha->flt_region_fw_sec;
3122

3123
	qla24xx_read_flash_data(vha, dcode, faddr + 4, 4);
3124 3125 3126 3127 3128 3129 3130
	for (i = 0; i < 4; i++)
		dcode[i] = be32_to_cpu(dcode[i]);

	if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
	    dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
	    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
	    dcode[3] == 0)) {
3131 3132 3133
		ql_log(ql_log_warn, vha, 0x005f,
		    "Unrecognized fw revision at %x.\n",
		    ha->flt_region_fw * 4);
3134 3135 3136 3137 3138
	} else {
		ha->fw_revision[0] = dcode[0];
		ha->fw_revision[1] = dcode[1];
		ha->fw_revision[2] = dcode[2];
		ha->fw_revision[3] = dcode[3];
3139
		ql_dbg(ql_dbg_init, vha, 0x0060,
3140
		    "Firmware revision %d.%d.%d (%x).\n",
3141 3142
		    ha->fw_revision[0], ha->fw_revision[1],
		    ha->fw_revision[2], ha->fw_revision[3]);
3143 3144
	}

3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
	/* Check for golden firmware and get version if available */
	if (!IS_QLA81XX(ha)) {
		/* Golden firmware is not present in non 81XX adapters */
		return ret;
	}

	memset(ha->gold_fw_version, 0, sizeof(ha->gold_fw_version));
	dcode = mbuf;
	ha->isp_ops->read_optrom(vha, (uint8_t *)dcode,
	    ha->flt_region_gold_fw << 2, 32);

	if (dcode[4] == 0xFFFFFFFF && dcode[5] == 0xFFFFFFFF &&
	    dcode[6] == 0xFFFFFFFF && dcode[7] == 0xFFFFFFFF) {
3158 3159 3160
		ql_log(ql_log_warn, vha, 0x0056,
		    "Unrecognized golden fw at 0x%x.\n",
		    ha->flt_region_gold_fw * 4);
3161 3162 3163 3164 3165 3166
		return ret;
	}

	for (i = 4; i < 8; i++)
		ha->gold_fw_version[i-4] = be32_to_cpu(dcode[i]);

3167 3168
	return ret;
}
3169

3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
static int
qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end)
{
	if (pos >= end || *pos != 0x82)
		return 0;

	pos += 3 + pos[1];
	if (pos >= end || *pos != 0x90)
		return 0;

	pos += 3 + pos[1];
	if (pos >= end || *pos != 0x78)
		return 0;

	return 1;
}

int
3188
qla2xxx_get_vpd_field(scsi_qla_host_t *vha, char *key, char *str, size_t size)
3189
{
3190
	struct qla_hw_data *ha = vha->hw;
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
	uint8_t *pos = ha->vpd;
	uint8_t *end = pos + ha->vpd_size;
	int len = 0;

	if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end))
		return 0;

	while (pos < end && *pos != 0x78) {
		len = (*pos == 0x82) ? pos[1] : pos[2];

		if (!strncmp(pos, key, strlen(key)))
			break;

		if (*pos != 0x90 && *pos != 0x91)
			pos += len;

		pos += 3;
	}

	if (pos < end - len && *pos != 0x78)
3211
		return scnprintf(str, size, "%.*s", len, pos + 3);
3212 3213 3214

	return 0;
}
S
Sarang Radke 已提交
3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225

int
qla24xx_read_fcp_prio_cfg(scsi_qla_host_t *vha)
{
	int len, max_len;
	uint32_t fcp_prio_addr;
	struct qla_hw_data *ha = vha->hw;

	if (!ha->fcp_prio_cfg) {
		ha->fcp_prio_cfg = vmalloc(FCP_PRIO_CFG_SIZE);
		if (!ha->fcp_prio_cfg) {
3226
			ql_log(ql_log_warn, vha, 0x00d5,
M
Masanari Iida 已提交
3227
			    "Unable to allocate memory for fcp priority data (%x).\n",
3228
			    FCP_PRIO_CFG_SIZE);
S
Sarang Radke 已提交
3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
			return QLA_FUNCTION_FAILED;
		}
	}
	memset(ha->fcp_prio_cfg, 0, FCP_PRIO_CFG_SIZE);

	fcp_prio_addr = ha->flt_region_fcp_prio;

	/* first read the fcp priority data header from flash */
	ha->isp_ops->read_optrom(vha, (uint8_t *)ha->fcp_prio_cfg,
			fcp_prio_addr << 2, FCP_PRIO_CFG_HDR_SIZE);

3240
	if (!qla24xx_fcp_prio_cfg_valid(vha, ha->fcp_prio_cfg, 0))
S
Sarang Radke 已提交
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
		goto fail;

	/* read remaining FCP CMD config data from flash */
	fcp_prio_addr += (FCP_PRIO_CFG_HDR_SIZE >> 2);
	len = ha->fcp_prio_cfg->num_entries * FCP_PRIO_CFG_ENTRY_SIZE;
	max_len = FCP_PRIO_CFG_SIZE - FCP_PRIO_CFG_HDR_SIZE;

	ha->isp_ops->read_optrom(vha, (uint8_t *)&ha->fcp_prio_cfg->entry[0],
			fcp_prio_addr << 2, (len < max_len ? len : max_len));

	/* revalidate the entire FCP priority config data, including entries */
3252
	if (!qla24xx_fcp_prio_cfg_valid(vha, ha->fcp_prio_cfg, 1))
S
Sarang Radke 已提交
3253 3254 3255 3256 3257 3258 3259 3260 3261
		goto fail;

	ha->flags.fcp_prio_enabled = 1;
	return QLA_SUCCESS;
fail:
	vfree(ha->fcp_prio_cfg);
	ha->fcp_prio_cfg = NULL;
	return QLA_FUNCTION_FAILED;
}