qla_sup.c 73.6 KB
Newer Older
A
Andrew Vasquez 已提交
1 2
/*
 * QLogic Fibre Channel HBA Driver
3
 * Copyright (c)  2003-2008 QLogic Corporation
L
Linus Torvalds 已提交
4
 *
A
Andrew Vasquez 已提交
5 6
 * See LICENSE.qla2xxx for copyright and licensing details.
 */
L
Linus Torvalds 已提交
7 8 9
#include "qla_def.h"

#include <linux/delay.h>
10
#include <linux/slab.h>
11
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
12 13 14 15 16 17 18
#include <asm/uaccess.h>

/*
 * NVRAM support routines
 */

/**
A
Andrew Vasquez 已提交
19
 * qla2x00_lock_nvram_access() -
L
Linus Torvalds 已提交
20 21
 * @ha: HA context
 */
A
Adrian Bunk 已提交
22
static void
23
qla2x00_lock_nvram_access(struct qla_hw_data *ha)
L
Linus Torvalds 已提交
24 25
{
	uint16_t data;
26
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
		data = RD_REG_WORD(&reg->nvram);
		while (data & NVR_BUSY) {
			udelay(100);
			data = RD_REG_WORD(&reg->nvram);
		}

		/* Lock resource */
		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
		udelay(5);
		data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
		while ((data & BIT_0) == 0) {
			/* Lock failed */
			udelay(100);
			WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
			RD_REG_WORD(&reg->u.isp2300.host_semaphore);
			udelay(5);
			data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
		}
	}
}

/**
A
Andrew Vasquez 已提交
52
 * qla2x00_unlock_nvram_access() -
L
Linus Torvalds 已提交
53 54
 * @ha: HA context
 */
A
Adrian Bunk 已提交
55
static void
56
qla2x00_unlock_nvram_access(struct qla_hw_data *ha)
L
Linus Torvalds 已提交
57
{
58
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
L
Linus Torvalds 已提交
59 60 61 62 63 64 65

	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
	}
}

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
/**
 * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
 * @ha: HA context
 * @data: Serial interface selector
 */
static void
qla2x00_nv_write(struct qla_hw_data *ha, uint16_t data)
{
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_CLOCK |
	    NVR_WRT_ENABLE);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
}

/**
 * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
 *	NVRAM.
 * @ha: HA context
 * @nv_cmd: NVRAM command
 *
 * Bit definitions for NVRAM command:
 *
 *	Bit 26     = start bit
 *	Bit 25, 24 = opcode
 *	Bit 23-16  = address
 *	Bit 15-0   = write data
 *
 * Returns the word read from nvram @addr.
 */
static uint16_t
qla2x00_nvram_request(struct qla_hw_data *ha, uint32_t nv_cmd)
{
	uint8_t		cnt;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
	uint16_t	data = 0;
	uint16_t	reg_data;

	/* Send command to NVRAM. */
	nv_cmd <<= 5;
	for (cnt = 0; cnt < 11; cnt++) {
		if (nv_cmd & BIT_31)
			qla2x00_nv_write(ha, NVR_DATA_OUT);
		else
			qla2x00_nv_write(ha, 0);
		nv_cmd <<= 1;
	}

	/* Read data from NVRAM. */
	for (cnt = 0; cnt < 16; cnt++) {
		WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
		NVRAM_DELAY();
		data <<= 1;
		reg_data = RD_REG_WORD(&reg->nvram);
		if (reg_data & NVR_DATA_IN)
			data |= BIT_0;
		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
		NVRAM_DELAY();
	}

	/* Deselect chip. */
	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();

	return data;
}


L
Linus Torvalds 已提交
144 145 146 147 148 149 150 151
/**
 * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
 *	request routine to get the word from NVRAM.
 * @ha: HA context
 * @addr: Address in NVRAM to read
 *
 * Returns the word read from nvram @addr.
 */
A
Adrian Bunk 已提交
152
static uint16_t
153
qla2x00_get_nvram_word(struct qla_hw_data *ha, uint32_t addr)
L
Linus Torvalds 已提交
154 155 156 157 158 159 160 161 162 163 164
{
	uint16_t	data;
	uint32_t	nv_cmd;

	nv_cmd = addr << 16;
	nv_cmd |= NV_READ_OP;
	data = qla2x00_nvram_request(ha, nv_cmd);

	return (data);
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178
/**
 * qla2x00_nv_deselect() - Deselect NVRAM operations.
 * @ha: HA context
 */
static void
qla2x00_nv_deselect(struct qla_hw_data *ha)
{
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
}

L
Linus Torvalds 已提交
179 180 181 182 183 184
/**
 * qla2x00_write_nvram_word() - Write NVRAM data.
 * @ha: HA context
 * @addr: Address in NVRAM to write
 * @data: word to program
 */
A
Adrian Bunk 已提交
185
static void
186
qla2x00_write_nvram_word(struct qla_hw_data *ha, uint32_t addr, uint16_t data)
L
Linus Torvalds 已提交
187 188 189
{
	int count;
	uint16_t word;
190
	uint32_t nv_cmd, wait_cnt;
191
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
L
Linus Torvalds 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

	qla2x00_nv_write(ha, NVR_DATA_OUT);
	qla2x00_nv_write(ha, 0);
	qla2x00_nv_write(ha, 0);

	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT);

	qla2x00_nv_deselect(ha);

	/* Write data */
	nv_cmd = (addr << 16) | NV_WRITE_OP;
	nv_cmd |= data;
	nv_cmd <<= 5;
	for (count = 0; count < 27; count++) {
		if (nv_cmd & BIT_31)
			qla2x00_nv_write(ha, NVR_DATA_OUT);
		else
			qla2x00_nv_write(ha, 0);

		nv_cmd <<= 1;
	}

	qla2x00_nv_deselect(ha);

	/* Wait for NVRAM to become ready */
	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
219
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
220
	wait_cnt = NVR_WAIT_CNT;
L
Linus Torvalds 已提交
221
	do {
222
		if (!--wait_cnt) {
223 224
			DEBUG9_10(qla_printk(KERN_WARNING, ha,
			    "NVRAM didn't go ready...\n"));
225 226
			break;
		}
L
Linus Torvalds 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240
		NVRAM_DELAY();
		word = RD_REG_WORD(&reg->nvram);
	} while ((word & NVR_DATA_IN) == 0);

	qla2x00_nv_deselect(ha);

	/* Disable writes */
	qla2x00_nv_write(ha, NVR_DATA_OUT);
	for (count = 0; count < 10; count++)
		qla2x00_nv_write(ha, 0);

	qla2x00_nv_deselect(ha);
}

241
static int
242 243
qla2x00_write_nvram_word_tmo(struct qla_hw_data *ha, uint32_t addr,
	uint16_t data, uint32_t tmo)
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
{
	int ret, count;
	uint16_t word;
	uint32_t nv_cmd;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	ret = QLA_SUCCESS;

	qla2x00_nv_write(ha, NVR_DATA_OUT);
	qla2x00_nv_write(ha, 0);
	qla2x00_nv_write(ha, 0);

	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT);

	qla2x00_nv_deselect(ha);

	/* Write data */
	nv_cmd = (addr << 16) | NV_WRITE_OP;
	nv_cmd |= data;
	nv_cmd <<= 5;
	for (count = 0; count < 27; count++) {
		if (nv_cmd & BIT_31)
			qla2x00_nv_write(ha, NVR_DATA_OUT);
		else
			qla2x00_nv_write(ha, 0);

		nv_cmd <<= 1;
	}

	qla2x00_nv_deselect(ha);

	/* Wait for NVRAM to become ready */
	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
278
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
	do {
		NVRAM_DELAY();
		word = RD_REG_WORD(&reg->nvram);
		if (!--tmo) {
			ret = QLA_FUNCTION_FAILED;
			break;
		}
	} while ((word & NVR_DATA_IN) == 0);

	qla2x00_nv_deselect(ha);

	/* Disable writes */
	qla2x00_nv_write(ha, NVR_DATA_OUT);
	for (count = 0; count < 10; count++)
		qla2x00_nv_write(ha, 0);

	qla2x00_nv_deselect(ha);

	return ret;
}

/**
 * qla2x00_clear_nvram_protection() -
 * @ha: HA context
 */
static int
305
qla2x00_clear_nvram_protection(struct qla_hw_data *ha)
306 307 308
{
	int ret, stat;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
309
	uint32_t word, wait_cnt;
310 311 312 313
	uint16_t wprot, wprot_old;

	/* Clear NVRAM write protection. */
	ret = QLA_FUNCTION_FAILED;
314 315 316

	wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
	stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
317
	    __constant_cpu_to_le16(0x1234), 100000);
318 319
	wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
	if (stat != QLA_SUCCESS || wprot != 0x1234) {
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
		/* Write enable. */
		qla2x00_nv_write(ha, NVR_DATA_OUT);
		qla2x00_nv_write(ha, 0);
		qla2x00_nv_write(ha, 0);
		for (word = 0; word < 8; word++)
			qla2x00_nv_write(ha, NVR_DATA_OUT);

		qla2x00_nv_deselect(ha);

		/* Enable protection register. */
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		qla2x00_nv_write(ha, NVR_PR_ENABLE);
		qla2x00_nv_write(ha, NVR_PR_ENABLE);
		for (word = 0; word < 8; word++)
			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);

		qla2x00_nv_deselect(ha);

		/* Clear protection register (ffff is cleared). */
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		for (word = 0; word < 8; word++)
			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);

		qla2x00_nv_deselect(ha);

		/* Wait for NVRAM to become ready. */
		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
349
		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
350
		wait_cnt = NVR_WAIT_CNT;
351
		do {
352
			if (!--wait_cnt) {
353
				DEBUG9_10(qla_printk(KERN_WARNING, ha,
354
				    "NVRAM didn't go ready...\n"));
355 356
				break;
			}
357 358 359 360
			NVRAM_DELAY();
			word = RD_REG_WORD(&reg->nvram);
		} while ((word & NVR_DATA_IN) == 0);

361 362
		if (wait_cnt)
			ret = QLA_SUCCESS;
363
	} else
364
		qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
365 366 367 368 369

	return ret;
}

static void
370
qla2x00_set_nvram_protection(struct qla_hw_data *ha, int stat)
371 372
{
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
373
	uint32_t word, wait_cnt;
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407

	if (stat != QLA_SUCCESS)
		return;

	/* Set NVRAM write protection. */
	/* Write enable. */
	qla2x00_nv_write(ha, NVR_DATA_OUT);
	qla2x00_nv_write(ha, 0);
	qla2x00_nv_write(ha, 0);
	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT);

	qla2x00_nv_deselect(ha);

	/* Enable protection register. */
	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
	qla2x00_nv_write(ha, NVR_PR_ENABLE);
	qla2x00_nv_write(ha, NVR_PR_ENABLE);
	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);

	qla2x00_nv_deselect(ha);

	/* Enable protection register. */
	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
	qla2x00_nv_write(ha, NVR_PR_ENABLE);
	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_PR_ENABLE);

	qla2x00_nv_deselect(ha);

	/* Wait for NVRAM to become ready. */
	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
408
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
409
	wait_cnt = NVR_WAIT_CNT;
410
	do {
411
		if (!--wait_cnt) {
412 413
			DEBUG9_10(qla_printk(KERN_WARNING, ha,
			    "NVRAM didn't go ready...\n"));
414 415
			break;
		}
416 417 418 419 420 421 422 423 424 425 426
		NVRAM_DELAY();
		word = RD_REG_WORD(&reg->nvram);
	} while ((word & NVR_DATA_IN) == 0);
}


/*****************************************************************************/
/* Flash Manipulation Routines                                               */
/*****************************************************************************/

static inline uint32_t
427
flash_conf_addr(struct qla_hw_data *ha, uint32_t faddr)
428
{
429
	return ha->flash_conf_off | faddr;
430 431 432
}

static inline uint32_t
433
flash_data_addr(struct qla_hw_data *ha, uint32_t faddr)
434
{
435
	return ha->flash_data_off | faddr;
436 437 438
}

static inline uint32_t
439
nvram_conf_addr(struct qla_hw_data *ha, uint32_t naddr)
440
{
441
	return ha->nvram_conf_off | naddr;
442 443 444
}

static inline uint32_t
445
nvram_data_addr(struct qla_hw_data *ha, uint32_t naddr)
446
{
447
	return ha->nvram_data_off | naddr;
448 449
}

450
static uint32_t
451
qla24xx_read_flash_dword(struct qla_hw_data *ha, uint32_t addr)
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
{
	int rval;
	uint32_t cnt, data;
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
	/* Wait for READ cycle to complete. */
	rval = QLA_SUCCESS;
	for (cnt = 3000;
	    (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
	    rval == QLA_SUCCESS; cnt--) {
		if (cnt)
			udelay(10);
		else
			rval = QLA_FUNCTION_TIMEOUT;
467
		cond_resched();
468 469 470 471 472 473 474 475 476 477 478
	}

	/* TODO: What happens if we time out? */
	data = 0xDEADDEAD;
	if (rval == QLA_SUCCESS)
		data = RD_REG_DWORD(&reg->flash_data);

	return data;
}

uint32_t *
479
qla24xx_read_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
480 481 482
    uint32_t dwords)
{
	uint32_t i;
483 484
	struct qla_hw_data *ha = vha->hw;

485 486
	/* Dword reads to flash. */
	for (i = 0; i < dwords; i++, faddr++)
487 488
		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
		    flash_data_addr(ha, faddr)));
489 490 491 492

	return dwptr;
}

493
static int
494
qla24xx_write_flash_dword(struct qla_hw_data *ha, uint32_t addr, uint32_t data)
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
{
	int rval;
	uint32_t cnt;
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	WRT_REG_DWORD(&reg->flash_data, data);
	RD_REG_DWORD(&reg->flash_data);		/* PCI Posting. */
	WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
	/* Wait for Write cycle to complete. */
	rval = QLA_SUCCESS;
	for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
	    rval == QLA_SUCCESS; cnt--) {
		if (cnt)
			udelay(10);
		else
			rval = QLA_FUNCTION_TIMEOUT;
511
		cond_resched();
512 513 514 515
	}
	return rval;
}

516
static void
517
qla24xx_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
518 519 520 521
    uint8_t *flash_id)
{
	uint32_t ids;

522
	ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x03ab));
523 524
	*man_id = LSB(ids);
	*flash_id = MSB(ids);
525 526 527 528 529 530 531 532 533

	/* Check if man_id and flash_id are valid. */
	if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
		/* Read information using 0x9f opcode
		 * Device ID, Mfg ID would be read in the format:
		 *   <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
		 * Example: ATMEL 0x00 01 45 1F
		 * Extract MFG and Dev ID from last two bytes.
		 */
534
		ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x009f));
535 536 537
		*man_id = LSB(ids);
		*flash_id = MSB(ids);
	}
538 539
}

540
static int
541
qla2xxx_find_flt_start(scsi_qla_host_t *vha, uint32_t *start)
542 543 544 545 546 547 548
{
	const char *loc, *locations[] = { "DEF", "PCI" };
	uint32_t pcihdr, pcids;
	uint32_t *dcode;
	uint8_t *buf, *bcode, last_image;
	uint16_t cnt, chksum, *wptr;
	struct qla_flt_location *fltl;
549
	struct qla_hw_data *ha = vha->hw;
550
	struct req_que *req = ha->req_q_map[0];
551 552 553 554 555 556 557

	/*
	 * FLT-location structure resides after the last PCI region.
	 */

	/* Begin with sane defaults. */
	loc = locations[0];
558 559 560 561 562 563 564
	*start = 0;
	if (IS_QLA24XX_TYPE(ha))
		*start = FA_FLASH_LAYOUT_ADDR_24;
	else if (IS_QLA25XX(ha))
		*start = FA_FLASH_LAYOUT_ADDR;
	else if (IS_QLA81XX(ha))
		*start = FA_FLASH_LAYOUT_ADDR_81;
565 566 567 568
	else if (IS_QLA82XX(ha)) {
		*start = FA_FLASH_LAYOUT_ADDR_82;
		goto end;
	}
569
	/* Begin with first PCI expansion ROM header. */
570 571
	buf = (uint8_t *)req->ring;
	dcode = (uint32_t *)req->ring;
572 573 574 575
	pcihdr = 0;
	last_image = 1;
	do {
		/* Verify PCI expansion ROM header. */
576
		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
577 578 579 580 581 582
		bcode = buf + (pcihdr % 4);
		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa)
			goto end;

		/* Locate PCI data structure. */
		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
583
		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
584 585 586 587 588 589 590 591 592 593 594 595 596 597
		bcode = buf + (pcihdr % 4);

		/* Validate signature of PCI data structure. */
		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
		    bcode[0x2] != 'I' || bcode[0x3] != 'R')
			goto end;

		last_image = bcode[0x15] & BIT_7;

		/* Locate next PCI expansion ROM. */
		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
	} while (!last_image);

	/* Now verify FLT-location structure. */
598 599
	fltl = (struct qla_flt_location *)req->ring;
	qla24xx_read_flash_data(vha, dcode, pcihdr >> 2,
600 601 602 603 604
	    sizeof(struct qla_flt_location) >> 2);
	if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' ||
	    fltl->sig[2] != 'L' || fltl->sig[3] != 'T')
		goto end;

605
	wptr = (uint16_t *)req->ring;
606 607 608 609 610 611 612 613 614 615 616 617
	cnt = sizeof(struct qla_flt_location) >> 1;
	for (chksum = 0; cnt; cnt--)
		chksum += le16_to_cpu(*wptr++);
	if (chksum) {
		qla_printk(KERN_ERR, ha,
		    "Inconsistent FLTL detected: checksum=0x%x.\n", chksum);
		qla2x00_dump_buffer(buf, sizeof(struct qla_flt_location));
		return QLA_FUNCTION_FAILED;
	}

	/* Good data.  Use specified location. */
	loc = locations[1];
618 619
	*start = (le16_to_cpu(fltl->start_hi) << 16 |
	    le16_to_cpu(fltl->start_lo)) >> 2;
620 621 622 623 624 625
end:
	DEBUG2(qla_printk(KERN_DEBUG, ha, "FLTL[%s] = 0x%x.\n", loc, *start));
	return QLA_SUCCESS;
}

static void
626
qla2xxx_get_flt_info(scsi_qla_host_t *vha, uint32_t flt_addr)
627 628
{
	const char *loc, *locations[] = { "DEF", "FLT" };
629 630 631 632 633 634
	const uint32_t def_fw[] =
		{ FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR_81 };
	const uint32_t def_boot[] =
		{ FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR_81 };
	const uint32_t def_vpd_nvram[] =
		{ FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR_81 };
635 636 637 638 639 640 641 642
	const uint32_t def_vpd0[] =
		{ 0, 0, FA_VPD0_ADDR_81 };
	const uint32_t def_vpd1[] =
		{ 0, 0, FA_VPD1_ADDR_81 };
	const uint32_t def_nvram0[] =
		{ 0, 0, FA_NVRAM0_ADDR_81 };
	const uint32_t def_nvram1[] =
		{ 0, 0, FA_NVRAM1_ADDR_81 };
643 644 645 646 647 648 649 650 651
	const uint32_t def_fdt[] =
		{ FA_FLASH_DESCR_ADDR_24, FA_FLASH_DESCR_ADDR,
			FA_FLASH_DESCR_ADDR_81 };
	const uint32_t def_npiv_conf0[] =
		{ FA_NPIV_CONF0_ADDR_24, FA_NPIV_CONF0_ADDR,
			FA_NPIV_CONF0_ADDR_81 };
	const uint32_t def_npiv_conf1[] =
		{ FA_NPIV_CONF1_ADDR_24, FA_NPIV_CONF1_ADDR,
			FA_NPIV_CONF1_ADDR_81 };
S
Sarang Radke 已提交
652 653 654 655 656 657
	const uint32_t fcp_prio_cfg0[] =
		{ FA_FCP_PRIO0_ADDR, FA_FCP_PRIO0_ADDR_25,
			0 };
	const uint32_t fcp_prio_cfg1[] =
		{ FA_FCP_PRIO1_ADDR, FA_FCP_PRIO1_ADDR_25,
			0 };
658
	uint32_t def;
659 660 661 662 663
	uint16_t *wptr;
	uint16_t cnt, chksum;
	uint32_t start;
	struct qla_flt_header *flt;
	struct qla_flt_region *region;
664
	struct qla_hw_data *ha = vha->hw;
665
	struct req_que *req = ha->req_q_map[0];
666 667

	ha->flt_region_flt = flt_addr;
668 669
	wptr = (uint16_t *)req->ring;
	flt = (struct qla_flt_header *)req->ring;
670
	region = (struct qla_flt_region *)&flt[1];
671
	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
	    flt_addr << 2, OPTROM_BURST_SIZE);
	if (*wptr == __constant_cpu_to_le16(0xffff))
		goto no_flash_data;
	if (flt->version != __constant_cpu_to_le16(1)) {
		DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported FLT detected: "
		    "version=0x%x length=0x%x checksum=0x%x.\n",
		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
		    le16_to_cpu(flt->checksum)));
		goto no_flash_data;
	}

	cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1;
	for (chksum = 0; cnt; cnt--)
		chksum += le16_to_cpu(*wptr++);
	if (chksum) {
		DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FLT detected: "
		    "version=0x%x length=0x%x checksum=0x%x.\n",
		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
		    chksum));
		goto no_flash_data;
	}

	loc = locations[1];
	cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region);
	for ( ; cnt; cnt--, region++) {
		/* Store addresses as DWORD offsets. */
		start = le32_to_cpu(region->start) >> 2;

		DEBUG3(qla_printk(KERN_DEBUG, ha, "FLT[%02x]: start=0x%x "
		    "end=0x%x size=0x%x.\n", le32_to_cpu(region->code), start,
		    le32_to_cpu(region->end) >> 2, le32_to_cpu(region->size)));

704
		switch (le32_to_cpu(region->code) & 0xff) {
705 706 707 708 709 710 711 712
		case FLT_REG_FW:
			ha->flt_region_fw = start;
			break;
		case FLT_REG_BOOT_CODE:
			ha->flt_region_boot = start;
			break;
		case FLT_REG_VPD_0:
			ha->flt_region_vpd_nvram = start;
713 714
			if (IS_QLA82XX(ha))
				break;
715
			if (ha->flags.port0)
716 717 718
				ha->flt_region_vpd = start;
			break;
		case FLT_REG_VPD_1:
719 720
			if (IS_QLA82XX(ha))
				break;
721
			if (!ha->flags.port0)
722 723 724
				ha->flt_region_vpd = start;
			break;
		case FLT_REG_NVRAM_0:
725
			if (ha->flags.port0)
726 727 728
				ha->flt_region_nvram = start;
			break;
		case FLT_REG_NVRAM_1:
729
			if (!ha->flags.port0)
730
				ha->flt_region_nvram = start;
731 732 733 734
			break;
		case FLT_REG_FDT:
			ha->flt_region_fdt = start;
			break;
735
		case FLT_REG_NPIV_CONF_0:
736
			if (ha->flags.port0)
737 738 739
				ha->flt_region_npiv_conf = start;
			break;
		case FLT_REG_NPIV_CONF_1:
740
			if (!ha->flags.port0)
741 742
				ha->flt_region_npiv_conf = start;
			break;
743 744 745
		case FLT_REG_GOLD_FW:
			ha->flt_region_gold_fw = start;
			break;
S
Sarang Radke 已提交
746
		case FLT_REG_FCP_PRIO_0:
747
			if (ha->flags.port0)
S
Sarang Radke 已提交
748 749 750
				ha->flt_region_fcp_prio = start;
			break;
		case FLT_REG_FCP_PRIO_1:
751
			if (!ha->flags.port0)
S
Sarang Radke 已提交
752 753
				ha->flt_region_fcp_prio = start;
			break;
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
		case FLT_REG_BOOT_CODE_82XX:
			ha->flt_region_boot = start;
			break;
		case FLT_REG_FW_82XX:
			ha->flt_region_fw = start;
			break;
		case FLT_REG_GOLD_FW_82XX:
			ha->flt_region_gold_fw = start;
			break;
		case FLT_REG_BOOTLOAD_82XX:
			ha->flt_region_bootload = start;
			break;
		case FLT_REG_VPD_82XX:
			ha->flt_region_vpd = start;
			break;
769 770 771 772 773 774 775
		}
	}
	goto done;

no_flash_data:
	/* Use hardcoded defaults. */
	loc = locations[0];
776 777 778 779 780 781 782 783 784 785
	def = 0;
	if (IS_QLA24XX_TYPE(ha))
		def = 0;
	else if (IS_QLA25XX(ha))
		def = 1;
	else if (IS_QLA81XX(ha))
		def = 2;
	ha->flt_region_fw = def_fw[def];
	ha->flt_region_boot = def_boot[def];
	ha->flt_region_vpd_nvram = def_vpd_nvram[def];
786
	ha->flt_region_vpd = ha->flags.port0 ?
S
Sarang Radke 已提交
787
	    def_vpd0[def] : def_vpd1[def];
788
	ha->flt_region_nvram = ha->flags.port0 ?
S
Sarang Radke 已提交
789
	    def_nvram0[def] : def_nvram1[def];
790
	ha->flt_region_fdt = def_fdt[def];
791
	ha->flt_region_npiv_conf = ha->flags.port0 ?
S
Sarang Radke 已提交
792 793 794
	    def_npiv_conf0[def] : def_npiv_conf1[def];
	ha->flt_region_fcp_prio = ha->flags.port0 ?
	    fcp_prio_cfg0[def] : fcp_prio_cfg1[def];
795 796
done:
	DEBUG2(qla_printk(KERN_DEBUG, ha, "FLT[%s]: boot=0x%x fw=0x%x "
797 798 799
	    "vpd_nvram=0x%x vpd=0x%x nvram=0x%x fdt=0x%x flt=0x%x "
	    "npiv=0x%x.\n", loc, ha->flt_region_boot, ha->flt_region_fw,
	    ha->flt_region_vpd_nvram, ha->flt_region_vpd, ha->flt_region_nvram,
800
	    ha->flt_region_fdt, ha->flt_region_flt, ha->flt_region_npiv_conf));
801 802 803
}

static void
804
qla2xxx_get_fdt_info(scsi_qla_host_t *vha)
805
{
806
#define FLASH_BLK_SIZE_4K	0x1000
807 808
#define FLASH_BLK_SIZE_32K	0x8000
#define FLASH_BLK_SIZE_64K	0x10000
809
	const char *loc, *locations[] = { "MID", "FDT" };
810 811 812 813
	uint16_t cnt, chksum;
	uint16_t *wptr;
	struct qla_fdt_layout *fdt;
	uint8_t	man_id, flash_id;
814
	uint16_t mid = 0, fid = 0;
815
	struct qla_hw_data *ha = vha->hw;
816
	struct req_que *req = ha->req_q_map[0];
817

818 819 820
	wptr = (uint16_t *)req->ring;
	fdt = (struct qla_fdt_layout *)req->ring;
	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
821
	    ha->flt_region_fdt << 2, OPTROM_BURST_SIZE);
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
	if (*wptr == __constant_cpu_to_le16(0xffff))
		goto no_flash_data;
	if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
	    fdt->sig[3] != 'D')
		goto no_flash_data;

	for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1;
	    cnt++)
		chksum += le16_to_cpu(*wptr++);
	if (chksum) {
		DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FDT detected: "
		    "checksum=0x%x id=%c version=0x%x.\n", chksum, fdt->sig[0],
		    le16_to_cpu(fdt->version)));
		DEBUG9(qla2x00_dump_buffer((uint8_t *)fdt, sizeof(*fdt)));
		goto no_flash_data;
	}

839 840 841
	loc = locations[1];
	mid = le16_to_cpu(fdt->man_id);
	fid = le16_to_cpu(fdt->id);
842
	ha->fdt_wrt_disable = fdt->wrt_disable_bits;
843
	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0300 | fdt->erase_cmd);
844 845
	ha->fdt_block_size = le32_to_cpu(fdt->block_size);
	if (fdt->unprotect_sec_cmd) {
846
		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0300 |
847 848
		    fdt->unprotect_sec_cmd);
		ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
849 850
		    flash_conf_addr(ha, 0x0300 | fdt->protect_sec_cmd):
		    flash_conf_addr(ha, 0x0336);
851
	}
852
	goto done;
853
no_flash_data:
854
	loc = locations[0];
855 856 857 858
	if (IS_QLA82XX(ha)) {
		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
		goto done;
	}
859
	qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
860 861
	mid = man_id;
	fid = flash_id;
862
	ha->fdt_wrt_disable = 0x9c;
863
	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x03d8);
864 865 866 867 868 869 870 871
	switch (man_id) {
	case 0xbf: /* STT flash. */
		if (flash_id == 0x8e)
			ha->fdt_block_size = FLASH_BLK_SIZE_64K;
		else
			ha->fdt_block_size = FLASH_BLK_SIZE_32K;

		if (flash_id == 0x80)
872
			ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0352);
873 874 875 876 877
		break;
	case 0x13: /* ST M25P80. */
		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
		break;
	case 0x1f: /* Atmel 26DF081A. */
878
		ha->fdt_block_size = FLASH_BLK_SIZE_4K;
879 880 881
		ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0320);
		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0339);
		ha->fdt_protect_sec_cmd = flash_conf_addr(ha, 0x0336);
882 883 884 885 886 887
		break;
	default:
		/* Default to 64 kb sector size. */
		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
		break;
	}
888 889
done:
	DEBUG2(qla_printk(KERN_DEBUG, ha, "FDT[%s]: (0x%x/0x%x) erase=0x%x "
890
	    "pro=%x upro=%x wrtd=0x%x blk=0x%x.\n", loc, mid, fid,
891
	    ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd,
892
	    ha->fdt_unprotect_sec_cmd, ha->fdt_wrt_disable,
893 894 895
	    ha->fdt_block_size));
}

896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
static void
qla2xxx_get_idc_param(scsi_qla_host_t *vha)
{
#define QLA82XX_IDC_PARAM_ADDR       0x003e885c
	uint32_t *wptr;
	struct qla_hw_data *ha = vha->hw;
	struct req_que *req = ha->req_q_map[0];

	if (!IS_QLA82XX(ha))
		return;

	wptr = (uint32_t *)req->ring;
	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
		QLA82XX_IDC_PARAM_ADDR , 8);

	if (*wptr == __constant_cpu_to_le32(0xffffffff)) {
		ha->nx_dev_init_timeout = QLA82XX_ROM_DEV_INIT_TIMEOUT;
		ha->nx_reset_timeout = QLA82XX_ROM_DRV_RESET_ACK_TIMEOUT;
	} else {
		ha->nx_dev_init_timeout = le32_to_cpu(*wptr++);
		ha->nx_reset_timeout = le32_to_cpu(*wptr);
	}
	return;
}

921
int
922
qla2xxx_get_flash_info(scsi_qla_host_t *vha)
923 924 925
{
	int ret;
	uint32_t flt_addr;
926
	struct qla_hw_data *ha = vha->hw;
927

928
	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA8XXX_TYPE(ha))
929 930
		return QLA_SUCCESS;

931
	ret = qla2xxx_find_flt_start(vha, &flt_addr);
932 933 934
	if (ret != QLA_SUCCESS)
		return ret;

935 936
	qla2xxx_get_flt_info(vha, flt_addr);
	qla2xxx_get_fdt_info(vha);
937
	qla2xxx_get_idc_param(vha);
938 939 940 941

	return QLA_SUCCESS;
}

942
void
943
qla2xxx_flash_npiv_conf(scsi_qla_host_t *vha)
944 945 946 947 948
{
#define NPIV_CONFIG_SIZE	(16*1024)
	void *data;
	uint16_t *wptr;
	uint16_t cnt, chksum;
949
	int i;
950 951
	struct qla_npiv_header hdr;
	struct qla_npiv_entry *entry;
952
	struct qla_hw_data *ha = vha->hw;
953

954
	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA8XXX_TYPE(ha))
955 956
		return;

957
	ha->isp_ops->read_optrom(vha, (uint8_t *)&hdr,
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
	    ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header));
	if (hdr.version == __constant_cpu_to_le16(0xffff))
		return;
	if (hdr.version != __constant_cpu_to_le16(1)) {
		DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported NPIV-Config "
		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
		    le16_to_cpu(hdr.checksum)));
		return;
	}

	data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL);
	if (!data) {
		DEBUG2(qla_printk(KERN_INFO, ha, "NPIV-Config: Unable to "
		    "allocate memory.\n"));
		return;
	}

976
	ha->isp_ops->read_optrom(vha, (uint8_t *)data,
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
	    ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE);

	cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) *
	    sizeof(struct qla_npiv_entry)) >> 1;
	for (wptr = data, chksum = 0; cnt; cnt--)
		chksum += le16_to_cpu(*wptr++);
	if (chksum) {
		DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent NPIV-Config "
		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
		    chksum));
		goto done;
	}

	entry = data + sizeof(struct qla_npiv_header);
	cnt = le16_to_cpu(hdr.entries);
993
	for (i = 0; cnt; cnt--, entry++, i++) {
994 995 996 997
		uint16_t flags;
		struct fc_vport_identifiers vid;
		struct fc_vport *vport;

998 999
		memcpy(&ha->npiv_info[i], entry, sizeof(struct qla_npiv_entry));

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
		flags = le16_to_cpu(entry->flags);
		if (flags == 0xffff)
			continue;
		if ((flags & BIT_0) == 0)
			continue;

		memset(&vid, 0, sizeof(vid));
		vid.roles = FC_PORT_ROLE_FCP_INITIATOR;
		vid.vport_type = FC_PORTTYPE_NPIV;
		vid.disable = false;
		vid.port_name = wwn_to_u64(entry->port_name);
		vid.node_name = wwn_to_u64(entry->node_name);

1013
		DEBUG2(qla_printk(KERN_INFO, ha, "NPIV[%02x]: wwpn=%llx "
1014
			"wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt,
1015 1016 1017
			(unsigned long long)vid.port_name,
			(unsigned long long)vid.node_name,
			le16_to_cpu(entry->vf_id),
1018 1019 1020 1021 1022 1023 1024 1025
			entry->q_qos, entry->f_qos));

		if (i < QLA_PRECONFIG_VPORTS) {
			vport = fc_vport_create(vha->host, 0, &vid);
			if (!vport)
				qla_printk(KERN_INFO, ha,
				"NPIV-Config: Failed to create vport [%02x]: "
				"wwpn=%llx wwnn=%llx.\n", cnt,
1026 1027
				(unsigned long long)vid.port_name,
				(unsigned long long)vid.node_name);
1028
		}
1029 1030 1031 1032 1033
	}
done:
	kfree(data);
}

1034 1035
static int
qla24xx_unprotect_flash(scsi_qla_host_t *vha)
1036
{
1037
	struct qla_hw_data *ha = vha->hw;
1038 1039
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

1040 1041 1042
	if (ha->flags.fac_supported)
		return qla81xx_fac_do_write_enable(vha, 1);

1043 1044 1045 1046 1047
	/* Enable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */

1048
	if (!ha->fdt_wrt_disable)
1049
		goto done;
1050

1051
	/* Disable flash write-protection, first clear SR protection bit */
1052
	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1053
	/* Then write zero again to clear remaining SR bits.*/
1054
	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1055 1056
done:
	return QLA_SUCCESS;
1057 1058
}

1059 1060
static int
qla24xx_protect_flash(scsi_qla_host_t *vha)
1061 1062
{
	uint32_t cnt;
1063
	struct qla_hw_data *ha = vha->hw;
1064 1065
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

1066 1067 1068
	if (ha->flags.fac_supported)
		return qla81xx_fac_do_write_enable(vha, 0);

1069 1070 1071
	if (!ha->fdt_wrt_disable)
		goto skip_wrt_protect;

1072
	/* Enable flash write-protection and wait for completion. */
1073
	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101),
1074
	    ha->fdt_wrt_disable);
1075
	for (cnt = 300; cnt &&
1076
	    qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x005)) & BIT_0;
1077 1078 1079 1080
	    cnt--) {
		udelay(10);
	}

1081
skip_wrt_protect:
1082 1083 1084 1085
	/* Disable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105

	return QLA_SUCCESS;
}

static int
qla24xx_erase_sector(scsi_qla_host_t *vha, uint32_t fdata)
{
	struct qla_hw_data *ha = vha->hw;
	uint32_t start, finish;

	if (ha->flags.fac_supported) {
		start = fdata >> 2;
		finish = start + (ha->fdt_block_size >> 2) - 1;
		return qla81xx_fac_erase_sector(vha, flash_data_addr(ha,
		    start), flash_data_addr(ha, finish));
	}

	return qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
	    (fdata & 0xff00) | ((fdata << 16) & 0xff0000) |
	    ((fdata >> 16) & 0xff));
1106 1107
}

1108
static int
1109
qla24xx_write_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
1110 1111 1112
    uint32_t dwords)
{
	int ret;
1113
	uint32_t liter;
1114
	uint32_t sec_mask, rest_addr;
1115
	uint32_t fdata;
1116 1117
	dma_addr_t optrom_dma;
	void *optrom = NULL;
1118
	struct qla_hw_data *ha = vha->hw;
1119

1120
	/* Prepare burst-capable write on supported ISPs. */
1121
	if ((IS_QLA25XX(ha) || IS_QLA81XX(ha)) && !(faddr & 0xfff) &&
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
	    dwords > OPTROM_BURST_DWORDS) {
		optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
		    &optrom_dma, GFP_KERNEL);
		if (!optrom) {
			qla_printk(KERN_DEBUG, ha,
			    "Unable to allocate memory for optrom burst write "
			    "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
		}
	}

1132
	rest_addr = (ha->fdt_block_size >> 2) - 1;
1133
	sec_mask = ~rest_addr;
1134

1135 1136 1137 1138 1139 1140
	ret = qla24xx_unprotect_flash(vha);
	if (ret != QLA_SUCCESS) {
		qla_printk(KERN_WARNING, ha,
		    "Unable to unprotect flash for update.\n");
		goto done;
	}
1141

1142
	for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
1143
		fdata = (faddr & sec_mask) << 2;
1144

1145
		/* Are we at the beginning of a sector? */
1146
		if ((faddr & rest_addr) == 0) {
1147 1148
			/* Do sector unprotect. */
			if (ha->fdt_unprotect_sec_cmd)
1149
				qla24xx_write_flash_dword(ha,
1150
				    ha->fdt_unprotect_sec_cmd,
1151
				    (fdata & 0xff00) | ((fdata << 16) &
1152
				    0xff0000) | ((fdata >> 16) & 0xff));
1153
			ret = qla24xx_erase_sector(vha, fdata);
1154
			if (ret != QLA_SUCCESS) {
1155 1156 1157
				DEBUG9(qla_printk(KERN_WARNING, ha,
				    "Unable to erase sector: address=%x.\n",
				    faddr));
1158
				break;
1159
			}
1160 1161 1162
		}

		/* Go with burst-write. */
1163
		if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
1164
			/* Copy data to DMA'ble buffer. */
1165
			memcpy(optrom, dwptr, OPTROM_BURST_SIZE);
1166

1167
			ret = qla2x00_load_ram(vha, optrom_dma,
1168
			    flash_data_addr(ha, faddr),
1169
			    OPTROM_BURST_DWORDS);
1170
			if (ret != QLA_SUCCESS) {
1171 1172 1173
				qla_printk(KERN_WARNING, ha,
				    "Unable to burst-write optrom segment "
				    "(%x/%x/%llx).\n", ret,
1174
				    flash_data_addr(ha, faddr),
A
Andrew Morton 已提交
1175
				    (unsigned long long)optrom_dma);
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
				qla_printk(KERN_WARNING, ha,
				    "Reverting to slow-write.\n");

				dma_free_coherent(&ha->pdev->dev,
				    OPTROM_BURST_SIZE, optrom, optrom_dma);
				optrom = NULL;
			} else {
				liter += OPTROM_BURST_DWORDS - 1;
				faddr += OPTROM_BURST_DWORDS - 1;
				dwptr += OPTROM_BURST_DWORDS - 1;
				continue;
1187
			}
1188
		}
1189

1190
		ret = qla24xx_write_flash_dword(ha,
1191
		    flash_data_addr(ha, faddr), cpu_to_le32(*dwptr));
1192 1193 1194
		if (ret != QLA_SUCCESS) {
			DEBUG9(printk("%s(%ld) Unable to program flash "
			    "address=%x data=%x.\n", __func__,
1195
			    vha->host_no, faddr, *dwptr));
1196
			break;
1197
		}
1198

1199 1200
		/* Do sector protect. */
		if (ha->fdt_unprotect_sec_cmd &&
1201 1202
		    ((faddr & rest_addr) == rest_addr))
			qla24xx_write_flash_dword(ha,
1203
			    ha->fdt_protect_sec_cmd,
1204 1205 1206
			    (fdata & 0xff00) | ((fdata << 16) &
			    0xff0000) | ((fdata >> 16) & 0xff));
	}
1207

1208 1209 1210 1211 1212
	ret = qla24xx_protect_flash(vha);
	if (ret != QLA_SUCCESS)
		qla_printk(KERN_WARNING, ha,
		    "Unable to protect flash after update.\n");
done:
1213 1214 1215 1216
	if (optrom)
		dma_free_coherent(&ha->pdev->dev,
		    OPTROM_BURST_SIZE, optrom, optrom_dma);

1217 1218 1219 1220
	return ret;
}

uint8_t *
1221
qla2x00_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1222 1223 1224 1225
    uint32_t bytes)
{
	uint32_t i;
	uint16_t *wptr;
1226
	struct qla_hw_data *ha = vha->hw;
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239

	/* Word reads to NVRAM via registers. */
	wptr = (uint16_t *)buf;
	qla2x00_lock_nvram_access(ha);
	for (i = 0; i < bytes >> 1; i++, naddr++)
		wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
		    naddr));
	qla2x00_unlock_nvram_access(ha);

	return buf;
}

uint8_t *
1240
qla24xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1241 1242 1243 1244
    uint32_t bytes)
{
	uint32_t i;
	uint32_t *dwptr;
1245
	struct qla_hw_data *ha = vha->hw;
1246

1247 1248 1249
	if (IS_QLA82XX(ha))
		return  buf;

1250 1251 1252
	/* Dword reads to flash. */
	dwptr = (uint32_t *)buf;
	for (i = 0; i < bytes >> 2; i++, naddr++)
1253 1254
		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
		    nvram_data_addr(ha, naddr)));
1255 1256 1257 1258 1259

	return buf;
}

int
1260
qla2x00_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1261 1262 1263 1264 1265
    uint32_t bytes)
{
	int ret, stat;
	uint32_t i;
	uint16_t *wptr;
1266
	unsigned long flags;
1267
	struct qla_hw_data *ha = vha->hw;
1268 1269 1270

	ret = QLA_SUCCESS;

1271
	spin_lock_irqsave(&ha->hardware_lock, flags);
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
	qla2x00_lock_nvram_access(ha);

	/* Disable NVRAM write-protection. */
	stat = qla2x00_clear_nvram_protection(ha);

	wptr = (uint16_t *)buf;
	for (i = 0; i < bytes >> 1; i++, naddr++) {
		qla2x00_write_nvram_word(ha, naddr,
		    cpu_to_le16(*wptr));
		wptr++;
	}

	/* Enable NVRAM write-protection. */
	qla2x00_set_nvram_protection(ha, stat);

	qla2x00_unlock_nvram_access(ha);
1288
	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1289 1290 1291 1292 1293

	return ret;
}

int
1294
qla24xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1295 1296 1297 1298 1299
    uint32_t bytes)
{
	int ret;
	uint32_t i;
	uint32_t *dwptr;
1300
	struct qla_hw_data *ha = vha->hw;
1301 1302 1303 1304
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	ret = QLA_SUCCESS;

1305 1306 1307
	if (IS_QLA82XX(ha))
		return ret;

1308 1309 1310 1311 1312 1313
	/* Enable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */

	/* Disable NVRAM write-protection. */
1314 1315
	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1316 1317 1318 1319 1320

	/* Dword writes to flash. */
	dwptr = (uint32_t *)buf;
	for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
		ret = qla24xx_write_flash_dword(ha,
1321
		    nvram_data_addr(ha, naddr), cpu_to_le32(*dwptr));
1322
		if (ret != QLA_SUCCESS) {
1323 1324 1325
			DEBUG9(qla_printk(KERN_WARNING, ha,
			    "Unable to program nvram address=%x data=%x.\n",
			    naddr, *dwptr));
1326 1327 1328 1329 1330
			break;
		}
	}

	/* Enable NVRAM write-protection. */
1331
	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0x8c);
1332 1333 1334 1335 1336 1337 1338 1339

	/* Disable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */

	return ret;
}
1340

1341
uint8_t *
1342
qla25xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1343 1344 1345 1346
    uint32_t bytes)
{
	uint32_t i;
	uint32_t *dwptr;
1347
	struct qla_hw_data *ha = vha->hw;
1348 1349 1350 1351 1352

	/* Dword reads to flash. */
	dwptr = (uint32_t *)buf;
	for (i = 0; i < bytes >> 2; i++, naddr++)
		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1353
		    flash_data_addr(ha, ha->flt_region_vpd_nvram | naddr)));
1354 1355 1356 1357 1358

	return buf;
}

int
1359
qla25xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1360 1361
    uint32_t bytes)
{
1362
	struct qla_hw_data *ha = vha->hw;
1363 1364 1365 1366 1367 1368
#define RMW_BUFFER_SIZE	(64 * 1024)
	uint8_t *dbuf;

	dbuf = vmalloc(RMW_BUFFER_SIZE);
	if (!dbuf)
		return QLA_MEMORY_ALLOC_FAILED;
1369
	ha->isp_ops->read_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1370 1371
	    RMW_BUFFER_SIZE);
	memcpy(dbuf + (naddr << 2), buf, bytes);
1372
	ha->isp_ops->write_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1373 1374 1375 1376
	    RMW_BUFFER_SIZE);
	vfree(dbuf);

	return QLA_SUCCESS;
1377
}
1378 1379

static inline void
1380
qla2x00_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
{
	if (IS_QLA2322(ha)) {
		/* Flip all colors. */
		if (ha->beacon_color_state == QLA_LED_ALL_ON) {
			/* Turn off. */
			ha->beacon_color_state = 0;
			*pflags = GPIO_LED_ALL_OFF;
		} else {
			/* Turn on. */
			ha->beacon_color_state = QLA_LED_ALL_ON;
			*pflags = GPIO_LED_RGA_ON;
		}
	} else {
		/* Flip green led only. */
		if (ha->beacon_color_state == QLA_LED_GRN_ON) {
			/* Turn off. */
			ha->beacon_color_state = 0;
			*pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
		} else {
			/* Turn on. */
			ha->beacon_color_state = QLA_LED_GRN_ON;
			*pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
		}
	}
}

1407 1408
#define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))

1409
void
1410
qla2x00_beacon_blink(struct scsi_qla_host *vha)
1411 1412 1413 1414 1415
{
	uint16_t gpio_enable;
	uint16_t gpio_data;
	uint16_t led_color = 0;
	unsigned long flags;
1416
	struct qla_hw_data *ha = vha->hw;
1417 1418
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

1419 1420 1421
	if (IS_QLA82XX(ha))
		return;

1422 1423 1424 1425
	spin_lock_irqsave(&ha->hardware_lock, flags);

	/* Save the Original GPIOE. */
	if (ha->pio_address) {
1426 1427
		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1428 1429 1430 1431 1432 1433 1434 1435 1436
	} else {
		gpio_enable = RD_REG_WORD(&reg->gpioe);
		gpio_data = RD_REG_WORD(&reg->gpiod);
	}

	/* Set the modified gpio_enable values */
	gpio_enable |= GPIO_LED_MASK;

	if (ha->pio_address) {
1437
		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
	} else {
		WRT_REG_WORD(&reg->gpioe, gpio_enable);
		RD_REG_WORD(&reg->gpioe);
	}

	qla2x00_flip_colors(ha, &led_color);

	/* Clear out any previously set LED color. */
	gpio_data &= ~GPIO_LED_MASK;

	/* Set the new input LED color to GPIOD. */
	gpio_data |= led_color;

	/* Set the modified gpio_data values */
	if (ha->pio_address) {
1453
		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1454 1455 1456 1457 1458 1459 1460 1461 1462
	} else {
		WRT_REG_WORD(&reg->gpiod, gpio_data);
		RD_REG_WORD(&reg->gpiod);
	}

	spin_unlock_irqrestore(&ha->hardware_lock, flags);
}

int
1463
qla2x00_beacon_on(struct scsi_qla_host *vha)
1464 1465 1466 1467
{
	uint16_t gpio_enable;
	uint16_t gpio_data;
	unsigned long flags;
1468
	struct qla_hw_data *ha = vha->hw;
1469 1470 1471 1472 1473
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
	ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;

1474
	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1475 1476 1477 1478 1479 1480 1481 1482
		qla_printk(KERN_WARNING, ha,
		    "Unable to update fw options (beacon on).\n");
		return QLA_FUNCTION_FAILED;
	}

	/* Turn off LEDs. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	if (ha->pio_address) {
1483 1484
		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1485 1486 1487 1488 1489 1490 1491 1492
	} else {
		gpio_enable = RD_REG_WORD(&reg->gpioe);
		gpio_data = RD_REG_WORD(&reg->gpiod);
	}
	gpio_enable |= GPIO_LED_MASK;

	/* Set the modified gpio_enable values. */
	if (ha->pio_address) {
1493
		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1494 1495 1496 1497 1498 1499 1500 1501
	} else {
		WRT_REG_WORD(&reg->gpioe, gpio_enable);
		RD_REG_WORD(&reg->gpioe);
	}

	/* Clear out previously set LED colour. */
	gpio_data &= ~GPIO_LED_MASK;
	if (ha->pio_address) {
1502
		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
	} else {
		WRT_REG_WORD(&reg->gpiod, gpio_data);
		RD_REG_WORD(&reg->gpiod);
	}
	spin_unlock_irqrestore(&ha->hardware_lock, flags);

	/*
	 * Let the per HBA timer kick off the blinking process based on
	 * the following flags. No need to do anything else now.
	 */
	ha->beacon_blink_led = 1;
	ha->beacon_color_state = 0;

	return QLA_SUCCESS;
}

int
1520
qla2x00_beacon_off(struct scsi_qla_host *vha)
1521 1522
{
	int rval = QLA_SUCCESS;
1523
	struct qla_hw_data *ha = vha->hw;
1524 1525 1526 1527 1528 1529 1530 1531 1532

	ha->beacon_blink_led = 0;

	/* Set the on flag so when it gets flipped it will be off. */
	if (IS_QLA2322(ha))
		ha->beacon_color_state = QLA_LED_ALL_ON;
	else
		ha->beacon_color_state = QLA_LED_GRN_ON;

1533
	ha->isp_ops->beacon_blink(vha);	/* This turns green LED off */
1534 1535 1536 1537

	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
	ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;

1538
	rval = qla2x00_set_fw_options(vha, ha->fw_options);
1539 1540 1541 1542 1543 1544 1545 1546
	if (rval != QLA_SUCCESS)
		qla_printk(KERN_WARNING, ha,
		    "Unable to update fw options (beacon off).\n");
	return rval;
}


static inline void
1547
qla24xx_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
{
	/* Flip all colors. */
	if (ha->beacon_color_state == QLA_LED_ALL_ON) {
		/* Turn off. */
		ha->beacon_color_state = 0;
		*pflags = 0;
	} else {
		/* Turn on. */
		ha->beacon_color_state = QLA_LED_ALL_ON;
		*pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
	}
}

void
1562
qla24xx_beacon_blink(struct scsi_qla_host *vha)
1563 1564 1565 1566
{
	uint16_t led_color = 0;
	uint32_t gpio_data;
	unsigned long flags;
1567
	struct qla_hw_data *ha = vha->hw;
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	/* Save the Original GPIOD. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	gpio_data = RD_REG_DWORD(&reg->gpiod);

	/* Enable the gpio_data reg for update. */
	gpio_data |= GPDX_LED_UPDATE_MASK;

	WRT_REG_DWORD(&reg->gpiod, gpio_data);
	gpio_data = RD_REG_DWORD(&reg->gpiod);

	/* Set the color bits. */
	qla24xx_flip_colors(ha, &led_color);

	/* Clear out any previously set LED color. */
	gpio_data &= ~GPDX_LED_COLOR_MASK;

	/* Set the new input LED color to GPIOD. */
	gpio_data |= led_color;

	/* Set the modified gpio_data values. */
	WRT_REG_DWORD(&reg->gpiod, gpio_data);
	gpio_data = RD_REG_DWORD(&reg->gpiod);
	spin_unlock_irqrestore(&ha->hardware_lock, flags);
}

int
1596
qla24xx_beacon_on(struct scsi_qla_host *vha)
1597 1598 1599
{
	uint32_t gpio_data;
	unsigned long flags;
1600
	struct qla_hw_data *ha = vha->hw;
1601 1602
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

1603 1604 1605
	if (IS_QLA82XX(ha))
		return QLA_SUCCESS;

1606 1607 1608 1609
	if (ha->beacon_blink_led == 0) {
		/* Enable firmware for update */
		ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;

1610
		if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS)
1611 1612
			return QLA_FUNCTION_FAILED;

1613
		if (qla2x00_get_fw_options(vha, ha->fw_options) !=
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
		    QLA_SUCCESS) {
			qla_printk(KERN_WARNING, ha,
			    "Unable to update fw options (beacon on).\n");
			return QLA_FUNCTION_FAILED;
		}

		spin_lock_irqsave(&ha->hardware_lock, flags);
		gpio_data = RD_REG_DWORD(&reg->gpiod);

		/* Enable the gpio_data reg for update. */
		gpio_data |= GPDX_LED_UPDATE_MASK;
		WRT_REG_DWORD(&reg->gpiod, gpio_data);
		RD_REG_DWORD(&reg->gpiod);

		spin_unlock_irqrestore(&ha->hardware_lock, flags);
	}

	/* So all colors blink together. */
	ha->beacon_color_state = 0;

	/* Let the per HBA timer kick off the blinking process. */
	ha->beacon_blink_led = 1;

	return QLA_SUCCESS;
}

int
1641
qla24xx_beacon_off(struct scsi_qla_host *vha)
1642 1643 1644
{
	uint32_t gpio_data;
	unsigned long flags;
1645
	struct qla_hw_data *ha = vha->hw;
1646 1647
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

1648 1649 1650
	if (IS_QLA82XX(ha))
		return QLA_SUCCESS;

1651 1652 1653
	ha->beacon_blink_led = 0;
	ha->beacon_color_state = QLA_LED_ALL_ON;

1654
	ha->isp_ops->beacon_blink(vha);	/* Will flip to all off. */
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667

	/* Give control back to firmware. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	gpio_data = RD_REG_DWORD(&reg->gpiod);

	/* Disable the gpio_data reg for update. */
	gpio_data &= ~GPDX_LED_UPDATE_MASK;
	WRT_REG_DWORD(&reg->gpiod, gpio_data);
	RD_REG_DWORD(&reg->gpiod);
	spin_unlock_irqrestore(&ha->hardware_lock, flags);

	ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;

1668
	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1669 1670 1671 1672 1673
		qla_printk(KERN_WARNING, ha,
		    "Unable to update fw options (beacon off).\n");
		return QLA_FUNCTION_FAILED;
	}

1674
	if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1675 1676 1677 1678 1679 1680 1681
		qla_printk(KERN_WARNING, ha,
		    "Unable to get fw options (beacon off).\n");
		return QLA_FUNCTION_FAILED;
	}

	return QLA_SUCCESS;
}
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692


/*
 * Flash support routines
 */

/**
 * qla2x00_flash_enable() - Setup flash for reading and writing.
 * @ha: HA context
 */
static void
1693
qla2x00_flash_enable(struct qla_hw_data *ha)
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
{
	uint16_t data;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	data = RD_REG_WORD(&reg->ctrl_status);
	data |= CSR_FLASH_ENABLE;
	WRT_REG_WORD(&reg->ctrl_status, data);
	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
}

/**
 * qla2x00_flash_disable() - Disable flash and allow RISC to run.
 * @ha: HA context
 */
static void
1709
qla2x00_flash_disable(struct qla_hw_data *ha)
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
{
	uint16_t data;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	data = RD_REG_WORD(&reg->ctrl_status);
	data &= ~(CSR_FLASH_ENABLE);
	WRT_REG_WORD(&reg->ctrl_status, data);
	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
}

/**
 * qla2x00_read_flash_byte() - Reads a byte from flash
 * @ha: HA context
 * @addr: Address in flash to read
 *
 * A word is read from the chip, but, only the lower byte is valid.
 *
 * Returns the byte read from flash @addr.
 */
static uint8_t
1730
qla2x00_read_flash_byte(struct qla_hw_data *ha, uint32_t addr)
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
{
	uint16_t data;
	uint16_t bank_select;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	bank_select = RD_REG_WORD(&reg->ctrl_status);

	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
		/* Specify 64K address range: */
		/*  clear out Module Select and Flash Address bits [19:16]. */
		bank_select &= ~0xf8;
		bank_select |= addr >> 12 & 0xf0;
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */

		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		data = RD_REG_WORD(&reg->flash_data);

		return (uint8_t)data;
	}

	/* Setup bit 16 of flash address. */
	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	} else if (((addr & BIT_16) == 0) &&
	    (bank_select & CSR_FLASH_64K_BANK)) {
		bank_select &= ~(CSR_FLASH_64K_BANK);
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	}

	/* Always perform IO mapped accesses to the FLASH registers. */
	if (ha->pio_address) {
		uint16_t data2;

1769
		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1770
		do {
1771
			data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1772 1773
			barrier();
			cpu_relax();
1774
			data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
		} while (data != data2);
	} else {
		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		data = qla2x00_debounce_register(&reg->flash_data);
	}

	return (uint8_t)data;
}

/**
 * qla2x00_write_flash_byte() - Write a byte to flash
 * @ha: HA context
 * @addr: Address in flash to write
 * @data: Data to write
 */
static void
1791
qla2x00_write_flash_byte(struct qla_hw_data *ha, uint32_t addr, uint8_t data)
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
{
	uint16_t bank_select;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	bank_select = RD_REG_WORD(&reg->ctrl_status);
	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
		/* Specify 64K address range: */
		/*  clear out Module Select and Flash Address bits [19:16]. */
		bank_select &= ~0xf8;
		bank_select |= addr >> 12 & 0xf0;
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */

		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */

		return;
	}

	/* Setup bit 16 of flash address. */
	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	} else if (((addr & BIT_16) == 0) &&
	    (bank_select & CSR_FLASH_64K_BANK)) {
		bank_select &= ~(CSR_FLASH_64K_BANK);
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	}

	/* Always perform IO mapped accesses to the FLASH registers. */
	if (ha->pio_address) {
1828 1829
		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
		WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
	} else {
		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
	}
}

/**
 * qla2x00_poll_flash() - Polls flash for completion.
 * @ha: HA context
 * @addr: Address in flash to poll
 * @poll_data: Data to be polled
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * This function polls the device until bit 7 of what is read matches data
 * bit 7 or until data bit 5 becomes a 1.  If that hapens, the flash ROM timed
 * out (a fatal error).  The flash book recommeds reading bit 7 again after
 * reading bit 5 as a 1.
 *
 * Returns 0 on success, else non-zero.
 */
static int
1854
qla2x00_poll_flash(struct qla_hw_data *ha, uint32_t addr, uint8_t poll_data,
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
    uint8_t man_id, uint8_t flash_id)
{
	int status;
	uint8_t flash_data;
	uint32_t cnt;

	status = 1;

	/* Wait for 30 seconds for command to finish. */
	poll_data &= BIT_7;
	for (cnt = 3000000; cnt; cnt--) {
		flash_data = qla2x00_read_flash_byte(ha, addr);
		if ((flash_data & BIT_7) == poll_data) {
			status = 0;
			break;
		}

		if (man_id != 0x40 && man_id != 0xda) {
			if ((flash_data & BIT_5) && cnt > 2)
				cnt = 2;
		}
		udelay(10);
		barrier();
1878
		cond_resched();
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
	}
	return status;
}

/**
 * qla2x00_program_flash_address() - Programs a flash address
 * @ha: HA context
 * @addr: Address in flash to program
 * @data: Data to be written in flash
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * Returns 0 on success, else non-zero.
 */
static int
1894 1895
qla2x00_program_flash_address(struct qla_hw_data *ha, uint32_t addr,
    uint8_t data, uint8_t man_id, uint8_t flash_id)
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
{
	/* Write Program Command Sequence. */
	if (IS_OEM_001(ha)) {
		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
		qla2x00_write_flash_byte(ha, 0x555, 0x55);
		qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
		qla2x00_write_flash_byte(ha, addr, data);
	} else {
		if (man_id == 0xda && flash_id == 0xc1) {
			qla2x00_write_flash_byte(ha, addr, data);
			if (addr & 0x7e)
				return 0;
		} else {
			qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
			qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
			qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
			qla2x00_write_flash_byte(ha, addr, data);
		}
	}

	udelay(150);

	/* Wait for write to complete. */
	return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
}

/**
 * qla2x00_erase_flash() - Erase the flash.
 * @ha: HA context
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * Returns 0 on success, else non-zero.
 */
static int
1931
qla2x00_erase_flash(struct qla_hw_data *ha, uint8_t man_id, uint8_t flash_id)
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
{
	/* Individual Sector Erase Command Sequence */
	if (IS_OEM_001(ha)) {
		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
		qla2x00_write_flash_byte(ha, 0x555, 0x55);
		qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
		qla2x00_write_flash_byte(ha, 0x555, 0x55);
		qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
	} else {
		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
		qla2x00_write_flash_byte(ha, 0x5555, 0x80);
		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
		qla2x00_write_flash_byte(ha, 0x5555, 0x10);
	}

	udelay(150);

	/* Wait for erase to complete. */
	return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
}

/**
 * qla2x00_erase_flash_sector() - Erase a flash sector.
 * @ha: HA context
 * @addr: Flash sector to erase
 * @sec_mask: Sector address mask
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * Returns 0 on success, else non-zero.
 */
static int
1967
qla2x00_erase_flash_sector(struct qla_hw_data *ha, uint32_t addr,
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
    uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
{
	/* Individual Sector Erase Command Sequence */
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	qla2x00_write_flash_byte(ha, 0x5555, 0x80);
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	if (man_id == 0x1f && flash_id == 0x13)
		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
	else
		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);

	udelay(150);

	/* Wait for erase to complete. */
	return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
}

/**
 * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 */
static void
1993
qla2x00_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
    uint8_t *flash_id)
{
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	qla2x00_write_flash_byte(ha, 0x5555, 0x90);
	*man_id = qla2x00_read_flash_byte(ha, 0x0000);
	*flash_id = qla2x00_read_flash_byte(ha, 0x0001);
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
}

2006
static void
2007 2008
qla2x00_read_flash_data(struct qla_hw_data *ha, uint8_t *tmp_buf,
	uint32_t saddr, uint32_t length)
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
{
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
	uint32_t midpoint, ilength;
	uint8_t data;

	midpoint = length / 2;

	WRT_REG_WORD(&reg->nvram, 0);
	RD_REG_WORD(&reg->nvram);
	for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
		if (ilength == midpoint) {
			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
			RD_REG_WORD(&reg->nvram);
		}
		data = qla2x00_read_flash_byte(ha, saddr);
		if (saddr % 100)
			udelay(10);
		*tmp_buf = data;
2027
		cond_resched();
2028 2029
	}
}
2030 2031

static inline void
2032
qla2x00_suspend_hba(struct scsi_qla_host *vha)
2033 2034 2035
{
	int cnt;
	unsigned long flags;
2036
	struct qla_hw_data *ha = vha->hw;
2037 2038 2039
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	/* Suspend HBA. */
2040
	scsi_block_requests(vha->host);
2041
	ha->isp_ops->disable_intrs(ha);
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);

	/* Pause RISC. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
	RD_REG_WORD(&reg->hccr);
	if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
		for (cnt = 0; cnt < 30000; cnt++) {
			if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
				break;
			udelay(100);
		}
	} else {
		udelay(10);
	}
	spin_unlock_irqrestore(&ha->hardware_lock, flags);
}

static inline void
2061
qla2x00_resume_hba(struct scsi_qla_host *vha)
2062
{
2063 2064
	struct qla_hw_data *ha = vha->hw;

2065 2066
	/* Resume HBA. */
	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2067 2068
	set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
	qla2xxx_wake_dpc(vha);
2069
	qla2x00_wait_for_chip_reset(vha);
2070
	scsi_unblock_requests(vha->host);
2071 2072 2073
}

uint8_t *
2074
qla2x00_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2075 2076 2077 2078
    uint32_t offset, uint32_t length)
{
	uint32_t addr, midpoint;
	uint8_t *data;
2079
	struct qla_hw_data *ha = vha->hw;
2080 2081 2082
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	/* Suspend HBA. */
2083
	qla2x00_suspend_hba(vha);
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101

	/* Go with read. */
	midpoint = ha->optrom_size / 2;

	qla2x00_flash_enable(ha);
	WRT_REG_WORD(&reg->nvram, 0);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	for (addr = offset, data = buf; addr < length; addr++, data++) {
		if (addr == midpoint) {
			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
			RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
		}

		*data = qla2x00_read_flash_byte(ha, addr);
	}
	qla2x00_flash_disable(ha);

	/* Resume HBA. */
2102
	qla2x00_resume_hba(vha);
2103 2104 2105 2106 2107

	return buf;
}

int
2108
qla2x00_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2109 2110 2111 2112 2113 2114 2115
    uint32_t offset, uint32_t length)
{

	int rval;
	uint8_t man_id, flash_id, sec_number, data;
	uint16_t wd;
	uint32_t addr, liter, sec_mask, rest_addr;
2116
	struct qla_hw_data *ha = vha->hw;
2117 2118 2119
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	/* Suspend HBA. */
2120
	qla2x00_suspend_hba(vha);
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313

	rval = QLA_SUCCESS;
	sec_number = 0;

	/* Reset ISP chip. */
	WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
	pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);

	/* Go with write. */
	qla2x00_flash_enable(ha);
	do {	/* Loop once to provide quick error exit */
		/* Structure of flash memory based on manufacturer */
		if (IS_OEM_001(ha)) {
			/* OEM variant with special flash part. */
			man_id = flash_id = 0;
			rest_addr = 0xffff;
			sec_mask   = 0x10000;
			goto update_flash;
		}
		qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
		switch (man_id) {
		case 0x20: /* ST flash. */
			if (flash_id == 0xd2 || flash_id == 0xe3) {
				/*
				 * ST m29w008at part - 64kb sector size with
				 * 32kb,8kb,8kb,16kb sectors at memory address
				 * 0xf0000.
				 */
				rest_addr = 0xffff;
				sec_mask = 0x10000;
				break;   
			}
			/*
			 * ST m29w010b part - 16kb sector size
			 * Default to 16kb sectors
			 */
			rest_addr = 0x3fff;
			sec_mask = 0x1c000;
			break;
		case 0x40: /* Mostel flash. */
			/* Mostel v29c51001 part - 512 byte sector size. */
			rest_addr = 0x1ff;
			sec_mask = 0x1fe00;
			break;
		case 0xbf: /* SST flash. */
			/* SST39sf10 part - 4kb sector size. */
			rest_addr = 0xfff;
			sec_mask = 0x1f000;
			break;
		case 0xda: /* Winbond flash. */
			/* Winbond W29EE011 part - 256 byte sector size. */
			rest_addr = 0x7f;
			sec_mask = 0x1ff80;
			break;
		case 0xc2: /* Macronix flash. */
			/* 64k sector size. */
			if (flash_id == 0x38 || flash_id == 0x4f) {
				rest_addr = 0xffff;
				sec_mask = 0x10000;
				break;
			}
			/* Fall through... */

		case 0x1f: /* Atmel flash. */
			/* 512k sector size. */
			if (flash_id == 0x13) {
				rest_addr = 0x7fffffff;
				sec_mask =   0x80000000;
				break;
			}
			/* Fall through... */

		case 0x01: /* AMD flash. */
			if (flash_id == 0x38 || flash_id == 0x40 ||
			    flash_id == 0x4f) {
				/* Am29LV081 part - 64kb sector size. */
				/* Am29LV002BT part - 64kb sector size. */
				rest_addr = 0xffff;
				sec_mask = 0x10000;
				break;
			} else if (flash_id == 0x3e) {
				/*
				 * Am29LV008b part - 64kb sector size with
				 * 32kb,8kb,8kb,16kb sector at memory address
				 * h0xf0000.
				 */
				rest_addr = 0xffff;
				sec_mask = 0x10000;
				break;
			} else if (flash_id == 0x20 || flash_id == 0x6e) {
				/*
				 * Am29LV010 part or AM29f010 - 16kb sector
				 * size.
				 */
				rest_addr = 0x3fff;
				sec_mask = 0x1c000;
				break;
			} else if (flash_id == 0x6d) {
				/* Am29LV001 part - 8kb sector size. */
				rest_addr = 0x1fff;
				sec_mask = 0x1e000;
				break;
			}
		default:
			/* Default to 16 kb sector size. */
			rest_addr = 0x3fff;
			sec_mask = 0x1c000;
			break;
		}

update_flash:
		if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
			if (qla2x00_erase_flash(ha, man_id, flash_id)) {
				rval = QLA_FUNCTION_FAILED;
				break;
			}
		}

		for (addr = offset, liter = 0; liter < length; liter++,
		    addr++) {
			data = buf[liter];
			/* Are we at the beginning of a sector? */
			if ((addr & rest_addr) == 0) {
				if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
					if (addr >= 0x10000UL) {
						if (((addr >> 12) & 0xf0) &&
						    ((man_id == 0x01 &&
							flash_id == 0x3e) ||
						     (man_id == 0x20 &&
							 flash_id == 0xd2))) {
							sec_number++;
							if (sec_number == 1) {
								rest_addr =
								    0x7fff;
								sec_mask =
								    0x18000;
							} else if (
							    sec_number == 2 ||
							    sec_number == 3) {
								rest_addr =
								    0x1fff;
								sec_mask =
								    0x1e000;
							} else if (
							    sec_number == 4) {
								rest_addr =
								    0x3fff;
								sec_mask =
								    0x1c000;
							}
						}
					}
				} else if (addr == ha->optrom_size / 2) {
					WRT_REG_WORD(&reg->nvram, NVR_SELECT);
					RD_REG_WORD(&reg->nvram);
				}

				if (flash_id == 0xda && man_id == 0xc1) {
					qla2x00_write_flash_byte(ha, 0x5555,
					    0xaa);
					qla2x00_write_flash_byte(ha, 0x2aaa,
					    0x55);
					qla2x00_write_flash_byte(ha, 0x5555,
					    0xa0);
				} else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
					/* Then erase it */
					if (qla2x00_erase_flash_sector(ha,
					    addr, sec_mask, man_id,
					    flash_id)) {
						rval = QLA_FUNCTION_FAILED;
						break;
					}
					if (man_id == 0x01 && flash_id == 0x6d)
						sec_number++;
				}
			}

			if (man_id == 0x01 && flash_id == 0x6d) {
				if (sec_number == 1 &&
				    addr == (rest_addr - 1)) {
					rest_addr = 0x0fff;
					sec_mask   = 0x1f000;
				} else if (sec_number == 3 && (addr & 0x7ffe)) {
					rest_addr = 0x3fff;
					sec_mask   = 0x1c000;
				}
			}

			if (qla2x00_program_flash_address(ha, addr, data,
			    man_id, flash_id)) {
				rval = QLA_FUNCTION_FAILED;
				break;
			}
2314
			cond_resched();
2315 2316 2317 2318 2319
		}
	} while (0);
	qla2x00_flash_disable(ha);

	/* Resume HBA. */
2320
	qla2x00_resume_hba(vha);
2321 2322 2323 2324 2325

	return rval;
}

uint8_t *
2326
qla24xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2327 2328
    uint32_t offset, uint32_t length)
{
2329 2330
	struct qla_hw_data *ha = vha->hw;

2331
	/* Suspend HBA. */
2332
	scsi_block_requests(vha->host);
2333 2334 2335
	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);

	/* Go with read. */
2336
	qla24xx_read_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2);
2337 2338 2339

	/* Resume HBA. */
	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2340
	scsi_unblock_requests(vha->host);
2341 2342 2343 2344 2345

	return buf;
}

int
2346
qla24xx_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2347 2348 2349
    uint32_t offset, uint32_t length)
{
	int rval;
2350
	struct qla_hw_data *ha = vha->hw;
2351 2352

	/* Suspend HBA. */
2353
	scsi_block_requests(vha->host);
2354 2355 2356
	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);

	/* Go with write. */
2357
	rval = qla24xx_write_flash_data(vha, (uint32_t *)buf, offset >> 2,
2358 2359 2360
	    length >> 2);

	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2361
	scsi_unblock_requests(vha->host);
2362 2363 2364

	return rval;
}
2365

2366
uint8_t *
2367
qla25xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2368 2369 2370 2371 2372 2373 2374
    uint32_t offset, uint32_t length)
{
	int rval;
	dma_addr_t optrom_dma;
	void *optrom;
	uint8_t *pbuf;
	uint32_t faddr, left, burst;
2375
	struct qla_hw_data *ha = vha->hw;
2376

2377 2378
	if (IS_QLA25XX(ha) || IS_QLA81XX(ha))
		goto try_fast;
2379
	if (offset & 0xfff)
2380 2381 2382 2383
		goto slow_read;
	if (length < OPTROM_BURST_SIZE)
		goto slow_read;

2384
try_fast:
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
	optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
	    &optrom_dma, GFP_KERNEL);
	if (!optrom) {
		qla_printk(KERN_DEBUG, ha,
		    "Unable to allocate memory for optrom burst read "
		    "(%x KB).\n", OPTROM_BURST_SIZE / 1024);

		goto slow_read;
	}

	pbuf = buf;
	faddr = offset >> 2;
	left = length >> 2;
	burst = OPTROM_BURST_DWORDS;
	while (left != 0) {
		if (burst > left)
			burst = left;

2403
		rval = qla2x00_dump_ram(vha, optrom_dma,
2404
		    flash_data_addr(ha, faddr), burst);
2405 2406 2407 2408
		if (rval) {
			qla_printk(KERN_WARNING, ha,
			    "Unable to burst-read optrom segment "
			    "(%x/%x/%llx).\n", rval,
2409
			    flash_data_addr(ha, faddr),
A
Andrew Morton 已提交
2410
			    (unsigned long long)optrom_dma);
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
			qla_printk(KERN_WARNING, ha,
			    "Reverting to slow-read.\n");

			dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
			    optrom, optrom_dma);
			goto slow_read;
		}

		memcpy(pbuf, optrom, burst * 4);

		left -= burst;
		faddr += burst;
		pbuf += burst * 4;
	}

	dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
	    optrom_dma);

	return buf;

slow_read:
2432
    return qla24xx_read_optrom_data(vha, buf, offset, length);
2433 2434
}

2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
/**
 * qla2x00_get_fcode_version() - Determine an FCODE image's version.
 * @ha: HA context
 * @pcids: Pointer to the FCODE PCI data structure
 *
 * The process of retrieving the FCODE version information is at best
 * described as interesting.
 *
 * Within the first 100h bytes of the image an ASCII string is present
 * which contains several pieces of information including the FCODE
 * version.  Unfortunately it seems the only reliable way to retrieve
 * the version is by scanning for another sentinel within the string,
 * the FCODE build date:
 *
 *	... 2.00.02 10/17/02 ...
 *
 * Returns QLA_SUCCESS on successful retrieval of version.
 */
static void
2454
qla2x00_get_fcode_version(struct qla_hw_data *ha, uint32_t pcids)
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
{
	int ret = QLA_FUNCTION_FAILED;
	uint32_t istart, iend, iter, vend;
	uint8_t do_next, rbyte, *vbyte;

	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));

	/* Skip the PCI data structure. */
	istart = pcids +
	    ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
		qla2x00_read_flash_byte(ha, pcids + 0x0A));
	iend = istart + 0x100;
	do {
		/* Scan for the sentinel date string...eeewww. */
		do_next = 0;
		iter = istart;
		while ((iter < iend) && !do_next) {
			iter++;
			if (qla2x00_read_flash_byte(ha, iter) == '/') {
				if (qla2x00_read_flash_byte(ha, iter + 2) ==
				    '/')
					do_next++;
				else if (qla2x00_read_flash_byte(ha,
				    iter + 3) == '/')
					do_next++;
			}
		}
		if (!do_next)
			break;

		/* Backtrack to previous ' ' (space). */
		do_next = 0;
		while ((iter > istart) && !do_next) {
			iter--;
			if (qla2x00_read_flash_byte(ha, iter) == ' ')
				do_next++;
		}
		if (!do_next)
			break;

		/*
		 * Mark end of version tag, and find previous ' ' (space) or
		 * string length (recent FCODE images -- major hack ahead!!!).
		 */
		vend = iter - 1;
		do_next = 0;
		while ((iter > istart) && !do_next) {
			iter--;
			rbyte = qla2x00_read_flash_byte(ha, iter);
			if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
				do_next++;
		}
		if (!do_next)
			break;

		/* Mark beginning of version tag, and copy data. */
		iter++;
		if ((vend - iter) &&
		    ((vend - iter) < sizeof(ha->fcode_revision))) {
			vbyte = ha->fcode_revision;
			while (iter <= vend) {
				*vbyte++ = qla2x00_read_flash_byte(ha, iter);
				iter++;
			}
			ret = QLA_SUCCESS;
		}
	} while (0);

	if (ret != QLA_SUCCESS)
		memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
}

int
2528
qla2x00_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2529 2530 2531 2532 2533 2534
{
	int ret = QLA_SUCCESS;
	uint8_t code_type, last_image;
	uint32_t pcihdr, pcids;
	uint8_t *dbyte;
	uint16_t *dcode;
2535
	struct qla_hw_data *ha = vha->hw;
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554

	if (!ha->pio_address || !mbuf)
		return QLA_FUNCTION_FAILED;

	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));

	qla2x00_flash_enable(ha);

	/* Begin with first PCI expansion ROM header. */
	pcihdr = 0;
	last_image = 1;
	do {
		/* Verify PCI expansion ROM header. */
		if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
		    qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
			/* No signature */
2555 2556
			DEBUG2(qla_printk(KERN_DEBUG, ha, "No matching ROM "
			    "signature.\n"));
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Locate PCI data structure. */
		pcids = pcihdr +
		    ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
			qla2x00_read_flash_byte(ha, pcihdr + 0x18));

		/* Validate signature of PCI data structure. */
		if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
		    qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
		    qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
		    qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
			/* Incorrect header. */
2572 2573
			DEBUG2(qla_printk(KERN_INFO, ha, "PCI data struct not "
			    "found pcir_adr=%x.\n", pcids));
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Read version */
		code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
		switch (code_type) {
		case ROM_CODE_TYPE_BIOS:
			/* Intel x86, PC-AT compatible. */
			ha->bios_revision[0] =
			    qla2x00_read_flash_byte(ha, pcids + 0x12);
			ha->bios_revision[1] =
			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2587
			DEBUG3(qla_printk(KERN_DEBUG, ha, "read BIOS %d.%d.\n",
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
			    ha->bios_revision[1], ha->bios_revision[0]));
			break;
		case ROM_CODE_TYPE_FCODE:
			/* Open Firmware standard for PCI (FCode). */
			/* Eeeewww... */
			qla2x00_get_fcode_version(ha, pcids);
			break;
		case ROM_CODE_TYPE_EFI:
			/* Extensible Firmware Interface (EFI). */
			ha->efi_revision[0] =
			    qla2x00_read_flash_byte(ha, pcids + 0x12);
			ha->efi_revision[1] =
			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2601
			DEBUG3(qla_printk(KERN_DEBUG, ha, "read EFI %d.%d.\n",
2602 2603 2604
			    ha->efi_revision[1], ha->efi_revision[0]));
			break;
		default:
2605 2606
			DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized code "
			    "type %x at pcids %x.\n", code_type, pcids));
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
			break;
		}

		last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;

		/* Locate next PCI expansion ROM. */
		pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
		    qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
	} while (!last_image);

	if (IS_QLA2322(ha)) {
		/* Read firmware image information. */
		memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
		dbyte = mbuf;
		memset(dbyte, 0, 8);
		dcode = (uint16_t *)dbyte;

2624
		qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10,
2625
		    8);
2626 2627
		DEBUG3(qla_printk(KERN_DEBUG, ha, "dumping fw ver from "
		    "flash:\n"));
2628 2629 2630 2631 2632 2633
		DEBUG3(qla2x00_dump_buffer((uint8_t *)dbyte, 8));

		if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
		    dcode[2] == 0xffff && dcode[3] == 0xffff) ||
		    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
		    dcode[3] == 0)) {
2634 2635
			DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized fw "
			    "revision at %x.\n", ha->flt_region_fw * 4));
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
		} else {
			/* values are in big endian */
			ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
			ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
			ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
		}
	}

	qla2x00_flash_disable(ha);

	return ret;
}

int
2650
qla24xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2651 2652 2653 2654 2655 2656 2657
{
	int ret = QLA_SUCCESS;
	uint32_t pcihdr, pcids;
	uint32_t *dcode;
	uint8_t *bcode;
	uint8_t code_type, last_image;
	int i;
2658
	struct qla_hw_data *ha = vha->hw;
2659

2660 2661 2662
	if (IS_QLA82XX(ha))
		return ret;

2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
	if (!mbuf)
		return QLA_FUNCTION_FAILED;

	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));

	dcode = mbuf;

	/* Begin with first PCI expansion ROM header. */
2674
	pcihdr = ha->flt_region_boot << 2;
2675 2676 2677
	last_image = 1;
	do {
		/* Verify PCI expansion ROM header. */
2678
		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
2679 2680 2681
		bcode = mbuf + (pcihdr % 4);
		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
			/* No signature */
2682 2683
			DEBUG2(qla_printk(KERN_DEBUG, ha, "No matching ROM "
			    "signature.\n"));
2684 2685 2686 2687 2688 2689 2690
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Locate PCI data structure. */
		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);

2691
		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
2692 2693 2694 2695 2696 2697
		bcode = mbuf + (pcihdr % 4);

		/* Validate signature of PCI data structure. */
		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
		    bcode[0x2] != 'I' || bcode[0x3] != 'R') {
			/* Incorrect header. */
2698 2699
			DEBUG2(qla_printk(KERN_INFO, ha, "PCI data struct not "
			    "found pcir_adr=%x.\n", pcids));
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Read version */
		code_type = bcode[0x14];
		switch (code_type) {
		case ROM_CODE_TYPE_BIOS:
			/* Intel x86, PC-AT compatible. */
			ha->bios_revision[0] = bcode[0x12];
			ha->bios_revision[1] = bcode[0x13];
2711
			DEBUG3(qla_printk(KERN_DEBUG, ha, "read BIOS %d.%d.\n",
2712 2713 2714 2715 2716 2717
			    ha->bios_revision[1], ha->bios_revision[0]));
			break;
		case ROM_CODE_TYPE_FCODE:
			/* Open Firmware standard for PCI (FCode). */
			ha->fcode_revision[0] = bcode[0x12];
			ha->fcode_revision[1] = bcode[0x13];
2718
			DEBUG3(qla_printk(KERN_DEBUG, ha, "read FCODE %d.%d.\n",
2719 2720 2721 2722 2723 2724
			    ha->fcode_revision[1], ha->fcode_revision[0]));
			break;
		case ROM_CODE_TYPE_EFI:
			/* Extensible Firmware Interface (EFI). */
			ha->efi_revision[0] = bcode[0x12];
			ha->efi_revision[1] = bcode[0x13];
2725
			DEBUG3(qla_printk(KERN_DEBUG, ha, "read EFI %d.%d.\n",
2726 2727 2728
			    ha->efi_revision[1], ha->efi_revision[0]));
			break;
		default:
2729 2730
			DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized code "
			    "type %x at pcids %x.\n", code_type, pcids));
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
			break;
		}

		last_image = bcode[0x15] & BIT_7;

		/* Locate next PCI expansion ROM. */
		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
	} while (!last_image);

	/* Read firmware image information. */
	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
	dcode = mbuf;

2744
	qla24xx_read_flash_data(vha, dcode, ha->flt_region_fw + 4, 4);
2745 2746 2747 2748 2749 2750 2751
	for (i = 0; i < 4; i++)
		dcode[i] = be32_to_cpu(dcode[i]);

	if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
	    dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
	    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
	    dcode[3] == 0)) {
2752 2753
		DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized fw "
		    "revision at %x.\n", ha->flt_region_fw * 4));
2754 2755 2756 2757 2758 2759 2760 2761 2762
	} else {
		ha->fw_revision[0] = dcode[0];
		ha->fw_revision[1] = dcode[1];
		ha->fw_revision[2] = dcode[2];
		ha->fw_revision[3] = dcode[3];
	}

	return ret;
}
2763

2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
static int
qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end)
{
	if (pos >= end || *pos != 0x82)
		return 0;

	pos += 3 + pos[1];
	if (pos >= end || *pos != 0x90)
		return 0;

	pos += 3 + pos[1];
	if (pos >= end || *pos != 0x78)
		return 0;

	return 1;
}

int
2782
qla2xxx_get_vpd_field(scsi_qla_host_t *vha, char *key, char *str, size_t size)
2783
{
2784
	struct qla_hw_data *ha = vha->hw;
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
	uint8_t *pos = ha->vpd;
	uint8_t *end = pos + ha->vpd_size;
	int len = 0;

	if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end))
		return 0;

	while (pos < end && *pos != 0x78) {
		len = (*pos == 0x82) ? pos[1] : pos[2];

		if (!strncmp(pos, key, strlen(key)))
			break;

		if (*pos != 0x90 && *pos != 0x91)
			pos += len;

		pos += 3;
	}

	if (pos < end - len && *pos != 0x78)
		return snprintf(str, size, "%.*s", len, pos + 3);

	return 0;
}
S
Sarang Radke 已提交
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855

int
qla24xx_read_fcp_prio_cfg(scsi_qla_host_t *vha)
{
	int len, max_len;
	uint32_t fcp_prio_addr;
	struct qla_hw_data *ha = vha->hw;

	if (!ha->fcp_prio_cfg) {
		ha->fcp_prio_cfg = vmalloc(FCP_PRIO_CFG_SIZE);
		if (!ha->fcp_prio_cfg) {
			qla_printk(KERN_WARNING, ha,
			"Unable to allocate memory for fcp priority data "
					"(%x).\n", FCP_PRIO_CFG_SIZE);
			return QLA_FUNCTION_FAILED;
		}
	}
	memset(ha->fcp_prio_cfg, 0, FCP_PRIO_CFG_SIZE);

	fcp_prio_addr = ha->flt_region_fcp_prio;

	/* first read the fcp priority data header from flash */
	ha->isp_ops->read_optrom(vha, (uint8_t *)ha->fcp_prio_cfg,
			fcp_prio_addr << 2, FCP_PRIO_CFG_HDR_SIZE);

	if (!qla24xx_fcp_prio_cfg_valid(ha->fcp_prio_cfg, 0))
		goto fail;

	/* read remaining FCP CMD config data from flash */
	fcp_prio_addr += (FCP_PRIO_CFG_HDR_SIZE >> 2);
	len = ha->fcp_prio_cfg->num_entries * FCP_PRIO_CFG_ENTRY_SIZE;
	max_len = FCP_PRIO_CFG_SIZE - FCP_PRIO_CFG_HDR_SIZE;

	ha->isp_ops->read_optrom(vha, (uint8_t *)&ha->fcp_prio_cfg->entry[0],
			fcp_prio_addr << 2, (len < max_len ? len : max_len));

	/* revalidate the entire FCP priority config data, including entries */
	if (!qla24xx_fcp_prio_cfg_valid(ha->fcp_prio_cfg, 1))
		goto fail;

	ha->flags.fcp_prio_enabled = 1;
	return QLA_SUCCESS;
fail:
	vfree(ha->fcp_prio_cfg);
	ha->fcp_prio_cfg = NULL;
	return QLA_FUNCTION_FAILED;
}