qla_sup.c 75.2 KB
Newer Older
A
Andrew Vasquez 已提交
1 2
/*
 * QLogic Fibre Channel HBA Driver
3
 * Copyright (c)  2003-2011 QLogic Corporation
L
Linus Torvalds 已提交
4
 *
A
Andrew Vasquez 已提交
5 6
 * See LICENSE.qla2xxx for copyright and licensing details.
 */
L
Linus Torvalds 已提交
7 8 9
#include "qla_def.h"

#include <linux/delay.h>
10
#include <linux/slab.h>
11
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
12 13 14 15 16 17 18
#include <asm/uaccess.h>

/*
 * NVRAM support routines
 */

/**
A
Andrew Vasquez 已提交
19
 * qla2x00_lock_nvram_access() -
L
Linus Torvalds 已提交
20 21
 * @ha: HA context
 */
A
Adrian Bunk 已提交
22
static void
23
qla2x00_lock_nvram_access(struct qla_hw_data *ha)
L
Linus Torvalds 已提交
24 25
{
	uint16_t data;
26
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
		data = RD_REG_WORD(&reg->nvram);
		while (data & NVR_BUSY) {
			udelay(100);
			data = RD_REG_WORD(&reg->nvram);
		}

		/* Lock resource */
		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
		udelay(5);
		data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
		while ((data & BIT_0) == 0) {
			/* Lock failed */
			udelay(100);
			WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
			RD_REG_WORD(&reg->u.isp2300.host_semaphore);
			udelay(5);
			data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
		}
	}
}

/**
A
Andrew Vasquez 已提交
52
 * qla2x00_unlock_nvram_access() -
L
Linus Torvalds 已提交
53 54
 * @ha: HA context
 */
A
Adrian Bunk 已提交
55
static void
56
qla2x00_unlock_nvram_access(struct qla_hw_data *ha)
L
Linus Torvalds 已提交
57
{
58
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
L
Linus Torvalds 已提交
59 60 61 62 63 64 65

	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
	}
}

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
/**
 * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
 * @ha: HA context
 * @data: Serial interface selector
 */
static void
qla2x00_nv_write(struct qla_hw_data *ha, uint16_t data)
{
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_CLOCK |
	    NVR_WRT_ENABLE);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
}

/**
 * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
 *	NVRAM.
 * @ha: HA context
 * @nv_cmd: NVRAM command
 *
 * Bit definitions for NVRAM command:
 *
 *	Bit 26     = start bit
 *	Bit 25, 24 = opcode
 *	Bit 23-16  = address
 *	Bit 15-0   = write data
 *
 * Returns the word read from nvram @addr.
 */
static uint16_t
qla2x00_nvram_request(struct qla_hw_data *ha, uint32_t nv_cmd)
{
	uint8_t		cnt;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
	uint16_t	data = 0;
	uint16_t	reg_data;

	/* Send command to NVRAM. */
	nv_cmd <<= 5;
	for (cnt = 0; cnt < 11; cnt++) {
		if (nv_cmd & BIT_31)
			qla2x00_nv_write(ha, NVR_DATA_OUT);
		else
			qla2x00_nv_write(ha, 0);
		nv_cmd <<= 1;
	}

	/* Read data from NVRAM. */
	for (cnt = 0; cnt < 16; cnt++) {
		WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
		NVRAM_DELAY();
		data <<= 1;
		reg_data = RD_REG_WORD(&reg->nvram);
		if (reg_data & NVR_DATA_IN)
			data |= BIT_0;
		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
		NVRAM_DELAY();
	}

	/* Deselect chip. */
	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();

	return data;
}


L
Linus Torvalds 已提交
144 145 146 147 148 149 150 151
/**
 * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
 *	request routine to get the word from NVRAM.
 * @ha: HA context
 * @addr: Address in NVRAM to read
 *
 * Returns the word read from nvram @addr.
 */
A
Adrian Bunk 已提交
152
static uint16_t
153
qla2x00_get_nvram_word(struct qla_hw_data *ha, uint32_t addr)
L
Linus Torvalds 已提交
154 155 156 157 158 159 160 161 162 163 164
{
	uint16_t	data;
	uint32_t	nv_cmd;

	nv_cmd = addr << 16;
	nv_cmd |= NV_READ_OP;
	data = qla2x00_nvram_request(ha, nv_cmd);

	return (data);
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178
/**
 * qla2x00_nv_deselect() - Deselect NVRAM operations.
 * @ha: HA context
 */
static void
qla2x00_nv_deselect(struct qla_hw_data *ha)
{
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
}

L
Linus Torvalds 已提交
179 180 181 182 183 184
/**
 * qla2x00_write_nvram_word() - Write NVRAM data.
 * @ha: HA context
 * @addr: Address in NVRAM to write
 * @data: word to program
 */
A
Adrian Bunk 已提交
185
static void
186
qla2x00_write_nvram_word(struct qla_hw_data *ha, uint32_t addr, uint16_t data)
L
Linus Torvalds 已提交
187 188 189
{
	int count;
	uint16_t word;
190
	uint32_t nv_cmd, wait_cnt;
191
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
192
	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
L
Linus Torvalds 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219

	qla2x00_nv_write(ha, NVR_DATA_OUT);
	qla2x00_nv_write(ha, 0);
	qla2x00_nv_write(ha, 0);

	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT);

	qla2x00_nv_deselect(ha);

	/* Write data */
	nv_cmd = (addr << 16) | NV_WRITE_OP;
	nv_cmd |= data;
	nv_cmd <<= 5;
	for (count = 0; count < 27; count++) {
		if (nv_cmd & BIT_31)
			qla2x00_nv_write(ha, NVR_DATA_OUT);
		else
			qla2x00_nv_write(ha, 0);

		nv_cmd <<= 1;
	}

	qla2x00_nv_deselect(ha);

	/* Wait for NVRAM to become ready */
	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
220
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
221
	wait_cnt = NVR_WAIT_CNT;
L
Linus Torvalds 已提交
222
	do {
223
		if (!--wait_cnt) {
224 225
			ql_dbg(ql_dbg_user, vha, 0x708d,
			    "NVRAM didn't go ready...\n");
226 227
			break;
		}
L
Linus Torvalds 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241
		NVRAM_DELAY();
		word = RD_REG_WORD(&reg->nvram);
	} while ((word & NVR_DATA_IN) == 0);

	qla2x00_nv_deselect(ha);

	/* Disable writes */
	qla2x00_nv_write(ha, NVR_DATA_OUT);
	for (count = 0; count < 10; count++)
		qla2x00_nv_write(ha, 0);

	qla2x00_nv_deselect(ha);
}

242
static int
243 244
qla2x00_write_nvram_word_tmo(struct qla_hw_data *ha, uint32_t addr,
	uint16_t data, uint32_t tmo)
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
{
	int ret, count;
	uint16_t word;
	uint32_t nv_cmd;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	ret = QLA_SUCCESS;

	qla2x00_nv_write(ha, NVR_DATA_OUT);
	qla2x00_nv_write(ha, 0);
	qla2x00_nv_write(ha, 0);

	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT);

	qla2x00_nv_deselect(ha);

	/* Write data */
	nv_cmd = (addr << 16) | NV_WRITE_OP;
	nv_cmd |= data;
	nv_cmd <<= 5;
	for (count = 0; count < 27; count++) {
		if (nv_cmd & BIT_31)
			qla2x00_nv_write(ha, NVR_DATA_OUT);
		else
			qla2x00_nv_write(ha, 0);

		nv_cmd <<= 1;
	}

	qla2x00_nv_deselect(ha);

	/* Wait for NVRAM to become ready */
	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
279
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
	do {
		NVRAM_DELAY();
		word = RD_REG_WORD(&reg->nvram);
		if (!--tmo) {
			ret = QLA_FUNCTION_FAILED;
			break;
		}
	} while ((word & NVR_DATA_IN) == 0);

	qla2x00_nv_deselect(ha);

	/* Disable writes */
	qla2x00_nv_write(ha, NVR_DATA_OUT);
	for (count = 0; count < 10; count++)
		qla2x00_nv_write(ha, 0);

	qla2x00_nv_deselect(ha);

	return ret;
}

/**
 * qla2x00_clear_nvram_protection() -
 * @ha: HA context
 */
static int
306
qla2x00_clear_nvram_protection(struct qla_hw_data *ha)
307 308 309
{
	int ret, stat;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
310
	uint32_t word, wait_cnt;
311
	uint16_t wprot, wprot_old;
312
	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
313 314 315

	/* Clear NVRAM write protection. */
	ret = QLA_FUNCTION_FAILED;
316 317 318

	wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
	stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
319
	    __constant_cpu_to_le16(0x1234), 100000);
320 321
	wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
	if (stat != QLA_SUCCESS || wprot != 0x1234) {
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
		/* Write enable. */
		qla2x00_nv_write(ha, NVR_DATA_OUT);
		qla2x00_nv_write(ha, 0);
		qla2x00_nv_write(ha, 0);
		for (word = 0; word < 8; word++)
			qla2x00_nv_write(ha, NVR_DATA_OUT);

		qla2x00_nv_deselect(ha);

		/* Enable protection register. */
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		qla2x00_nv_write(ha, NVR_PR_ENABLE);
		qla2x00_nv_write(ha, NVR_PR_ENABLE);
		for (word = 0; word < 8; word++)
			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);

		qla2x00_nv_deselect(ha);

		/* Clear protection register (ffff is cleared). */
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		for (word = 0; word < 8; word++)
			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);

		qla2x00_nv_deselect(ha);

		/* Wait for NVRAM to become ready. */
		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
351
		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
352
		wait_cnt = NVR_WAIT_CNT;
353
		do {
354
			if (!--wait_cnt) {
355 356
				ql_dbg(ql_dbg_user, vha, 0x708e,
				    "NVRAM didn't go ready...\n");
357 358
				break;
			}
359 360 361 362
			NVRAM_DELAY();
			word = RD_REG_WORD(&reg->nvram);
		} while ((word & NVR_DATA_IN) == 0);

363 364
		if (wait_cnt)
			ret = QLA_SUCCESS;
365
	} else
366
		qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
367 368 369 370 371

	return ret;
}

static void
372
qla2x00_set_nvram_protection(struct qla_hw_data *ha, int stat)
373 374
{
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
375
	uint32_t word, wait_cnt;
376
	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410

	if (stat != QLA_SUCCESS)
		return;

	/* Set NVRAM write protection. */
	/* Write enable. */
	qla2x00_nv_write(ha, NVR_DATA_OUT);
	qla2x00_nv_write(ha, 0);
	qla2x00_nv_write(ha, 0);
	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT);

	qla2x00_nv_deselect(ha);

	/* Enable protection register. */
	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
	qla2x00_nv_write(ha, NVR_PR_ENABLE);
	qla2x00_nv_write(ha, NVR_PR_ENABLE);
	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);

	qla2x00_nv_deselect(ha);

	/* Enable protection register. */
	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
	qla2x00_nv_write(ha, NVR_PR_ENABLE);
	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_PR_ENABLE);

	qla2x00_nv_deselect(ha);

	/* Wait for NVRAM to become ready. */
	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
411
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
412
	wait_cnt = NVR_WAIT_CNT;
413
	do {
414
		if (!--wait_cnt) {
415 416
			ql_dbg(ql_dbg_user, vha, 0x708f,
			    "NVRAM didn't go ready...\n");
417 418
			break;
		}
419 420 421 422 423 424 425 426 427 428 429
		NVRAM_DELAY();
		word = RD_REG_WORD(&reg->nvram);
	} while ((word & NVR_DATA_IN) == 0);
}


/*****************************************************************************/
/* Flash Manipulation Routines                                               */
/*****************************************************************************/

static inline uint32_t
430
flash_conf_addr(struct qla_hw_data *ha, uint32_t faddr)
431
{
432
	return ha->flash_conf_off | faddr;
433 434 435
}

static inline uint32_t
436
flash_data_addr(struct qla_hw_data *ha, uint32_t faddr)
437
{
438
	return ha->flash_data_off | faddr;
439 440 441
}

static inline uint32_t
442
nvram_conf_addr(struct qla_hw_data *ha, uint32_t naddr)
443
{
444
	return ha->nvram_conf_off | naddr;
445 446 447
}

static inline uint32_t
448
nvram_data_addr(struct qla_hw_data *ha, uint32_t naddr)
449
{
450
	return ha->nvram_data_off | naddr;
451 452
}

453
static uint32_t
454
qla24xx_read_flash_dword(struct qla_hw_data *ha, uint32_t addr)
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
{
	int rval;
	uint32_t cnt, data;
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
	/* Wait for READ cycle to complete. */
	rval = QLA_SUCCESS;
	for (cnt = 3000;
	    (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
	    rval == QLA_SUCCESS; cnt--) {
		if (cnt)
			udelay(10);
		else
			rval = QLA_FUNCTION_TIMEOUT;
470
		cond_resched();
471 472 473 474 475 476 477 478 479 480 481
	}

	/* TODO: What happens if we time out? */
	data = 0xDEADDEAD;
	if (rval == QLA_SUCCESS)
		data = RD_REG_DWORD(&reg->flash_data);

	return data;
}

uint32_t *
482
qla24xx_read_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
483 484 485
    uint32_t dwords)
{
	uint32_t i;
486 487
	struct qla_hw_data *ha = vha->hw;

488 489
	/* Dword reads to flash. */
	for (i = 0; i < dwords; i++, faddr++)
490 491
		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
		    flash_data_addr(ha, faddr)));
492 493 494 495

	return dwptr;
}

496
static int
497
qla24xx_write_flash_dword(struct qla_hw_data *ha, uint32_t addr, uint32_t data)
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
{
	int rval;
	uint32_t cnt;
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	WRT_REG_DWORD(&reg->flash_data, data);
	RD_REG_DWORD(&reg->flash_data);		/* PCI Posting. */
	WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
	/* Wait for Write cycle to complete. */
	rval = QLA_SUCCESS;
	for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
	    rval == QLA_SUCCESS; cnt--) {
		if (cnt)
			udelay(10);
		else
			rval = QLA_FUNCTION_TIMEOUT;
514
		cond_resched();
515 516 517 518
	}
	return rval;
}

519
static void
520
qla24xx_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
521 522 523 524
    uint8_t *flash_id)
{
	uint32_t ids;

525
	ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x03ab));
526 527
	*man_id = LSB(ids);
	*flash_id = MSB(ids);
528 529 530 531 532 533 534 535 536

	/* Check if man_id and flash_id are valid. */
	if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
		/* Read information using 0x9f opcode
		 * Device ID, Mfg ID would be read in the format:
		 *   <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
		 * Example: ATMEL 0x00 01 45 1F
		 * Extract MFG and Dev ID from last two bytes.
		 */
537
		ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x009f));
538 539 540
		*man_id = LSB(ids);
		*flash_id = MSB(ids);
	}
541 542
}

543
static int
544
qla2xxx_find_flt_start(scsi_qla_host_t *vha, uint32_t *start)
545 546 547 548 549 550 551
{
	const char *loc, *locations[] = { "DEF", "PCI" };
	uint32_t pcihdr, pcids;
	uint32_t *dcode;
	uint8_t *buf, *bcode, last_image;
	uint16_t cnt, chksum, *wptr;
	struct qla_flt_location *fltl;
552
	struct qla_hw_data *ha = vha->hw;
553
	struct req_que *req = ha->req_q_map[0];
554 555 556 557 558 559 560

	/*
	 * FLT-location structure resides after the last PCI region.
	 */

	/* Begin with sane defaults. */
	loc = locations[0];
561 562 563 564 565 566 567
	*start = 0;
	if (IS_QLA24XX_TYPE(ha))
		*start = FA_FLASH_LAYOUT_ADDR_24;
	else if (IS_QLA25XX(ha))
		*start = FA_FLASH_LAYOUT_ADDR;
	else if (IS_QLA81XX(ha))
		*start = FA_FLASH_LAYOUT_ADDR_81;
568 569 570 571
	else if (IS_QLA82XX(ha)) {
		*start = FA_FLASH_LAYOUT_ADDR_82;
		goto end;
	}
572
	/* Begin with first PCI expansion ROM header. */
573 574
	buf = (uint8_t *)req->ring;
	dcode = (uint32_t *)req->ring;
575 576 577 578
	pcihdr = 0;
	last_image = 1;
	do {
		/* Verify PCI expansion ROM header. */
579
		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
580 581 582 583 584 585
		bcode = buf + (pcihdr % 4);
		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa)
			goto end;

		/* Locate PCI data structure. */
		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
586
		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
587 588 589 590 591 592 593 594 595 596 597 598 599 600
		bcode = buf + (pcihdr % 4);

		/* Validate signature of PCI data structure. */
		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
		    bcode[0x2] != 'I' || bcode[0x3] != 'R')
			goto end;

		last_image = bcode[0x15] & BIT_7;

		/* Locate next PCI expansion ROM. */
		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
	} while (!last_image);

	/* Now verify FLT-location structure. */
601 602
	fltl = (struct qla_flt_location *)req->ring;
	qla24xx_read_flash_data(vha, dcode, pcihdr >> 2,
603 604 605 606 607
	    sizeof(struct qla_flt_location) >> 2);
	if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' ||
	    fltl->sig[2] != 'L' || fltl->sig[3] != 'T')
		goto end;

608
	wptr = (uint16_t *)req->ring;
609 610 611 612
	cnt = sizeof(struct qla_flt_location) >> 1;
	for (chksum = 0; cnt; cnt--)
		chksum += le16_to_cpu(*wptr++);
	if (chksum) {
613
		ql_log(ql_log_fatal, vha, 0x0045,
614
		    "Inconsistent FLTL detected: checksum=0x%x.\n", chksum);
615 616
		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x010e,
		    buf, sizeof(struct qla_flt_location));
617 618 619 620 621
		return QLA_FUNCTION_FAILED;
	}

	/* Good data.  Use specified location. */
	loc = locations[1];
622 623
	*start = (le16_to_cpu(fltl->start_hi) << 16 |
	    le16_to_cpu(fltl->start_lo)) >> 2;
624
end:
625 626 627
	ql_dbg(ql_dbg_init, vha, 0x0046,
	    "FLTL[%s] = 0x%x.\n",
	    loc, *start);
628 629 630 631
	return QLA_SUCCESS;
}

static void
632
qla2xxx_get_flt_info(scsi_qla_host_t *vha, uint32_t flt_addr)
633 634
{
	const char *loc, *locations[] = { "DEF", "FLT" };
635 636 637 638 639 640
	const uint32_t def_fw[] =
		{ FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR_81 };
	const uint32_t def_boot[] =
		{ FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR_81 };
	const uint32_t def_vpd_nvram[] =
		{ FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR_81 };
641 642 643 644 645 646 647 648
	const uint32_t def_vpd0[] =
		{ 0, 0, FA_VPD0_ADDR_81 };
	const uint32_t def_vpd1[] =
		{ 0, 0, FA_VPD1_ADDR_81 };
	const uint32_t def_nvram0[] =
		{ 0, 0, FA_NVRAM0_ADDR_81 };
	const uint32_t def_nvram1[] =
		{ 0, 0, FA_NVRAM1_ADDR_81 };
649 650 651 652 653 654 655 656 657
	const uint32_t def_fdt[] =
		{ FA_FLASH_DESCR_ADDR_24, FA_FLASH_DESCR_ADDR,
			FA_FLASH_DESCR_ADDR_81 };
	const uint32_t def_npiv_conf0[] =
		{ FA_NPIV_CONF0_ADDR_24, FA_NPIV_CONF0_ADDR,
			FA_NPIV_CONF0_ADDR_81 };
	const uint32_t def_npiv_conf1[] =
		{ FA_NPIV_CONF1_ADDR_24, FA_NPIV_CONF1_ADDR,
			FA_NPIV_CONF1_ADDR_81 };
S
Sarang Radke 已提交
658 659 660 661 662 663
	const uint32_t fcp_prio_cfg0[] =
		{ FA_FCP_PRIO0_ADDR, FA_FCP_PRIO0_ADDR_25,
			0 };
	const uint32_t fcp_prio_cfg1[] =
		{ FA_FCP_PRIO1_ADDR, FA_FCP_PRIO1_ADDR_25,
			0 };
664
	uint32_t def;
665 666 667 668 669
	uint16_t *wptr;
	uint16_t cnt, chksum;
	uint32_t start;
	struct qla_flt_header *flt;
	struct qla_flt_region *region;
670
	struct qla_hw_data *ha = vha->hw;
671
	struct req_que *req = ha->req_q_map[0];
672

673 674 675 676 677
	def = 0;
	if (IS_QLA25XX(ha))
		def = 1;
	else if (IS_QLA81XX(ha))
		def = 2;
678 679 680 681 682 683 684

	/* Assign FCP prio region since older adapters may not have FLT, or
	   FCP prio region in it's FLT.
	 */
	ha->flt_region_fcp_prio = ha->flags.port0 ?
	    fcp_prio_cfg0[def] : fcp_prio_cfg1[def];

685
	ha->flt_region_flt = flt_addr;
686 687
	wptr = (uint16_t *)req->ring;
	flt = (struct qla_flt_header *)req->ring;
688
	region = (struct qla_flt_region *)&flt[1];
689
	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
690 691 692 693
	    flt_addr << 2, OPTROM_BURST_SIZE);
	if (*wptr == __constant_cpu_to_le16(0xffff))
		goto no_flash_data;
	if (flt->version != __constant_cpu_to_le16(1)) {
694 695
		ql_log(ql_log_warn, vha, 0x0047,
		    "Unsupported FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
696
		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
697
		    le16_to_cpu(flt->checksum));
698 699 700 701 702 703 704
		goto no_flash_data;
	}

	cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1;
	for (chksum = 0; cnt; cnt--)
		chksum += le16_to_cpu(*wptr++);
	if (chksum) {
705 706
		ql_log(ql_log_fatal, vha, 0x0048,
		    "Inconsistent FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
707
		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
708
		    le16_to_cpu(flt->checksum));
709 710 711 712 713 714 715 716
		goto no_flash_data;
	}

	loc = locations[1];
	cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region);
	for ( ; cnt; cnt--, region++) {
		/* Store addresses as DWORD offsets. */
		start = le32_to_cpu(region->start) >> 2;
717 718 719 720 721
		ql_dbg(ql_dbg_init, vha, 0x0049,
		    "FLT[%02x]: start=0x%x "
		    "end=0x%x size=0x%x.\n", le32_to_cpu(region->code),
		    start, le32_to_cpu(region->end) >> 2,
		    le32_to_cpu(region->size));
722

723
		switch (le32_to_cpu(region->code) & 0xff) {
724 725 726 727 728 729 730 731
		case FLT_REG_FW:
			ha->flt_region_fw = start;
			break;
		case FLT_REG_BOOT_CODE:
			ha->flt_region_boot = start;
			break;
		case FLT_REG_VPD_0:
			ha->flt_region_vpd_nvram = start;
732 733
			if (IS_QLA82XX(ha))
				break;
734
			if (ha->flags.port0)
735 736 737
				ha->flt_region_vpd = start;
			break;
		case FLT_REG_VPD_1:
738 739
			if (IS_QLA82XX(ha))
				break;
740
			if (!ha->flags.port0)
741 742 743
				ha->flt_region_vpd = start;
			break;
		case FLT_REG_NVRAM_0:
744
			if (ha->flags.port0)
745 746 747
				ha->flt_region_nvram = start;
			break;
		case FLT_REG_NVRAM_1:
748
			if (!ha->flags.port0)
749
				ha->flt_region_nvram = start;
750 751 752 753
			break;
		case FLT_REG_FDT:
			ha->flt_region_fdt = start;
			break;
754
		case FLT_REG_NPIV_CONF_0:
755
			if (ha->flags.port0)
756 757 758
				ha->flt_region_npiv_conf = start;
			break;
		case FLT_REG_NPIV_CONF_1:
759
			if (!ha->flags.port0)
760 761
				ha->flt_region_npiv_conf = start;
			break;
762 763 764
		case FLT_REG_GOLD_FW:
			ha->flt_region_gold_fw = start;
			break;
S
Sarang Radke 已提交
765
		case FLT_REG_FCP_PRIO_0:
766
			if (ha->flags.port0)
S
Sarang Radke 已提交
767 768 769
				ha->flt_region_fcp_prio = start;
			break;
		case FLT_REG_FCP_PRIO_1:
770
			if (!ha->flags.port0)
S
Sarang Radke 已提交
771 772
				ha->flt_region_fcp_prio = start;
			break;
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
		case FLT_REG_BOOT_CODE_82XX:
			ha->flt_region_boot = start;
			break;
		case FLT_REG_FW_82XX:
			ha->flt_region_fw = start;
			break;
		case FLT_REG_GOLD_FW_82XX:
			ha->flt_region_gold_fw = start;
			break;
		case FLT_REG_BOOTLOAD_82XX:
			ha->flt_region_bootload = start;
			break;
		case FLT_REG_VPD_82XX:
			ha->flt_region_vpd = start;
			break;
788 789 790 791 792 793 794
		}
	}
	goto done;

no_flash_data:
	/* Use hardcoded defaults. */
	loc = locations[0];
795 796 797
	ha->flt_region_fw = def_fw[def];
	ha->flt_region_boot = def_boot[def];
	ha->flt_region_vpd_nvram = def_vpd_nvram[def];
798
	ha->flt_region_vpd = ha->flags.port0 ?
S
Sarang Radke 已提交
799
	    def_vpd0[def] : def_vpd1[def];
800
	ha->flt_region_nvram = ha->flags.port0 ?
S
Sarang Radke 已提交
801
	    def_nvram0[def] : def_nvram1[def];
802
	ha->flt_region_fdt = def_fdt[def];
803
	ha->flt_region_npiv_conf = ha->flags.port0 ?
S
Sarang Radke 已提交
804
	    def_npiv_conf0[def] : def_npiv_conf1[def];
805
done:
806 807 808 809 810 811 812 813 814 815
	ql_dbg(ql_dbg_init, vha, 0x004a,
	    "FLT[%s]: boot=0x%x fw=0x%x vpd_nvram=0x%x vpd=0x%x.\n",
	    loc, ha->flt_region_boot,
	    ha->flt_region_fw, ha->flt_region_vpd_nvram,
	    ha->flt_region_vpd);
	ql_dbg(ql_dbg_init, vha, 0x004b,
	    "nvram=0x%x fdt=0x%x flt=0x%x npiv=0x%x fcp_prif_cfg=0x%x.\n",
	    ha->flt_region_nvram,
	    ha->flt_region_fdt, ha->flt_region_flt,
	    ha->flt_region_npiv_conf, ha->flt_region_fcp_prio);
816 817 818
}

static void
819
qla2xxx_get_fdt_info(scsi_qla_host_t *vha)
820
{
821
#define FLASH_BLK_SIZE_4K	0x1000
822 823
#define FLASH_BLK_SIZE_32K	0x8000
#define FLASH_BLK_SIZE_64K	0x10000
824
	const char *loc, *locations[] = { "MID", "FDT" };
825 826 827 828
	uint16_t cnt, chksum;
	uint16_t *wptr;
	struct qla_fdt_layout *fdt;
	uint8_t	man_id, flash_id;
829
	uint16_t mid = 0, fid = 0;
830
	struct qla_hw_data *ha = vha->hw;
831
	struct req_que *req = ha->req_q_map[0];
832

833 834 835
	wptr = (uint16_t *)req->ring;
	fdt = (struct qla_fdt_layout *)req->ring;
	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
836
	    ha->flt_region_fdt << 2, OPTROM_BURST_SIZE);
837 838 839 840 841 842 843 844 845 846
	if (*wptr == __constant_cpu_to_le16(0xffff))
		goto no_flash_data;
	if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
	    fdt->sig[3] != 'D')
		goto no_flash_data;

	for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1;
	    cnt++)
		chksum += le16_to_cpu(*wptr++);
	if (chksum) {
847 848 849 850 851 852
		ql_dbg(ql_dbg_init, vha, 0x004c,
		    "Inconsistent FDT detected:"
		    " checksum=0x%x id=%c version0x%x.\n", chksum,
		    fdt->sig[0], le16_to_cpu(fdt->version));
		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x0113,
		    (uint8_t *)fdt, sizeof(*fdt));
853 854 855
		goto no_flash_data;
	}

856 857 858
	loc = locations[1];
	mid = le16_to_cpu(fdt->man_id);
	fid = le16_to_cpu(fdt->id);
859
	ha->fdt_wrt_disable = fdt->wrt_disable_bits;
860
	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0300 | fdt->erase_cmd);
861 862
	ha->fdt_block_size = le32_to_cpu(fdt->block_size);
	if (fdt->unprotect_sec_cmd) {
863
		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0300 |
864 865
		    fdt->unprotect_sec_cmd);
		ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
866 867
		    flash_conf_addr(ha, 0x0300 | fdt->protect_sec_cmd):
		    flash_conf_addr(ha, 0x0336);
868
	}
869
	goto done;
870
no_flash_data:
871
	loc = locations[0];
872 873 874 875
	if (IS_QLA82XX(ha)) {
		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
		goto done;
	}
876
	qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
877 878
	mid = man_id;
	fid = flash_id;
879
	ha->fdt_wrt_disable = 0x9c;
880
	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x03d8);
881 882 883 884 885 886 887 888
	switch (man_id) {
	case 0xbf: /* STT flash. */
		if (flash_id == 0x8e)
			ha->fdt_block_size = FLASH_BLK_SIZE_64K;
		else
			ha->fdt_block_size = FLASH_BLK_SIZE_32K;

		if (flash_id == 0x80)
889
			ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0352);
890 891 892 893 894
		break;
	case 0x13: /* ST M25P80. */
		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
		break;
	case 0x1f: /* Atmel 26DF081A. */
895
		ha->fdt_block_size = FLASH_BLK_SIZE_4K;
896 897 898
		ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0320);
		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0339);
		ha->fdt_protect_sec_cmd = flash_conf_addr(ha, 0x0336);
899 900 901 902 903 904
		break;
	default:
		/* Default to 64 kb sector size. */
		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
		break;
	}
905
done:
906 907 908
	ql_dbg(ql_dbg_init, vha, 0x004d,
	    "FDT[%x]: (0x%x/0x%x) erase=0x%x "
	    "pr=%x upro=%x wrtd=0x%x blk=0x%x.\n", loc, mid, fid,
909
	    ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd,
910 911
	    ha->fdt_wrt_disable, ha->fdt_block_size);

912 913
}

914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
static void
qla2xxx_get_idc_param(scsi_qla_host_t *vha)
{
#define QLA82XX_IDC_PARAM_ADDR       0x003e885c
	uint32_t *wptr;
	struct qla_hw_data *ha = vha->hw;
	struct req_que *req = ha->req_q_map[0];

	if (!IS_QLA82XX(ha))
		return;

	wptr = (uint32_t *)req->ring;
	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
		QLA82XX_IDC_PARAM_ADDR , 8);

	if (*wptr == __constant_cpu_to_le32(0xffffffff)) {
		ha->nx_dev_init_timeout = QLA82XX_ROM_DEV_INIT_TIMEOUT;
		ha->nx_reset_timeout = QLA82XX_ROM_DRV_RESET_ACK_TIMEOUT;
	} else {
		ha->nx_dev_init_timeout = le32_to_cpu(*wptr++);
		ha->nx_reset_timeout = le32_to_cpu(*wptr);
	}
936 937 938 939
	ql_dbg(ql_dbg_init, vha, 0x004e,
	    "nx_dev_init_timeout=%d "
	    "nx_reset_timeout=%d.\n", ha->nx_dev_init_timeout,
	    ha->nx_reset_timeout);
940 941 942
	return;
}

943
int
944
qla2xxx_get_flash_info(scsi_qla_host_t *vha)
945 946 947
{
	int ret;
	uint32_t flt_addr;
948
	struct qla_hw_data *ha = vha->hw;
949

950
	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA8XXX_TYPE(ha))
951 952
		return QLA_SUCCESS;

953
	ret = qla2xxx_find_flt_start(vha, &flt_addr);
954 955 956
	if (ret != QLA_SUCCESS)
		return ret;

957 958
	qla2xxx_get_flt_info(vha, flt_addr);
	qla2xxx_get_fdt_info(vha);
959
	qla2xxx_get_idc_param(vha);
960 961 962 963

	return QLA_SUCCESS;
}

964
void
965
qla2xxx_flash_npiv_conf(scsi_qla_host_t *vha)
966 967 968 969 970
{
#define NPIV_CONFIG_SIZE	(16*1024)
	void *data;
	uint16_t *wptr;
	uint16_t cnt, chksum;
971
	int i;
972 973
	struct qla_npiv_header hdr;
	struct qla_npiv_entry *entry;
974
	struct qla_hw_data *ha = vha->hw;
975

976
	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA8XXX_TYPE(ha))
977 978
		return;

979
	ha->isp_ops->read_optrom(vha, (uint8_t *)&hdr,
980 981 982 983
	    ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header));
	if (hdr.version == __constant_cpu_to_le16(0xffff))
		return;
	if (hdr.version != __constant_cpu_to_le16(1)) {
984 985
		ql_dbg(ql_dbg_user, vha, 0x7090,
		    "Unsupported NPIV-Config "
986 987
		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
988
		    le16_to_cpu(hdr.checksum));
989 990 991 992 993
		return;
	}

	data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL);
	if (!data) {
994 995
		ql_log(ql_log_warn, vha, 0x7091,
		    "Unable to allocate memory for data.\n");
996 997 998
		return;
	}

999
	ha->isp_ops->read_optrom(vha, (uint8_t *)data,
1000 1001 1002 1003 1004 1005 1006
	    ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE);

	cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) *
	    sizeof(struct qla_npiv_entry)) >> 1;
	for (wptr = data, chksum = 0; cnt; cnt--)
		chksum += le16_to_cpu(*wptr++);
	if (chksum) {
1007 1008
		ql_dbg(ql_dbg_user, vha, 0x7092,
		    "Inconsistent NPIV-Config "
1009 1010
		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
1011
		    le16_to_cpu(hdr.checksum));
1012 1013 1014 1015 1016
		goto done;
	}

	entry = data + sizeof(struct qla_npiv_header);
	cnt = le16_to_cpu(hdr.entries);
1017
	for (i = 0; cnt; cnt--, entry++, i++) {
1018 1019 1020 1021
		uint16_t flags;
		struct fc_vport_identifiers vid;
		struct fc_vport *vport;

1022 1023
		memcpy(&ha->npiv_info[i], entry, sizeof(struct qla_npiv_entry));

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
		flags = le16_to_cpu(entry->flags);
		if (flags == 0xffff)
			continue;
		if ((flags & BIT_0) == 0)
			continue;

		memset(&vid, 0, sizeof(vid));
		vid.roles = FC_PORT_ROLE_FCP_INITIATOR;
		vid.vport_type = FC_PORTTYPE_NPIV;
		vid.disable = false;
		vid.port_name = wwn_to_u64(entry->port_name);
		vid.node_name = wwn_to_u64(entry->node_name);

1037 1038 1039 1040 1041 1042 1043
		ql_dbg(ql_dbg_user, vha, 0x7093,
		    "NPIV[%02x]: wwpn=%llx "
		    "wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt,
		    (unsigned long long)vid.port_name,
		    (unsigned long long)vid.node_name,
		    le16_to_cpu(entry->vf_id),
		    entry->q_qos, entry->f_qos);
1044 1045 1046 1047

		if (i < QLA_PRECONFIG_VPORTS) {
			vport = fc_vport_create(vha->host, 0, &vid);
			if (!vport)
1048 1049 1050 1051 1052
				ql_log(ql_log_warn, vha, 0x7094,
				    "NPIV-Config Failed to create vport [%02x]: "
				    "wwpn=%llx wwnn=%llx.\n", cnt,
				    (unsigned long long)vid.port_name,
				    (unsigned long long)vid.node_name);
1053
		}
1054 1055 1056 1057 1058
	}
done:
	kfree(data);
}

1059 1060
static int
qla24xx_unprotect_flash(scsi_qla_host_t *vha)
1061
{
1062
	struct qla_hw_data *ha = vha->hw;
1063 1064
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

1065 1066 1067
	if (ha->flags.fac_supported)
		return qla81xx_fac_do_write_enable(vha, 1);

1068 1069 1070 1071 1072
	/* Enable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */

1073
	if (!ha->fdt_wrt_disable)
1074
		goto done;
1075

1076
	/* Disable flash write-protection, first clear SR protection bit */
1077
	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1078
	/* Then write zero again to clear remaining SR bits.*/
1079
	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1080 1081
done:
	return QLA_SUCCESS;
1082 1083
}

1084 1085
static int
qla24xx_protect_flash(scsi_qla_host_t *vha)
1086 1087
{
	uint32_t cnt;
1088
	struct qla_hw_data *ha = vha->hw;
1089 1090
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

1091 1092 1093
	if (ha->flags.fac_supported)
		return qla81xx_fac_do_write_enable(vha, 0);

1094 1095 1096
	if (!ha->fdt_wrt_disable)
		goto skip_wrt_protect;

1097
	/* Enable flash write-protection and wait for completion. */
1098
	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101),
1099
	    ha->fdt_wrt_disable);
1100
	for (cnt = 300; cnt &&
1101
	    qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x005)) & BIT_0;
1102 1103 1104 1105
	    cnt--) {
		udelay(10);
	}

1106
skip_wrt_protect:
1107 1108 1109 1110
	/* Disable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130

	return QLA_SUCCESS;
}

static int
qla24xx_erase_sector(scsi_qla_host_t *vha, uint32_t fdata)
{
	struct qla_hw_data *ha = vha->hw;
	uint32_t start, finish;

	if (ha->flags.fac_supported) {
		start = fdata >> 2;
		finish = start + (ha->fdt_block_size >> 2) - 1;
		return qla81xx_fac_erase_sector(vha, flash_data_addr(ha,
		    start), flash_data_addr(ha, finish));
	}

	return qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
	    (fdata & 0xff00) | ((fdata << 16) & 0xff0000) |
	    ((fdata >> 16) & 0xff));
1131 1132
}

1133
static int
1134
qla24xx_write_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
1135 1136 1137
    uint32_t dwords)
{
	int ret;
1138
	uint32_t liter;
1139
	uint32_t sec_mask, rest_addr;
1140
	uint32_t fdata;
1141 1142
	dma_addr_t optrom_dma;
	void *optrom = NULL;
1143
	struct qla_hw_data *ha = vha->hw;
1144

1145
	/* Prepare burst-capable write on supported ISPs. */
1146
	if ((IS_QLA25XX(ha) || IS_QLA81XX(ha)) && !(faddr & 0xfff) &&
1147 1148 1149 1150
	    dwords > OPTROM_BURST_DWORDS) {
		optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
		    &optrom_dma, GFP_KERNEL);
		if (!optrom) {
1151 1152 1153 1154
			ql_log(ql_log_warn, vha, 0x7095,
			    "Unable to allocate "
			    "memory for optrom burst write (%x KB).\n",
			    OPTROM_BURST_SIZE / 1024);
1155 1156 1157
		}
	}

1158
	rest_addr = (ha->fdt_block_size >> 2) - 1;
1159
	sec_mask = ~rest_addr;
1160

1161 1162
	ret = qla24xx_unprotect_flash(vha);
	if (ret != QLA_SUCCESS) {
1163
		ql_log(ql_log_warn, vha, 0x7096,
1164 1165 1166
		    "Unable to unprotect flash for update.\n");
		goto done;
	}
1167

1168
	for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
1169
		fdata = (faddr & sec_mask) << 2;
1170

1171
		/* Are we at the beginning of a sector? */
1172
		if ((faddr & rest_addr) == 0) {
1173 1174
			/* Do sector unprotect. */
			if (ha->fdt_unprotect_sec_cmd)
1175
				qla24xx_write_flash_dword(ha,
1176
				    ha->fdt_unprotect_sec_cmd,
1177
				    (fdata & 0xff00) | ((fdata << 16) &
1178
				    0xff0000) | ((fdata >> 16) & 0xff));
1179
			ret = qla24xx_erase_sector(vha, fdata);
1180
			if (ret != QLA_SUCCESS) {
1181 1182 1183
				ql_dbg(ql_dbg_user, vha, 0x7007,
				    "Unable to erase erase sector: address=%x.\n",
				    faddr);
1184
				break;
1185
			}
1186 1187 1188
		}

		/* Go with burst-write. */
1189
		if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
1190
			/* Copy data to DMA'ble buffer. */
1191
			memcpy(optrom, dwptr, OPTROM_BURST_SIZE);
1192

1193
			ret = qla2x00_load_ram(vha, optrom_dma,
1194
			    flash_data_addr(ha, faddr),
1195
			    OPTROM_BURST_DWORDS);
1196
			if (ret != QLA_SUCCESS) {
1197
				ql_log(ql_log_warn, vha, 0x7097,
1198 1199
				    "Unable to burst-write optrom segment "
				    "(%x/%x/%llx).\n", ret,
1200
				    flash_data_addr(ha, faddr),
A
Andrew Morton 已提交
1201
				    (unsigned long long)optrom_dma);
1202
				ql_log(ql_log_warn, vha, 0x7098,
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
				    "Reverting to slow-write.\n");

				dma_free_coherent(&ha->pdev->dev,
				    OPTROM_BURST_SIZE, optrom, optrom_dma);
				optrom = NULL;
			} else {
				liter += OPTROM_BURST_DWORDS - 1;
				faddr += OPTROM_BURST_DWORDS - 1;
				dwptr += OPTROM_BURST_DWORDS - 1;
				continue;
1213
			}
1214
		}
1215

1216
		ret = qla24xx_write_flash_dword(ha,
1217
		    flash_data_addr(ha, faddr), cpu_to_le32(*dwptr));
1218
		if (ret != QLA_SUCCESS) {
1219 1220 1221
			ql_dbg(ql_dbg_user, vha, 0x7006,
			    "Unable to program flash address=%x data=%x.\n",
			    faddr, *dwptr);
1222
			break;
1223
		}
1224

1225 1226
		/* Do sector protect. */
		if (ha->fdt_unprotect_sec_cmd &&
1227 1228
		    ((faddr & rest_addr) == rest_addr))
			qla24xx_write_flash_dword(ha,
1229
			    ha->fdt_protect_sec_cmd,
1230 1231 1232
			    (fdata & 0xff00) | ((fdata << 16) &
			    0xff0000) | ((fdata >> 16) & 0xff));
	}
1233

1234 1235
	ret = qla24xx_protect_flash(vha);
	if (ret != QLA_SUCCESS)
1236
		ql_log(ql_log_warn, vha, 0x7099,
1237 1238
		    "Unable to protect flash after update.\n");
done:
1239 1240 1241 1242
	if (optrom)
		dma_free_coherent(&ha->pdev->dev,
		    OPTROM_BURST_SIZE, optrom, optrom_dma);

1243 1244 1245 1246
	return ret;
}

uint8_t *
1247
qla2x00_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1248 1249 1250 1251
    uint32_t bytes)
{
	uint32_t i;
	uint16_t *wptr;
1252
	struct qla_hw_data *ha = vha->hw;
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265

	/* Word reads to NVRAM via registers. */
	wptr = (uint16_t *)buf;
	qla2x00_lock_nvram_access(ha);
	for (i = 0; i < bytes >> 1; i++, naddr++)
		wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
		    naddr));
	qla2x00_unlock_nvram_access(ha);

	return buf;
}

uint8_t *
1266
qla24xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1267 1268 1269 1270
    uint32_t bytes)
{
	uint32_t i;
	uint32_t *dwptr;
1271
	struct qla_hw_data *ha = vha->hw;
1272

1273 1274 1275
	if (IS_QLA82XX(ha))
		return  buf;

1276 1277 1278
	/* Dword reads to flash. */
	dwptr = (uint32_t *)buf;
	for (i = 0; i < bytes >> 2; i++, naddr++)
1279 1280
		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
		    nvram_data_addr(ha, naddr)));
1281 1282 1283 1284 1285

	return buf;
}

int
1286
qla2x00_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1287 1288 1289 1290 1291
    uint32_t bytes)
{
	int ret, stat;
	uint32_t i;
	uint16_t *wptr;
1292
	unsigned long flags;
1293
	struct qla_hw_data *ha = vha->hw;
1294 1295 1296

	ret = QLA_SUCCESS;

1297
	spin_lock_irqsave(&ha->hardware_lock, flags);
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
	qla2x00_lock_nvram_access(ha);

	/* Disable NVRAM write-protection. */
	stat = qla2x00_clear_nvram_protection(ha);

	wptr = (uint16_t *)buf;
	for (i = 0; i < bytes >> 1; i++, naddr++) {
		qla2x00_write_nvram_word(ha, naddr,
		    cpu_to_le16(*wptr));
		wptr++;
	}

	/* Enable NVRAM write-protection. */
	qla2x00_set_nvram_protection(ha, stat);

	qla2x00_unlock_nvram_access(ha);
1314
	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1315 1316 1317 1318 1319

	return ret;
}

int
1320
qla24xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1321 1322 1323 1324 1325
    uint32_t bytes)
{
	int ret;
	uint32_t i;
	uint32_t *dwptr;
1326
	struct qla_hw_data *ha = vha->hw;
1327 1328 1329 1330
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	ret = QLA_SUCCESS;

1331 1332 1333
	if (IS_QLA82XX(ha))
		return ret;

1334 1335 1336 1337 1338 1339
	/* Enable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */

	/* Disable NVRAM write-protection. */
1340 1341
	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1342 1343 1344 1345 1346

	/* Dword writes to flash. */
	dwptr = (uint32_t *)buf;
	for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
		ret = qla24xx_write_flash_dword(ha,
1347
		    nvram_data_addr(ha, naddr), cpu_to_le32(*dwptr));
1348
		if (ret != QLA_SUCCESS) {
1349
			ql_dbg(ql_dbg_user, vha, 0x709a,
1350
			    "Unable to program nvram address=%x data=%x.\n",
1351
			    naddr, *dwptr);
1352 1353 1354 1355 1356
			break;
		}
	}

	/* Enable NVRAM write-protection. */
1357
	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0x8c);
1358 1359 1360 1361 1362 1363 1364 1365

	/* Disable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */

	return ret;
}
1366

1367
uint8_t *
1368
qla25xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1369 1370 1371 1372
    uint32_t bytes)
{
	uint32_t i;
	uint32_t *dwptr;
1373
	struct qla_hw_data *ha = vha->hw;
1374 1375 1376 1377 1378

	/* Dword reads to flash. */
	dwptr = (uint32_t *)buf;
	for (i = 0; i < bytes >> 2; i++, naddr++)
		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1379
		    flash_data_addr(ha, ha->flt_region_vpd_nvram | naddr)));
1380 1381 1382 1383 1384

	return buf;
}

int
1385
qla25xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1386 1387
    uint32_t bytes)
{
1388
	struct qla_hw_data *ha = vha->hw;
1389 1390 1391 1392 1393 1394
#define RMW_BUFFER_SIZE	(64 * 1024)
	uint8_t *dbuf;

	dbuf = vmalloc(RMW_BUFFER_SIZE);
	if (!dbuf)
		return QLA_MEMORY_ALLOC_FAILED;
1395
	ha->isp_ops->read_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1396 1397
	    RMW_BUFFER_SIZE);
	memcpy(dbuf + (naddr << 2), buf, bytes);
1398
	ha->isp_ops->write_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1399 1400 1401 1402
	    RMW_BUFFER_SIZE);
	vfree(dbuf);

	return QLA_SUCCESS;
1403
}
1404 1405

static inline void
1406
qla2x00_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
{
	if (IS_QLA2322(ha)) {
		/* Flip all colors. */
		if (ha->beacon_color_state == QLA_LED_ALL_ON) {
			/* Turn off. */
			ha->beacon_color_state = 0;
			*pflags = GPIO_LED_ALL_OFF;
		} else {
			/* Turn on. */
			ha->beacon_color_state = QLA_LED_ALL_ON;
			*pflags = GPIO_LED_RGA_ON;
		}
	} else {
		/* Flip green led only. */
		if (ha->beacon_color_state == QLA_LED_GRN_ON) {
			/* Turn off. */
			ha->beacon_color_state = 0;
			*pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
		} else {
			/* Turn on. */
			ha->beacon_color_state = QLA_LED_GRN_ON;
			*pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
		}
	}
}

1433 1434
#define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))

1435
void
1436
qla2x00_beacon_blink(struct scsi_qla_host *vha)
1437 1438 1439 1440 1441
{
	uint16_t gpio_enable;
	uint16_t gpio_data;
	uint16_t led_color = 0;
	unsigned long flags;
1442
	struct qla_hw_data *ha = vha->hw;
1443 1444
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

1445 1446 1447
	if (IS_QLA82XX(ha))
		return;

1448 1449 1450 1451
	spin_lock_irqsave(&ha->hardware_lock, flags);

	/* Save the Original GPIOE. */
	if (ha->pio_address) {
1452 1453
		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1454 1455 1456 1457 1458 1459 1460 1461 1462
	} else {
		gpio_enable = RD_REG_WORD(&reg->gpioe);
		gpio_data = RD_REG_WORD(&reg->gpiod);
	}

	/* Set the modified gpio_enable values */
	gpio_enable |= GPIO_LED_MASK;

	if (ha->pio_address) {
1463
		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
	} else {
		WRT_REG_WORD(&reg->gpioe, gpio_enable);
		RD_REG_WORD(&reg->gpioe);
	}

	qla2x00_flip_colors(ha, &led_color);

	/* Clear out any previously set LED color. */
	gpio_data &= ~GPIO_LED_MASK;

	/* Set the new input LED color to GPIOD. */
	gpio_data |= led_color;

	/* Set the modified gpio_data values */
	if (ha->pio_address) {
1479
		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1480 1481 1482 1483 1484 1485 1486 1487 1488
	} else {
		WRT_REG_WORD(&reg->gpiod, gpio_data);
		RD_REG_WORD(&reg->gpiod);
	}

	spin_unlock_irqrestore(&ha->hardware_lock, flags);
}

int
1489
qla2x00_beacon_on(struct scsi_qla_host *vha)
1490 1491 1492 1493
{
	uint16_t gpio_enable;
	uint16_t gpio_data;
	unsigned long flags;
1494
	struct qla_hw_data *ha = vha->hw;
1495 1496 1497 1498 1499
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
	ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;

1500
	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1501
		ql_log(ql_log_warn, vha, 0x709b,
1502 1503 1504 1505 1506 1507 1508
		    "Unable to update fw options (beacon on).\n");
		return QLA_FUNCTION_FAILED;
	}

	/* Turn off LEDs. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	if (ha->pio_address) {
1509 1510
		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1511 1512 1513 1514 1515 1516 1517 1518
	} else {
		gpio_enable = RD_REG_WORD(&reg->gpioe);
		gpio_data = RD_REG_WORD(&reg->gpiod);
	}
	gpio_enable |= GPIO_LED_MASK;

	/* Set the modified gpio_enable values. */
	if (ha->pio_address) {
1519
		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1520 1521 1522 1523 1524 1525 1526 1527
	} else {
		WRT_REG_WORD(&reg->gpioe, gpio_enable);
		RD_REG_WORD(&reg->gpioe);
	}

	/* Clear out previously set LED colour. */
	gpio_data &= ~GPIO_LED_MASK;
	if (ha->pio_address) {
1528
		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
	} else {
		WRT_REG_WORD(&reg->gpiod, gpio_data);
		RD_REG_WORD(&reg->gpiod);
	}
	spin_unlock_irqrestore(&ha->hardware_lock, flags);

	/*
	 * Let the per HBA timer kick off the blinking process based on
	 * the following flags. No need to do anything else now.
	 */
	ha->beacon_blink_led = 1;
	ha->beacon_color_state = 0;

	return QLA_SUCCESS;
}

int
1546
qla2x00_beacon_off(struct scsi_qla_host *vha)
1547 1548
{
	int rval = QLA_SUCCESS;
1549
	struct qla_hw_data *ha = vha->hw;
1550 1551 1552 1553 1554 1555 1556 1557 1558

	ha->beacon_blink_led = 0;

	/* Set the on flag so when it gets flipped it will be off. */
	if (IS_QLA2322(ha))
		ha->beacon_color_state = QLA_LED_ALL_ON;
	else
		ha->beacon_color_state = QLA_LED_GRN_ON;

1559
	ha->isp_ops->beacon_blink(vha);	/* This turns green LED off */
1560 1561 1562 1563

	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
	ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;

1564
	rval = qla2x00_set_fw_options(vha, ha->fw_options);
1565
	if (rval != QLA_SUCCESS)
1566
		ql_log(ql_log_warn, vha, 0x709c,
1567 1568 1569 1570 1571 1572
		    "Unable to update fw options (beacon off).\n");
	return rval;
}


static inline void
1573
qla24xx_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
{
	/* Flip all colors. */
	if (ha->beacon_color_state == QLA_LED_ALL_ON) {
		/* Turn off. */
		ha->beacon_color_state = 0;
		*pflags = 0;
	} else {
		/* Turn on. */
		ha->beacon_color_state = QLA_LED_ALL_ON;
		*pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
	}
}

void
1588
qla24xx_beacon_blink(struct scsi_qla_host *vha)
1589 1590 1591 1592
{
	uint16_t led_color = 0;
	uint32_t gpio_data;
	unsigned long flags;
1593
	struct qla_hw_data *ha = vha->hw;
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	/* Save the Original GPIOD. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	gpio_data = RD_REG_DWORD(&reg->gpiod);

	/* Enable the gpio_data reg for update. */
	gpio_data |= GPDX_LED_UPDATE_MASK;

	WRT_REG_DWORD(&reg->gpiod, gpio_data);
	gpio_data = RD_REG_DWORD(&reg->gpiod);

	/* Set the color bits. */
	qla24xx_flip_colors(ha, &led_color);

	/* Clear out any previously set LED color. */
	gpio_data &= ~GPDX_LED_COLOR_MASK;

	/* Set the new input LED color to GPIOD. */
	gpio_data |= led_color;

	/* Set the modified gpio_data values. */
	WRT_REG_DWORD(&reg->gpiod, gpio_data);
	gpio_data = RD_REG_DWORD(&reg->gpiod);
	spin_unlock_irqrestore(&ha->hardware_lock, flags);
}

int
1622
qla24xx_beacon_on(struct scsi_qla_host *vha)
1623 1624 1625
{
	uint32_t gpio_data;
	unsigned long flags;
1626
	struct qla_hw_data *ha = vha->hw;
1627 1628
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

1629 1630 1631
	if (IS_QLA82XX(ha))
		return QLA_SUCCESS;

1632 1633 1634 1635
	if (ha->beacon_blink_led == 0) {
		/* Enable firmware for update */
		ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;

1636
		if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS)
1637 1638
			return QLA_FUNCTION_FAILED;

1639
		if (qla2x00_get_fw_options(vha, ha->fw_options) !=
1640
		    QLA_SUCCESS) {
1641
			ql_log(ql_log_warn, vha, 0x7009,
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
			    "Unable to update fw options (beacon on).\n");
			return QLA_FUNCTION_FAILED;
		}

		spin_lock_irqsave(&ha->hardware_lock, flags);
		gpio_data = RD_REG_DWORD(&reg->gpiod);

		/* Enable the gpio_data reg for update. */
		gpio_data |= GPDX_LED_UPDATE_MASK;
		WRT_REG_DWORD(&reg->gpiod, gpio_data);
		RD_REG_DWORD(&reg->gpiod);

		spin_unlock_irqrestore(&ha->hardware_lock, flags);
	}

	/* So all colors blink together. */
	ha->beacon_color_state = 0;

	/* Let the per HBA timer kick off the blinking process. */
	ha->beacon_blink_led = 1;

	return QLA_SUCCESS;
}

int
1667
qla24xx_beacon_off(struct scsi_qla_host *vha)
1668 1669 1670
{
	uint32_t gpio_data;
	unsigned long flags;
1671
	struct qla_hw_data *ha = vha->hw;
1672 1673
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

1674 1675 1676
	if (IS_QLA82XX(ha))
		return QLA_SUCCESS;

1677 1678 1679
	ha->beacon_blink_led = 0;
	ha->beacon_color_state = QLA_LED_ALL_ON;

1680
	ha->isp_ops->beacon_blink(vha);	/* Will flip to all off. */
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693

	/* Give control back to firmware. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	gpio_data = RD_REG_DWORD(&reg->gpiod);

	/* Disable the gpio_data reg for update. */
	gpio_data &= ~GPDX_LED_UPDATE_MASK;
	WRT_REG_DWORD(&reg->gpiod, gpio_data);
	RD_REG_DWORD(&reg->gpiod);
	spin_unlock_irqrestore(&ha->hardware_lock, flags);

	ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;

1694
	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1695 1696
		ql_log(ql_log_warn, vha, 0x704d,
		    "Unable to update fw options (beacon on).\n");
1697 1698 1699
		return QLA_FUNCTION_FAILED;
	}

1700
	if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1701 1702
		ql_log(ql_log_warn, vha, 0x704e,
		    "Unable to update fw options (beacon on).\n");
1703 1704 1705 1706 1707
		return QLA_FUNCTION_FAILED;
	}

	return QLA_SUCCESS;
}
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718


/*
 * Flash support routines
 */

/**
 * qla2x00_flash_enable() - Setup flash for reading and writing.
 * @ha: HA context
 */
static void
1719
qla2x00_flash_enable(struct qla_hw_data *ha)
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
{
	uint16_t data;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	data = RD_REG_WORD(&reg->ctrl_status);
	data |= CSR_FLASH_ENABLE;
	WRT_REG_WORD(&reg->ctrl_status, data);
	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
}

/**
 * qla2x00_flash_disable() - Disable flash and allow RISC to run.
 * @ha: HA context
 */
static void
1735
qla2x00_flash_disable(struct qla_hw_data *ha)
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
{
	uint16_t data;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	data = RD_REG_WORD(&reg->ctrl_status);
	data &= ~(CSR_FLASH_ENABLE);
	WRT_REG_WORD(&reg->ctrl_status, data);
	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
}

/**
 * qla2x00_read_flash_byte() - Reads a byte from flash
 * @ha: HA context
 * @addr: Address in flash to read
 *
 * A word is read from the chip, but, only the lower byte is valid.
 *
 * Returns the byte read from flash @addr.
 */
static uint8_t
1756
qla2x00_read_flash_byte(struct qla_hw_data *ha, uint32_t addr)
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
{
	uint16_t data;
	uint16_t bank_select;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	bank_select = RD_REG_WORD(&reg->ctrl_status);

	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
		/* Specify 64K address range: */
		/*  clear out Module Select and Flash Address bits [19:16]. */
		bank_select &= ~0xf8;
		bank_select |= addr >> 12 & 0xf0;
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */

		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		data = RD_REG_WORD(&reg->flash_data);

		return (uint8_t)data;
	}

	/* Setup bit 16 of flash address. */
	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	} else if (((addr & BIT_16) == 0) &&
	    (bank_select & CSR_FLASH_64K_BANK)) {
		bank_select &= ~(CSR_FLASH_64K_BANK);
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	}

	/* Always perform IO mapped accesses to the FLASH registers. */
	if (ha->pio_address) {
		uint16_t data2;

1795
		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1796
		do {
1797
			data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1798 1799
			barrier();
			cpu_relax();
1800
			data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
		} while (data != data2);
	} else {
		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		data = qla2x00_debounce_register(&reg->flash_data);
	}

	return (uint8_t)data;
}

/**
 * qla2x00_write_flash_byte() - Write a byte to flash
 * @ha: HA context
 * @addr: Address in flash to write
 * @data: Data to write
 */
static void
1817
qla2x00_write_flash_byte(struct qla_hw_data *ha, uint32_t addr, uint8_t data)
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
{
	uint16_t bank_select;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	bank_select = RD_REG_WORD(&reg->ctrl_status);
	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
		/* Specify 64K address range: */
		/*  clear out Module Select and Flash Address bits [19:16]. */
		bank_select &= ~0xf8;
		bank_select |= addr >> 12 & 0xf0;
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */

		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */

		return;
	}

	/* Setup bit 16 of flash address. */
	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	} else if (((addr & BIT_16) == 0) &&
	    (bank_select & CSR_FLASH_64K_BANK)) {
		bank_select &= ~(CSR_FLASH_64K_BANK);
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	}

	/* Always perform IO mapped accesses to the FLASH registers. */
	if (ha->pio_address) {
1854 1855
		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
		WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
	} else {
		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
	}
}

/**
 * qla2x00_poll_flash() - Polls flash for completion.
 * @ha: HA context
 * @addr: Address in flash to poll
 * @poll_data: Data to be polled
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * This function polls the device until bit 7 of what is read matches data
 * bit 7 or until data bit 5 becomes a 1.  If that hapens, the flash ROM timed
 * out (a fatal error).  The flash book recommeds reading bit 7 again after
 * reading bit 5 as a 1.
 *
 * Returns 0 on success, else non-zero.
 */
static int
1880
qla2x00_poll_flash(struct qla_hw_data *ha, uint32_t addr, uint8_t poll_data,
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
    uint8_t man_id, uint8_t flash_id)
{
	int status;
	uint8_t flash_data;
	uint32_t cnt;

	status = 1;

	/* Wait for 30 seconds for command to finish. */
	poll_data &= BIT_7;
	for (cnt = 3000000; cnt; cnt--) {
		flash_data = qla2x00_read_flash_byte(ha, addr);
		if ((flash_data & BIT_7) == poll_data) {
			status = 0;
			break;
		}

		if (man_id != 0x40 && man_id != 0xda) {
			if ((flash_data & BIT_5) && cnt > 2)
				cnt = 2;
		}
		udelay(10);
		barrier();
1904
		cond_resched();
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
	}
	return status;
}

/**
 * qla2x00_program_flash_address() - Programs a flash address
 * @ha: HA context
 * @addr: Address in flash to program
 * @data: Data to be written in flash
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * Returns 0 on success, else non-zero.
 */
static int
1920 1921
qla2x00_program_flash_address(struct qla_hw_data *ha, uint32_t addr,
    uint8_t data, uint8_t man_id, uint8_t flash_id)
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
{
	/* Write Program Command Sequence. */
	if (IS_OEM_001(ha)) {
		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
		qla2x00_write_flash_byte(ha, 0x555, 0x55);
		qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
		qla2x00_write_flash_byte(ha, addr, data);
	} else {
		if (man_id == 0xda && flash_id == 0xc1) {
			qla2x00_write_flash_byte(ha, addr, data);
			if (addr & 0x7e)
				return 0;
		} else {
			qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
			qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
			qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
			qla2x00_write_flash_byte(ha, addr, data);
		}
	}

	udelay(150);

	/* Wait for write to complete. */
	return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
}

/**
 * qla2x00_erase_flash() - Erase the flash.
 * @ha: HA context
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * Returns 0 on success, else non-zero.
 */
static int
1957
qla2x00_erase_flash(struct qla_hw_data *ha, uint8_t man_id, uint8_t flash_id)
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
{
	/* Individual Sector Erase Command Sequence */
	if (IS_OEM_001(ha)) {
		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
		qla2x00_write_flash_byte(ha, 0x555, 0x55);
		qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
		qla2x00_write_flash_byte(ha, 0x555, 0x55);
		qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
	} else {
		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
		qla2x00_write_flash_byte(ha, 0x5555, 0x80);
		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
		qla2x00_write_flash_byte(ha, 0x5555, 0x10);
	}

	udelay(150);

	/* Wait for erase to complete. */
	return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
}

/**
 * qla2x00_erase_flash_sector() - Erase a flash sector.
 * @ha: HA context
 * @addr: Flash sector to erase
 * @sec_mask: Sector address mask
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * Returns 0 on success, else non-zero.
 */
static int
1993
qla2x00_erase_flash_sector(struct qla_hw_data *ha, uint32_t addr,
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
    uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
{
	/* Individual Sector Erase Command Sequence */
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	qla2x00_write_flash_byte(ha, 0x5555, 0x80);
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	if (man_id == 0x1f && flash_id == 0x13)
		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
	else
		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);

	udelay(150);

	/* Wait for erase to complete. */
	return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
}

/**
 * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 */
static void
2019
qla2x00_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
    uint8_t *flash_id)
{
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	qla2x00_write_flash_byte(ha, 0x5555, 0x90);
	*man_id = qla2x00_read_flash_byte(ha, 0x0000);
	*flash_id = qla2x00_read_flash_byte(ha, 0x0001);
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
}

2032
static void
2033 2034
qla2x00_read_flash_data(struct qla_hw_data *ha, uint8_t *tmp_buf,
	uint32_t saddr, uint32_t length)
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
{
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
	uint32_t midpoint, ilength;
	uint8_t data;

	midpoint = length / 2;

	WRT_REG_WORD(&reg->nvram, 0);
	RD_REG_WORD(&reg->nvram);
	for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
		if (ilength == midpoint) {
			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
			RD_REG_WORD(&reg->nvram);
		}
		data = qla2x00_read_flash_byte(ha, saddr);
		if (saddr % 100)
			udelay(10);
		*tmp_buf = data;
2053
		cond_resched();
2054 2055
	}
}
2056 2057

static inline void
2058
qla2x00_suspend_hba(struct scsi_qla_host *vha)
2059 2060 2061
{
	int cnt;
	unsigned long flags;
2062
	struct qla_hw_data *ha = vha->hw;
2063 2064 2065
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	/* Suspend HBA. */
2066
	scsi_block_requests(vha->host);
2067
	ha->isp_ops->disable_intrs(ha);
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);

	/* Pause RISC. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
	RD_REG_WORD(&reg->hccr);
	if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
		for (cnt = 0; cnt < 30000; cnt++) {
			if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
				break;
			udelay(100);
		}
	} else {
		udelay(10);
	}
	spin_unlock_irqrestore(&ha->hardware_lock, flags);
}

static inline void
2087
qla2x00_resume_hba(struct scsi_qla_host *vha)
2088
{
2089 2090
	struct qla_hw_data *ha = vha->hw;

2091 2092
	/* Resume HBA. */
	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2093 2094
	set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
	qla2xxx_wake_dpc(vha);
2095
	qla2x00_wait_for_chip_reset(vha);
2096
	scsi_unblock_requests(vha->host);
2097 2098 2099
}

uint8_t *
2100
qla2x00_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2101 2102 2103 2104
    uint32_t offset, uint32_t length)
{
	uint32_t addr, midpoint;
	uint8_t *data;
2105
	struct qla_hw_data *ha = vha->hw;
2106 2107 2108
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	/* Suspend HBA. */
2109
	qla2x00_suspend_hba(vha);
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127

	/* Go with read. */
	midpoint = ha->optrom_size / 2;

	qla2x00_flash_enable(ha);
	WRT_REG_WORD(&reg->nvram, 0);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	for (addr = offset, data = buf; addr < length; addr++, data++) {
		if (addr == midpoint) {
			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
			RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
		}

		*data = qla2x00_read_flash_byte(ha, addr);
	}
	qla2x00_flash_disable(ha);

	/* Resume HBA. */
2128
	qla2x00_resume_hba(vha);
2129 2130 2131 2132 2133

	return buf;
}

int
2134
qla2x00_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2135 2136 2137 2138 2139 2140 2141
    uint32_t offset, uint32_t length)
{

	int rval;
	uint8_t man_id, flash_id, sec_number, data;
	uint16_t wd;
	uint32_t addr, liter, sec_mask, rest_addr;
2142
	struct qla_hw_data *ha = vha->hw;
2143 2144 2145
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	/* Suspend HBA. */
2146
	qla2x00_suspend_hba(vha);
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339

	rval = QLA_SUCCESS;
	sec_number = 0;

	/* Reset ISP chip. */
	WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
	pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);

	/* Go with write. */
	qla2x00_flash_enable(ha);
	do {	/* Loop once to provide quick error exit */
		/* Structure of flash memory based on manufacturer */
		if (IS_OEM_001(ha)) {
			/* OEM variant with special flash part. */
			man_id = flash_id = 0;
			rest_addr = 0xffff;
			sec_mask   = 0x10000;
			goto update_flash;
		}
		qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
		switch (man_id) {
		case 0x20: /* ST flash. */
			if (flash_id == 0xd2 || flash_id == 0xe3) {
				/*
				 * ST m29w008at part - 64kb sector size with
				 * 32kb,8kb,8kb,16kb sectors at memory address
				 * 0xf0000.
				 */
				rest_addr = 0xffff;
				sec_mask = 0x10000;
				break;   
			}
			/*
			 * ST m29w010b part - 16kb sector size
			 * Default to 16kb sectors
			 */
			rest_addr = 0x3fff;
			sec_mask = 0x1c000;
			break;
		case 0x40: /* Mostel flash. */
			/* Mostel v29c51001 part - 512 byte sector size. */
			rest_addr = 0x1ff;
			sec_mask = 0x1fe00;
			break;
		case 0xbf: /* SST flash. */
			/* SST39sf10 part - 4kb sector size. */
			rest_addr = 0xfff;
			sec_mask = 0x1f000;
			break;
		case 0xda: /* Winbond flash. */
			/* Winbond W29EE011 part - 256 byte sector size. */
			rest_addr = 0x7f;
			sec_mask = 0x1ff80;
			break;
		case 0xc2: /* Macronix flash. */
			/* 64k sector size. */
			if (flash_id == 0x38 || flash_id == 0x4f) {
				rest_addr = 0xffff;
				sec_mask = 0x10000;
				break;
			}
			/* Fall through... */

		case 0x1f: /* Atmel flash. */
			/* 512k sector size. */
			if (flash_id == 0x13) {
				rest_addr = 0x7fffffff;
				sec_mask =   0x80000000;
				break;
			}
			/* Fall through... */

		case 0x01: /* AMD flash. */
			if (flash_id == 0x38 || flash_id == 0x40 ||
			    flash_id == 0x4f) {
				/* Am29LV081 part - 64kb sector size. */
				/* Am29LV002BT part - 64kb sector size. */
				rest_addr = 0xffff;
				sec_mask = 0x10000;
				break;
			} else if (flash_id == 0x3e) {
				/*
				 * Am29LV008b part - 64kb sector size with
				 * 32kb,8kb,8kb,16kb sector at memory address
				 * h0xf0000.
				 */
				rest_addr = 0xffff;
				sec_mask = 0x10000;
				break;
			} else if (flash_id == 0x20 || flash_id == 0x6e) {
				/*
				 * Am29LV010 part or AM29f010 - 16kb sector
				 * size.
				 */
				rest_addr = 0x3fff;
				sec_mask = 0x1c000;
				break;
			} else if (flash_id == 0x6d) {
				/* Am29LV001 part - 8kb sector size. */
				rest_addr = 0x1fff;
				sec_mask = 0x1e000;
				break;
			}
		default:
			/* Default to 16 kb sector size. */
			rest_addr = 0x3fff;
			sec_mask = 0x1c000;
			break;
		}

update_flash:
		if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
			if (qla2x00_erase_flash(ha, man_id, flash_id)) {
				rval = QLA_FUNCTION_FAILED;
				break;
			}
		}

		for (addr = offset, liter = 0; liter < length; liter++,
		    addr++) {
			data = buf[liter];
			/* Are we at the beginning of a sector? */
			if ((addr & rest_addr) == 0) {
				if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
					if (addr >= 0x10000UL) {
						if (((addr >> 12) & 0xf0) &&
						    ((man_id == 0x01 &&
							flash_id == 0x3e) ||
						     (man_id == 0x20 &&
							 flash_id == 0xd2))) {
							sec_number++;
							if (sec_number == 1) {
								rest_addr =
								    0x7fff;
								sec_mask =
								    0x18000;
							} else if (
							    sec_number == 2 ||
							    sec_number == 3) {
								rest_addr =
								    0x1fff;
								sec_mask =
								    0x1e000;
							} else if (
							    sec_number == 4) {
								rest_addr =
								    0x3fff;
								sec_mask =
								    0x1c000;
							}
						}
					}
				} else if (addr == ha->optrom_size / 2) {
					WRT_REG_WORD(&reg->nvram, NVR_SELECT);
					RD_REG_WORD(&reg->nvram);
				}

				if (flash_id == 0xda && man_id == 0xc1) {
					qla2x00_write_flash_byte(ha, 0x5555,
					    0xaa);
					qla2x00_write_flash_byte(ha, 0x2aaa,
					    0x55);
					qla2x00_write_flash_byte(ha, 0x5555,
					    0xa0);
				} else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
					/* Then erase it */
					if (qla2x00_erase_flash_sector(ha,
					    addr, sec_mask, man_id,
					    flash_id)) {
						rval = QLA_FUNCTION_FAILED;
						break;
					}
					if (man_id == 0x01 && flash_id == 0x6d)
						sec_number++;
				}
			}

			if (man_id == 0x01 && flash_id == 0x6d) {
				if (sec_number == 1 &&
				    addr == (rest_addr - 1)) {
					rest_addr = 0x0fff;
					sec_mask   = 0x1f000;
				} else if (sec_number == 3 && (addr & 0x7ffe)) {
					rest_addr = 0x3fff;
					sec_mask   = 0x1c000;
				}
			}

			if (qla2x00_program_flash_address(ha, addr, data,
			    man_id, flash_id)) {
				rval = QLA_FUNCTION_FAILED;
				break;
			}
2340
			cond_resched();
2341 2342 2343 2344 2345
		}
	} while (0);
	qla2x00_flash_disable(ha);

	/* Resume HBA. */
2346
	qla2x00_resume_hba(vha);
2347 2348 2349 2350 2351

	return rval;
}

uint8_t *
2352
qla24xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2353 2354
    uint32_t offset, uint32_t length)
{
2355 2356
	struct qla_hw_data *ha = vha->hw;

2357
	/* Suspend HBA. */
2358
	scsi_block_requests(vha->host);
2359 2360 2361
	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);

	/* Go with read. */
2362
	qla24xx_read_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2);
2363 2364 2365

	/* Resume HBA. */
	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2366
	scsi_unblock_requests(vha->host);
2367 2368 2369 2370 2371

	return buf;
}

int
2372
qla24xx_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2373 2374 2375
    uint32_t offset, uint32_t length)
{
	int rval;
2376
	struct qla_hw_data *ha = vha->hw;
2377 2378

	/* Suspend HBA. */
2379
	scsi_block_requests(vha->host);
2380 2381 2382
	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);

	/* Go with write. */
2383
	rval = qla24xx_write_flash_data(vha, (uint32_t *)buf, offset >> 2,
2384 2385 2386
	    length >> 2);

	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2387
	scsi_unblock_requests(vha->host);
2388 2389 2390

	return rval;
}
2391

2392
uint8_t *
2393
qla25xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2394 2395 2396 2397 2398 2399 2400
    uint32_t offset, uint32_t length)
{
	int rval;
	dma_addr_t optrom_dma;
	void *optrom;
	uint8_t *pbuf;
	uint32_t faddr, left, burst;
2401
	struct qla_hw_data *ha = vha->hw;
2402

2403 2404
	if (IS_QLA25XX(ha) || IS_QLA81XX(ha))
		goto try_fast;
2405
	if (offset & 0xfff)
2406 2407 2408 2409
		goto slow_read;
	if (length < OPTROM_BURST_SIZE)
		goto slow_read;

2410
try_fast:
2411 2412 2413
	optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
	    &optrom_dma, GFP_KERNEL);
	if (!optrom) {
2414 2415 2416
		ql_log(ql_log_warn, vha, 0x00cc,
		    "Unable to allocate memory for optrom burst read (%x KB).\n",
		    OPTROM_BURST_SIZE / 1024);
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
		goto slow_read;
	}

	pbuf = buf;
	faddr = offset >> 2;
	left = length >> 2;
	burst = OPTROM_BURST_DWORDS;
	while (left != 0) {
		if (burst > left)
			burst = left;

2428
		rval = qla2x00_dump_ram(vha, optrom_dma,
2429
		    flash_data_addr(ha, faddr), burst);
2430
		if (rval) {
2431 2432 2433
			ql_log(ql_log_warn, vha, 0x00f5,
			    "Unable to burst-read optrom segment (%x/%x/%llx).\n",
			    rval, flash_data_addr(ha, faddr),
A
Andrew Morton 已提交
2434
			    (unsigned long long)optrom_dma);
2435
			ql_log(ql_log_warn, vha, 0x00f6,
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
			    "Reverting to slow-read.\n");

			dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
			    optrom, optrom_dma);
			goto slow_read;
		}

		memcpy(pbuf, optrom, burst * 4);

		left -= burst;
		faddr += burst;
		pbuf += burst * 4;
	}

	dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
	    optrom_dma);

	return buf;

slow_read:
2456
    return qla24xx_read_optrom_data(vha, buf, offset, length);
2457 2458
}

2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
/**
 * qla2x00_get_fcode_version() - Determine an FCODE image's version.
 * @ha: HA context
 * @pcids: Pointer to the FCODE PCI data structure
 *
 * The process of retrieving the FCODE version information is at best
 * described as interesting.
 *
 * Within the first 100h bytes of the image an ASCII string is present
 * which contains several pieces of information including the FCODE
 * version.  Unfortunately it seems the only reliable way to retrieve
 * the version is by scanning for another sentinel within the string,
 * the FCODE build date:
 *
 *	... 2.00.02 10/17/02 ...
 *
 * Returns QLA_SUCCESS on successful retrieval of version.
 */
static void
2478
qla2x00_get_fcode_version(struct qla_hw_data *ha, uint32_t pcids)
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
{
	int ret = QLA_FUNCTION_FAILED;
	uint32_t istart, iend, iter, vend;
	uint8_t do_next, rbyte, *vbyte;

	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));

	/* Skip the PCI data structure. */
	istart = pcids +
	    ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
		qla2x00_read_flash_byte(ha, pcids + 0x0A));
	iend = istart + 0x100;
	do {
		/* Scan for the sentinel date string...eeewww. */
		do_next = 0;
		iter = istart;
		while ((iter < iend) && !do_next) {
			iter++;
			if (qla2x00_read_flash_byte(ha, iter) == '/') {
				if (qla2x00_read_flash_byte(ha, iter + 2) ==
				    '/')
					do_next++;
				else if (qla2x00_read_flash_byte(ha,
				    iter + 3) == '/')
					do_next++;
			}
		}
		if (!do_next)
			break;

		/* Backtrack to previous ' ' (space). */
		do_next = 0;
		while ((iter > istart) && !do_next) {
			iter--;
			if (qla2x00_read_flash_byte(ha, iter) == ' ')
				do_next++;
		}
		if (!do_next)
			break;

		/*
		 * Mark end of version tag, and find previous ' ' (space) or
		 * string length (recent FCODE images -- major hack ahead!!!).
		 */
		vend = iter - 1;
		do_next = 0;
		while ((iter > istart) && !do_next) {
			iter--;
			rbyte = qla2x00_read_flash_byte(ha, iter);
			if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
				do_next++;
		}
		if (!do_next)
			break;

		/* Mark beginning of version tag, and copy data. */
		iter++;
		if ((vend - iter) &&
		    ((vend - iter) < sizeof(ha->fcode_revision))) {
			vbyte = ha->fcode_revision;
			while (iter <= vend) {
				*vbyte++ = qla2x00_read_flash_byte(ha, iter);
				iter++;
			}
			ret = QLA_SUCCESS;
		}
	} while (0);

	if (ret != QLA_SUCCESS)
		memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
}

int
2552
qla2x00_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2553 2554 2555 2556 2557 2558
{
	int ret = QLA_SUCCESS;
	uint8_t code_type, last_image;
	uint32_t pcihdr, pcids;
	uint8_t *dbyte;
	uint16_t *dcode;
2559
	struct qla_hw_data *ha = vha->hw;
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578

	if (!ha->pio_address || !mbuf)
		return QLA_FUNCTION_FAILED;

	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));

	qla2x00_flash_enable(ha);

	/* Begin with first PCI expansion ROM header. */
	pcihdr = 0;
	last_image = 1;
	do {
		/* Verify PCI expansion ROM header. */
		if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
		    qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
			/* No signature */
2579 2580
			ql_log(ql_log_fatal, vha, 0x0050,
			    "No matching ROM signature.\n");
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Locate PCI data structure. */
		pcids = pcihdr +
		    ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
			qla2x00_read_flash_byte(ha, pcihdr + 0x18));

		/* Validate signature of PCI data structure. */
		if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
		    qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
		    qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
		    qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
			/* Incorrect header. */
2596 2597
			ql_log(ql_log_fatal, vha, 0x0051,
			    "PCI data struct not found pcir_adr=%x.\n", pcids);
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Read version */
		code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
		switch (code_type) {
		case ROM_CODE_TYPE_BIOS:
			/* Intel x86, PC-AT compatible. */
			ha->bios_revision[0] =
			    qla2x00_read_flash_byte(ha, pcids + 0x12);
			ha->bios_revision[1] =
			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2611 2612 2613
			ql_dbg(ql_dbg_init, vha, 0x0052,
			    "Read BIOS %d.%d.\n",
			    ha->bios_revision[1], ha->bios_revision[0]);
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
			break;
		case ROM_CODE_TYPE_FCODE:
			/* Open Firmware standard for PCI (FCode). */
			/* Eeeewww... */
			qla2x00_get_fcode_version(ha, pcids);
			break;
		case ROM_CODE_TYPE_EFI:
			/* Extensible Firmware Interface (EFI). */
			ha->efi_revision[0] =
			    qla2x00_read_flash_byte(ha, pcids + 0x12);
			ha->efi_revision[1] =
			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2626 2627 2628
			ql_dbg(ql_dbg_init, vha, 0x0053,
			    "Read EFI %d.%d.\n",
			    ha->efi_revision[1], ha->efi_revision[0]);
2629 2630
			break;
		default:
2631 2632 2633
			ql_log(ql_log_warn, vha, 0x0054,
			    "Unrecognized code type %x at pcids %x.\n",
			    code_type, pcids);
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
			break;
		}

		last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;

		/* Locate next PCI expansion ROM. */
		pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
		    qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
	} while (!last_image);

	if (IS_QLA2322(ha)) {
		/* Read firmware image information. */
		memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
		dbyte = mbuf;
		memset(dbyte, 0, 8);
		dcode = (uint16_t *)dbyte;

2651
		qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10,
2652
		    8);
2653 2654 2655 2656 2657
		ql_dbg(ql_dbg_init + ql_dbg_buffer, vha, 0x010a,
		    "Dumping fw "
		    "ver from flash:.\n");
		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x010b,
		    (uint8_t *)dbyte, 8);
2658 2659 2660 2661 2662

		if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
		    dcode[2] == 0xffff && dcode[3] == 0xffff) ||
		    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
		    dcode[3] == 0)) {
2663 2664 2665
			ql_log(ql_log_warn, vha, 0x0057,
			    "Unrecognized fw revision at %x.\n",
			    ha->flt_region_fw * 4);
2666 2667 2668 2669 2670
		} else {
			/* values are in big endian */
			ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
			ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
			ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
2671 2672 2673 2674
			ql_dbg(ql_dbg_init, vha, 0x0058,
			    "FW Version: "
			    "%d.%d.%d.\n", ha->fw_revision[0],
			    ha->fw_revision[1], ha->fw_revision[2]);
2675 2676 2677 2678 2679 2680 2681 2682 2683
		}
	}

	qla2x00_flash_disable(ha);

	return ret;
}

int
2684
qla24xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2685 2686 2687 2688 2689 2690 2691
{
	int ret = QLA_SUCCESS;
	uint32_t pcihdr, pcids;
	uint32_t *dcode;
	uint8_t *bcode;
	uint8_t code_type, last_image;
	int i;
2692
	struct qla_hw_data *ha = vha->hw;
2693

2694 2695 2696
	if (IS_QLA82XX(ha))
		return ret;

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
	if (!mbuf)
		return QLA_FUNCTION_FAILED;

	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));

	dcode = mbuf;

	/* Begin with first PCI expansion ROM header. */
2708
	pcihdr = ha->flt_region_boot << 2;
2709 2710 2711
	last_image = 1;
	do {
		/* Verify PCI expansion ROM header. */
2712
		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
2713 2714 2715
		bcode = mbuf + (pcihdr % 4);
		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
			/* No signature */
2716 2717
			ql_log(ql_log_fatal, vha, 0x0059,
			    "No matching ROM signature.\n");
2718 2719 2720 2721 2722 2723 2724
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Locate PCI data structure. */
		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);

2725
		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
2726 2727 2728 2729 2730 2731
		bcode = mbuf + (pcihdr % 4);

		/* Validate signature of PCI data structure. */
		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
		    bcode[0x2] != 'I' || bcode[0x3] != 'R') {
			/* Incorrect header. */
2732 2733
			ql_log(ql_log_fatal, vha, 0x005a,
			    "PCI data struct not found pcir_adr=%x.\n", pcids);
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Read version */
		code_type = bcode[0x14];
		switch (code_type) {
		case ROM_CODE_TYPE_BIOS:
			/* Intel x86, PC-AT compatible. */
			ha->bios_revision[0] = bcode[0x12];
			ha->bios_revision[1] = bcode[0x13];
2745 2746 2747
			ql_dbg(ql_dbg_init, vha, 0x005b,
			    "Read BIOS %d.%d.\n",
			    ha->bios_revision[1], ha->bios_revision[0]);
2748 2749 2750 2751 2752
			break;
		case ROM_CODE_TYPE_FCODE:
			/* Open Firmware standard for PCI (FCode). */
			ha->fcode_revision[0] = bcode[0x12];
			ha->fcode_revision[1] = bcode[0x13];
2753 2754 2755
			ql_dbg(ql_dbg_init, vha, 0x005c,
			    "Read FCODE %d.%d.\n",
			    ha->fcode_revision[1], ha->fcode_revision[0]);
2756 2757 2758 2759 2760
			break;
		case ROM_CODE_TYPE_EFI:
			/* Extensible Firmware Interface (EFI). */
			ha->efi_revision[0] = bcode[0x12];
			ha->efi_revision[1] = bcode[0x13];
2761 2762 2763
			ql_dbg(ql_dbg_init, vha, 0x005d,
			    "Read EFI %d.%d.\n",
			    ha->efi_revision[1], ha->efi_revision[0]);
2764 2765
			break;
		default:
2766 2767 2768
			ql_log(ql_log_warn, vha, 0x005e,
			    "Unrecognized code type %x at pcids %x.\n",
			    code_type, pcids);
2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
			break;
		}

		last_image = bcode[0x15] & BIT_7;

		/* Locate next PCI expansion ROM. */
		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
	} while (!last_image);

	/* Read firmware image information. */
	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
	dcode = mbuf;

2782
	qla24xx_read_flash_data(vha, dcode, ha->flt_region_fw + 4, 4);
2783 2784 2785 2786 2787 2788 2789
	for (i = 0; i < 4; i++)
		dcode[i] = be32_to_cpu(dcode[i]);

	if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
	    dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
	    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
	    dcode[3] == 0)) {
2790 2791 2792
		ql_log(ql_log_warn, vha, 0x005f,
		    "Unrecognized fw revision at %x.\n",
		    ha->flt_region_fw * 4);
2793 2794 2795 2796 2797
	} else {
		ha->fw_revision[0] = dcode[0];
		ha->fw_revision[1] = dcode[1];
		ha->fw_revision[2] = dcode[2];
		ha->fw_revision[3] = dcode[3];
2798 2799 2800 2801
		ql_dbg(ql_dbg_init, vha, 0x0060,
		    "Firmware revision %d.%d.%d.%d.\n",
		    ha->fw_revision[0], ha->fw_revision[1],
		    ha->fw_revision[2], ha->fw_revision[3]);
2802 2803
	}

2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
	/* Check for golden firmware and get version if available */
	if (!IS_QLA81XX(ha)) {
		/* Golden firmware is not present in non 81XX adapters */
		return ret;
	}

	memset(ha->gold_fw_version, 0, sizeof(ha->gold_fw_version));
	dcode = mbuf;
	ha->isp_ops->read_optrom(vha, (uint8_t *)dcode,
	    ha->flt_region_gold_fw << 2, 32);

	if (dcode[4] == 0xFFFFFFFF && dcode[5] == 0xFFFFFFFF &&
	    dcode[6] == 0xFFFFFFFF && dcode[7] == 0xFFFFFFFF) {
2817 2818 2819
		ql_log(ql_log_warn, vha, 0x0056,
		    "Unrecognized golden fw at 0x%x.\n",
		    ha->flt_region_gold_fw * 4);
2820 2821 2822 2823 2824 2825
		return ret;
	}

	for (i = 4; i < 8; i++)
		ha->gold_fw_version[i-4] = be32_to_cpu(dcode[i]);

2826 2827
	return ret;
}
2828

2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
static int
qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end)
{
	if (pos >= end || *pos != 0x82)
		return 0;

	pos += 3 + pos[1];
	if (pos >= end || *pos != 0x90)
		return 0;

	pos += 3 + pos[1];
	if (pos >= end || *pos != 0x78)
		return 0;

	return 1;
}

int
2847
qla2xxx_get_vpd_field(scsi_qla_host_t *vha, char *key, char *str, size_t size)
2848
{
2849
	struct qla_hw_data *ha = vha->hw;
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
	uint8_t *pos = ha->vpd;
	uint8_t *end = pos + ha->vpd_size;
	int len = 0;

	if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end))
		return 0;

	while (pos < end && *pos != 0x78) {
		len = (*pos == 0x82) ? pos[1] : pos[2];

		if (!strncmp(pos, key, strlen(key)))
			break;

		if (*pos != 0x90 && *pos != 0x91)
			pos += len;

		pos += 3;
	}

	if (pos < end - len && *pos != 0x78)
		return snprintf(str, size, "%.*s", len, pos + 3);

	return 0;
}
S
Sarang Radke 已提交
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884

int
qla24xx_read_fcp_prio_cfg(scsi_qla_host_t *vha)
{
	int len, max_len;
	uint32_t fcp_prio_addr;
	struct qla_hw_data *ha = vha->hw;

	if (!ha->fcp_prio_cfg) {
		ha->fcp_prio_cfg = vmalloc(FCP_PRIO_CFG_SIZE);
		if (!ha->fcp_prio_cfg) {
2885 2886 2887
			ql_log(ql_log_warn, vha, 0x00d5,
			    "Unable to allocate memory for fcp priorty data (%x).\n",
			    FCP_PRIO_CFG_SIZE);
S
Sarang Radke 已提交
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
			return QLA_FUNCTION_FAILED;
		}
	}
	memset(ha->fcp_prio_cfg, 0, FCP_PRIO_CFG_SIZE);

	fcp_prio_addr = ha->flt_region_fcp_prio;

	/* first read the fcp priority data header from flash */
	ha->isp_ops->read_optrom(vha, (uint8_t *)ha->fcp_prio_cfg,
			fcp_prio_addr << 2, FCP_PRIO_CFG_HDR_SIZE);

2899
	if (!qla24xx_fcp_prio_cfg_valid(vha, ha->fcp_prio_cfg, 0))
S
Sarang Radke 已提交
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
		goto fail;

	/* read remaining FCP CMD config data from flash */
	fcp_prio_addr += (FCP_PRIO_CFG_HDR_SIZE >> 2);
	len = ha->fcp_prio_cfg->num_entries * FCP_PRIO_CFG_ENTRY_SIZE;
	max_len = FCP_PRIO_CFG_SIZE - FCP_PRIO_CFG_HDR_SIZE;

	ha->isp_ops->read_optrom(vha, (uint8_t *)&ha->fcp_prio_cfg->entry[0],
			fcp_prio_addr << 2, (len < max_len ? len : max_len));

	/* revalidate the entire FCP priority config data, including entries */
2911
	if (!qla24xx_fcp_prio_cfg_valid(vha, ha->fcp_prio_cfg, 1))
S
Sarang Radke 已提交
2912 2913 2914 2915 2916 2917 2918 2919 2920
		goto fail;

	ha->flags.fcp_prio_enabled = 1;
	return QLA_SUCCESS;
fail:
	vfree(ha->fcp_prio_cfg);
	ha->fcp_prio_cfg = NULL;
	return QLA_FUNCTION_FAILED;
}