bpf_verifier.h 17.1 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0-only */
2 3 4 5 6 7
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
 */
#ifndef _LINUX_BPF_VERIFIER_H
#define _LINUX_BPF_VERIFIER_H 1

#include <linux/bpf.h> /* for enum bpf_reg_type */
8
#include <linux/btf.h> /* for struct btf and btf_id() */
9
#include <linux/filter.h> /* for MAX_BPF_STACK */
10
#include <linux/tnum.h>
11

12 13 14 15
/* Maximum variable offset umax_value permitted when resolving memory accesses.
 * In practice this is far bigger than any realistic pointer offset; this limit
 * ensures that umax_value + (int)off + (int)size cannot overflow a u64.
 */
A
Alexei Starovoitov 已提交
16
#define BPF_MAX_VAR_OFF	(1 << 29)
17 18 19
/* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO].  This ensures
 * that converting umax_value to int cannot overflow.
 */
A
Alexei Starovoitov 已提交
20
#define BPF_MAX_VAR_SIZ	(1 << 29)
21

22 23 24 25 26 27 28 29 30 31 32 33 34
/* Liveness marks, used for registers and spilled-regs (in stack slots).
 * Read marks propagate upwards until they find a write mark; they record that
 * "one of this state's descendants read this reg" (and therefore the reg is
 * relevant for states_equal() checks).
 * Write marks collect downwards and do not propagate; they record that "the
 * straight-line code that reached this state (from its parent) wrote this reg"
 * (and therefore that reads propagated from this state or its descendants
 * should not propagate to its parent).
 * A state with a write mark can receive read marks; it just won't propagate
 * them to its parent, since the write mark is a property, not of the state,
 * but of the link between it and its parent.  See mark_reg_read() and
 * mark_stack_slot_read() in kernel/bpf/verifier.c.
 */
35 36
enum bpf_reg_liveness {
	REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */
37 38 39 40 41
	REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */
	REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */
	REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64,
	REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */
	REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */
42 43
};

44
struct bpf_reg_state {
45
	/* Ordering of fields matters.  See states_equal() */
46
	enum bpf_reg_type type;
47 48
	/* Fixed part of pointer offset, pointer types only */
	s32 off;
49
	union {
50
		/* valid when type == PTR_TO_PACKET */
51
		int range;
52 53 54 55 56

		/* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
		 *   PTR_TO_MAP_VALUE_OR_NULL
		 */
		struct bpf_map *map_ptr;
57

58 59 60 61 62
		/* for PTR_TO_BTF_ID */
		struct {
			struct btf *btf;
			u32 btf_id;
		};
63

64 65
		u32 mem_size; /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */

66
		/* Max size from any of the above. */
67 68 69 70
		struct {
			unsigned long raw1;
			unsigned long raw2;
		} raw;
71
	};
72 73 74 75
	/* For PTR_TO_PACKET, used to find other pointers with the same variable
	 * offset, so they can share range knowledge.
	 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we
	 * came from, when one is tested for != NULL.
76 77
	 * For PTR_TO_MEM_OR_NULL this is used to identify memory allocation
	 * for the purpose of tracking that it's freed.
78 79
	 * For PTR_TO_SOCKET this is used to share which pointers retain the
	 * same reference to the socket, to determine proper reference freeing.
80
	 */
A
Alexei Starovoitov 已提交
81
	u32 id;
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
	/* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned
	 * from a pointer-cast helper, bpf_sk_fullsock() and
	 * bpf_tcp_sock().
	 *
	 * Consider the following where "sk" is a reference counted
	 * pointer returned from "sk = bpf_sk_lookup_tcp();":
	 *
	 * 1: sk = bpf_sk_lookup_tcp();
	 * 2: if (!sk) { return 0; }
	 * 3: fullsock = bpf_sk_fullsock(sk);
	 * 4: if (!fullsock) { bpf_sk_release(sk); return 0; }
	 * 5: tp = bpf_tcp_sock(fullsock);
	 * 6: if (!tp) { bpf_sk_release(sk); return 0; }
	 * 7: bpf_sk_release(sk);
	 * 8: snd_cwnd = tp->snd_cwnd;  // verifier will complain
	 *
	 * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and
	 * "tp" ptr should be invalidated also.  In order to do that,
	 * the reg holding "fullsock" and "sk" need to remember
	 * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id
	 * such that the verifier can reset all regs which have
	 * ref_obj_id matching the sk_reg->id.
	 *
	 * sk_reg->ref_obj_id is set to sk_reg->id at line 1.
	 * sk_reg->id will stay as NULL-marking purpose only.
	 * After NULL-marking is done, sk_reg->id can be reset to 0.
	 *
	 * After "fullsock = bpf_sk_fullsock(sk);" at line 3,
	 * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id.
	 *
	 * After "tp = bpf_tcp_sock(fullsock);" at line 5,
	 * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id
	 * which is the same as sk_reg->ref_obj_id.
	 *
	 * From the verifier perspective, if sk, fullsock and tp
	 * are not NULL, they are the same ptr with different
	 * reg->type.  In particular, bpf_sk_release(tp) is also
	 * allowed and has the same effect as bpf_sk_release(sk).
	 */
	u32 ref_obj_id;
122 123 124 125 126 127 128
	/* For scalar types (SCALAR_VALUE), this represents our knowledge of
	 * the actual value.
	 * For pointer types, this represents the variable part of the offset
	 * from the pointed-to object, and is shared with all bpf_reg_states
	 * with the same id as us.
	 */
	struct tnum var_off;
A
Alexei Starovoitov 已提交
129
	/* Used to determine if any memory access using this register will
130 131 132
	 * result in a bad access.
	 * These refer to the same value as var_off, not necessarily the actual
	 * contents of the register.
A
Alexei Starovoitov 已提交
133
	 */
134 135 136 137
	s64 smin_value; /* minimum possible (s64)value */
	s64 smax_value; /* maximum possible (s64)value */
	u64 umin_value; /* minimum possible (u64)value */
	u64 umax_value; /* maximum possible (u64)value */
138 139 140 141
	s32 s32_min_value; /* minimum possible (s32)value */
	s32 s32_max_value; /* maximum possible (s32)value */
	u32 u32_min_value; /* minimum possible (u32)value */
	u32 u32_max_value; /* maximum possible (u32)value */
142 143
	/* parentage chain for liveness checking */
	struct bpf_reg_state *parent;
144 145 146 147 148 149 150
	/* Inside the callee two registers can be both PTR_TO_STACK like
	 * R1=fp-8 and R2=fp-8, but one of them points to this function stack
	 * while another to the caller's stack. To differentiate them 'frameno'
	 * is used which is an index in bpf_verifier_state->frame[] array
	 * pointing to bpf_func_state.
	 */
	u32 frameno;
151 152 153 154 155
	/* Tracks subreg definition. The stored value is the insn_idx of the
	 * writing insn. This is safe because subreg_def is used before any insn
	 * patching which only happens after main verification finished.
	 */
	s32 subreg_def;
156
	enum bpf_reg_liveness live;
157 158
	/* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */
	bool precise;
159 160 161 162 163
};

enum bpf_stack_slot_type {
	STACK_INVALID,    /* nothing was stored in this stack slot */
	STACK_SPILL,      /* register spilled into stack */
164 165
	STACK_MISC,	  /* BPF program wrote some data into this slot */
	STACK_ZERO,	  /* BPF program wrote constant zero */
166 167 168 169
};

#define BPF_REG_SIZE 8	/* size of eBPF register in bytes */

170 171 172 173 174
struct bpf_stack_state {
	struct bpf_reg_state spilled_ptr;
	u8 slot_type[BPF_REG_SIZE];
};

175 176 177 178 179 180 181 182 183 184 185
struct bpf_reference_state {
	/* Track each reference created with a unique id, even if the same
	 * instruction creates the reference multiple times (eg, via CALL).
	 */
	int id;
	/* Instruction where the allocation of this reference occurred. This
	 * is used purely to inform the user of a reference leak.
	 */
	int insn_idx;
};

186 187 188
/* state of the program:
 * type of all registers and stack info
 */
189
struct bpf_func_state {
190
	struct bpf_reg_state regs[MAX_BPF_REG];
191 192 193 194 195 196 197 198 199 200 201 202
	/* index of call instruction that called into this func */
	int callsite;
	/* stack frame number of this function state from pov of
	 * enclosing bpf_verifier_state.
	 * 0 = main function, 1 = first callee.
	 */
	u32 frameno;
	/* subprog number == index within subprog_stack_depth
	 * zero == main subprog
	 */
	u32 subprogno;

203 204 205
	/* The following fields should be last. See copy_func_state() */
	int acquired_refs;
	struct bpf_reference_state *refs;
206 207
	int allocated_stack;
	struct bpf_stack_state *stack;
208 209
};

210 211 212 213 214
struct bpf_idx_pair {
	u32 prev_idx;
	u32 idx;
};

215 216 217 218
#define MAX_CALL_FRAMES 8
struct bpf_verifier_state {
	/* call stack tracking */
	struct bpf_func_state *frame[MAX_CALL_FRAMES];
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
	struct bpf_verifier_state *parent;
	/*
	 * 'branches' field is the number of branches left to explore:
	 * 0 - all possible paths from this state reached bpf_exit or
	 * were safely pruned
	 * 1 - at least one path is being explored.
	 * This state hasn't reached bpf_exit
	 * 2 - at least two paths are being explored.
	 * This state is an immediate parent of two children.
	 * One is fallthrough branch with branches==1 and another
	 * state is pushed into stack (to be explored later) also with
	 * branches==1. The parent of this state has branches==1.
	 * The verifier state tree connected via 'parent' pointer looks like:
	 * 1
	 * 1
	 * 2 -> 1 (first 'if' pushed into stack)
	 * 1
	 * 2 -> 1 (second 'if' pushed into stack)
	 * 1
	 * 1
	 * 1 bpf_exit.
	 *
	 * Once do_check() reaches bpf_exit, it calls update_branch_counts()
	 * and the verifier state tree will look:
	 * 1
	 * 1
	 * 2 -> 1 (first 'if' pushed into stack)
	 * 1
	 * 1 -> 1 (second 'if' pushed into stack)
	 * 0
	 * 0
	 * 0 bpf_exit.
	 * After pop_stack() the do_check() will resume at second 'if'.
	 *
	 * If is_state_visited() sees a state with branches > 0 it means
	 * there is a loop. If such state is exactly equal to the current state
	 * it's an infinite loop. Note states_equal() checks for states
	 * equvalency, so two states being 'states_equal' does not mean
	 * infinite loop. The exact comparison is provided by
	 * states_maybe_looping() function. It's a stronger pre-check and
	 * much faster than states_equal().
	 *
	 * This algorithm may not find all possible infinite loops or
	 * loop iteration count may be too high.
	 * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in.
	 */
	u32 branches;
266
	u32 insn_idx;
267
	u32 curframe;
268
	u32 active_spin_lock;
269
	bool speculative;
270 271 272 273 274 275 276 277 278 279 280

	/* first and last insn idx of this verifier state */
	u32 first_insn_idx;
	u32 last_insn_idx;
	/* jmp history recorded from first to last.
	 * backtracking is using it to go from last to first.
	 * For most states jmp_history_cnt is [0-3].
	 * For loops can go up to ~40.
	 */
	struct bpf_idx_pair *jmp_history;
	u32 jmp_history_cnt;
281 282
};

283 284 285 286 287 288 289 290 291 292 293
#define bpf_get_spilled_reg(slot, frame)				\
	(((slot < frame->allocated_stack / BPF_REG_SIZE) &&		\
	  (frame->stack[slot].slot_type[0] == STACK_SPILL))		\
	 ? &frame->stack[slot].spilled_ptr : NULL)

/* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */
#define bpf_for_each_spilled_reg(iter, frame, reg)			\
	for (iter = 0, reg = bpf_get_spilled_reg(iter, frame);		\
	     iter < frame->allocated_stack / BPF_REG_SIZE;		\
	     iter++, reg = bpf_get_spilled_reg(iter, frame))

294 295 296 297
/* linked list of verifier states used to prune search */
struct bpf_verifier_state_list {
	struct bpf_verifier_state state;
	struct bpf_verifier_state_list *next;
298
	int miss_cnt, hit_cnt;
299 300
};

301 302 303 304
/* Possible states for alu_state member. */
#define BPF_ALU_SANITIZE_SRC		1U
#define BPF_ALU_SANITIZE_DST		2U
#define BPF_ALU_NEG_VALUE		(1U << 2)
305
#define BPF_ALU_NON_POINTER		(1U << 3)
306 307 308
#define BPF_ALU_SANITIZE		(BPF_ALU_SANITIZE_SRC | \
					 BPF_ALU_SANITIZE_DST)

309
struct bpf_insn_aux_data {
310 311
	union {
		enum bpf_reg_type ptr_type;	/* pointer type for load/store insns */
312
		unsigned long map_ptr_state;	/* pointer/poison value for maps */
313
		s32 call_imm;			/* saved imm field of call insn */
314
		u32 alu_limit;			/* limit for add/sub register with pointer */
315 316 317 318
		struct {
			u32 map_index;		/* index into used_maps[] */
			u32 map_off;		/* offset from value base address */
		};
H
Hao Luo 已提交
319 320 321
		struct {
			enum bpf_reg_type reg_type;	/* type of pseudo_btf_id */
			union {
322 323 324 325
				struct {
					struct btf *btf;
					u32 btf_id;	/* btf_id for struct typed var */
				};
H
Hao Luo 已提交
326 327 328
				u32 mem_size;	/* mem_size for non-struct typed var */
			};
		} btf_var;
329
	};
330
	u64 map_key_state; /* constant (32 bit) key tracking for maps */
331
	int ctx_field_size; /* the ctx field size for load insn, maybe 0 */
332
	int sanitize_stack_off; /* stack slot to be cleared */
333
	u32 seen; /* this insn was processed by the verifier at env->pass_cnt */
334
	bool zext_dst; /* this insn zero extends dst reg */
335
	u8 alu_state; /* used in combination with alu_limit */
336 337

	/* below fields are initialized once */
338
	unsigned int orig_idx; /* original instruction index */
339
	bool prune_point;
340 341 342
};

#define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
343
#define MAX_USED_BTFS 64 /* max number of BTFs accessed by one BPF program */
344

345 346
#define BPF_VERIFIER_TMP_LOG_SIZE	1024

M
Martin KaFai Lau 已提交
347
struct bpf_verifier_log {
348
	u32 level;
349
	char kbuf[BPF_VERIFIER_TMP_LOG_SIZE];
350 351 352 353 354
	char __user *ubuf;
	u32 len_used;
	u32 len_total;
};

M
Martin KaFai Lau 已提交
355
static inline bool bpf_verifier_log_full(const struct bpf_verifier_log *log)
356 357 358 359
{
	return log->len_used >= log->len_total - 1;
}

360 361 362 363 364
#define BPF_LOG_LEVEL1	1
#define BPF_LOG_LEVEL2	2
#define BPF_LOG_STATS	4
#define BPF_LOG_LEVEL	(BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2)
#define BPF_LOG_MASK	(BPF_LOG_LEVEL | BPF_LOG_STATS)
A
Alexei Starovoitov 已提交
365
#define BPF_LOG_KERNEL	(BPF_LOG_MASK + 1) /* kernel internal flag */
366

367 368
static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log)
{
369 370 371
	return log &&
		((log->level && log->ubuf && !bpf_verifier_log_full(log)) ||
		 log->level == BPF_LOG_KERNEL);
372 373
}

374 375
#define BPF_MAX_SUBPROGS 256

376
struct bpf_subprog_info {
377
	/* 'start' has to be the first field otherwise find_subprog() won't work */
378
	u32 start; /* insn idx of function entry point */
M
Martin KaFai Lau 已提交
379
	u32 linfo_idx; /* The idx to the main_prog->aux->linfo */
380
	u16 stack_depth; /* max. stack depth used by this function */
381
	bool has_tail_call;
382
	bool tail_call_reachable;
383
	bool has_ld_abs;
384 385
};

386 387 388 389
/* single container for all structs
 * one verifier_env per bpf_check() call
 */
struct bpf_verifier_env {
390 391
	u32 insn_idx;
	u32 prev_insn_idx;
392
	struct bpf_prog *prog;		/* eBPF program being verified */
393
	const struct bpf_verifier_ops *ops;
394 395
	struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */
	int stack_size;			/* number of states to be processed */
396
	bool strict_alignment;		/* perform strict pointer alignment checks */
397
	bool test_state_freq;		/* test verifier with different pruning frequency */
398
	struct bpf_verifier_state *cur_state; /* current verifier state */
399
	struct bpf_verifier_state_list **explored_states; /* search pruning optimization */
400
	struct bpf_verifier_state_list *free_list;
401
	struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
402
	struct btf_mod_pair used_btfs[MAX_USED_BTFS]; /* array of BTF's used by BPF program */
403
	u32 used_map_cnt;		/* number of used maps */
404
	u32 used_btf_cnt;		/* number of used BTF objects */
405 406
	u32 id_gen;			/* used to generate unique reg IDs */
	bool allow_ptr_leaks;
407
	bool allow_ptr_to_map_access;
A
Alexei Starovoitov 已提交
408 409 410
	bool bpf_capable;
	bool bypass_spec_v1;
	bool bypass_spec_v4;
411 412
	bool seen_direct_write;
	struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */
413
	const struct bpf_line_info *prev_linfo;
M
Martin KaFai Lau 已提交
414
	struct bpf_verifier_log log;
415
	struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 1];
416 417 418 419 420
	struct {
		int *insn_state;
		int *insn_stack;
		int cur_stack;
	} cfg;
421
	u32 pass_cnt; /* number of times do_check() was called */
422
	u32 subprog_cnt;
423
	/* number of instructions analyzed by the verifier */
424 425 426
	u32 prev_insn_processed, insn_processed;
	/* number of jmps, calls, exits analyzed so far */
	u32 prev_jmps_processed, jmps_processed;
427 428 429 430 431 432 433 434 435 436 437 438 439
	/* total verification time */
	u64 verification_time;
	/* maximum number of verifier states kept in 'branching' instructions */
	u32 max_states_per_insn;
	/* total number of allocated verifier states */
	u32 total_states;
	/* some states are freed during program analysis.
	 * this is peak number of states. this number dominates kernel
	 * memory consumption during verification
	 */
	u32 peak_states;
	/* longest register parentage chain walked for liveness marking */
	u32 longest_mark_read_walk;
440 441
};

442 443
__printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log,
				      const char *fmt, va_list args);
444 445
__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
					   const char *fmt, ...);
446 447
__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
			    const char *fmt, ...);
448

449
static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env)
450
{
451 452
	struct bpf_verifier_state *cur = env->cur_state;

453 454 455 456 457 458
	return cur->frame[cur->curframe];
}

static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env)
{
	return cur_func(env)->regs;
459 460
}

461
int bpf_prog_offload_verifier_prep(struct bpf_prog *prog);
462 463
int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env,
				 int insn_idx, int prev_insn_idx);
464
int bpf_prog_offload_finalize(struct bpf_verifier_env *env);
465 466 467 468 469
void
bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off,
			      struct bpf_insn *insn);
void
bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt);
470

471 472 473
int check_ctx_reg(struct bpf_verifier_env *env,
		  const struct bpf_reg_state *reg, int regno);

474 475
/* this lives here instead of in bpf.h because it needs to dereference tgt_prog */
static inline u64 bpf_trampoline_compute_key(const struct bpf_prog *tgt_prog,
476
					     struct btf *btf, u32 btf_id)
477
{
478 479 480 481
	if (tgt_prog)
		return ((u64)tgt_prog->aux->id << 32) | btf_id;
	else
		return ((u64)btf_obj_id(btf) << 32) | 0x80000000 | btf_id;
482 483 484 485 486 487 488 489
}

int bpf_check_attach_target(struct bpf_verifier_log *log,
			    const struct bpf_prog *prog,
			    const struct bpf_prog *tgt_prog,
			    u32 btf_id,
			    struct bpf_attach_target_info *tgt_info);

490
#endif /* _LINUX_BPF_VERIFIER_H */