bpf_verifier.h 9.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 */
#ifndef _LINUX_BPF_VERIFIER_H
#define _LINUX_BPF_VERIFIER_H 1

#include <linux/bpf.h> /* for enum bpf_reg_type */
#include <linux/filter.h> /* for MAX_BPF_STACK */
12
#include <linux/tnum.h>
13

14 15 16 17
/* Maximum variable offset umax_value permitted when resolving memory accesses.
 * In practice this is far bigger than any realistic pointer offset; this limit
 * ensures that umax_value + (int)off + (int)size cannot overflow a u64.
 */
A
Alexei Starovoitov 已提交
18
#define BPF_MAX_VAR_OFF	(1 << 29)
19 20 21
/* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO].  This ensures
 * that converting umax_value to int cannot overflow.
 */
A
Alexei Starovoitov 已提交
22
#define BPF_MAX_VAR_SIZ	(1 << 29)
23

24 25 26 27 28 29 30 31 32 33 34 35 36
/* Liveness marks, used for registers and spilled-regs (in stack slots).
 * Read marks propagate upwards until they find a write mark; they record that
 * "one of this state's descendants read this reg" (and therefore the reg is
 * relevant for states_equal() checks).
 * Write marks collect downwards and do not propagate; they record that "the
 * straight-line code that reached this state (from its parent) wrote this reg"
 * (and therefore that reads propagated from this state or its descendants
 * should not propagate to its parent).
 * A state with a write mark can receive read marks; it just won't propagate
 * them to its parent, since the write mark is a property, not of the state,
 * but of the link between it and its parent.  See mark_reg_read() and
 * mark_stack_slot_read() in kernel/bpf/verifier.c.
 */
37 38 39 40
enum bpf_reg_liveness {
	REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */
	REG_LIVE_READ, /* reg was read, so we're sensitive to initial value */
	REG_LIVE_WRITTEN, /* reg was written first, screening off later reads */
41
	REG_LIVE_DONE = 4, /* liveness won't be updating this register anymore */
42 43
};

44
struct bpf_reg_state {
45
	/* Ordering of fields matters.  See states_equal() */
46 47
	enum bpf_reg_type type;
	union {
48 49
		/* valid when type == PTR_TO_PACKET */
		u16 range;
50 51 52 53 54

		/* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
		 *   PTR_TO_MAP_VALUE_OR_NULL
		 */
		struct bpf_map *map_ptr;
55 56 57

		/* Max size from any of the above. */
		unsigned long raw;
58
	};
59 60 61 62 63 64
	/* Fixed part of pointer offset, pointer types only */
	s32 off;
	/* For PTR_TO_PACKET, used to find other pointers with the same variable
	 * offset, so they can share range knowledge.
	 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we
	 * came from, when one is tested for != NULL.
65 66
	 * For PTR_TO_SOCKET this is used to share which pointers retain the
	 * same reference to the socket, to determine proper reference freeing.
67
	 */
A
Alexei Starovoitov 已提交
68
	u32 id;
69 70 71 72 73 74 75
	/* For scalar types (SCALAR_VALUE), this represents our knowledge of
	 * the actual value.
	 * For pointer types, this represents the variable part of the offset
	 * from the pointed-to object, and is shared with all bpf_reg_states
	 * with the same id as us.
	 */
	struct tnum var_off;
A
Alexei Starovoitov 已提交
76
	/* Used to determine if any memory access using this register will
77 78 79
	 * result in a bad access.
	 * These refer to the same value as var_off, not necessarily the actual
	 * contents of the register.
A
Alexei Starovoitov 已提交
80
	 */
81 82 83 84
	s64 smin_value; /* minimum possible (s64)value */
	s64 smax_value; /* maximum possible (s64)value */
	u64 umin_value; /* minimum possible (u64)value */
	u64 umax_value; /* maximum possible (u64)value */
85 86
	/* parentage chain for liveness checking */
	struct bpf_reg_state *parent;
87 88 89 90 91 92 93
	/* Inside the callee two registers can be both PTR_TO_STACK like
	 * R1=fp-8 and R2=fp-8, but one of them points to this function stack
	 * while another to the caller's stack. To differentiate them 'frameno'
	 * is used which is an index in bpf_verifier_state->frame[] array
	 * pointing to bpf_func_state.
	 */
	u32 frameno;
94
	enum bpf_reg_liveness live;
95 96 97 98 99
};

enum bpf_stack_slot_type {
	STACK_INVALID,    /* nothing was stored in this stack slot */
	STACK_SPILL,      /* register spilled into stack */
100 101
	STACK_MISC,	  /* BPF program wrote some data into this slot */
	STACK_ZERO,	  /* BPF program wrote constant zero */
102 103 104 105
};

#define BPF_REG_SIZE 8	/* size of eBPF register in bytes */

106 107 108 109 110
struct bpf_stack_state {
	struct bpf_reg_state spilled_ptr;
	u8 slot_type[BPF_REG_SIZE];
};

111 112 113 114 115 116 117 118 119 120 121
struct bpf_reference_state {
	/* Track each reference created with a unique id, even if the same
	 * instruction creates the reference multiple times (eg, via CALL).
	 */
	int id;
	/* Instruction where the allocation of this reference occurred. This
	 * is used purely to inform the user of a reference leak.
	 */
	int insn_idx;
};

122 123 124
/* state of the program:
 * type of all registers and stack info
 */
125
struct bpf_func_state {
126
	struct bpf_reg_state regs[MAX_BPF_REG];
127 128 129 130 131 132 133 134 135 136 137 138
	/* index of call instruction that called into this func */
	int callsite;
	/* stack frame number of this function state from pov of
	 * enclosing bpf_verifier_state.
	 * 0 = main function, 1 = first callee.
	 */
	u32 frameno;
	/* subprog number == index within subprog_stack_depth
	 * zero == main subprog
	 */
	u32 subprogno;

139 140 141
	/* The following fields should be last. See copy_func_state() */
	int acquired_refs;
	struct bpf_reference_state *refs;
142 143
	int allocated_stack;
	struct bpf_stack_state *stack;
144 145
};

146 147 148 149 150
#define MAX_CALL_FRAMES 8
struct bpf_verifier_state {
	/* call stack tracking */
	struct bpf_func_state *frame[MAX_CALL_FRAMES];
	u32 curframe;
151
	bool speculative;
152 153
};

154 155 156 157 158 159 160 161 162 163 164
#define bpf_get_spilled_reg(slot, frame)				\
	(((slot < frame->allocated_stack / BPF_REG_SIZE) &&		\
	  (frame->stack[slot].slot_type[0] == STACK_SPILL))		\
	 ? &frame->stack[slot].spilled_ptr : NULL)

/* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */
#define bpf_for_each_spilled_reg(iter, frame, reg)			\
	for (iter = 0, reg = bpf_get_spilled_reg(iter, frame);		\
	     iter < frame->allocated_stack / BPF_REG_SIZE;		\
	     iter++, reg = bpf_get_spilled_reg(iter, frame))

165 166 167 168 169 170
/* linked list of verifier states used to prune search */
struct bpf_verifier_state_list {
	struct bpf_verifier_state state;
	struct bpf_verifier_state_list *next;
};

171 172 173 174
/* Possible states for alu_state member. */
#define BPF_ALU_SANITIZE_SRC		1U
#define BPF_ALU_SANITIZE_DST		2U
#define BPF_ALU_NEG_VALUE		(1U << 2)
175
#define BPF_ALU_NON_POINTER		(1U << 3)
176 177 178
#define BPF_ALU_SANITIZE		(BPF_ALU_SANITIZE_SRC | \
					 BPF_ALU_SANITIZE_DST)

179
struct bpf_insn_aux_data {
180 181
	union {
		enum bpf_reg_type ptr_type;	/* pointer type for load/store insns */
182
		unsigned long map_state;	/* pointer/poison value for maps */
183
		s32 call_imm;			/* saved imm field of call insn */
184
		u32 alu_limit;			/* limit for add/sub register with pointer */
185
	};
186
	int ctx_field_size; /* the ctx field size for load insn, maybe 0 */
187
	int sanitize_stack_off; /* stack slot to be cleared */
A
Alexei Starovoitov 已提交
188
	bool seen; /* this insn was processed by the verifier */
189
	u8 alu_state; /* used in combination with alu_limit */
190
	unsigned int orig_idx; /* original instruction index */
191 192 193 194
};

#define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */

195 196
#define BPF_VERIFIER_TMP_LOG_SIZE	1024

M
Martin KaFai Lau 已提交
197
struct bpf_verifier_log {
198
	u32 level;
199
	char kbuf[BPF_VERIFIER_TMP_LOG_SIZE];
200 201 202 203 204
	char __user *ubuf;
	u32 len_used;
	u32 len_total;
};

M
Martin KaFai Lau 已提交
205
static inline bool bpf_verifier_log_full(const struct bpf_verifier_log *log)
206 207 208 209
{
	return log->len_used >= log->len_total - 1;
}

210 211 212 213 214
static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log)
{
	return log->level && log->ubuf && !bpf_verifier_log_full(log);
}

215 216
#define BPF_MAX_SUBPROGS 256

217 218
struct bpf_subprog_info {
	u32 start; /* insn idx of function entry point */
M
Martin KaFai Lau 已提交
219
	u32 linfo_idx; /* The idx to the main_prog->aux->linfo */
220 221 222
	u16 stack_depth; /* max. stack depth used by this function */
};

223 224 225 226
/* single container for all structs
 * one verifier_env per bpf_check() call
 */
struct bpf_verifier_env {
227 228
	u32 insn_idx;
	u32 prev_insn_idx;
229
	struct bpf_prog *prog;		/* eBPF program being verified */
230
	const struct bpf_verifier_ops *ops;
231 232
	struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */
	int stack_size;			/* number of states to be processed */
233
	bool strict_alignment;		/* perform strict pointer alignment checks */
234
	struct bpf_verifier_state *cur_state; /* current verifier state */
235 236 237 238 239 240 241
	struct bpf_verifier_state_list **explored_states; /* search pruning optimization */
	struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
	u32 used_map_cnt;		/* number of used maps */
	u32 id_gen;			/* used to generate unique reg IDs */
	bool allow_ptr_leaks;
	bool seen_direct_write;
	struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */
242
	const struct bpf_line_info *prev_linfo;
M
Martin KaFai Lau 已提交
243
	struct bpf_verifier_log log;
244
	struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 1];
245
	u32 subprog_cnt;
246 247
};

248 249
__printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log,
				      const char *fmt, va_list args);
250 251 252
__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
					   const char *fmt, ...);

253
static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env)
254
{
255 256
	struct bpf_verifier_state *cur = env->cur_state;

257 258 259 260 261 262
	return cur->frame[cur->curframe];
}

static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env)
{
	return cur_func(env)->regs;
263 264
}

265
int bpf_prog_offload_verifier_prep(struct bpf_prog *prog);
266 267
int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env,
				 int insn_idx, int prev_insn_idx);
268
int bpf_prog_offload_finalize(struct bpf_verifier_env *env);
269 270 271 272 273
void
bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off,
			      struct bpf_insn *insn);
void
bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt);
274

275
#endif /* _LINUX_BPF_VERIFIER_H */