bpf_verifier.h 14.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 */
#ifndef _LINUX_BPF_VERIFIER_H
#define _LINUX_BPF_VERIFIER_H 1

#include <linux/bpf.h> /* for enum bpf_reg_type */
#include <linux/filter.h> /* for MAX_BPF_STACK */
12
#include <linux/tnum.h>
13

14 15 16 17
/* Maximum variable offset umax_value permitted when resolving memory accesses.
 * In practice this is far bigger than any realistic pointer offset; this limit
 * ensures that umax_value + (int)off + (int)size cannot overflow a u64.
 */
A
Alexei Starovoitov 已提交
18
#define BPF_MAX_VAR_OFF	(1 << 29)
19 20 21
/* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO].  This ensures
 * that converting umax_value to int cannot overflow.
 */
A
Alexei Starovoitov 已提交
22
#define BPF_MAX_VAR_SIZ	(1 << 29)
23

24 25 26 27 28 29 30 31 32 33 34 35 36
/* Liveness marks, used for registers and spilled-regs (in stack slots).
 * Read marks propagate upwards until they find a write mark; they record that
 * "one of this state's descendants read this reg" (and therefore the reg is
 * relevant for states_equal() checks).
 * Write marks collect downwards and do not propagate; they record that "the
 * straight-line code that reached this state (from its parent) wrote this reg"
 * (and therefore that reads propagated from this state or its descendants
 * should not propagate to its parent).
 * A state with a write mark can receive read marks; it just won't propagate
 * them to its parent, since the write mark is a property, not of the state,
 * but of the link between it and its parent.  See mark_reg_read() and
 * mark_stack_slot_read() in kernel/bpf/verifier.c.
 */
37 38
enum bpf_reg_liveness {
	REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */
39 40 41 42 43
	REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */
	REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */
	REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64,
	REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */
	REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */
44 45
};

46
struct bpf_reg_state {
47
	/* Ordering of fields matters.  See states_equal() */
48 49
	enum bpf_reg_type type;
	union {
50 51
		/* valid when type == PTR_TO_PACKET */
		u16 range;
52 53 54 55 56

		/* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
		 *   PTR_TO_MAP_VALUE_OR_NULL
		 */
		struct bpf_map *map_ptr;
57 58 59

		/* Max size from any of the above. */
		unsigned long raw;
60
	};
61 62 63 64 65 66
	/* Fixed part of pointer offset, pointer types only */
	s32 off;
	/* For PTR_TO_PACKET, used to find other pointers with the same variable
	 * offset, so they can share range knowledge.
	 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we
	 * came from, when one is tested for != NULL.
67 68
	 * For PTR_TO_SOCKET this is used to share which pointers retain the
	 * same reference to the socket, to determine proper reference freeing.
69
	 */
A
Alexei Starovoitov 已提交
70
	u32 id;
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
	/* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned
	 * from a pointer-cast helper, bpf_sk_fullsock() and
	 * bpf_tcp_sock().
	 *
	 * Consider the following where "sk" is a reference counted
	 * pointer returned from "sk = bpf_sk_lookup_tcp();":
	 *
	 * 1: sk = bpf_sk_lookup_tcp();
	 * 2: if (!sk) { return 0; }
	 * 3: fullsock = bpf_sk_fullsock(sk);
	 * 4: if (!fullsock) { bpf_sk_release(sk); return 0; }
	 * 5: tp = bpf_tcp_sock(fullsock);
	 * 6: if (!tp) { bpf_sk_release(sk); return 0; }
	 * 7: bpf_sk_release(sk);
	 * 8: snd_cwnd = tp->snd_cwnd;  // verifier will complain
	 *
	 * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and
	 * "tp" ptr should be invalidated also.  In order to do that,
	 * the reg holding "fullsock" and "sk" need to remember
	 * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id
	 * such that the verifier can reset all regs which have
	 * ref_obj_id matching the sk_reg->id.
	 *
	 * sk_reg->ref_obj_id is set to sk_reg->id at line 1.
	 * sk_reg->id will stay as NULL-marking purpose only.
	 * After NULL-marking is done, sk_reg->id can be reset to 0.
	 *
	 * After "fullsock = bpf_sk_fullsock(sk);" at line 3,
	 * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id.
	 *
	 * After "tp = bpf_tcp_sock(fullsock);" at line 5,
	 * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id
	 * which is the same as sk_reg->ref_obj_id.
	 *
	 * From the verifier perspective, if sk, fullsock and tp
	 * are not NULL, they are the same ptr with different
	 * reg->type.  In particular, bpf_sk_release(tp) is also
	 * allowed and has the same effect as bpf_sk_release(sk).
	 */
	u32 ref_obj_id;
111 112 113 114 115 116 117
	/* For scalar types (SCALAR_VALUE), this represents our knowledge of
	 * the actual value.
	 * For pointer types, this represents the variable part of the offset
	 * from the pointed-to object, and is shared with all bpf_reg_states
	 * with the same id as us.
	 */
	struct tnum var_off;
A
Alexei Starovoitov 已提交
118
	/* Used to determine if any memory access using this register will
119 120 121
	 * result in a bad access.
	 * These refer to the same value as var_off, not necessarily the actual
	 * contents of the register.
A
Alexei Starovoitov 已提交
122
	 */
123 124 125 126
	s64 smin_value; /* minimum possible (s64)value */
	s64 smax_value; /* maximum possible (s64)value */
	u64 umin_value; /* minimum possible (u64)value */
	u64 umax_value; /* maximum possible (u64)value */
127 128
	/* parentage chain for liveness checking */
	struct bpf_reg_state *parent;
129 130 131 132 133 134 135
	/* Inside the callee two registers can be both PTR_TO_STACK like
	 * R1=fp-8 and R2=fp-8, but one of them points to this function stack
	 * while another to the caller's stack. To differentiate them 'frameno'
	 * is used which is an index in bpf_verifier_state->frame[] array
	 * pointing to bpf_func_state.
	 */
	u32 frameno;
136 137 138 139 140
	/* Tracks subreg definition. The stored value is the insn_idx of the
	 * writing insn. This is safe because subreg_def is used before any insn
	 * patching which only happens after main verification finished.
	 */
	s32 subreg_def;
141
	enum bpf_reg_liveness live;
142 143 144 145 146
};

enum bpf_stack_slot_type {
	STACK_INVALID,    /* nothing was stored in this stack slot */
	STACK_SPILL,      /* register spilled into stack */
147 148
	STACK_MISC,	  /* BPF program wrote some data into this slot */
	STACK_ZERO,	  /* BPF program wrote constant zero */
149 150 151 152
};

#define BPF_REG_SIZE 8	/* size of eBPF register in bytes */

153 154 155 156 157
struct bpf_stack_state {
	struct bpf_reg_state spilled_ptr;
	u8 slot_type[BPF_REG_SIZE];
};

158 159 160 161 162 163 164 165 166 167 168
struct bpf_reference_state {
	/* Track each reference created with a unique id, even if the same
	 * instruction creates the reference multiple times (eg, via CALL).
	 */
	int id;
	/* Instruction where the allocation of this reference occurred. This
	 * is used purely to inform the user of a reference leak.
	 */
	int insn_idx;
};

169 170 171
/* state of the program:
 * type of all registers and stack info
 */
172
struct bpf_func_state {
173
	struct bpf_reg_state regs[MAX_BPF_REG];
174 175 176 177 178 179 180 181 182 183 184 185
	/* index of call instruction that called into this func */
	int callsite;
	/* stack frame number of this function state from pov of
	 * enclosing bpf_verifier_state.
	 * 0 = main function, 1 = first callee.
	 */
	u32 frameno;
	/* subprog number == index within subprog_stack_depth
	 * zero == main subprog
	 */
	u32 subprogno;

186 187 188
	/* The following fields should be last. See copy_func_state() */
	int acquired_refs;
	struct bpf_reference_state *refs;
189 190
	int allocated_stack;
	struct bpf_stack_state *stack;
191 192
};

193 194 195 196
#define MAX_CALL_FRAMES 8
struct bpf_verifier_state {
	/* call stack tracking */
	struct bpf_func_state *frame[MAX_CALL_FRAMES];
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
	struct bpf_verifier_state *parent;
	/*
	 * 'branches' field is the number of branches left to explore:
	 * 0 - all possible paths from this state reached bpf_exit or
	 * were safely pruned
	 * 1 - at least one path is being explored.
	 * This state hasn't reached bpf_exit
	 * 2 - at least two paths are being explored.
	 * This state is an immediate parent of two children.
	 * One is fallthrough branch with branches==1 and another
	 * state is pushed into stack (to be explored later) also with
	 * branches==1. The parent of this state has branches==1.
	 * The verifier state tree connected via 'parent' pointer looks like:
	 * 1
	 * 1
	 * 2 -> 1 (first 'if' pushed into stack)
	 * 1
	 * 2 -> 1 (second 'if' pushed into stack)
	 * 1
	 * 1
	 * 1 bpf_exit.
	 *
	 * Once do_check() reaches bpf_exit, it calls update_branch_counts()
	 * and the verifier state tree will look:
	 * 1
	 * 1
	 * 2 -> 1 (first 'if' pushed into stack)
	 * 1
	 * 1 -> 1 (second 'if' pushed into stack)
	 * 0
	 * 0
	 * 0 bpf_exit.
	 * After pop_stack() the do_check() will resume at second 'if'.
	 *
	 * If is_state_visited() sees a state with branches > 0 it means
	 * there is a loop. If such state is exactly equal to the current state
	 * it's an infinite loop. Note states_equal() checks for states
	 * equvalency, so two states being 'states_equal' does not mean
	 * infinite loop. The exact comparison is provided by
	 * states_maybe_looping() function. It's a stronger pre-check and
	 * much faster than states_equal().
	 *
	 * This algorithm may not find all possible infinite loops or
	 * loop iteration count may be too high.
	 * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in.
	 */
	u32 branches;
244
	u32 insn_idx;
245
	u32 curframe;
246
	u32 active_spin_lock;
247
	bool speculative;
248 249
};

250 251 252 253 254 255 256 257 258 259 260
#define bpf_get_spilled_reg(slot, frame)				\
	(((slot < frame->allocated_stack / BPF_REG_SIZE) &&		\
	  (frame->stack[slot].slot_type[0] == STACK_SPILL))		\
	 ? &frame->stack[slot].spilled_ptr : NULL)

/* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */
#define bpf_for_each_spilled_reg(iter, frame, reg)			\
	for (iter = 0, reg = bpf_get_spilled_reg(iter, frame);		\
	     iter < frame->allocated_stack / BPF_REG_SIZE;		\
	     iter++, reg = bpf_get_spilled_reg(iter, frame))

261 262 263 264
/* linked list of verifier states used to prune search */
struct bpf_verifier_state_list {
	struct bpf_verifier_state state;
	struct bpf_verifier_state_list *next;
265
	int miss_cnt, hit_cnt;
266 267
};

268 269 270 271
/* Possible states for alu_state member. */
#define BPF_ALU_SANITIZE_SRC		1U
#define BPF_ALU_SANITIZE_DST		2U
#define BPF_ALU_NEG_VALUE		(1U << 2)
272
#define BPF_ALU_NON_POINTER		(1U << 3)
273 274 275
#define BPF_ALU_SANITIZE		(BPF_ALU_SANITIZE_SRC | \
					 BPF_ALU_SANITIZE_DST)

276
struct bpf_insn_aux_data {
277 278
	union {
		enum bpf_reg_type ptr_type;	/* pointer type for load/store insns */
279
		unsigned long map_state;	/* pointer/poison value for maps */
280
		s32 call_imm;			/* saved imm field of call insn */
281
		u32 alu_limit;			/* limit for add/sub register with pointer */
282 283 284 285
		struct {
			u32 map_index;		/* index into used_maps[] */
			u32 map_off;		/* offset from value base address */
		};
286
	};
287
	int ctx_field_size; /* the ctx field size for load insn, maybe 0 */
288
	int sanitize_stack_off; /* stack slot to be cleared */
A
Alexei Starovoitov 已提交
289
	bool seen; /* this insn was processed by the verifier */
290
	bool zext_dst; /* this insn zero extends dst reg */
291
	u8 alu_state; /* used in combination with alu_limit */
A
Alexei Starovoitov 已提交
292
	bool prune_point;
293
	unsigned int orig_idx; /* original instruction index */
294 295 296 297
};

#define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */

298 299
#define BPF_VERIFIER_TMP_LOG_SIZE	1024

M
Martin KaFai Lau 已提交
300
struct bpf_verifier_log {
301
	u32 level;
302
	char kbuf[BPF_VERIFIER_TMP_LOG_SIZE];
303 304 305 306 307
	char __user *ubuf;
	u32 len_used;
	u32 len_total;
};

M
Martin KaFai Lau 已提交
308
static inline bool bpf_verifier_log_full(const struct bpf_verifier_log *log)
309 310 311 312
{
	return log->len_used >= log->len_total - 1;
}

313 314 315 316 317 318
#define BPF_LOG_LEVEL1	1
#define BPF_LOG_LEVEL2	2
#define BPF_LOG_STATS	4
#define BPF_LOG_LEVEL	(BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2)
#define BPF_LOG_MASK	(BPF_LOG_LEVEL | BPF_LOG_STATS)

319 320 321 322 323
static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log)
{
	return log->level && log->ubuf && !bpf_verifier_log_full(log);
}

324 325
#define BPF_MAX_SUBPROGS 256

326 327
struct bpf_subprog_info {
	u32 start; /* insn idx of function entry point */
M
Martin KaFai Lau 已提交
328
	u32 linfo_idx; /* The idx to the main_prog->aux->linfo */
329 330 331
	u16 stack_depth; /* max. stack depth used by this function */
};

332 333 334 335
/* single container for all structs
 * one verifier_env per bpf_check() call
 */
struct bpf_verifier_env {
336 337
	u32 insn_idx;
	u32 prev_insn_idx;
338
	struct bpf_prog *prog;		/* eBPF program being verified */
339
	const struct bpf_verifier_ops *ops;
340 341
	struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */
	int stack_size;			/* number of states to be processed */
342
	bool strict_alignment;		/* perform strict pointer alignment checks */
343
	struct bpf_verifier_state *cur_state; /* current verifier state */
344
	struct bpf_verifier_state_list **explored_states; /* search pruning optimization */
345
	struct bpf_verifier_state_list *free_list;
346 347 348 349 350 351
	struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
	u32 used_map_cnt;		/* number of used maps */
	u32 id_gen;			/* used to generate unique reg IDs */
	bool allow_ptr_leaks;
	bool seen_direct_write;
	struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */
352
	const struct bpf_line_info *prev_linfo;
M
Martin KaFai Lau 已提交
353
	struct bpf_verifier_log log;
354
	struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 1];
355 356 357 358 359
	struct {
		int *insn_state;
		int *insn_stack;
		int cur_stack;
	} cfg;
360
	u32 subprog_cnt;
361
	/* number of instructions analyzed by the verifier */
362 363 364
	u32 prev_insn_processed, insn_processed;
	/* number of jmps, calls, exits analyzed so far */
	u32 prev_jmps_processed, jmps_processed;
365 366 367 368 369 370 371 372 373 374 375 376 377
	/* total verification time */
	u64 verification_time;
	/* maximum number of verifier states kept in 'branching' instructions */
	u32 max_states_per_insn;
	/* total number of allocated verifier states */
	u32 total_states;
	/* some states are freed during program analysis.
	 * this is peak number of states. this number dominates kernel
	 * memory consumption during verification
	 */
	u32 peak_states;
	/* longest register parentage chain walked for liveness marking */
	u32 longest_mark_read_walk;
378 379
};

380 381
__printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log,
				      const char *fmt, va_list args);
382 383 384
__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
					   const char *fmt, ...);

385
static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env)
386
{
387 388
	struct bpf_verifier_state *cur = env->cur_state;

389 390 391 392 393 394
	return cur->frame[cur->curframe];
}

static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env)
{
	return cur_func(env)->regs;
395 396
}

397
int bpf_prog_offload_verifier_prep(struct bpf_prog *prog);
398 399
int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env,
				 int insn_idx, int prev_insn_idx);
400
int bpf_prog_offload_finalize(struct bpf_verifier_env *env);
401 402 403 404 405
void
bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off,
			      struct bpf_insn *insn);
void
bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt);
406

407
#endif /* _LINUX_BPF_VERIFIER_H */