spi.c 68.2 KB
Newer Older
1
/*
G
Grant Likely 已提交
2
 * SPI init/core code
3 4
 *
 * Copyright (C) 2005 David Brownell
5
 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/cache.h>
22 23
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
24
#include <linux/mutex.h>
25
#include <linux/of_device.h>
26
#include <linux/of_irq.h>
27
#include <linux/clk/clk-conf.h>
28
#include <linux/slab.h>
29
#include <linux/mod_devicetable.h>
30
#include <linux/spi/spi.h>
31
#include <linux/of_gpio.h>
M
Mark Brown 已提交
32
#include <linux/pm_runtime.h>
33
#include <linux/pm_domain.h>
34
#include <linux/export.h>
35
#include <linux/sched/rt.h>
36 37
#include <linux/delay.h>
#include <linux/kthread.h>
38 39
#include <linux/ioport.h>
#include <linux/acpi.h>
40

41 42 43
#define CREATE_TRACE_POINTS
#include <trace/events/spi.h>

44 45
static void spidev_release(struct device *dev)
{
46
	struct spi_device	*spi = to_spi_device(dev);
47 48 49 50 51

	/* spi masters may cleanup for released devices */
	if (spi->master->cleanup)
		spi->master->cleanup(spi);

D
David Brownell 已提交
52
	spi_master_put(spi->master);
53
	kfree(spi);
54 55 56 57 58 59
}

static ssize_t
modalias_show(struct device *dev, struct device_attribute *a, char *buf)
{
	const struct spi_device	*spi = to_spi_device(dev);
60 61 62 63 64
	int len;

	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
	if (len != -ENODEV)
		return len;
65

66
	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
67
}
68
static DEVICE_ATTR_RO(modalias);
69

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
#define SPI_STATISTICS_ATTRS(field, file)				\
static ssize_t spi_master_##field##_show(struct device *dev,		\
					 struct device_attribute *attr,	\
					 char *buf)			\
{									\
	struct spi_master *master = container_of(dev,			\
						 struct spi_master, dev); \
	return spi_statistics_##field##_show(&master->statistics, buf);	\
}									\
static struct device_attribute dev_attr_spi_master_##field = {		\
	.attr = { .name = file, .mode = S_IRUGO },			\
	.show = spi_master_##field##_show,				\
};									\
static ssize_t spi_device_##field##_show(struct device *dev,		\
					 struct device_attribute *attr,	\
					char *buf)			\
{									\
	struct spi_device *spi = container_of(dev,			\
					      struct spi_device, dev);	\
	return spi_statistics_##field##_show(&spi->statistics, buf);	\
}									\
static struct device_attribute dev_attr_spi_device_##field = {		\
	.attr = { .name = file, .mode = S_IRUGO },			\
	.show = spi_device_##field##_show,				\
}

#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
					    char *buf)			\
{									\
	unsigned long flags;						\
	ssize_t len;							\
	spin_lock_irqsave(&stat->lock, flags);				\
	len = sprintf(buf, format_string, stat->field);			\
	spin_unlock_irqrestore(&stat->lock, flags);			\
	return len;							\
}									\
SPI_STATISTICS_ATTRS(name, file)

#define SPI_STATISTICS_SHOW(field, format_string)			\
	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
				 field, format_string)

SPI_STATISTICS_SHOW(messages, "%lu");
SPI_STATISTICS_SHOW(transfers, "%lu");
SPI_STATISTICS_SHOW(errors, "%lu");
SPI_STATISTICS_SHOW(timedout, "%lu");

SPI_STATISTICS_SHOW(spi_sync, "%lu");
SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
SPI_STATISTICS_SHOW(spi_async, "%lu");

SPI_STATISTICS_SHOW(bytes, "%llu");
SPI_STATISTICS_SHOW(bytes_rx, "%llu");
SPI_STATISTICS_SHOW(bytes_tx, "%llu");

126 127 128
static struct attribute *spi_dev_attrs[] = {
	&dev_attr_modalias.attr,
	NULL,
129
};
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

static const struct attribute_group spi_dev_group = {
	.attrs  = spi_dev_attrs,
};

static struct attribute *spi_device_statistics_attrs[] = {
	&dev_attr_spi_device_messages.attr,
	&dev_attr_spi_device_transfers.attr,
	&dev_attr_spi_device_errors.attr,
	&dev_attr_spi_device_timedout.attr,
	&dev_attr_spi_device_spi_sync.attr,
	&dev_attr_spi_device_spi_sync_immediate.attr,
	&dev_attr_spi_device_spi_async.attr,
	&dev_attr_spi_device_bytes.attr,
	&dev_attr_spi_device_bytes_rx.attr,
	&dev_attr_spi_device_bytes_tx.attr,
	NULL,
};

static const struct attribute_group spi_device_statistics_group = {
	.name  = "statistics",
	.attrs  = spi_device_statistics_attrs,
};

static const struct attribute_group *spi_dev_groups[] = {
	&spi_dev_group,
	&spi_device_statistics_group,
	NULL,
};

static struct attribute *spi_master_statistics_attrs[] = {
	&dev_attr_spi_master_messages.attr,
	&dev_attr_spi_master_transfers.attr,
	&dev_attr_spi_master_errors.attr,
	&dev_attr_spi_master_timedout.attr,
	&dev_attr_spi_master_spi_sync.attr,
	&dev_attr_spi_master_spi_sync_immediate.attr,
	&dev_attr_spi_master_spi_async.attr,
	&dev_attr_spi_master_bytes.attr,
	&dev_attr_spi_master_bytes_rx.attr,
	&dev_attr_spi_master_bytes_tx.attr,
	NULL,
};

static const struct attribute_group spi_master_statistics_group = {
	.name  = "statistics",
	.attrs  = spi_master_statistics_attrs,
};

static const struct attribute_group *spi_master_groups[] = {
	&spi_master_statistics_group,
	NULL,
};

void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
				       struct spi_transfer *xfer,
				       struct spi_master *master)
{
	unsigned long flags;

	spin_lock_irqsave(&stats->lock, flags);

	stats->transfers++;

	stats->bytes += xfer->len;
	if ((xfer->tx_buf) &&
	    (xfer->tx_buf != master->dummy_tx))
		stats->bytes_tx += xfer->len;
	if ((xfer->rx_buf) &&
	    (xfer->rx_buf != master->dummy_rx))
		stats->bytes_rx += xfer->len;

	spin_unlock_irqrestore(&stats->lock, flags);
}
EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
205 206 207 208 209

/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 * and the sysfs version makes coldplug work too.
 */

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
						const struct spi_device *sdev)
{
	while (id->name[0]) {
		if (!strcmp(sdev->modalias, id->name))
			return id;
		id++;
	}
	return NULL;
}

const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
{
	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);

	return spi_match_id(sdrv->id_table, sdev);
}
EXPORT_SYMBOL_GPL(spi_get_device_id);

229 230 231
static int spi_match_device(struct device *dev, struct device_driver *drv)
{
	const struct spi_device	*spi = to_spi_device(dev);
232 233
	const struct spi_driver	*sdrv = to_spi_driver(drv);

234 235 236 237
	/* Attempt an OF style match */
	if (of_driver_match_device(dev, drv))
		return 1;

238 239 240 241
	/* Then try ACPI */
	if (acpi_driver_match_device(dev, drv))
		return 1;

242 243
	if (sdrv->id_table)
		return !!spi_match_id(sdrv->id_table, spi);
244

245
	return strcmp(spi->modalias, drv->name) == 0;
246 247
}

248
static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
249 250
{
	const struct spi_device		*spi = to_spi_device(dev);
251 252 253 254 255
	int rc;

	rc = acpi_device_uevent_modalias(dev, env);
	if (rc != -ENODEV)
		return rc;
256

257
	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
258 259 260 261 262
	return 0;
}

struct bus_type spi_bus_type = {
	.name		= "spi",
263
	.dev_groups	= spi_dev_groups,
264 265 266 267 268
	.match		= spi_match_device,
	.uevent		= spi_uevent,
};
EXPORT_SYMBOL_GPL(spi_bus_type);

269 270 271 272

static int spi_drv_probe(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
273 274
	int ret;

275 276 277 278
	ret = of_clk_set_defaults(dev->of_node, false);
	if (ret)
		return ret;

279 280 281 282 283 284
	ret = dev_pm_domain_attach(dev, true);
	if (ret != -EPROBE_DEFER) {
		ret = sdrv->probe(to_spi_device(dev));
		if (ret)
			dev_pm_domain_detach(dev, true);
	}
285

286
	return ret;
287 288 289 290 291
}

static int spi_drv_remove(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
292 293
	int ret;

294
	ret = sdrv->remove(to_spi_device(dev));
295
	dev_pm_domain_detach(dev, true);
296

297
	return ret;
298 299 300 301 302 303 304 305 306
}

static void spi_drv_shutdown(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);

	sdrv->shutdown(to_spi_device(dev));
}

D
David Brownell 已提交
307 308 309 310 311
/**
 * spi_register_driver - register a SPI driver
 * @sdrv: the driver to register
 * Context: can sleep
 */
312 313 314 315 316 317 318 319 320 321 322 323 324
int spi_register_driver(struct spi_driver *sdrv)
{
	sdrv->driver.bus = &spi_bus_type;
	if (sdrv->probe)
		sdrv->driver.probe = spi_drv_probe;
	if (sdrv->remove)
		sdrv->driver.remove = spi_drv_remove;
	if (sdrv->shutdown)
		sdrv->driver.shutdown = spi_drv_shutdown;
	return driver_register(&sdrv->driver);
}
EXPORT_SYMBOL_GPL(spi_register_driver);

325 326 327 328 329 330 331 332 333 334
/*-------------------------------------------------------------------------*/

/* SPI devices should normally not be created by SPI device drivers; that
 * would make them board-specific.  Similarly with SPI master drivers.
 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 * with other readonly (flashable) information about mainboard devices.
 */

struct boardinfo {
	struct list_head	list;
335
	struct spi_board_info	board_info;
336 337 338
};

static LIST_HEAD(board_list);
339 340 341 342 343 344
static LIST_HEAD(spi_master_list);

/*
 * Used to protect add/del opertion for board_info list and
 * spi_master list, and their matching process
 */
345
static DEFINE_MUTEX(board_lock);
346

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
/**
 * spi_alloc_device - Allocate a new SPI device
 * @master: Controller to which device is connected
 * Context: can sleep
 *
 * Allows a driver to allocate and initialize a spi_device without
 * registering it immediately.  This allows a driver to directly
 * fill the spi_device with device parameters before calling
 * spi_add_device() on it.
 *
 * Caller is responsible to call spi_add_device() on the returned
 * spi_device structure to add it to the SPI master.  If the caller
 * needs to discard the spi_device without adding it, then it should
 * call spi_dev_put() on it.
 *
 * Returns a pointer to the new device, or NULL.
 */
struct spi_device *spi_alloc_device(struct spi_master *master)
{
	struct spi_device	*spi;

	if (!spi_master_get(master))
		return NULL;

J
Jingoo Han 已提交
371
	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
372 373 374 375 376 377
	if (!spi) {
		spi_master_put(master);
		return NULL;
	}

	spi->master = master;
378
	spi->dev.parent = &master->dev;
379 380
	spi->dev.bus = &spi_bus_type;
	spi->dev.release = spidev_release;
381
	spi->cs_gpio = -ENOENT;
382 383 384

	spin_lock_init(&spi->statistics.lock);

385 386 387 388 389
	device_initialize(&spi->dev);
	return spi;
}
EXPORT_SYMBOL_GPL(spi_alloc_device);

390 391 392 393 394 395 396 397 398 399 400 401 402
static void spi_dev_set_name(struct spi_device *spi)
{
	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);

	if (adev) {
		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
		return;
	}

	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
		     spi->chip_select);
}

403 404 405 406 407 408 409 410 411 412 413
static int spi_dev_check(struct device *dev, void *data)
{
	struct spi_device *spi = to_spi_device(dev);
	struct spi_device *new_spi = data;

	if (spi->master == new_spi->master &&
	    spi->chip_select == new_spi->chip_select)
		return -EBUSY;
	return 0;
}

414 415 416 417 418 419 420
/**
 * spi_add_device - Add spi_device allocated with spi_alloc_device
 * @spi: spi_device to register
 *
 * Companion function to spi_alloc_device.  Devices allocated with
 * spi_alloc_device can be added onto the spi bus with this function.
 *
421
 * Returns 0 on success; negative errno on failure
422 423 424
 */
int spi_add_device(struct spi_device *spi)
{
425
	static DEFINE_MUTEX(spi_add_lock);
426 427
	struct spi_master *master = spi->master;
	struct device *dev = master->dev.parent;
428 429 430
	int status;

	/* Chipselects are numbered 0..max; validate. */
431
	if (spi->chip_select >= master->num_chipselect) {
432 433
		dev_err(dev, "cs%d >= max %d\n",
			spi->chip_select,
434
			master->num_chipselect);
435 436 437 438
		return -EINVAL;
	}

	/* Set the bus ID string */
439
	spi_dev_set_name(spi);
440 441 442 443 444 445 446

	/* We need to make sure there's no other device with this
	 * chipselect **BEFORE** we call setup(), else we'll trash
	 * its configuration.  Lock against concurrent add() calls.
	 */
	mutex_lock(&spi_add_lock);

447 448
	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
	if (status) {
449 450 451 452 453
		dev_err(dev, "chipselect %d already in use\n",
				spi->chip_select);
		goto done;
	}

454 455 456
	if (master->cs_gpios)
		spi->cs_gpio = master->cs_gpios[spi->chip_select];

457 458 459 460
	/* Drivers may modify this initial i/o setup, but will
	 * normally rely on the device being setup.  Devices
	 * using SPI_CS_HIGH can't coexist well otherwise...
	 */
461
	status = spi_setup(spi);
462
	if (status < 0) {
463 464
		dev_err(dev, "can't setup %s, status %d\n",
				dev_name(&spi->dev), status);
465
		goto done;
466 467
	}

468
	/* Device may be bound to an active driver when this returns */
469
	status = device_add(&spi->dev);
470
	if (status < 0)
471 472
		dev_err(dev, "can't add %s, status %d\n",
				dev_name(&spi->dev), status);
473
	else
474
		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
475

476 477 478
done:
	mutex_unlock(&spi_add_lock);
	return status;
479 480
}
EXPORT_SYMBOL_GPL(spi_add_device);
481

D
David Brownell 已提交
482 483 484 485 486 487 488
/**
 * spi_new_device - instantiate one new SPI device
 * @master: Controller to which device is connected
 * @chip: Describes the SPI device
 * Context: can sleep
 *
 * On typical mainboards, this is purely internal; and it's not needed
489 490 491 492
 * after board init creates the hard-wired devices.  Some development
 * platforms may not be able to use spi_register_board_info though, and
 * this is exported so that for example a USB or parport based adapter
 * driver could add devices (which it would learn about out-of-band).
493 494
 *
 * Returns the new device, or NULL.
495
 */
496 497
struct spi_device *spi_new_device(struct spi_master *master,
				  struct spi_board_info *chip)
498 499 500 501
{
	struct spi_device	*proxy;
	int			status;

502 503 504 505 506 507 508
	/* NOTE:  caller did any chip->bus_num checks necessary.
	 *
	 * Also, unless we change the return value convention to use
	 * error-or-pointer (not NULL-or-pointer), troubleshootability
	 * suggests syslogged diagnostics are best here (ugh).
	 */

509 510
	proxy = spi_alloc_device(master);
	if (!proxy)
511 512
		return NULL;

513 514
	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));

515 516
	proxy->chip_select = chip->chip_select;
	proxy->max_speed_hz = chip->max_speed_hz;
517
	proxy->mode = chip->mode;
518
	proxy->irq = chip->irq;
519
	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
520 521 522 523
	proxy->dev.platform_data = (void *) chip->platform_data;
	proxy->controller_data = chip->controller_data;
	proxy->controller_state = NULL;

524
	status = spi_add_device(proxy);
525
	if (status < 0) {
526 527
		spi_dev_put(proxy);
		return NULL;
528 529 530 531 532 533
	}

	return proxy;
}
EXPORT_SYMBOL_GPL(spi_new_device);

534 535 536 537 538 539 540 541 542 543 544 545 546 547
static void spi_match_master_to_boardinfo(struct spi_master *master,
				struct spi_board_info *bi)
{
	struct spi_device *dev;

	if (master->bus_num != bi->bus_num)
		return;

	dev = spi_new_device(master, bi);
	if (!dev)
		dev_err(master->dev.parent, "can't create new device for %s\n",
			bi->modalias);
}

D
David Brownell 已提交
548 549 550 551 552 553
/**
 * spi_register_board_info - register SPI devices for a given board
 * @info: array of chip descriptors
 * @n: how many descriptors are provided
 * Context: can sleep
 *
554 555 556 557 558 559 560 561 562 563 564 565 566
 * Board-specific early init code calls this (probably during arch_initcall)
 * with segments of the SPI device table.  Any device nodes are created later,
 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 * this table of devices forever, so that reloading a controller driver will
 * not make Linux forget about these hard-wired devices.
 *
 * Other code can also call this, e.g. a particular add-on board might provide
 * SPI devices through its expansion connector, so code initializing that board
 * would naturally declare its SPI devices.
 *
 * The board info passed can safely be __initdata ... but be careful of
 * any embedded pointers (platform_data, etc), they're copied as-is.
 */
567
int spi_register_board_info(struct spi_board_info const *info, unsigned n)
568
{
569 570
	struct boardinfo *bi;
	int i;
571

572 573 574
	if (!n)
		return -EINVAL;

575
	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
576 577 578
	if (!bi)
		return -ENOMEM;

579 580
	for (i = 0; i < n; i++, bi++, info++) {
		struct spi_master *master;
581

582 583 584 585 586 587
		memcpy(&bi->board_info, info, sizeof(*info));
		mutex_lock(&board_lock);
		list_add_tail(&bi->list, &board_list);
		list_for_each_entry(master, &spi_master_list, list)
			spi_match_master_to_boardinfo(master, &bi->board_info);
		mutex_unlock(&board_lock);
588
	}
589 590

	return 0;
591 592 593 594
}

/*-------------------------------------------------------------------------*/

595 596 597 598 599 600 601 602 603 604 605
static void spi_set_cs(struct spi_device *spi, bool enable)
{
	if (spi->mode & SPI_CS_HIGH)
		enable = !enable;

	if (spi->cs_gpio >= 0)
		gpio_set_value(spi->cs_gpio, !enable);
	else if (spi->master->set_cs)
		spi->master->set_cs(spi, !enable);
}

606
#ifdef CONFIG_HAS_DMA
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
static int spi_map_buf(struct spi_master *master, struct device *dev,
		       struct sg_table *sgt, void *buf, size_t len,
		       enum dma_data_direction dir)
{
	const bool vmalloced_buf = is_vmalloc_addr(buf);
	const int desc_len = vmalloced_buf ? PAGE_SIZE : master->max_dma_len;
	const int sgs = DIV_ROUND_UP(len, desc_len);
	struct page *vm_page;
	void *sg_buf;
	size_t min;
	int i, ret;

	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
	if (ret != 0)
		return ret;

	for (i = 0; i < sgs; i++) {
		min = min_t(size_t, len, desc_len);

		if (vmalloced_buf) {
			vm_page = vmalloc_to_page(buf);
			if (!vm_page) {
				sg_free_table(sgt);
				return -ENOMEM;
			}
632 633
			sg_set_page(&sgt->sgl[i], vm_page,
				    min, offset_in_page(buf));
634 635
		} else {
			sg_buf = buf;
636
			sg_set_buf(&sgt->sgl[i], sg_buf, min);
637 638 639 640 641 642 643 644
		}


		buf += min;
		len -= min;
	}

	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
645 646
	if (!ret)
		ret = -ENOMEM;
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
	if (ret < 0) {
		sg_free_table(sgt);
		return ret;
	}

	sgt->nents = ret;

	return 0;
}

static void spi_unmap_buf(struct spi_master *master, struct device *dev,
			  struct sg_table *sgt, enum dma_data_direction dir)
{
	if (sgt->orig_nents) {
		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
		sg_free_table(sgt);
	}
}

666
static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
667 668 669
{
	struct device *tx_dev, *rx_dev;
	struct spi_transfer *xfer;
670
	int ret;
671

672
	if (!master->can_dma)
673 674
		return 0;

675 676
	tx_dev = master->dma_tx->device->dev;
	rx_dev = master->dma_rx->device->dev;
677 678 679 680 681 682

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		if (!master->can_dma(master, msg->spi, xfer))
			continue;

		if (xfer->tx_buf != NULL) {
683 684 685 686 687
			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
					  (void *)xfer->tx_buf, xfer->len,
					  DMA_TO_DEVICE);
			if (ret != 0)
				return ret;
688 689 690
		}

		if (xfer->rx_buf != NULL) {
691 692 693 694 695 696 697
			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
					  xfer->rx_buf, xfer->len,
					  DMA_FROM_DEVICE);
			if (ret != 0) {
				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
					      DMA_TO_DEVICE);
				return ret;
698 699 700 701 702 703 704 705 706
			}
		}
	}

	master->cur_msg_mapped = true;

	return 0;
}

707
static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
708 709 710 711
{
	struct spi_transfer *xfer;
	struct device *tx_dev, *rx_dev;

712
	if (!master->cur_msg_mapped || !master->can_dma)
713 714
		return 0;

715 716
	tx_dev = master->dma_tx->device->dev;
	rx_dev = master->dma_rx->device->dev;
717 718 719 720 721

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		if (!master->can_dma(master, msg->spi, xfer))
			continue;

722 723
		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
724 725 726 727
	}

	return 0;
}
728 729 730 731 732 733 734
#else /* !CONFIG_HAS_DMA */
static inline int __spi_map_msg(struct spi_master *master,
				struct spi_message *msg)
{
	return 0;
}

735 736
static inline int __spi_unmap_msg(struct spi_master *master,
				  struct spi_message *msg)
737 738 739 740 741
{
	return 0;
}
#endif /* !CONFIG_HAS_DMA */

742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
static inline int spi_unmap_msg(struct spi_master *master,
				struct spi_message *msg)
{
	struct spi_transfer *xfer;

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		/*
		 * Restore the original value of tx_buf or rx_buf if they are
		 * NULL.
		 */
		if (xfer->tx_buf == master->dummy_tx)
			xfer->tx_buf = NULL;
		if (xfer->rx_buf == master->dummy_rx)
			xfer->rx_buf = NULL;
	}

	return __spi_unmap_msg(master, msg);
}

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
{
	struct spi_transfer *xfer;
	void *tmp;
	unsigned int max_tx, max_rx;

	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
		max_tx = 0;
		max_rx = 0;

		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
			if ((master->flags & SPI_MASTER_MUST_TX) &&
			    !xfer->tx_buf)
				max_tx = max(xfer->len, max_tx);
			if ((master->flags & SPI_MASTER_MUST_RX) &&
			    !xfer->rx_buf)
				max_rx = max(xfer->len, max_rx);
		}

		if (max_tx) {
			tmp = krealloc(master->dummy_tx, max_tx,
				       GFP_KERNEL | GFP_DMA);
			if (!tmp)
				return -ENOMEM;
			master->dummy_tx = tmp;
			memset(tmp, 0, max_tx);
		}

		if (max_rx) {
			tmp = krealloc(master->dummy_rx, max_rx,
				       GFP_KERNEL | GFP_DMA);
			if (!tmp)
				return -ENOMEM;
			master->dummy_rx = tmp;
		}

		if (max_tx || max_rx) {
			list_for_each_entry(xfer, &msg->transfers,
					    transfer_list) {
				if (!xfer->tx_buf)
					xfer->tx_buf = master->dummy_tx;
				if (!xfer->rx_buf)
					xfer->rx_buf = master->dummy_rx;
			}
		}
	}

	return __spi_map_msg(master, msg);
}
810

811 812 813 814 815 816 817 818 819 820 821 822 823
/*
 * spi_transfer_one_message - Default implementation of transfer_one_message()
 *
 * This is a standard implementation of transfer_one_message() for
 * drivers which impelment a transfer_one() operation.  It provides
 * standard handling of delays and chip select management.
 */
static int spi_transfer_one_message(struct spi_master *master,
				    struct spi_message *msg)
{
	struct spi_transfer *xfer;
	bool keep_cs = false;
	int ret = 0;
824
	unsigned long ms = 1;
825 826
	struct spi_statistics *statm = &master->statistics;
	struct spi_statistics *stats = &msg->spi->statistics;
827 828 829

	spi_set_cs(msg->spi, true);

830 831 832
	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);

833 834 835
	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		trace_spi_transfer_start(msg, xfer);

836 837 838
		spi_statistics_add_transfer_stats(statm, xfer, master);
		spi_statistics_add_transfer_stats(stats, xfer, master);

839 840
		if (xfer->tx_buf || xfer->rx_buf) {
			reinit_completion(&master->xfer_completion);
841

842 843
			ret = master->transfer_one(master, msg->spi, xfer);
			if (ret < 0) {
844 845 846 847
				SPI_STATISTICS_INCREMENT_FIELD(statm,
							       errors);
				SPI_STATISTICS_INCREMENT_FIELD(stats,
							       errors);
848 849 850 851
				dev_err(&msg->spi->dev,
					"SPI transfer failed: %d\n", ret);
				goto out;
			}
852

853 854 855 856
			if (ret > 0) {
				ret = 0;
				ms = xfer->len * 8 * 1000 / xfer->speed_hz;
				ms += ms + 100; /* some tolerance */
857

858 859 860
				ms = wait_for_completion_timeout(&master->xfer_completion,
								 msecs_to_jiffies(ms));
			}
861

862
			if (ms == 0) {
863 864 865 866
				SPI_STATISTICS_INCREMENT_FIELD(statm,
							       timedout);
				SPI_STATISTICS_INCREMENT_FIELD(stats,
							       timedout);
867 868 869 870 871 872 873 874 875
				dev_err(&msg->spi->dev,
					"SPI transfer timed out\n");
				msg->status = -ETIMEDOUT;
			}
		} else {
			if (xfer->len)
				dev_err(&msg->spi->dev,
					"Bufferless transfer has length %u\n",
					xfer->len);
876
		}
877 878 879 880 881 882 883 884 885 886 887 888 889 890

		trace_spi_transfer_stop(msg, xfer);

		if (msg->status != -EINPROGRESS)
			goto out;

		if (xfer->delay_usecs)
			udelay(xfer->delay_usecs);

		if (xfer->cs_change) {
			if (list_is_last(&xfer->transfer_list,
					 &msg->transfers)) {
				keep_cs = true;
			} else {
891 892 893
				spi_set_cs(msg->spi, false);
				udelay(10);
				spi_set_cs(msg->spi, true);
894 895 896 897 898 899 900 901 902 903 904 905 906
			}
		}

		msg->actual_length += xfer->len;
	}

out:
	if (ret != 0 || !keep_cs)
		spi_set_cs(msg->spi, false);

	if (msg->status == -EINPROGRESS)
		msg->status = ret;

907
	if (msg->status && master->handle_err)
908 909
		master->handle_err(master, msg);

910 911 912 913 914 915 916
	spi_finalize_current_message(master);

	return ret;
}

/**
 * spi_finalize_current_transfer - report completion of a transfer
T
Thierry Reding 已提交
917
 * @master: the master reporting completion
918 919 920
 *
 * Called by SPI drivers using the core transfer_one_message()
 * implementation to notify it that the current interrupt driven
921
 * transfer has finished and the next one may be scheduled.
922 923 924 925 926 927 928
 */
void spi_finalize_current_transfer(struct spi_master *master)
{
	complete(&master->xfer_completion);
}
EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);

929
/**
930 931 932
 * __spi_pump_messages - function which processes spi message queue
 * @master: master to process queue for
 * @in_kthread: true if we are in the context of the message pump thread
933 934 935 936 937
 *
 * This function checks if there is any spi message in the queue that
 * needs processing and if so call out to the driver to initialize hardware
 * and transfer each message.
 *
938 939 940
 * Note that it is called both from the kthread itself and also from
 * inside spi_sync(); the queue extraction handling at the top of the
 * function should deal with this safely.
941
 */
942
static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
943 944 945 946 947
{
	unsigned long flags;
	bool was_busy = false;
	int ret;

948
	/* Lock queue */
949
	spin_lock_irqsave(&master->queue_lock, flags);
950 951 952 953 954 955 956

	/* Make sure we are not already running a message */
	if (master->cur_msg) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return;
	}

957 958 959 960 961 962 963
	/* If another context is idling the device then defer */
	if (master->idling) {
		queue_kthread_work(&master->kworker, &master->pump_messages);
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return;
	}

964
	/* Check if the queue is idle */
965
	if (list_empty(&master->queue) || !master->running) {
966 967 968
		if (!master->busy) {
			spin_unlock_irqrestore(&master->queue_lock, flags);
			return;
969
		}
970 971 972 973 974 975 976 977 978

		/* Only do teardown in the thread */
		if (!in_kthread) {
			queue_kthread_work(&master->kworker,
					   &master->pump_messages);
			spin_unlock_irqrestore(&master->queue_lock, flags);
			return;
		}

979
		master->busy = false;
980
		master->idling = true;
981
		spin_unlock_irqrestore(&master->queue_lock, flags);
982

983 984 985 986
		kfree(master->dummy_rx);
		master->dummy_rx = NULL;
		kfree(master->dummy_tx);
		master->dummy_tx = NULL;
987 988 989 990
		if (master->unprepare_transfer_hardware &&
		    master->unprepare_transfer_hardware(master))
			dev_err(&master->dev,
				"failed to unprepare transfer hardware\n");
991 992 993 994
		if (master->auto_runtime_pm) {
			pm_runtime_mark_last_busy(master->dev.parent);
			pm_runtime_put_autosuspend(master->dev.parent);
		}
995
		trace_spi_master_idle(master);
996

997 998
		spin_lock_irqsave(&master->queue_lock, flags);
		master->idling = false;
999 1000 1001 1002 1003 1004
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return;
	}

	/* Extract head of queue */
	master->cur_msg =
1005
		list_first_entry(&master->queue, struct spi_message, queue);
1006 1007 1008 1009 1010 1011 1012 1013

	list_del_init(&master->cur_msg->queue);
	if (master->busy)
		was_busy = true;
	else
		master->busy = true;
	spin_unlock_irqrestore(&master->queue_lock, flags);

1014 1015 1016 1017 1018 1019 1020 1021 1022
	if (!was_busy && master->auto_runtime_pm) {
		ret = pm_runtime_get_sync(master->dev.parent);
		if (ret < 0) {
			dev_err(&master->dev, "Failed to power device: %d\n",
				ret);
			return;
		}
	}

1023 1024 1025
	if (!was_busy)
		trace_spi_master_busy(master);

1026
	if (!was_busy && master->prepare_transfer_hardware) {
1027 1028 1029 1030
		ret = master->prepare_transfer_hardware(master);
		if (ret) {
			dev_err(&master->dev,
				"failed to prepare transfer hardware\n");
1031 1032 1033

			if (master->auto_runtime_pm)
				pm_runtime_put(master->dev.parent);
1034 1035 1036 1037
			return;
		}
	}

1038 1039
	trace_spi_message_start(master->cur_msg);

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
	if (master->prepare_message) {
		ret = master->prepare_message(master, master->cur_msg);
		if (ret) {
			dev_err(&master->dev,
				"failed to prepare message: %d\n", ret);
			master->cur_msg->status = ret;
			spi_finalize_current_message(master);
			return;
		}
		master->cur_msg_prepared = true;
	}

1052 1053 1054 1055 1056 1057 1058
	ret = spi_map_msg(master, master->cur_msg);
	if (ret) {
		master->cur_msg->status = ret;
		spi_finalize_current_message(master);
		return;
	}

1059 1060 1061
	ret = master->transfer_one_message(master, master->cur_msg);
	if (ret) {
		dev_err(&master->dev,
1062
			"failed to transfer one message from queue\n");
1063 1064 1065 1066
		return;
	}
}

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
/**
 * spi_pump_messages - kthread work function which processes spi message queue
 * @work: pointer to kthread work struct contained in the master struct
 */
static void spi_pump_messages(struct kthread_work *work)
{
	struct spi_master *master =
		container_of(work, struct spi_master, pump_messages);

	__spi_pump_messages(master, true);
}

1079 1080 1081 1082 1083 1084 1085 1086 1087
static int spi_init_queue(struct spi_master *master)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };

	master->running = false;
	master->busy = false;

	init_kthread_worker(&master->kworker);
	master->kworker_task = kthread_run(kthread_worker_fn,
1088
					   &master->kworker, "%s",
1089 1090 1091
					   dev_name(&master->dev));
	if (IS_ERR(master->kworker_task)) {
		dev_err(&master->dev, "failed to create message pump task\n");
1092
		return PTR_ERR(master->kworker_task);
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
	}
	init_kthread_work(&master->pump_messages, spi_pump_messages);

	/*
	 * Master config will indicate if this controller should run the
	 * message pump with high (realtime) priority to reduce the transfer
	 * latency on the bus by minimising the delay between a transfer
	 * request and the scheduling of the message pump thread. Without this
	 * setting the message pump thread will remain at default priority.
	 */
	if (master->rt) {
		dev_info(&master->dev,
			"will run message pump with realtime priority\n");
		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
	}

	return 0;
}

/**
 * spi_get_next_queued_message() - called by driver to check for queued
 * messages
 * @master: the master to check for queued messages
 *
 * If there are more messages in the queue, the next message is returned from
 * this call.
 */
struct spi_message *spi_get_next_queued_message(struct spi_master *master)
{
	struct spi_message *next;
	unsigned long flags;

	/* get a pointer to the next message, if any */
	spin_lock_irqsave(&master->queue_lock, flags);
1127 1128
	next = list_first_entry_or_null(&master->queue, struct spi_message,
					queue);
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
	spin_unlock_irqrestore(&master->queue_lock, flags);

	return next;
}
EXPORT_SYMBOL_GPL(spi_get_next_queued_message);

/**
 * spi_finalize_current_message() - the current message is complete
 * @master: the master to return the message to
 *
 * Called by the driver to notify the core that the message in the front of the
 * queue is complete and can be removed from the queue.
 */
void spi_finalize_current_message(struct spi_master *master)
{
	struct spi_message *mesg;
	unsigned long flags;
1146
	int ret;
1147 1148 1149 1150 1151

	spin_lock_irqsave(&master->queue_lock, flags);
	mesg = master->cur_msg;
	spin_unlock_irqrestore(&master->queue_lock, flags);

1152 1153
	spi_unmap_msg(master, mesg);

1154 1155 1156 1157 1158 1159 1160
	if (master->cur_msg_prepared && master->unprepare_message) {
		ret = master->unprepare_message(master, mesg);
		if (ret) {
			dev_err(&master->dev,
				"failed to unprepare message: %d\n", ret);
		}
	}
1161

1162 1163
	spin_lock_irqsave(&master->queue_lock, flags);
	master->cur_msg = NULL;
1164
	master->cur_msg_prepared = false;
1165 1166 1167 1168
	queue_kthread_work(&master->kworker, &master->pump_messages);
	spin_unlock_irqrestore(&master->queue_lock, flags);

	trace_spi_message_done(mesg);
1169

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	mesg->state = NULL;
	if (mesg->complete)
		mesg->complete(mesg->context);
}
EXPORT_SYMBOL_GPL(spi_finalize_current_message);

static int spi_start_queue(struct spi_master *master)
{
	unsigned long flags;

	spin_lock_irqsave(&master->queue_lock, flags);

	if (master->running || master->busy) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return -EBUSY;
	}

	master->running = true;
	master->cur_msg = NULL;
	spin_unlock_irqrestore(&master->queue_lock, flags);

	queue_kthread_work(&master->kworker, &master->pump_messages);

	return 0;
}

static int spi_stop_queue(struct spi_master *master)
{
	unsigned long flags;
	unsigned limit = 500;
	int ret = 0;

	spin_lock_irqsave(&master->queue_lock, flags);

	/*
	 * This is a bit lame, but is optimized for the common execution path.
	 * A wait_queue on the master->busy could be used, but then the common
	 * execution path (pump_messages) would be required to call wake_up or
	 * friends on every SPI message. Do this instead.
	 */
	while ((!list_empty(&master->queue) || master->busy) && limit--) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
1212
		usleep_range(10000, 11000);
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
		spin_lock_irqsave(&master->queue_lock, flags);
	}

	if (!list_empty(&master->queue) || master->busy)
		ret = -EBUSY;
	else
		master->running = false;

	spin_unlock_irqrestore(&master->queue_lock, flags);

	if (ret) {
		dev_warn(&master->dev,
			 "could not stop message queue\n");
		return ret;
	}
	return ret;
}

static int spi_destroy_queue(struct spi_master *master)
{
	int ret;

	ret = spi_stop_queue(master);

	/*
	 * flush_kthread_worker will block until all work is done.
	 * If the reason that stop_queue timed out is that the work will never
	 * finish, then it does no good to call flush/stop thread, so
	 * return anyway.
	 */
	if (ret) {
		dev_err(&master->dev, "problem destroying queue\n");
		return ret;
	}

	flush_kthread_worker(&master->kworker);
	kthread_stop(master->kworker_task);

	return 0;
}

1254 1255 1256
static int __spi_queued_transfer(struct spi_device *spi,
				 struct spi_message *msg,
				 bool need_pump)
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
{
	struct spi_master *master = spi->master;
	unsigned long flags;

	spin_lock_irqsave(&master->queue_lock, flags);

	if (!master->running) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return -ESHUTDOWN;
	}
	msg->actual_length = 0;
	msg->status = -EINPROGRESS;

	list_add_tail(&msg->queue, &master->queue);
1271
	if (!master->busy && need_pump)
1272 1273 1274 1275 1276 1277
		queue_kthread_work(&master->kworker, &master->pump_messages);

	spin_unlock_irqrestore(&master->queue_lock, flags);
	return 0;
}

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
/**
 * spi_queued_transfer - transfer function for queued transfers
 * @spi: spi device which is requesting transfer
 * @msg: spi message which is to handled is queued to driver queue
 */
static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
{
	return __spi_queued_transfer(spi, msg, true);
}

1288 1289 1290 1291 1292
static int spi_master_initialize_queue(struct spi_master *master)
{
	int ret;

	master->transfer = spi_queued_transfer;
1293 1294
	if (!master->transfer_one_message)
		master->transfer_one_message = spi_transfer_one_message;
1295 1296 1297 1298 1299 1300 1301

	/* Initialize and start queue */
	ret = spi_init_queue(master);
	if (ret) {
		dev_err(&master->dev, "problem initializing queue\n");
		goto err_init_queue;
	}
1302
	master->queued = true;
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
	ret = spi_start_queue(master);
	if (ret) {
		dev_err(&master->dev, "problem starting queue\n");
		goto err_start_queue;
	}

	return 0;

err_start_queue:
	spi_destroy_queue(master);
1313
err_init_queue:
1314 1315 1316 1317 1318
	return ret;
}

/*-------------------------------------------------------------------------*/

1319
#if defined(CONFIG_OF)
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
static struct spi_device *
of_register_spi_device(struct spi_master *master, struct device_node *nc)
{
	struct spi_device *spi;
	int rc;
	u32 value;

	/* Alloc an spi_device */
	spi = spi_alloc_device(master);
	if (!spi) {
		dev_err(&master->dev, "spi_device alloc error for %s\n",
			nc->full_name);
		rc = -ENOMEM;
		goto err_out;
	}

	/* Select device driver */
	rc = of_modalias_node(nc, spi->modalias,
				sizeof(spi->modalias));
	if (rc < 0) {
		dev_err(&master->dev, "cannot find modalias for %s\n",
			nc->full_name);
		goto err_out;
	}

	/* Device address */
	rc = of_property_read_u32(nc, "reg", &value);
	if (rc) {
		dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
			nc->full_name, rc);
		goto err_out;
	}
	spi->chip_select = value;

	/* Mode (clock phase/polarity/etc.) */
	if (of_find_property(nc, "spi-cpha", NULL))
		spi->mode |= SPI_CPHA;
	if (of_find_property(nc, "spi-cpol", NULL))
		spi->mode |= SPI_CPOL;
	if (of_find_property(nc, "spi-cs-high", NULL))
		spi->mode |= SPI_CS_HIGH;
	if (of_find_property(nc, "spi-3wire", NULL))
		spi->mode |= SPI_3WIRE;
	if (of_find_property(nc, "spi-lsb-first", NULL))
		spi->mode |= SPI_LSB_FIRST;

	/* Device DUAL/QUAD mode */
	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
		switch (value) {
		case 1:
			break;
		case 2:
			spi->mode |= SPI_TX_DUAL;
			break;
		case 4:
			spi->mode |= SPI_TX_QUAD;
			break;
		default:
			dev_warn(&master->dev,
				"spi-tx-bus-width %d not supported\n",
				value);
			break;
		}
	}

	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
		switch (value) {
		case 1:
			break;
		case 2:
			spi->mode |= SPI_RX_DUAL;
			break;
		case 4:
			spi->mode |= SPI_RX_QUAD;
			break;
		default:
			dev_warn(&master->dev,
				"spi-rx-bus-width %d not supported\n",
				value);
			break;
		}
	}

	/* Device speed */
	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
	if (rc) {
		dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
			nc->full_name, rc);
		goto err_out;
	}
	spi->max_speed_hz = value;

	/* IRQ */
	spi->irq = irq_of_parse_and_map(nc, 0);

	/* Store a pointer to the node in the device structure */
	of_node_get(nc);
	spi->dev.of_node = nc;

	/* Register the new device */
	rc = spi_add_device(spi);
	if (rc) {
		dev_err(&master->dev, "spi_device register error %s\n",
			nc->full_name);
		goto err_out;
	}

	return spi;

err_out:
	spi_dev_put(spi);
	return ERR_PTR(rc);
}

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
/**
 * of_register_spi_devices() - Register child devices onto the SPI bus
 * @master:	Pointer to spi_master device
 *
 * Registers an spi_device for each child node of master node which has a 'reg'
 * property.
 */
static void of_register_spi_devices(struct spi_master *master)
{
	struct spi_device *spi;
	struct device_node *nc;

	if (!master->dev.of_node)
		return;

1449
	for_each_available_child_of_node(master->dev.of_node, nc) {
1450 1451 1452
		spi = of_register_spi_device(master, nc);
		if (IS_ERR(spi))
			dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1453 1454 1455 1456 1457 1458 1459
				nc->full_name);
	}
}
#else
static void of_register_spi_devices(struct spi_master *master) { }
#endif

1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
#ifdef CONFIG_ACPI
static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
{
	struct spi_device *spi = data;

	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
		struct acpi_resource_spi_serialbus *sb;

		sb = &ares->data.spi_serial_bus;
		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
			spi->chip_select = sb->device_selection;
			spi->max_speed_hz = sb->connection_speed;

			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
				spi->mode |= SPI_CPHA;
			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
				spi->mode |= SPI_CPOL;
			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
				spi->mode |= SPI_CS_HIGH;
		}
	} else if (spi->irq < 0) {
		struct resource r;

		if (acpi_dev_resource_interrupt(ares, 0, &r))
			spi->irq = r.start;
	}

	/* Always tell the ACPI core to skip this resource */
	return 1;
}

static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
				       void *data, void **return_value)
{
	struct spi_master *master = data;
	struct list_head resource_list;
	struct acpi_device *adev;
	struct spi_device *spi;
	int ret;

	if (acpi_bus_get_device(handle, &adev))
		return AE_OK;
	if (acpi_bus_get_status(adev) || !adev->status.present)
		return AE_OK;

	spi = spi_alloc_device(master);
	if (!spi) {
		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
			dev_name(&adev->dev));
		return AE_NO_MEMORY;
	}

1512
	ACPI_COMPANION_SET(&spi->dev, adev);
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
	spi->irq = -1;

	INIT_LIST_HEAD(&resource_list);
	ret = acpi_dev_get_resources(adev, &resource_list,
				     acpi_spi_add_resource, spi);
	acpi_dev_free_resource_list(&resource_list);

	if (ret < 0 || !spi->max_speed_hz) {
		spi_dev_put(spi);
		return AE_OK;
	}

1525
	adev->power.flags.ignore_parent = true;
1526
	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1527
	if (spi_add_device(spi)) {
1528
		adev->power.flags.ignore_parent = false;
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
			dev_name(&adev->dev));
		spi_dev_put(spi);
	}

	return AE_OK;
}

static void acpi_register_spi_devices(struct spi_master *master)
{
	acpi_status status;
	acpi_handle handle;

1542
	handle = ACPI_HANDLE(master->dev.parent);
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
	if (!handle)
		return;

	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
				     acpi_spi_add_device, NULL,
				     master, NULL);
	if (ACPI_FAILURE(status))
		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
}
#else
static inline void acpi_register_spi_devices(struct spi_master *master) {}
#endif /* CONFIG_ACPI */

T
Tony Jones 已提交
1556
static void spi_master_release(struct device *dev)
1557 1558 1559
{
	struct spi_master *master;

T
Tony Jones 已提交
1560
	master = container_of(dev, struct spi_master, dev);
1561 1562 1563 1564 1565 1566
	kfree(master);
}

static struct class spi_master_class = {
	.name		= "spi_master",
	.owner		= THIS_MODULE,
T
Tony Jones 已提交
1567
	.dev_release	= spi_master_release,
1568
	.dev_groups	= spi_master_groups,
1569 1570 1571 1572 1573 1574
};


/**
 * spi_alloc_master - allocate SPI master controller
 * @dev: the controller, possibly using the platform_bus
D
David Brownell 已提交
1575
 * @size: how much zeroed driver-private data to allocate; the pointer to this
T
Tony Jones 已提交
1576
 *	memory is in the driver_data field of the returned device,
D
David Brownell 已提交
1577
 *	accessible with spi_master_get_devdata().
D
David Brownell 已提交
1578
 * Context: can sleep
1579 1580 1581
 *
 * This call is used only by SPI master controller drivers, which are the
 * only ones directly touching chip registers.  It's how they allocate
D
dmitry pervushin 已提交
1582
 * an spi_master structure, prior to calling spi_register_master().
1583 1584 1585 1586 1587
 *
 * This must be called from context that can sleep.  It returns the SPI
 * master structure on success, else NULL.
 *
 * The caller is responsible for assigning the bus number and initializing
D
dmitry pervushin 已提交
1588
 * the master's methods before calling spi_register_master(); and (after errors
1589 1590
 * adding the device) calling spi_master_put() and kfree() to prevent a memory
 * leak.
1591
 */
1592
struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1593 1594 1595
{
	struct spi_master	*master;

D
David Brownell 已提交
1596 1597 1598
	if (!dev)
		return NULL;

J
Jingoo Han 已提交
1599
	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1600 1601 1602
	if (!master)
		return NULL;

T
Tony Jones 已提交
1603
	device_initialize(&master->dev);
1604 1605
	master->bus_num = -1;
	master->num_chipselect = 1;
T
Tony Jones 已提交
1606 1607
	master->dev.class = &spi_master_class;
	master->dev.parent = get_device(dev);
D
David Brownell 已提交
1608
	spi_master_set_devdata(master, &master[1]);
1609 1610 1611 1612 1613

	return master;
}
EXPORT_SYMBOL_GPL(spi_alloc_master);

1614 1615 1616
#ifdef CONFIG_OF
static int of_spi_register_master(struct spi_master *master)
{
1617
	int nb, i, *cs;
1618 1619 1620 1621 1622 1623
	struct device_node *np = master->dev.of_node;

	if (!np)
		return 0;

	nb = of_gpio_named_count(np, "cs-gpios");
J
Jingoo Han 已提交
1624
	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1625

1626 1627
	/* Return error only for an incorrectly formed cs-gpios property */
	if (nb == 0 || nb == -ENOENT)
1628
		return 0;
1629 1630
	else if (nb < 0)
		return nb;
1631 1632 1633 1634 1635 1636 1637 1638 1639

	cs = devm_kzalloc(&master->dev,
			  sizeof(int) * master->num_chipselect,
			  GFP_KERNEL);
	master->cs_gpios = cs;

	if (!master->cs_gpios)
		return -ENOMEM;

1640
	for (i = 0; i < master->num_chipselect; i++)
1641
		cs[i] = -ENOENT;
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654

	for (i = 0; i < nb; i++)
		cs[i] = of_get_named_gpio(np, "cs-gpios", i);

	return 0;
}
#else
static int of_spi_register_master(struct spi_master *master)
{
	return 0;
}
#endif

1655 1656 1657
/**
 * spi_register_master - register SPI master controller
 * @master: initialized master, originally from spi_alloc_master()
D
David Brownell 已提交
1658
 * Context: can sleep
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
 *
 * SPI master controllers connect to their drivers using some non-SPI bus,
 * such as the platform bus.  The final stage of probe() in that code
 * includes calling spi_register_master() to hook up to this SPI bus glue.
 *
 * SPI controllers use board specific (often SOC specific) bus numbers,
 * and board-specific addressing for SPI devices combines those numbers
 * with chip select numbers.  Since SPI does not directly support dynamic
 * device identification, boards need configuration tables telling which
 * chip is at which address.
 *
 * This must be called from context that can sleep.  It returns zero on
 * success, else a negative error code (dropping the master's refcount).
D
David Brownell 已提交
1672 1673
 * After a successful return, the caller is responsible for calling
 * spi_unregister_master().
1674
 */
1675
int spi_register_master(struct spi_master *master)
1676
{
1677
	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
T
Tony Jones 已提交
1678
	struct device		*dev = master->dev.parent;
1679
	struct boardinfo	*bi;
1680 1681 1682
	int			status = -ENODEV;
	int			dynamic = 0;

D
David Brownell 已提交
1683 1684 1685
	if (!dev)
		return -ENODEV;

1686 1687 1688 1689
	status = of_spi_register_master(master);
	if (status)
		return status;

1690 1691 1692 1693 1694 1695
	/* even if it's just one always-selected device, there must
	 * be at least one chipselect
	 */
	if (master->num_chipselect == 0)
		return -EINVAL;

1696 1697 1698
	if ((master->bus_num < 0) && master->dev.of_node)
		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");

1699
	/* convention:  dynamically assigned bus IDs count down from the max */
1700
	if (master->bus_num < 0) {
1701 1702 1703
		/* FIXME switch to an IDR based scheme, something like
		 * I2C now uses, so we can't run out of "dynamic" IDs
		 */
1704
		master->bus_num = atomic_dec_return(&dyn_bus_id);
1705
		dynamic = 1;
1706 1707
	}

1708 1709
	INIT_LIST_HEAD(&master->queue);
	spin_lock_init(&master->queue_lock);
1710 1711 1712
	spin_lock_init(&master->bus_lock_spinlock);
	mutex_init(&master->bus_lock_mutex);
	master->bus_lock_flag = 0;
1713
	init_completion(&master->xfer_completion);
1714 1715
	if (!master->max_dma_len)
		master->max_dma_len = INT_MAX;
1716

1717 1718 1719
	/* register the device, then userspace will see it.
	 * registration fails if the bus ID is in use.
	 */
1720
	dev_set_name(&master->dev, "spi%u", master->bus_num);
T
Tony Jones 已提交
1721
	status = device_add(&master->dev);
1722
	if (status < 0)
1723
		goto done;
1724
	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1725 1726
			dynamic ? " (dynamic)" : "");

1727 1728 1729 1730 1731 1732
	/* If we're using a queued driver, start the queue */
	if (master->transfer)
		dev_info(dev, "master is unqueued, this is deprecated\n");
	else {
		status = spi_master_initialize_queue(master);
		if (status) {
1733
			device_del(&master->dev);
1734 1735 1736
			goto done;
		}
	}
1737 1738
	/* add statistics */
	spin_lock_init(&master->statistics.lock);
1739

1740 1741 1742 1743 1744 1745
	mutex_lock(&board_lock);
	list_add_tail(&master->list, &spi_master_list);
	list_for_each_entry(bi, &board_list, list)
		spi_match_master_to_boardinfo(master, &bi->board_info);
	mutex_unlock(&board_lock);

1746
	/* Register devices from the device tree and ACPI */
1747
	of_register_spi_devices(master);
1748
	acpi_register_spi_devices(master);
1749 1750 1751 1752 1753
done:
	return status;
}
EXPORT_SYMBOL_GPL(spi_register_master);

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
static void devm_spi_unregister(struct device *dev, void *res)
{
	spi_unregister_master(*(struct spi_master **)res);
}

/**
 * dev_spi_register_master - register managed SPI master controller
 * @dev:    device managing SPI master
 * @master: initialized master, originally from spi_alloc_master()
 * Context: can sleep
 *
 * Register a SPI device as with spi_register_master() which will
 * automatically be unregister
 */
int devm_spi_register_master(struct device *dev, struct spi_master *master)
{
	struct spi_master **ptr;
	int ret;

	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return -ENOMEM;

	ret = spi_register_master(master);
1778
	if (!ret) {
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
		*ptr = master;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return ret;
}
EXPORT_SYMBOL_GPL(devm_spi_register_master);

1789
static int __unregister(struct device *dev, void *null)
1790
{
1791
	spi_unregister_device(to_spi_device(dev));
1792 1793 1794 1795 1796 1797
	return 0;
}

/**
 * spi_unregister_master - unregister SPI master controller
 * @master: the master being unregistered
D
David Brownell 已提交
1798
 * Context: can sleep
1799 1800 1801 1802 1803 1804 1805 1806
 *
 * This call is used only by SPI master controller drivers, which are the
 * only ones directly touching chip registers.
 *
 * This must be called from context that can sleep.
 */
void spi_unregister_master(struct spi_master *master)
{
1807 1808
	int dummy;

1809 1810 1811 1812 1813
	if (master->queued) {
		if (spi_destroy_queue(master))
			dev_err(&master->dev, "queue remove failed\n");
	}

1814 1815 1816 1817
	mutex_lock(&board_lock);
	list_del(&master->list);
	mutex_unlock(&board_lock);

1818
	dummy = device_for_each_child(&master->dev, NULL, __unregister);
T
Tony Jones 已提交
1819
	device_unregister(&master->dev);
1820 1821 1822
}
EXPORT_SYMBOL_GPL(spi_unregister_master);

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
int spi_master_suspend(struct spi_master *master)
{
	int ret;

	/* Basically no-ops for non-queued masters */
	if (!master->queued)
		return 0;

	ret = spi_stop_queue(master);
	if (ret)
		dev_err(&master->dev, "queue stop failed\n");

	return ret;
}
EXPORT_SYMBOL_GPL(spi_master_suspend);

int spi_master_resume(struct spi_master *master)
{
	int ret;

	if (!master->queued)
		return 0;

	ret = spi_start_queue(master);
	if (ret)
		dev_err(&master->dev, "queue restart failed\n");

	return ret;
}
EXPORT_SYMBOL_GPL(spi_master_resume);

1854
static int __spi_master_match(struct device *dev, const void *data)
D
Dave Young 已提交
1855 1856
{
	struct spi_master *m;
1857
	const u16 *bus_num = data;
D
Dave Young 已提交
1858 1859 1860 1861 1862

	m = container_of(dev, struct spi_master, dev);
	return m->bus_num == *bus_num;
}

1863 1864 1865
/**
 * spi_busnum_to_master - look up master associated with bus_num
 * @bus_num: the master's bus number
D
David Brownell 已提交
1866
 * Context: can sleep
1867 1868 1869 1870 1871 1872 1873 1874
 *
 * This call may be used with devices that are registered after
 * arch init time.  It returns a refcounted pointer to the relevant
 * spi_master (which the caller must release), or NULL if there is
 * no such master registered.
 */
struct spi_master *spi_busnum_to_master(u16 bus_num)
{
T
Tony Jones 已提交
1875
	struct device		*dev;
1876
	struct spi_master	*master = NULL;
D
Dave Young 已提交
1877

1878
	dev = class_find_device(&spi_master_class, NULL, &bus_num,
D
Dave Young 已提交
1879 1880 1881 1882
				__spi_master_match);
	if (dev)
		master = container_of(dev, struct spi_master, dev);
	/* reference got in class_find_device */
1883
	return master;
1884 1885 1886 1887 1888 1889
}
EXPORT_SYMBOL_GPL(spi_busnum_to_master);


/*-------------------------------------------------------------------------*/

1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
/* Core methods for SPI master protocol drivers.  Some of the
 * other core methods are currently defined as inline functions.
 */

/**
 * spi_setup - setup SPI mode and clock rate
 * @spi: the device whose settings are being modified
 * Context: can sleep, and no requests are queued to the device
 *
 * SPI protocol drivers may need to update the transfer mode if the
 * device doesn't work with its default.  They may likewise need
 * to update clock rates or word sizes from initial values.  This function
 * changes those settings, and must be called from a context that can sleep.
 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
 * effect the next time the device is selected and data is transferred to
 * or from it.  When this function returns, the spi device is deselected.
 *
 * Note that this call will fail if the protocol driver specifies an option
 * that the underlying controller or its driver does not support.  For
 * example, not all hardware supports wire transfers using nine bit words,
 * LSB-first wire encoding, or active-high chipselects.
 */
int spi_setup(struct spi_device *spi)
{
1914
	unsigned	bad_bits, ugly_bits;
1915
	int		status = 0;
1916

W
wangyuhang 已提交
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
	/* check mode to prevent that DUAL and QUAD set at the same time
	 */
	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
		dev_err(&spi->dev,
		"setup: can not select dual and quad at the same time\n");
		return -EINVAL;
	}
	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
	 */
	if ((spi->mode & SPI_3WIRE) && (spi->mode &
		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
		return -EINVAL;
1930 1931 1932 1933
	/* help drivers fail *cleanly* when they need options
	 * that aren't supported with their current master
	 */
	bad_bits = spi->mode & ~spi->master->mode_bits;
1934 1935 1936 1937 1938 1939 1940 1941 1942
	ugly_bits = bad_bits &
		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
	if (ugly_bits) {
		dev_warn(&spi->dev,
			 "setup: ignoring unsupported mode bits %x\n",
			 ugly_bits);
		spi->mode &= ~ugly_bits;
		bad_bits &= ~ugly_bits;
	}
1943
	if (bad_bits) {
1944
		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1945 1946 1947 1948
			bad_bits);
		return -EINVAL;
	}

1949 1950 1951
	if (!spi->bits_per_word)
		spi->bits_per_word = 8;

1952 1953 1954
	if (!spi->max_speed_hz)
		spi->max_speed_hz = spi->master->max_speed_hz;

1955 1956
	spi_set_cs(spi, false);

1957 1958
	if (spi->master->setup)
		status = spi->master->setup(spi);
1959

J
Jingoo Han 已提交
1960
	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
			(spi->mode & SPI_LOOP) ? "loopback, " : "",
			spi->bits_per_word, spi->max_speed_hz,
			status);

	return status;
}
EXPORT_SYMBOL_GPL(spi_setup);

1973
static int __spi_validate(struct spi_device *spi, struct spi_message *message)
1974 1975
{
	struct spi_master *master = spi->master;
1976
	struct spi_transfer *xfer;
1977
	int w_size;
1978

1979 1980 1981
	if (list_empty(&message->transfers))
		return -EINVAL;

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
	/* Half-duplex links include original MicroWire, and ones with
	 * only one data pin like SPI_3WIRE (switches direction) or where
	 * either MOSI or MISO is missing.  They can also be caused by
	 * software limitations.
	 */
	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
			|| (spi->mode & SPI_3WIRE)) {
		unsigned flags = master->flags;

		list_for_each_entry(xfer, &message->transfers, transfer_list) {
			if (xfer->rx_buf && xfer->tx_buf)
				return -EINVAL;
			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
				return -EINVAL;
			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
				return -EINVAL;
		}
	}

2001
	/**
2002 2003
	 * Set transfer bits_per_word and max speed as spi device default if
	 * it is not set for this transfer.
W
wangyuhang 已提交
2004 2005
	 * Set transfer tx_nbits and rx_nbits as single transfer default
	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2006 2007
	 */
	list_for_each_entry(xfer, &message->transfers, transfer_list) {
2008
		message->frame_length += xfer->len;
2009 2010
		if (!xfer->bits_per_word)
			xfer->bits_per_word = spi->bits_per_word;
2011 2012

		if (!xfer->speed_hz)
2013
			xfer->speed_hz = spi->max_speed_hz;
2014 2015 2016 2017

		if (master->max_speed_hz &&
		    xfer->speed_hz > master->max_speed_hz)
			xfer->speed_hz = master->max_speed_hz;
2018

2019 2020 2021 2022 2023 2024 2025 2026
		if (master->bits_per_word_mask) {
			/* Only 32 bits fit in the mask */
			if (xfer->bits_per_word > 32)
				return -EINVAL;
			if (!(master->bits_per_word_mask &
					BIT(xfer->bits_per_word - 1)))
				return -EINVAL;
		}
2027

2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
		/*
		 * SPI transfer length should be multiple of SPI word size
		 * where SPI word size should be power-of-two multiple
		 */
		if (xfer->bits_per_word <= 8)
			w_size = 1;
		else if (xfer->bits_per_word <= 16)
			w_size = 2;
		else
			w_size = 4;

		/* No partial transfers accepted */
2040
		if (xfer->len % w_size)
2041 2042
			return -EINVAL;

2043 2044 2045
		if (xfer->speed_hz && master->min_speed_hz &&
		    xfer->speed_hz < master->min_speed_hz)
			return -EINVAL;
W
wangyuhang 已提交
2046 2047 2048 2049 2050 2051

		if (xfer->tx_buf && !xfer->tx_nbits)
			xfer->tx_nbits = SPI_NBITS_SINGLE;
		if (xfer->rx_buf && !xfer->rx_nbits)
			xfer->rx_nbits = SPI_NBITS_SINGLE;
		/* check transfer tx/rx_nbits:
2052 2053
		 * 1. check the value matches one of single, dual and quad
		 * 2. check tx/rx_nbits match the mode in spi_device
W
wangyuhang 已提交
2054
		 */
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
		if (xfer->tx_buf) {
			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
				xfer->tx_nbits != SPI_NBITS_DUAL &&
				xfer->tx_nbits != SPI_NBITS_QUAD)
				return -EINVAL;
			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
				return -EINVAL;
			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
				!(spi->mode & SPI_TX_QUAD))
				return -EINVAL;
		}
W
wangyuhang 已提交
2067
		/* check transfer rx_nbits */
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
		if (xfer->rx_buf) {
			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
				xfer->rx_nbits != SPI_NBITS_DUAL &&
				xfer->rx_nbits != SPI_NBITS_QUAD)
				return -EINVAL;
			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
				return -EINVAL;
			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
				!(spi->mode & SPI_RX_QUAD))
				return -EINVAL;
		}
2080 2081
	}

2082
	message->status = -EINPROGRESS;
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092

	return 0;
}

static int __spi_async(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;

	message->spi = spi;

2093 2094 2095
	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);

2096 2097
	trace_spi_message_submit(message);

2098 2099 2100
	return master->transfer(spi, message);
}

D
David Brownell 已提交
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
/**
 * spi_async - asynchronous SPI transfer
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
 */
int spi_async(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;
2133 2134
	int ret;
	unsigned long flags;
D
David Brownell 已提交
2135

2136 2137 2138 2139
	ret = __spi_validate(spi, message);
	if (ret != 0)
		return ret;

2140
	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
D
David Brownell 已提交
2141

2142 2143 2144 2145
	if (master->bus_lock_flag)
		ret = -EBUSY;
	else
		ret = __spi_async(spi, message);
D
David Brownell 已提交
2146

2147 2148 2149
	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	return ret;
D
David Brownell 已提交
2150 2151 2152
}
EXPORT_SYMBOL_GPL(spi_async);

2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
/**
 * spi_async_locked - version of spi_async with exclusive bus usage
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
 */
int spi_async_locked(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;
	int ret;
	unsigned long flags;

2188 2189 2190 2191
	ret = __spi_validate(spi, message);
	if (ret != 0)
		return ret;

2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
	spin_lock_irqsave(&master->bus_lock_spinlock, flags);

	ret = __spi_async(spi, message);

	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	return ret;

}
EXPORT_SYMBOL_GPL(spi_async_locked);

2203 2204 2205 2206 2207 2208 2209 2210

/*-------------------------------------------------------------------------*/

/* Utility methods for SPI master protocol drivers, layered on
 * top of the core.  Some other utility methods are defined as
 * inline functions.
 */

2211 2212 2213 2214 2215
static void spi_complete(void *arg)
{
	complete(arg);
}

2216 2217 2218 2219 2220 2221
static int __spi_sync(struct spi_device *spi, struct spi_message *message,
		      int bus_locked)
{
	DECLARE_COMPLETION_ONSTACK(done);
	int status;
	struct spi_master *master = spi->master;
2222 2223 2224 2225 2226
	unsigned long flags;

	status = __spi_validate(spi, message);
	if (status != 0)
		return status;
2227 2228 2229

	message->complete = spi_complete;
	message->context = &done;
2230
	message->spi = spi;
2231

2232 2233 2234
	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);

2235 2236 2237
	if (!bus_locked)
		mutex_lock(&master->bus_lock_mutex);

2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
	/* If we're not using the legacy transfer method then we will
	 * try to transfer in the calling context so special case.
	 * This code would be less tricky if we could remove the
	 * support for driver implemented message queues.
	 */
	if (master->transfer == spi_queued_transfer) {
		spin_lock_irqsave(&master->bus_lock_spinlock, flags);

		trace_spi_message_submit(message);

		status = __spi_queued_transfer(spi, message, false);

		spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
	} else {
		status = spi_async_locked(spi, message);
	}
2254 2255 2256 2257 2258

	if (!bus_locked)
		mutex_unlock(&master->bus_lock_mutex);

	if (status == 0) {
2259 2260 2261
		/* Push out the messages in the calling context if we
		 * can.
		 */
2262 2263 2264 2265 2266
		if (master->transfer == spi_queued_transfer) {
			SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
						       spi_sync_immediate);
			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
						       spi_sync_immediate);
2267
			__spi_pump_messages(master, false);
2268
		}
2269

2270 2271 2272 2273 2274 2275 2276
		wait_for_completion(&done);
		status = message->status;
	}
	message->context = NULL;
	return status;
}

2277 2278 2279 2280
/**
 * spi_sync - blocking/synchronous SPI data transfers
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
D
David Brownell 已提交
2281
 * Context: can sleep
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * Note that the SPI device's chip select is active during the message,
 * and then is normally disabled between messages.  Drivers for some
 * frequently-used devices may want to minimize costs of selecting a chip,
 * by leaving it selected in anticipation that the next message will go
 * to the same chip.  (That may increase power usage.)
 *
D
David Brownell 已提交
2293 2294 2295
 * Also, the caller is guaranteeing that the memory associated with the
 * message will not be freed before this call returns.
 *
2296
 * It returns zero on success, else a negative error code.
2297 2298 2299
 */
int spi_sync(struct spi_device *spi, struct spi_message *message)
{
2300
	return __spi_sync(spi, message, 0);
2301 2302 2303
}
EXPORT_SYMBOL_GPL(spi_sync);

2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
/**
 * spi_sync_locked - version of spi_sync with exclusive bus usage
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * This call should be used by drivers that require exclusive access to the
L
Lucas De Marchi 已提交
2315
 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
 * be released by a spi_bus_unlock call when the exclusive access is over.
 *
 * It returns zero on success, else a negative error code.
 */
int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
{
	return __spi_sync(spi, message, 1);
}
EXPORT_SYMBOL_GPL(spi_sync_locked);

/**
 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
 * @master: SPI bus master that should be locked for exclusive bus access
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.
 *
 * This call should be used by drivers that require exclusive access to the
 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
 * exclusive access is over. Data transfer must be done by spi_sync_locked
 * and spi_async_locked calls when the SPI bus lock is held.
 *
 * It returns zero on success, else a negative error code.
 */
int spi_bus_lock(struct spi_master *master)
{
	unsigned long flags;

	mutex_lock(&master->bus_lock_mutex);

	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
	master->bus_lock_flag = 1;
	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	/* mutex remains locked until spi_bus_unlock is called */

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bus_lock);

/**
 * spi_bus_unlock - release the lock for exclusive SPI bus usage
 * @master: SPI bus master that was locked for exclusive bus access
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.
 *
 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
 * call.
 *
 * It returns zero on success, else a negative error code.
 */
int spi_bus_unlock(struct spi_master *master)
{
	master->bus_lock_flag = 0;

	mutex_unlock(&master->bus_lock_mutex);

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bus_unlock);

2380
/* portable code must never pass more than 32 bytes */
J
Jingoo Han 已提交
2381
#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
2382 2383 2384 2385 2386 2387 2388 2389

static u8	*buf;

/**
 * spi_write_then_read - SPI synchronous write followed by read
 * @spi: device with which data will be exchanged
 * @txbuf: data to be written (need not be dma-safe)
 * @n_tx: size of txbuf, in bytes
2390 2391
 * @rxbuf: buffer into which data will be read (need not be dma-safe)
 * @n_rx: size of rxbuf, in bytes
D
David Brownell 已提交
2392
 * Context: can sleep
2393 2394 2395 2396
 *
 * This performs a half duplex MicroWire style transaction with the
 * device, sending txbuf and then reading rxbuf.  The return value
 * is zero for success, else a negative errno status code.
2397
 * This call may only be used from a context that may sleep.
2398
 *
D
David Brownell 已提交
2399
 * Parameters to this routine are always copied using a small buffer;
D
David Brownell 已提交
2400 2401
 * portable code should never use this for more than 32 bytes.
 * Performance-sensitive or bulk transfer code should instead use
D
David Brownell 已提交
2402
 * spi_{async,sync}() calls with dma-safe buffers.
2403 2404
 */
int spi_write_then_read(struct spi_device *spi,
2405 2406
		const void *txbuf, unsigned n_tx,
		void *rxbuf, unsigned n_rx)
2407
{
D
David Brownell 已提交
2408
	static DEFINE_MUTEX(lock);
2409 2410 2411

	int			status;
	struct spi_message	message;
2412
	struct spi_transfer	x[2];
2413 2414
	u8			*local_buf;

2415 2416 2417 2418
	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
	 * copying here, (as a pure convenience thing), but we can
	 * keep heap costs out of the hot path unless someone else is
	 * using the pre-allocated buffer or the transfer is too large.
2419
	 */
2420
	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2421 2422
		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
				    GFP_KERNEL | GFP_DMA);
2423 2424 2425 2426 2427
		if (!local_buf)
			return -ENOMEM;
	} else {
		local_buf = buf;
	}
2428

2429
	spi_message_init(&message);
J
Jingoo Han 已提交
2430
	memset(x, 0, sizeof(x));
2431 2432 2433 2434 2435 2436 2437 2438
	if (n_tx) {
		x[0].len = n_tx;
		spi_message_add_tail(&x[0], &message);
	}
	if (n_rx) {
		x[1].len = n_rx;
		spi_message_add_tail(&x[1], &message);
	}
2439

2440
	memcpy(local_buf, txbuf, n_tx);
2441 2442
	x[0].tx_buf = local_buf;
	x[1].rx_buf = local_buf + n_tx;
2443 2444 2445

	/* do the i/o */
	status = spi_sync(spi, &message);
2446
	if (status == 0)
2447
		memcpy(rxbuf, x[1].rx_buf, n_rx);
2448

2449
	if (x[0].tx_buf == buf)
D
David Brownell 已提交
2450
		mutex_unlock(&lock);
2451 2452 2453 2454 2455 2456 2457 2458 2459
	else
		kfree(local_buf);

	return status;
}
EXPORT_SYMBOL_GPL(spi_write_then_read);

/*-------------------------------------------------------------------------*/

2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
#if IS_ENABLED(CONFIG_OF_DYNAMIC)
static int __spi_of_device_match(struct device *dev, void *data)
{
	return dev->of_node == data;
}

/* must call put_device() when done with returned spi_device device */
static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
{
	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
						__spi_of_device_match);
	return dev ? to_spi_device(dev) : NULL;
}

static int __spi_of_master_match(struct device *dev, const void *data)
{
	return dev->of_node == data;
}

/* the spi masters are not using spi_bus, so we find it with another way */
static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
{
	struct device *dev;

	dev = class_find_device(&spi_master_class, NULL, node,
				__spi_of_master_match);
	if (!dev)
		return NULL;

	/* reference got in class_find_device */
	return container_of(dev, struct spi_master, dev);
}

static int of_spi_notify(struct notifier_block *nb, unsigned long action,
			 void *arg)
{
	struct of_reconfig_data *rd = arg;
	struct spi_master *master;
	struct spi_device *spi;

	switch (of_reconfig_get_state_change(action, arg)) {
	case OF_RECONFIG_CHANGE_ADD:
		master = of_find_spi_master_by_node(rd->dn->parent);
		if (master == NULL)
			return NOTIFY_OK;	/* not for us */

		spi = of_register_spi_device(master, rd->dn);
		put_device(&master->dev);

		if (IS_ERR(spi)) {
			pr_err("%s: failed to create for '%s'\n",
					__func__, rd->dn->full_name);
			return notifier_from_errno(PTR_ERR(spi));
		}
		break;

	case OF_RECONFIG_CHANGE_REMOVE:
		/* find our device by node */
		spi = of_find_spi_device_by_node(rd->dn);
		if (spi == NULL)
			return NOTIFY_OK;	/* no? not meant for us */

		/* unregister takes one ref away */
		spi_unregister_device(spi);

		/* and put the reference of the find */
		put_device(&spi->dev);
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block spi_of_notifier = {
	.notifier_call = of_spi_notify,
};
#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
extern struct notifier_block spi_of_notifier;
#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */

2540 2541
static int __init spi_init(void)
{
2542 2543
	int	status;

2544
	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2545 2546 2547 2548 2549 2550 2551 2552
	if (!buf) {
		status = -ENOMEM;
		goto err0;
	}

	status = bus_register(&spi_bus_type);
	if (status < 0)
		goto err1;
2553

2554 2555 2556
	status = class_register(&spi_master_class);
	if (status < 0)
		goto err2;
2557

2558
	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2559 2560
		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));

2561
	return 0;
2562 2563 2564 2565 2566 2567 2568 2569

err2:
	bus_unregister(&spi_bus_type);
err1:
	kfree(buf);
	buf = NULL;
err0:
	return status;
2570
}
2571

2572 2573
/* board_info is normally registered in arch_initcall(),
 * but even essential drivers wait till later
2574 2575 2576 2577
 *
 * REVISIT only boardinfo really needs static linking. the rest (device and
 * driver registration) _could_ be dynamically linked (modular) ... costs
 * include needing to have boardinfo data structures be much more public.
2578
 */
2579
postcore_initcall(spi_init);
2580