spi-stm32.c 58.7 KB
Newer Older
1 2 3 4 5 6 7
// SPDX-License-Identifier: GPL-2.0
//
// STMicroelectronics STM32 SPI Controller driver (master mode only)
//
// Copyright (C) 2017, STMicroelectronics - All Rights Reserved
// Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.

8 9 10 11 12 13 14 15
#include <linux/debugfs.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of_platform.h>
16
#include <linux/pinctrl/consumer.h>
17
#include <linux/pm_runtime.h>
18 19 20 21 22
#include <linux/reset.h>
#include <linux/spi/spi.h>

#define DRIVER_NAME "spi_stm32"

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
/* STM32F4 SPI registers */
#define STM32F4_SPI_CR1			0x00
#define STM32F4_SPI_CR2			0x04
#define STM32F4_SPI_SR			0x08
#define STM32F4_SPI_DR			0x0C
#define STM32F4_SPI_I2SCFGR		0x1C

/* STM32F4_SPI_CR1 bit fields */
#define STM32F4_SPI_CR1_CPHA		BIT(0)
#define STM32F4_SPI_CR1_CPOL		BIT(1)
#define STM32F4_SPI_CR1_MSTR		BIT(2)
#define STM32F4_SPI_CR1_BR_SHIFT	3
#define STM32F4_SPI_CR1_BR		GENMASK(5, 3)
#define STM32F4_SPI_CR1_SPE		BIT(6)
#define STM32F4_SPI_CR1_LSBFRST		BIT(7)
#define STM32F4_SPI_CR1_SSI		BIT(8)
#define STM32F4_SPI_CR1_SSM		BIT(9)
#define STM32F4_SPI_CR1_RXONLY		BIT(10)
#define STM32F4_SPI_CR1_DFF		BIT(11)
#define STM32F4_SPI_CR1_CRCNEXT		BIT(12)
#define STM32F4_SPI_CR1_CRCEN		BIT(13)
#define STM32F4_SPI_CR1_BIDIOE		BIT(14)
#define STM32F4_SPI_CR1_BIDIMODE	BIT(15)
#define STM32F4_SPI_CR1_BR_MIN		0
#define STM32F4_SPI_CR1_BR_MAX		(GENMASK(5, 3) >> 3)

/* STM32F4_SPI_CR2 bit fields */
#define STM32F4_SPI_CR2_RXDMAEN		BIT(0)
#define STM32F4_SPI_CR2_TXDMAEN		BIT(1)
#define STM32F4_SPI_CR2_SSOE		BIT(2)
#define STM32F4_SPI_CR2_FRF		BIT(4)
#define STM32F4_SPI_CR2_ERRIE		BIT(5)
#define STM32F4_SPI_CR2_RXNEIE		BIT(6)
#define STM32F4_SPI_CR2_TXEIE		BIT(7)

/* STM32F4_SPI_SR bit fields */
#define STM32F4_SPI_SR_RXNE		BIT(0)
#define STM32F4_SPI_SR_TXE		BIT(1)
#define STM32F4_SPI_SR_CHSIDE		BIT(2)
#define STM32F4_SPI_SR_UDR		BIT(3)
#define STM32F4_SPI_SR_CRCERR		BIT(4)
#define STM32F4_SPI_SR_MODF		BIT(5)
#define STM32F4_SPI_SR_OVR		BIT(6)
#define STM32F4_SPI_SR_BSY		BIT(7)
#define STM32F4_SPI_SR_FRE		BIT(8)

/* STM32F4_SPI_I2SCFGR bit fields */
#define STM32F4_SPI_I2SCFGR_I2SMOD	BIT(11)

/* STM32F4 SPI Baud Rate min/max divisor */
#define STM32F4_SPI_BR_DIV_MIN		(2 << STM32F4_SPI_CR1_BR_MIN)
#define STM32F4_SPI_BR_DIV_MAX		(2 << STM32F4_SPI_CR1_BR_MAX)

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
/* STM32H7 SPI registers */
#define STM32H7_SPI_CR1			0x00
#define STM32H7_SPI_CR2			0x04
#define STM32H7_SPI_CFG1		0x08
#define STM32H7_SPI_CFG2		0x0C
#define STM32H7_SPI_IER			0x10
#define STM32H7_SPI_SR			0x14
#define STM32H7_SPI_IFCR		0x18
#define STM32H7_SPI_TXDR		0x20
#define STM32H7_SPI_RXDR		0x30
#define STM32H7_SPI_I2SCFGR		0x50

/* STM32H7_SPI_CR1 bit fields */
#define STM32H7_SPI_CR1_SPE		BIT(0)
#define STM32H7_SPI_CR1_MASRX		BIT(8)
#define STM32H7_SPI_CR1_CSTART		BIT(9)
#define STM32H7_SPI_CR1_CSUSP		BIT(10)
#define STM32H7_SPI_CR1_HDDIR		BIT(11)
#define STM32H7_SPI_CR1_SSI		BIT(12)

/* STM32H7_SPI_CR2 bit fields */
#define STM32H7_SPI_CR2_TSIZE_SHIFT	0
#define STM32H7_SPI_CR2_TSIZE		GENMASK(15, 0)

/* STM32H7_SPI_CFG1 bit fields */
#define STM32H7_SPI_CFG1_DSIZE_SHIFT	0
#define STM32H7_SPI_CFG1_DSIZE		GENMASK(4, 0)
#define STM32H7_SPI_CFG1_FTHLV_SHIFT	5
#define STM32H7_SPI_CFG1_FTHLV		GENMASK(8, 5)
#define STM32H7_SPI_CFG1_RXDMAEN	BIT(14)
#define STM32H7_SPI_CFG1_TXDMAEN	BIT(15)
#define STM32H7_SPI_CFG1_MBR_SHIFT	28
#define STM32H7_SPI_CFG1_MBR		GENMASK(30, 28)
#define STM32H7_SPI_CFG1_MBR_MIN	0
#define STM32H7_SPI_CFG1_MBR_MAX	(GENMASK(30, 28) >> 28)

/* STM32H7_SPI_CFG2 bit fields */
#define STM32H7_SPI_CFG2_MIDI_SHIFT	4
#define STM32H7_SPI_CFG2_MIDI		GENMASK(7, 4)
#define STM32H7_SPI_CFG2_COMM_SHIFT	17
#define STM32H7_SPI_CFG2_COMM		GENMASK(18, 17)
#define STM32H7_SPI_CFG2_SP_SHIFT	19
#define STM32H7_SPI_CFG2_SP		GENMASK(21, 19)
#define STM32H7_SPI_CFG2_MASTER		BIT(22)
#define STM32H7_SPI_CFG2_LSBFRST	BIT(23)
#define STM32H7_SPI_CFG2_CPHA		BIT(24)
#define STM32H7_SPI_CFG2_CPOL		BIT(25)
#define STM32H7_SPI_CFG2_SSM		BIT(26)
#define STM32H7_SPI_CFG2_AFCNTR		BIT(31)

/* STM32H7_SPI_IER bit fields */
#define STM32H7_SPI_IER_RXPIE		BIT(0)
#define STM32H7_SPI_IER_TXPIE		BIT(1)
#define STM32H7_SPI_IER_DXPIE		BIT(2)
#define STM32H7_SPI_IER_EOTIE		BIT(3)
#define STM32H7_SPI_IER_TXTFIE		BIT(4)
#define STM32H7_SPI_IER_OVRIE		BIT(6)
#define STM32H7_SPI_IER_MODFIE		BIT(9)
#define STM32H7_SPI_IER_ALL		GENMASK(10, 0)

/* STM32H7_SPI_SR bit fields */
#define STM32H7_SPI_SR_RXP		BIT(0)
#define STM32H7_SPI_SR_TXP		BIT(1)
#define STM32H7_SPI_SR_EOT		BIT(3)
#define STM32H7_SPI_SR_OVR		BIT(6)
#define STM32H7_SPI_SR_MODF		BIT(9)
#define STM32H7_SPI_SR_SUSP		BIT(11)
#define STM32H7_SPI_SR_RXPLVL_SHIFT	13
#define STM32H7_SPI_SR_RXPLVL		GENMASK(14, 13)
#define STM32H7_SPI_SR_RXWNE		BIT(15)

/* STM32H7_SPI_IFCR bit fields */
#define STM32H7_SPI_IFCR_ALL		GENMASK(11, 3)

/* STM32H7_SPI_I2SCFGR bit fields */
#define STM32H7_SPI_I2SCFGR_I2SMOD	BIT(0)

/* STM32H7 SPI Master Baud Rate min/max divisor */
#define STM32H7_SPI_MBR_DIV_MIN		(2 << STM32H7_SPI_CFG1_MBR_MIN)
#define STM32H7_SPI_MBR_DIV_MAX		(2 << STM32H7_SPI_CFG1_MBR_MAX)
156

157 158 159 160 161 162 163
/* STM32H7 SPI Communication mode */
#define STM32H7_SPI_FULL_DUPLEX		0
#define STM32H7_SPI_SIMPLEX_TX		1
#define STM32H7_SPI_SIMPLEX_RX		2
#define STM32H7_SPI_HALF_DUPLEX		3

/* SPI Communication type */
164 165 166
#define SPI_FULL_DUPLEX		0
#define SPI_SIMPLEX_TX		1
#define SPI_SIMPLEX_RX		2
167 168
#define SPI_3WIRE_TX		3
#define SPI_3WIRE_RX		4
169 170 171

#define SPI_1HZ_NS		1000000000

172 173 174 175 176 177
/*
 * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
 * without fifo buffers.
 */
#define SPI_DMA_MIN_BYTES	16

178
/**
179
 * struct stm32_spi_reg - stm32 SPI register & bitfield desc
180 181 182 183 184 185 186 187 188 189 190
 * @reg:		register offset
 * @mask:		bitfield mask
 * @shift:		left shift
 */
struct stm32_spi_reg {
	int reg;
	int mask;
	int shift;
};

/**
191 192 193 194 195 196 197 198 199 200
 * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
 * @en: enable register and SPI enable bit
 * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
 * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
 * @cpol: clock polarity register and polarity bit
 * @cpha: clock phase register and phase bit
 * @lsb_first: LSB transmitted first register and bit
 * @br: baud rate register and bitfields
 * @rx: SPI RX data register
 * @tx: SPI TX data register
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
 */
struct stm32_spi_regspec {
	const struct stm32_spi_reg en;
	const struct stm32_spi_reg dma_rx_en;
	const struct stm32_spi_reg dma_tx_en;
	const struct stm32_spi_reg cpol;
	const struct stm32_spi_reg cpha;
	const struct stm32_spi_reg lsb_first;
	const struct stm32_spi_reg br;
	const struct stm32_spi_reg rx;
	const struct stm32_spi_reg tx;
};

struct stm32_spi;

/**
217
 * struct stm32_spi_cfg - stm32 compatible configuration data
218 219 220 221 222 223 224 225 226
 * @regs: registers descriptions
 * @get_fifo_size: routine to get fifo size
 * @get_bpw_mask: routine to get bits per word mask
 * @disable: routine to disable controller
 * @config: routine to configure controller as SPI Master
 * @set_bpw: routine to configure registers to for bits per word
 * @set_mode: routine to configure registers to desired mode
 * @set_data_idleness: optional routine to configure registers to desired idle
 * time between frames (if driver has this functionality)
227
 * @set_number_of_data: optional routine to configure registers to desired
228 229 230 231
 * number of data (if driver has this functionality)
 * @can_dma: routine to determine if the transfer is eligible for DMA use
 * @transfer_one_dma_start: routine to start transfer a single spi_transfer
 * using DMA
232 233
 * @dma_rx_cb: routine to call after DMA RX channel operation is complete
 * @dma_tx_cb: routine to call after DMA TX channel operation is complete
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
 * @transfer_one_irq: routine to configure interrupts for driver
 * @irq_handler_event: Interrupt handler for SPI controller events
 * @irq_handler_thread: thread of interrupt handler for SPI controller
 * @baud_rate_div_min: minimum baud rate divisor
 * @baud_rate_div_max: maximum baud rate divisor
 * @has_fifo: boolean to know if fifo is used for driver
 * @has_startbit: boolean to know if start bit is used to start transfer
 */
struct stm32_spi_cfg {
	const struct stm32_spi_regspec *regs;
	int (*get_fifo_size)(struct stm32_spi *spi);
	int (*get_bpw_mask)(struct stm32_spi *spi);
	void (*disable)(struct stm32_spi *spi);
	int (*config)(struct stm32_spi *spi);
	void (*set_bpw)(struct stm32_spi *spi);
	int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
	void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
	int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
	void (*transfer_one_dma_start)(struct stm32_spi *spi);
	void (*dma_rx_cb)(void *data);
	void (*dma_tx_cb)(void *data);
	int (*transfer_one_irq)(struct stm32_spi *spi);
	irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
	irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
	unsigned int baud_rate_div_min;
	unsigned int baud_rate_div_max;
	bool has_fifo;
};

263 264 265 266
/**
 * struct stm32_spi - private data of the SPI controller
 * @dev: driver model representation of the controller
 * @master: controller master interface
267
 * @cfg: compatible configuration data
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
 * @base: virtual memory area
 * @clk: hw kernel clock feeding the SPI clock generator
 * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
 * @rst: SPI controller reset line
 * @lock: prevent I/O concurrent access
 * @irq: SPI controller interrupt line
 * @fifo_size: size of the embedded fifo in bytes
 * @cur_midi: master inter-data idleness in ns
 * @cur_speed: speed configured in Hz
 * @cur_bpw: number of bits in a single SPI data frame
 * @cur_fthlv: fifo threshold level (data frames in a single data packet)
 * @cur_comm: SPI communication mode
 * @cur_xferlen: current transfer length in bytes
 * @cur_usedma: boolean to know if dma is used in current transfer
 * @tx_buf: data to be written, or NULL
 * @rx_buf: data to be read, or NULL
 * @tx_len: number of data to be written in bytes
 * @rx_len: number of data to be read in bytes
 * @dma_tx: dma channel for TX transfer
 * @dma_rx: dma channel for RX transfer
 * @phys_addr: SPI registers physical base address
 */
struct stm32_spi {
	struct device *dev;
	struct spi_master *master;
293
	const struct stm32_spi_cfg *cfg;
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
	void __iomem *base;
	struct clk *clk;
	u32 clk_rate;
	struct reset_control *rst;
	spinlock_t lock; /* prevent I/O concurrent access */
	int irq;
	unsigned int fifo_size;

	unsigned int cur_midi;
	unsigned int cur_speed;
	unsigned int cur_bpw;
	unsigned int cur_fthlv;
	unsigned int cur_comm;
	unsigned int cur_xferlen;
	bool cur_usedma;

	const void *tx_buf;
	void *rx_buf;
	int tx_len;
	int rx_len;
	struct dma_chan *dma_tx;
	struct dma_chan *dma_rx;
	dma_addr_t phys_addr;
};

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
static const struct stm32_spi_regspec stm32f4_spi_regspec = {
	.en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },

	.dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
	.dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },

	.cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
	.cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
	.lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
	.br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },

	.rx = { STM32F4_SPI_DR },
	.tx = { STM32F4_SPI_DR },
};

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
static const struct stm32_spi_regspec stm32h7_spi_regspec = {
	/* SPI data transfer is enabled but spi_ker_ck is idle.
	 * CFG1 and CFG2 registers are write protected when SPE is enabled.
	 */
	.en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },

	.dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
	.dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },

	.cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
	.cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
	.lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
	.br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
		STM32H7_SPI_CFG1_MBR_SHIFT },

	.rx = { STM32H7_SPI_RXDR },
	.tx = { STM32H7_SPI_TXDR },
};

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
static inline void stm32_spi_set_bits(struct stm32_spi *spi,
				      u32 offset, u32 bits)
{
	writel_relaxed(readl_relaxed(spi->base + offset) | bits,
		       spi->base + offset);
}

static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
				      u32 offset, u32 bits)
{
	writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
		       spi->base + offset);
}

/**
368
 * stm32h7_spi_get_fifo_size - Return fifo size
369 370
 * @spi: pointer to the spi controller data structure
 */
371
static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
372 373 374 375 376 377
{
	unsigned long flags;
	u32 count = 0;

	spin_lock_irqsave(&spi->lock, flags);

378
	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
379

380 381
	while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
		writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
382

383
	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
384 385 386 387 388 389 390 391

	spin_unlock_irqrestore(&spi->lock, flags);

	dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);

	return count;
}

392 393 394 395 396 397 398 399 400 401
/**
 * stm32f4_spi_get_bpw_mask - Return bits per word mask
 * @spi: pointer to the spi controller data structure
 */
static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
{
	dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
	return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
}

402
/**
403
 * stm32h7_spi_get_bpw_mask - Return bits per word mask
404 405
 * @spi: pointer to the spi controller data structure
 */
406
static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
407 408 409 410 411 412 413 414 415 416
{
	unsigned long flags;
	u32 cfg1, max_bpw;

	spin_lock_irqsave(&spi->lock, flags);

	/*
	 * The most significant bit at DSIZE bit field is reserved when the
	 * maximum data size of periperal instances is limited to 16-bit
	 */
417
	stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
418

419 420 421
	cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
	max_bpw = (cfg1 & STM32H7_SPI_CFG1_DSIZE) >>
		  STM32H7_SPI_CFG1_DSIZE_SHIFT;
422 423 424 425 426 427 428 429 430 431
	max_bpw += 1;

	spin_unlock_irqrestore(&spi->lock, flags);

	dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);

	return SPI_BPW_RANGE_MASK(4, max_bpw);
}

/**
432
 * stm32_spi_prepare_mbr - Determine baud rate divisor value
433 434
 * @spi: pointer to the spi controller data structure
 * @speed_hz: requested speed
435 436
 * @min_div: minimum baud rate divisor
 * @max_div: maximum baud rate divisor
437
 *
438
 * Return baud rate divisor value in case of success or -EINVAL
439
 */
440 441
static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
				 u32 min_div, u32 max_div)
442 443 444
{
	u32 div, mbrdiv;

445 446
	/* Ensure spi->clk_rate is even */
	div = DIV_ROUND_UP(spi->clk_rate & ~0x1, speed_hz);
447 448 449 450 451 452 453 454

	/*
	 * SPI framework set xfer->speed_hz to master->max_speed_hz if
	 * xfer->speed_hz is greater than master->max_speed_hz, and it returns
	 * an error when xfer->speed_hz is lower than master->min_speed_hz, so
	 * no need to check it there.
	 * However, we need to ensure the following calculations.
	 */
455
	if ((div < min_div) || (div > max_div))
456 457 458
		return -EINVAL;

	/* Determine the first power of 2 greater than or equal to div */
459 460 461 462
	if (div & (div - 1))
		mbrdiv = fls(div);
	else
		mbrdiv = fls(div) - 1;
463 464 465 466 467 468 469

	spi->cur_speed = spi->clk_rate / (1 << mbrdiv);

	return mbrdiv - 1;
}

/**
470
 * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
471
 * @spi: pointer to the spi controller data structure
472
 * @xfer_len: length of the message to be transferred
473
 */
474
static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
475
{
476
	u32 fthlv, half_fifo, packet;
477 478 479 480

	/* data packet should not exceed 1/2 of fifo space */
	half_fifo = (spi->fifo_size / 2);

481 482 483 484 485 486
	/* data_packet should not exceed transfer length */
	if (half_fifo > xfer_len)
		packet = xfer_len;
	else
		packet = half_fifo;

487
	if (spi->cur_bpw <= 8)
488
		fthlv = packet;
489
	else if (spi->cur_bpw <= 16)
490
		fthlv = packet / 2;
491
	else
492
		fthlv = packet / 4;
493 494 495 496 497 498 499

	/* align packet size with data registers access */
	if (spi->cur_bpw > 8)
		fthlv -= (fthlv % 2); /* multiple of 2 */
	else
		fthlv -= (fthlv % 4); /* multiple of 4 */

500 501 502
	if (!fthlv)
		fthlv = 1;

503 504 505
	return fthlv;
}

506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
/**
 * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
 * @spi: pointer to the spi controller data structure
 *
 * Read from tx_buf depends on remaining bytes to avoid to read beyond
 * tx_buf end.
 */
static void stm32f4_spi_write_tx(struct stm32_spi *spi)
{
	if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
				  STM32F4_SPI_SR_TXE)) {
		u32 offs = spi->cur_xferlen - spi->tx_len;

		if (spi->cur_bpw == 16) {
			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);

			writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
			spi->tx_len -= sizeof(u16);
		} else {
			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);

			writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
			spi->tx_len -= sizeof(u8);
		}
	}

	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
}

535
/**
536
 * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
537 538 539 540 541
 * @spi: pointer to the spi controller data structure
 *
 * Read from tx_buf depends on remaining bytes to avoid to read beyond
 * tx_buf end.
 */
542
static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
543 544
{
	while ((spi->tx_len > 0) &&
545 546
		       (readl_relaxed(spi->base + STM32H7_SPI_SR) &
			STM32H7_SPI_SR_TXP)) {
547 548 549 550 551
		u32 offs = spi->cur_xferlen - spi->tx_len;

		if (spi->tx_len >= sizeof(u32)) {
			const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);

552
			writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
553 554 555 556
			spi->tx_len -= sizeof(u32);
		} else if (spi->tx_len >= sizeof(u16)) {
			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);

557
			writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
558 559 560 561
			spi->tx_len -= sizeof(u16);
		} else {
			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);

562
			writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
563 564 565 566 567 568 569
			spi->tx_len -= sizeof(u8);
		}
	}

	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
}

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
/**
 * stm32f4_spi_read_rx - Read bytes from Receive Data Register
 * @spi: pointer to the spi controller data structure
 *
 * Write in rx_buf depends on remaining bytes to avoid to write beyond
 * rx_buf end.
 */
static void stm32f4_spi_read_rx(struct stm32_spi *spi)
{
	if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
				  STM32F4_SPI_SR_RXNE)) {
		u32 offs = spi->cur_xferlen - spi->rx_len;

		if (spi->cur_bpw == 16) {
			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);

			*rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
			spi->rx_len -= sizeof(u16);
		} else {
			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);

			*rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
			spi->rx_len -= sizeof(u8);
		}
	}

	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
}

599
/**
600
 * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
601
 * @spi: pointer to the spi controller data structure
602
 * @flush: boolean indicating that FIFO should be flushed
603 604 605 606
 *
 * Write in rx_buf depends on remaining bytes to avoid to write beyond
 * rx_buf end.
 */
607
static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
608
{
609 610 611
	u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
	u32 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
		     STM32H7_SPI_SR_RXPLVL_SHIFT;
612 613

	while ((spi->rx_len > 0) &&
614 615
	       ((sr & STM32H7_SPI_SR_RXP) ||
		(flush && ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
616 617 618
		u32 offs = spi->cur_xferlen - spi->rx_len;

		if ((spi->rx_len >= sizeof(u32)) ||
619
		    (flush && (sr & STM32H7_SPI_SR_RXWNE))) {
620 621
			u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);

622
			*rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
623 624 625 626 627
			spi->rx_len -= sizeof(u32);
		} else if ((spi->rx_len >= sizeof(u16)) ||
			   (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) {
			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);

628
			*rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
629 630 631 632
			spi->rx_len -= sizeof(u16);
		} else {
			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);

633
			*rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
634 635 636
			spi->rx_len -= sizeof(u8);
		}

637 638 639
		sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
		rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
			 STM32H7_SPI_SR_RXPLVL_SHIFT;
640 641 642 643 644 645 646 647 648 649 650 651 652 653
	}

	dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__,
		flush ? "(flush)" : "", spi->rx_len);
}

/**
 * stm32_spi_enable - Enable SPI controller
 * @spi: pointer to the spi controller data structure
 */
static void stm32_spi_enable(struct stm32_spi *spi)
{
	dev_dbg(spi->dev, "enable controller\n");

654 655
	stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
			   spi->cfg->regs->en.mask);
656 657
}

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
/**
 * stm32f4_spi_disable - Disable SPI controller
 * @spi: pointer to the spi controller data structure
 */
static void stm32f4_spi_disable(struct stm32_spi *spi)
{
	unsigned long flags;
	u32 sr;

	dev_dbg(spi->dev, "disable controller\n");

	spin_lock_irqsave(&spi->lock, flags);

	if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
	      STM32F4_SPI_CR1_SPE)) {
		spin_unlock_irqrestore(&spi->lock, flags);
		return;
	}

	/* Disable interrupts */
	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
						 STM32F4_SPI_CR2_RXNEIE |
						 STM32F4_SPI_CR2_ERRIE);

	/* Wait until BSY = 0 */
	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
					      sr, !(sr & STM32F4_SPI_SR_BSY),
					      10, 100000) < 0) {
		dev_warn(spi->dev, "disabling condition timeout\n");
	}

	if (spi->cur_usedma && spi->dma_tx)
		dmaengine_terminate_all(spi->dma_tx);
	if (spi->cur_usedma && spi->dma_rx)
		dmaengine_terminate_all(spi->dma_rx);

	stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);

	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
						 STM32F4_SPI_CR2_RXDMAEN);

	/* Sequence to clear OVR flag */
	readl_relaxed(spi->base + STM32F4_SPI_DR);
	readl_relaxed(spi->base + STM32F4_SPI_SR);

	spin_unlock_irqrestore(&spi->lock, flags);
}

706
/**
707
 * stm32h7_spi_disable - Disable SPI controller
708 709 710
 * @spi: pointer to the spi controller data structure
 *
 * RX-Fifo is flushed when SPI controller is disabled. To prevent any data
711
 * loss, use stm32h7_spi_read_rxfifo(flush) to read the remaining bytes in
712
 * RX-Fifo.
713 714 715 716
 * Normally, if TSIZE has been configured, we should relax the hardware at the
 * reception of the EOT interrupt. But in case of error, EOT will not be
 * raised. So the subsystem unprepare_message call allows us to properly
 * complete the transfer from an hardware point of view.
717
 */
718
static void stm32h7_spi_disable(struct stm32_spi *spi)
719 720 721 722 723 724 725 726
{
	unsigned long flags;
	u32 cr1, sr;

	dev_dbg(spi->dev, "disable controller\n");

	spin_lock_irqsave(&spi->lock, flags);

727
	cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
728

729
	if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
730 731 732 733 734
		spin_unlock_irqrestore(&spi->lock, flags);
		return;
	}

	/* Wait on EOT or suspend the flow */
735 736
	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32H7_SPI_SR,
					      sr, !(sr & STM32H7_SPI_SR_EOT),
737
					      10, 100000) < 0) {
738 739 740
		if (cr1 & STM32H7_SPI_CR1_CSTART) {
			writel_relaxed(cr1 | STM32H7_SPI_CR1_CSUSP,
				       spi->base + STM32H7_SPI_CR1);
741
			if (readl_relaxed_poll_timeout_atomic(
742 743
						spi->base + STM32H7_SPI_SR,
						sr, !(sr & STM32H7_SPI_SR_SUSP),
744 745 746 747 748 749 750
						10, 100000) < 0)
				dev_warn(spi->dev,
					 "Suspend request timeout\n");
		}
	}

	if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0))
751
		stm32h7_spi_read_rxfifo(spi, true);
752

753
	if (spi->cur_usedma && spi->dma_tx)
754
		dmaengine_terminate_all(spi->dma_tx);
755
	if (spi->cur_usedma && spi->dma_rx)
756 757
		dmaengine_terminate_all(spi->dma_rx);

758
	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
759

760 761
	stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
						STM32H7_SPI_CFG1_RXDMAEN);
762 763

	/* Disable interrupts and clear status flags */
764 765
	writel_relaxed(0, spi->base + STM32H7_SPI_IER);
	writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
766 767 768 769 770 771

	spin_unlock_irqrestore(&spi->lock, flags);
}

/**
 * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
772 773 774
 * @master: controller master interface
 * @spi_dev: pointer to the spi device
 * @transfer: pointer to spi transfer
775
 *
776 777
 * If driver has fifo and the current transfer size is greater than fifo size,
 * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
778 779 780 781 782
 */
static bool stm32_spi_can_dma(struct spi_master *master,
			      struct spi_device *spi_dev,
			      struct spi_transfer *transfer)
{
783
	unsigned int dma_size;
784 785
	struct stm32_spi *spi = spi_master_get_devdata(master);

786 787 788 789 790
	if (spi->cfg->has_fifo)
		dma_size = spi->fifo_size;
	else
		dma_size = SPI_DMA_MIN_BYTES;

791
	dev_dbg(spi->dev, "%s: %s\n", __func__,
792
		(transfer->len > dma_size) ? "true" : "false");
793

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
	return (transfer->len > dma_size);
}

/**
 * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
 * @irq: interrupt line
 * @dev_id: SPI controller master interface
 */
static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
{
	struct spi_master *master = dev_id;
	struct stm32_spi *spi = spi_master_get_devdata(master);
	u32 sr, mask = 0;
	unsigned long flags;
	bool end = false;

	spin_lock_irqsave(&spi->lock, flags);

	sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
	/*
	 * BSY flag is not handled in interrupt but it is normal behavior when
	 * this flag is set.
	 */
	sr &= ~STM32F4_SPI_SR_BSY;

	if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
				 spi->cur_comm == SPI_3WIRE_TX)) {
		/* OVR flag shouldn't be handled for TX only mode */
		sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE;
		mask |= STM32F4_SPI_SR_TXE;
	}

826 827 828
	if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
				spi->cur_comm == SPI_SIMPLEX_RX ||
				spi->cur_comm == SPI_3WIRE_RX)) {
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
		/* TXE flag is set and is handled when RXNE flag occurs */
		sr &= ~STM32F4_SPI_SR_TXE;
		mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
	}

	if (!(sr & mask)) {
		dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
		spin_unlock_irqrestore(&spi->lock, flags);
		return IRQ_NONE;
	}

	if (sr & STM32F4_SPI_SR_OVR) {
		dev_warn(spi->dev, "Overrun: received value discarded\n");

		/* Sequence to clear OVR flag */
		readl_relaxed(spi->base + STM32F4_SPI_DR);
		readl_relaxed(spi->base + STM32F4_SPI_SR);

		/*
		 * If overrun is detected, it means that something went wrong,
		 * so stop the current transfer. Transfer can wait for next
		 * RXNE but DR is already read and end never happens.
		 */
		end = true;
		goto end_irq;
	}

	if (sr & STM32F4_SPI_SR_TXE) {
		if (spi->tx_buf)
			stm32f4_spi_write_tx(spi);
		if (spi->tx_len == 0)
			end = true;
	}

	if (sr & STM32F4_SPI_SR_RXNE) {
		stm32f4_spi_read_rx(spi);
		if (spi->rx_len == 0)
			end = true;
867
		else if (spi->tx_buf)/* Load data for discontinuous mode */
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
			stm32f4_spi_write_tx(spi);
	}

end_irq:
	if (end) {
		/* Immediately disable interrupts to do not generate new one */
		stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
					STM32F4_SPI_CR2_TXEIE |
					STM32F4_SPI_CR2_RXNEIE |
					STM32F4_SPI_CR2_ERRIE);
		spin_unlock_irqrestore(&spi->lock, flags);
		return IRQ_WAKE_THREAD;
	}

	spin_unlock_irqrestore(&spi->lock, flags);
	return IRQ_HANDLED;
}

/**
 * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
 * @irq: interrupt line
 * @dev_id: SPI controller master interface
 */
static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
{
	struct spi_master *master = dev_id;
	struct stm32_spi *spi = spi_master_get_devdata(master);

	spi_finalize_current_transfer(master);
	stm32f4_spi_disable(spi);

	return IRQ_HANDLED;
900 901 902
}

/**
903
 * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
904 905 906
 * @irq: interrupt line
 * @dev_id: SPI controller master interface
 */
907
static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
908 909 910 911 912 913 914 915 916
{
	struct spi_master *master = dev_id;
	struct stm32_spi *spi = spi_master_get_devdata(master);
	u32 sr, ier, mask;
	unsigned long flags;
	bool end = false;

	spin_lock_irqsave(&spi->lock, flags);

917 918
	sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
	ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
919 920 921

	mask = ier;
	/* EOTIE is triggered on EOT, SUSP and TXC events. */
922
	mask |= STM32H7_SPI_SR_SUSP;
923 924 925 926 927
	/*
	 * When TXTF is set, DXPIE and TXPIE are cleared. So in case of
	 * Full-Duplex, need to poll RXP event to know if there are remaining
	 * data, before disabling SPI.
	 */
928
	if (spi->rx_buf && !spi->cur_usedma)
929
		mask |= STM32H7_SPI_SR_RXP;
930 931 932 933 934 935 936 937

	if (!(sr & mask)) {
		dev_dbg(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
			sr, ier);
		spin_unlock_irqrestore(&spi->lock, flags);
		return IRQ_NONE;
	}

938
	if (sr & STM32H7_SPI_SR_SUSP) {
939 940 941 942 943
		static DEFINE_RATELIMIT_STATE(rs,
					      DEFAULT_RATELIMIT_INTERVAL * 10,
					      1);
		if (__ratelimit(&rs))
			dev_dbg_ratelimited(spi->dev, "Communication suspended\n");
944
		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
945
			stm32h7_spi_read_rxfifo(spi, false);
946 947 948 949 950 951
		/*
		 * If communication is suspended while using DMA, it means
		 * that something went wrong, so stop the current transfer
		 */
		if (spi->cur_usedma)
			end = true;
952 953
	}

954
	if (sr & STM32H7_SPI_SR_MODF) {
955 956 957 958
		dev_warn(spi->dev, "Mode fault: transfer aborted\n");
		end = true;
	}

959
	if (sr & STM32H7_SPI_SR_OVR) {
960 961
		dev_warn(spi->dev, "Overrun: received value discarded\n");
		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
962
			stm32h7_spi_read_rxfifo(spi, false);
963 964 965 966 967 968
		/*
		 * If overrun is detected while using DMA, it means that
		 * something went wrong, so stop the current transfer
		 */
		if (spi->cur_usedma)
			end = true;
969 970
	}

971
	if (sr & STM32H7_SPI_SR_EOT) {
972
		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
973
			stm32h7_spi_read_rxfifo(spi, true);
974 975 976
		end = true;
	}

977
	if (sr & STM32H7_SPI_SR_TXP)
978
		if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
979
			stm32h7_spi_write_txfifo(spi);
980

981
	if (sr & STM32H7_SPI_SR_RXP)
982
		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
983
			stm32h7_spi_read_rxfifo(spi, false);
984

985
	writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR);
986 987 988 989

	spin_unlock_irqrestore(&spi->lock, flags);

	if (end) {
990
		stm32h7_spi_disable(spi);
991
		spi_finalize_current_transfer(master);
992 993 994 995 996 997 998
	}

	return IRQ_HANDLED;
}

/**
 * stm32_spi_prepare_msg - set up the controller to transfer a single message
999 1000
 * @master: controller master interface
 * @msg: pointer to spi message
1001 1002 1003 1004 1005 1006 1007 1008
 */
static int stm32_spi_prepare_msg(struct spi_master *master,
				 struct spi_message *msg)
{
	struct stm32_spi *spi = spi_master_get_devdata(master);
	struct spi_device *spi_dev = msg->spi;
	struct device_node *np = spi_dev->dev.of_node;
	unsigned long flags;
1009
	u32 clrb = 0, setb = 0;
1010 1011 1012

	/* SPI slave device may need time between data frames */
	spi->cur_midi = 0;
1013
	if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
1014 1015 1016
		dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);

	if (spi_dev->mode & SPI_CPOL)
1017
		setb |= spi->cfg->regs->cpol.mask;
1018
	else
1019
		clrb |= spi->cfg->regs->cpol.mask;
1020 1021

	if (spi_dev->mode & SPI_CPHA)
1022
		setb |= spi->cfg->regs->cpha.mask;
1023
	else
1024
		clrb |= spi->cfg->regs->cpha.mask;
1025 1026

	if (spi_dev->mode & SPI_LSB_FIRST)
1027
		setb |= spi->cfg->regs->lsb_first.mask;
1028
	else
1029
		clrb |= spi->cfg->regs->lsb_first.mask;
1030 1031 1032 1033 1034 1035 1036 1037 1038

	dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
		spi_dev->mode & SPI_CPOL,
		spi_dev->mode & SPI_CPHA,
		spi_dev->mode & SPI_LSB_FIRST,
		spi_dev->mode & SPI_CS_HIGH);

	spin_lock_irqsave(&spi->lock, flags);

1039 1040
	/* CPOL, CPHA and LSB FIRST bits have common register */
	if (clrb || setb)
1041
		writel_relaxed(
1042 1043 1044
			(readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
			 ~clrb) | setb,
			spi->base + spi->cfg->regs->cpol.reg);
1045 1046 1047 1048 1049 1050

	spin_unlock_irqrestore(&spi->lock, flags);

	return 0;
}

1051 1052
/**
 * stm32f4_spi_dma_tx_cb - dma callback
1053
 * @data: pointer to the spi controller data structure
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
 *
 * DMA callback is called when the transfer is complete for DMA TX channel.
 */
static void stm32f4_spi_dma_tx_cb(void *data)
{
	struct stm32_spi *spi = data;

	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
		spi_finalize_current_transfer(spi->master);
		stm32f4_spi_disable(spi);
	}
}

/**
 * stm32f4_spi_dma_rx_cb - dma callback
1069
 * @data: pointer to the spi controller data structure
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
 *
 * DMA callback is called when the transfer is complete for DMA RX channel.
 */
static void stm32f4_spi_dma_rx_cb(void *data)
{
	struct stm32_spi *spi = data;

	spi_finalize_current_transfer(spi->master);
	stm32f4_spi_disable(spi);
}

1081
/**
1082
 * stm32h7_spi_dma_cb - dma callback
1083
 * @data: pointer to the spi controller data structure
1084 1085 1086 1087
 *
 * DMA callback is called when the transfer is complete or when an error
 * occurs. If the transfer is complete, EOT flag is raised.
 */
1088
static void stm32h7_spi_dma_cb(void *data)
1089 1090 1091 1092 1093 1094 1095
{
	struct stm32_spi *spi = data;
	unsigned long flags;
	u32 sr;

	spin_lock_irqsave(&spi->lock, flags);

1096
	sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
1097 1098 1099

	spin_unlock_irqrestore(&spi->lock, flags);

1100
	if (!(sr & STM32H7_SPI_SR_EOT))
1101
		dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr);
1102

1103
	/* Now wait for EOT, or SUSP or OVR in case of error */
1104 1105 1106 1107 1108
}

/**
 * stm32_spi_dma_config - configure dma slave channel depending on current
 *			  transfer bits_per_word.
1109 1110 1111
 * @spi: pointer to the spi controller data structure
 * @dma_conf: pointer to the dma_slave_config structure
 * @dir: direction of the dma transfer
1112 1113 1114 1115 1116 1117 1118 1119
 */
static void stm32_spi_dma_config(struct stm32_spi *spi,
				 struct dma_slave_config *dma_conf,
				 enum dma_transfer_direction dir)
{
	enum dma_slave_buswidth buswidth;
	u32 maxburst;

1120 1121 1122 1123 1124 1125
	if (spi->cur_bpw <= 8)
		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
	else if (spi->cur_bpw <= 16)
		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
	else
		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1126

1127 1128 1129 1130 1131 1132 1133
	if (spi->cfg->has_fifo) {
		/* Valid for DMA Half or Full Fifo threshold */
		if (spi->cur_fthlv == 2)
			maxburst = 1;
		else
			maxburst = spi->cur_fthlv;
	} else {
1134
		maxburst = 1;
1135
	}
1136 1137 1138 1139

	memset(dma_conf, 0, sizeof(struct dma_slave_config));
	dma_conf->direction = dir;
	if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1140
		dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1141 1142 1143 1144 1145 1146
		dma_conf->src_addr_width = buswidth;
		dma_conf->src_maxburst = maxburst;

		dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
			buswidth, maxburst);
	} else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1147
		dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1148 1149 1150 1151 1152 1153 1154 1155
		dma_conf->dst_addr_width = buswidth;
		dma_conf->dst_maxburst = maxburst;

		dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
			buswidth, maxburst);
	}
}

1156 1157 1158
/**
 * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
 *				  interrupts
1159
 * @spi: pointer to the spi controller data structure
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
 *
 * It must returns 0 if the transfer is finished or 1 if the transfer is still
 * in progress.
 */
static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
{
	unsigned long flags;
	u32 cr2 = 0;

	/* Enable the interrupts relative to the current communication mode */
	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
		cr2 |= STM32F4_SPI_CR2_TXEIE;
1172 1173 1174
	} else if (spi->cur_comm == SPI_FULL_DUPLEX ||
				spi->cur_comm == SPI_SIMPLEX_RX ||
				spi->cur_comm == SPI_3WIRE_RX) {
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
		/* In transmit-only mode, the OVR flag is set in the SR register
		 * since the received data are never read. Therefore set OVR
		 * interrupt only when rx buffer is available.
		 */
		cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
	} else {
		return -EINVAL;
	}

	spin_lock_irqsave(&spi->lock, flags);

	stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);

	stm32_spi_enable(spi);

	/* starting data transfer when buffer is loaded */
	if (spi->tx_buf)
		stm32f4_spi_write_tx(spi);

	spin_unlock_irqrestore(&spi->lock, flags);

	return 1;
}

1199
/**
1200 1201
 * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
 *				  interrupts
1202
 * @spi: pointer to the spi controller data structure
1203 1204 1205 1206
 *
 * It must returns 0 if the transfer is finished or 1 if the transfer is still
 * in progress.
 */
1207
static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1208 1209 1210 1211 1212 1213
{
	unsigned long flags;
	u32 ier = 0;

	/* Enable the interrupts relative to the current communication mode */
	if (spi->tx_buf && spi->rx_buf)	/* Full Duplex */
1214
		ier |= STM32H7_SPI_IER_DXPIE;
1215
	else if (spi->tx_buf)		/* Half-Duplex TX dir or Simplex TX */
1216
		ier |= STM32H7_SPI_IER_TXPIE;
1217
	else if (spi->rx_buf)		/* Half-Duplex RX dir or Simplex RX */
1218
		ier |= STM32H7_SPI_IER_RXPIE;
1219 1220

	/* Enable the interrupts relative to the end of transfer */
1221 1222
	ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
	       STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1223 1224 1225 1226 1227 1228 1229

	spin_lock_irqsave(&spi->lock, flags);

	stm32_spi_enable(spi);

	/* Be sure to have data in fifo before starting data transfer */
	if (spi->tx_buf)
1230
		stm32h7_spi_write_txfifo(spi);
1231

1232
	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1233

1234
	writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1235 1236 1237 1238 1239 1240

	spin_unlock_irqrestore(&spi->lock, flags);

	return 1;
}

1241 1242 1243
/**
 * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
 *					transfer using DMA
1244
 * @spi: pointer to the spi controller data structure
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
 */
static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
{
	/* In DMA mode end of transfer is handled by DMA TX or RX callback. */
	if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
	    spi->cur_comm == SPI_FULL_DUPLEX) {
		/*
		 * In transmit-only mode, the OVR flag is set in the SR register
		 * since the received data are never read. Therefore set OVR
		 * interrupt only when rx buffer is available.
		 */
		stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
	}

	stm32_spi_enable(spi);
}

1262
/**
1263 1264
 * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
 *					transfer using DMA
1265
 * @spi: pointer to the spi controller data structure
1266
 */
1267
static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
{
	/* Enable the interrupts relative to the end of transfer */
	stm32_spi_set_bits(spi, STM32H7_SPI_IER, STM32H7_SPI_IER_EOTIE |
						 STM32H7_SPI_IER_TXTFIE |
						 STM32H7_SPI_IER_OVRIE |
						 STM32H7_SPI_IER_MODFIE);

	stm32_spi_enable(spi);

	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
}

1280 1281
/**
 * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1282 1283
 * @spi: pointer to the spi controller data structure
 * @xfer: pointer to the spi_transfer structure
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
 *
 * It must returns 0 if the transfer is finished or 1 if the transfer is still
 * in progress.
 */
static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
				      struct spi_transfer *xfer)
{
	struct dma_slave_config tx_dma_conf, rx_dma_conf;
	struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
	unsigned long flags;

	spin_lock_irqsave(&spi->lock, flags);

	rx_dma_desc = NULL;
1298
	if (spi->rx_buf && spi->dma_rx) {
1299 1300 1301 1302
		stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
		dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);

		/* Enable Rx DMA request */
1303 1304
		stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
				   spi->cfg->regs->dma_rx_en.mask);
1305 1306 1307 1308 1309 1310 1311 1312 1313

		rx_dma_desc = dmaengine_prep_slave_sg(
					spi->dma_rx, xfer->rx_sg.sgl,
					xfer->rx_sg.nents,
					rx_dma_conf.direction,
					DMA_PREP_INTERRUPT);
	}

	tx_dma_desc = NULL;
1314
	if (spi->tx_buf && spi->dma_tx) {
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
		stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
		dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);

		tx_dma_desc = dmaengine_prep_slave_sg(
					spi->dma_tx, xfer->tx_sg.sgl,
					xfer->tx_sg.nents,
					tx_dma_conf.direction,
					DMA_PREP_INTERRUPT);
	}

1325 1326 1327 1328 1329
	if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
	    (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
		goto dma_desc_error;

	if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1330 1331 1332
		goto dma_desc_error;

	if (rx_dma_desc) {
1333
		rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1334 1335
		rx_dma_desc->callback_param = spi;

1336 1337 1338 1339 1340 1341 1342 1343 1344
		if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
			dev_err(spi->dev, "Rx DMA submit failed\n");
			goto dma_desc_error;
		}
		/* Enable Rx DMA channel */
		dma_async_issue_pending(spi->dma_rx);
	}

	if (tx_dma_desc) {
1345 1346
		if (spi->cur_comm == SPI_SIMPLEX_TX ||
		    spi->cur_comm == SPI_3WIRE_TX) {
1347
			tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1348 1349 1350
			tx_dma_desc->callback_param = spi;
		}

1351 1352 1353 1354 1355 1356 1357 1358
		if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
			dev_err(spi->dev, "Tx DMA submit failed\n");
			goto dma_submit_error;
		}
		/* Enable Tx DMA channel */
		dma_async_issue_pending(spi->dma_tx);

		/* Enable Tx DMA request */
1359 1360
		stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
				   spi->cfg->regs->dma_tx_en.mask);
1361 1362
	}

1363
	spi->cfg->transfer_one_dma_start(spi);
1364 1365 1366 1367 1368 1369

	spin_unlock_irqrestore(&spi->lock, flags);

	return 1;

dma_submit_error:
1370
	if (spi->dma_rx)
1371 1372 1373
		dmaengine_terminate_all(spi->dma_rx);

dma_desc_error:
1374 1375
	stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
			   spi->cfg->regs->dma_rx_en.mask);
1376 1377 1378 1379 1380

	spin_unlock_irqrestore(&spi->lock, flags);

	dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");

1381
	spi->cur_usedma = false;
1382
	return spi->cfg->transfer_one_irq(spi);
1383 1384
}

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
/**
 * stm32f4_spi_set_bpw - Configure bits per word
 * @spi: pointer to the spi controller data structure
 */
static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
{
	if (spi->cur_bpw == 16)
		stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
	else
		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
}

1397
/**
1398
 * stm32h7_spi_set_bpw - configure bits per word
1399
 * @spi: pointer to the spi controller data structure
1400
 */
1401
static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1402
{
1403 1404
	u32 bpw, fthlv;
	u32 cfg1_clrb = 0, cfg1_setb = 0;
1405

1406
	bpw = spi->cur_bpw - 1;
1407

1408 1409 1410
	cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
	cfg1_setb |= (bpw << STM32H7_SPI_CFG1_DSIZE_SHIFT) &
		     STM32H7_SPI_CFG1_DSIZE;
1411

1412
	spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
1413
	fthlv = spi->cur_fthlv - 1;
1414

1415 1416 1417
	cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
	cfg1_setb |= (fthlv << STM32H7_SPI_CFG1_FTHLV_SHIFT) &
		     STM32H7_SPI_CFG1_FTHLV;
1418

1419 1420 1421 1422 1423
	writel_relaxed(
		(readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
		 ~cfg1_clrb) | cfg1_setb,
		spi->base + STM32H7_SPI_CFG1);
}
1424

1425 1426 1427 1428 1429 1430 1431
/**
 * stm32_spi_set_mbr - Configure baud rate divisor in master mode
 * @spi: pointer to the spi controller data structure
 * @mbrdiv: baud rate divisor value
 */
static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
{
1432
	u32 clrb = 0, setb = 0;
1433

1434 1435 1436
	clrb |= spi->cfg->regs->br.mask;
	setb |= ((u32)mbrdiv << spi->cfg->regs->br.shift) &
		spi->cfg->regs->br.mask;
1437

1438 1439 1440
	writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
			~clrb) | setb,
		       spi->base + spi->cfg->regs->br.reg);
1441
}
1442

1443 1444 1445
/**
 * stm32_spi_communication_type - return transfer communication type
 * @spi_dev: pointer to the spi device
1446
 * @transfer: pointer to spi transfer
1447 1448 1449 1450 1451
 */
static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
						 struct spi_transfer *transfer)
{
	unsigned int type = SPI_FULL_DUPLEX;
1452 1453 1454 1455

	if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
		/*
		 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1456
		 * is forbidden and unvalidated by SPI subsystem so depending
1457 1458 1459 1460
		 * on the valid buffer, we can determine the direction of the
		 * transfer.
		 */
		if (!transfer->tx_buf)
1461 1462 1463
			type = SPI_3WIRE_RX;
		else
			type = SPI_3WIRE_TX;
1464 1465
	} else {
		if (!transfer->tx_buf)
1466
			type = SPI_SIMPLEX_RX;
1467
		else if (!transfer->rx_buf)
1468
			type = SPI_SIMPLEX_TX;
1469 1470
	}

1471 1472 1473
	return type;
}

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
/**
 * stm32f4_spi_set_mode - configure communication mode
 * @spi: pointer to the spi controller data structure
 * @comm_type: type of communication to configure
 */
static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
{
	if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
		stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
					STM32F4_SPI_CR1_BIDIMODE |
					STM32F4_SPI_CR1_BIDIOE);
1485 1486
	} else if (comm_type == SPI_FULL_DUPLEX ||
				comm_type == SPI_SIMPLEX_RX) {
1487 1488 1489
		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
					STM32F4_SPI_CR1_BIDIMODE |
					STM32F4_SPI_CR1_BIDIOE);
1490 1491 1492 1493 1494
	} else if (comm_type == SPI_3WIRE_RX) {
		stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
					STM32F4_SPI_CR1_BIDIMODE);
		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
					STM32F4_SPI_CR1_BIDIOE);
1495 1496 1497 1498 1499 1500 1501
	} else {
		return -EINVAL;
	}

	return 0;
}

1502
/**
1503
 * stm32h7_spi_set_mode - configure communication mode
1504 1505 1506
 * @spi: pointer to the spi controller data structure
 * @comm_type: type of communication to configure
 */
1507
static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
{
	u32 mode;
	u32 cfg2_clrb = 0, cfg2_setb = 0;

	if (comm_type == SPI_3WIRE_RX) {
		mode = STM32H7_SPI_HALF_DUPLEX;
		stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
	} else if (comm_type == SPI_3WIRE_TX) {
		mode = STM32H7_SPI_HALF_DUPLEX;
		stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
	} else if (comm_type == SPI_SIMPLEX_RX) {
		mode = STM32H7_SPI_SIMPLEX_RX;
	} else if (comm_type == SPI_SIMPLEX_TX) {
		mode = STM32H7_SPI_SIMPLEX_TX;
	} else {
		mode = STM32H7_SPI_FULL_DUPLEX;
1524 1525
	}

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
	cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
	cfg2_setb |= (mode << STM32H7_SPI_CFG2_COMM_SHIFT) &
		     STM32H7_SPI_CFG2_COMM;

	writel_relaxed(
		(readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
		 ~cfg2_clrb) | cfg2_setb,
		spi->base + STM32H7_SPI_CFG2);

	return 0;
}

/**
1539 1540
 * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
 *			       consecutive data frames in master mode
1541 1542 1543
 * @spi: pointer to the spi controller data structure
 * @len: transfer len
 */
1544
static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1545 1546 1547
{
	u32 cfg2_clrb = 0, cfg2_setb = 0;

1548
	cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1549
	if ((len > 1) && (spi->cur_midi > 0)) {
1550 1551
		u32 sck_period_ns = DIV_ROUND_UP(SPI_1HZ_NS, spi->cur_speed);
		u32 midi = min((u32)DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1552 1553
			       (u32)STM32H7_SPI_CFG2_MIDI >>
			       STM32H7_SPI_CFG2_MIDI_SHIFT);
1554 1555 1556

		dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
			sck_period_ns, midi, midi * sck_period_ns);
1557 1558
		cfg2_setb |= (midi << STM32H7_SPI_CFG2_MIDI_SHIFT) &
			     STM32H7_SPI_CFG2_MIDI;
1559 1560
	}

1561 1562 1563 1564 1565 1566
	writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
			~cfg2_clrb) | cfg2_setb,
		       spi->base + STM32H7_SPI_CFG2);
}

/**
1567
 * stm32h7_spi_number_of_data - configure number of data at current transfer
1568
 * @spi: pointer to the spi controller data structure
1569
 * @nb_words: transfer length (in words)
1570
 */
1571
static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
{
	u32 cr2_clrb = 0, cr2_setb = 0;

	if (nb_words <= (STM32H7_SPI_CR2_TSIZE >>
			 STM32H7_SPI_CR2_TSIZE_SHIFT)) {
		cr2_clrb |= STM32H7_SPI_CR2_TSIZE;
		cr2_setb = nb_words << STM32H7_SPI_CR2_TSIZE_SHIFT;
		writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CR2) &
				~cr2_clrb) | cr2_setb,
			       spi->base + STM32H7_SPI_CR2);
	} else {
		return -EMSGSIZE;
	}

	return 0;
}

/**
 * stm32_spi_transfer_one_setup - common setup to transfer a single
 *				  spi_transfer either using DMA or
 *				  interrupts.
1593 1594 1595
 * @spi: pointer to the spi controller data structure
 * @spi_dev: pointer to the spi device
 * @transfer: pointer to spi transfer
1596 1597 1598 1599 1600 1601 1602 1603
 */
static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
					struct spi_device *spi_dev,
					struct spi_transfer *transfer)
{
	unsigned long flags;
	unsigned int comm_type;
	int nb_words, ret = 0;
1604
	int mbr;
1605 1606 1607

	spin_lock_irqsave(&spi->lock, flags);

1608 1609
	spi->cur_xferlen = transfer->len;

1610 1611
	spi->cur_bpw = transfer->bits_per_word;
	spi->cfg->set_bpw(spi);
1612

1613 1614 1615 1616 1617 1618 1619
	/* Update spi->cur_speed with real clock speed */
	mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
				    spi->cfg->baud_rate_div_min,
				    spi->cfg->baud_rate_div_max);
	if (mbr < 0) {
		ret = mbr;
		goto out;
1620 1621
	}

1622 1623
	transfer->speed_hz = spi->cur_speed;
	stm32_spi_set_mbr(spi, mbr);
1624

1625 1626 1627 1628
	comm_type = stm32_spi_communication_type(spi_dev, transfer);
	ret = spi->cfg->set_mode(spi, comm_type);
	if (ret < 0)
		goto out;
1629

1630
	spi->cur_comm = comm_type;
1631

1632 1633
	if (spi->cfg->set_data_idleness)
		spi->cfg->set_data_idleness(spi, transfer->len);
1634

1635 1636 1637 1638 1639 1640
	if (spi->cur_bpw <= 8)
		nb_words = transfer->len;
	else if (spi->cur_bpw <= 16)
		nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
	else
		nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1641

1642 1643 1644 1645 1646
	if (spi->cfg->set_number_of_data) {
		ret = spi->cfg->set_number_of_data(spi, nb_words);
		if (ret < 0)
			goto out;
	}
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666

	dev_dbg(spi->dev, "transfer communication mode set to %d\n",
		spi->cur_comm);
	dev_dbg(spi->dev,
		"data frame of %d-bit, data packet of %d data frames\n",
		spi->cur_bpw, spi->cur_fthlv);
	dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
	dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
		spi->cur_xferlen, nb_words);
	dev_dbg(spi->dev, "dma %s\n",
		(spi->cur_usedma) ? "enabled" : "disabled");

out:
	spin_unlock_irqrestore(&spi->lock, flags);

	return ret;
}

/**
 * stm32_spi_transfer_one - transfer a single spi_transfer
1667 1668 1669
 * @master: controller master interface
 * @spi_dev: pointer to the spi device
 * @transfer: pointer to spi transfer
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
 *
 * It must return 0 if the transfer is finished or 1 if the transfer is still
 * in progress.
 */
static int stm32_spi_transfer_one(struct spi_master *master,
				  struct spi_device *spi_dev,
				  struct spi_transfer *transfer)
{
	struct stm32_spi *spi = spi_master_get_devdata(master);
	int ret;

	spi->tx_buf = transfer->tx_buf;
	spi->rx_buf = transfer->rx_buf;
	spi->tx_len = spi->tx_buf ? transfer->len : 0;
	spi->rx_len = spi->rx_buf ? transfer->len : 0;

1686
	spi->cur_usedma = (master->can_dma &&
1687
			   master->can_dma(master, spi_dev, transfer));
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697

	ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
	if (ret) {
		dev_err(spi->dev, "SPI transfer setup failed\n");
		return ret;
	}

	if (spi->cur_usedma)
		return stm32_spi_transfer_one_dma(spi, transfer);
	else
1698
		return spi->cfg->transfer_one_irq(spi);
1699 1700 1701 1702
}

/**
 * stm32_spi_unprepare_msg - relax the hardware
1703 1704
 * @master: controller master interface
 * @msg: pointer to the spi message
1705 1706 1707 1708 1709 1710
 */
static int stm32_spi_unprepare_msg(struct spi_master *master,
				   struct spi_message *msg)
{
	struct stm32_spi *spi = spi_master_get_devdata(master);

1711
	spi->cfg->disable(spi);
1712 1713 1714 1715

	return 0;
}

1716 1717
/**
 * stm32f4_spi_config - Configure SPI controller as SPI master
1718
 * @spi: pointer to the spi controller data structure
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
 */
static int stm32f4_spi_config(struct stm32_spi *spi)
{
	unsigned long flags;

	spin_lock_irqsave(&spi->lock, flags);

	/* Ensure I2SMOD bit is kept cleared */
	stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
			   STM32F4_SPI_I2SCFGR_I2SMOD);

	/*
	 * - SS input value high
	 * - transmitter half duplex direction
	 * - Set the master mode (default Motorola mode)
	 * - Consider 1 master/n slaves configuration and
	 *   SS input value is determined by the SSI bit
	 */
	stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
						 STM32F4_SPI_CR1_BIDIOE |
						 STM32F4_SPI_CR1_MSTR |
						 STM32F4_SPI_CR1_SSM);

	spin_unlock_irqrestore(&spi->lock, flags);

	return 0;
}

1747
/**
1748
 * stm32h7_spi_config - Configure SPI controller as SPI master
1749
 * @spi: pointer to the spi controller data structure
1750
 */
1751
static int stm32h7_spi_config(struct stm32_spi *spi)
1752 1753 1754 1755 1756 1757
{
	unsigned long flags;

	spin_lock_irqsave(&spi->lock, flags);

	/* Ensure I2SMOD bit is kept cleared */
1758 1759
	stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
			   STM32H7_SPI_I2SCFGR_I2SMOD);
1760 1761 1762 1763 1764 1765

	/*
	 * - SS input value high
	 * - transmitter half duplex direction
	 * - automatic communication suspend when RX-Fifo is full
	 */
1766 1767 1768
	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI |
						 STM32H7_SPI_CR1_HDDIR |
						 STM32H7_SPI_CR1_MASRX);
1769 1770 1771 1772 1773 1774 1775

	/*
	 * - Set the master mode (default Motorola mode)
	 * - Consider 1 master/n slaves configuration and
	 *   SS input value is determined by the SSI bit
	 * - keep control of all associated GPIOs
	 */
1776 1777 1778
	stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER |
						  STM32H7_SPI_CFG2_SSM |
						  STM32H7_SPI_CFG2_AFCNTR);
1779 1780 1781 1782 1783 1784

	spin_unlock_irqrestore(&spi->lock, flags);

	return 0;
}

1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
static const struct stm32_spi_cfg stm32f4_spi_cfg = {
	.regs = &stm32f4_spi_regspec,
	.get_bpw_mask = stm32f4_spi_get_bpw_mask,
	.disable = stm32f4_spi_disable,
	.config = stm32f4_spi_config,
	.set_bpw = stm32f4_spi_set_bpw,
	.set_mode = stm32f4_spi_set_mode,
	.transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
	.dma_tx_cb = stm32f4_spi_dma_tx_cb,
	.dma_rx_cb = stm32f4_spi_dma_rx_cb,
	.transfer_one_irq = stm32f4_spi_transfer_one_irq,
	.irq_handler_event = stm32f4_spi_irq_event,
	.irq_handler_thread = stm32f4_spi_irq_thread,
	.baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
	.baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
	.has_fifo = false,
};

1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
static const struct stm32_spi_cfg stm32h7_spi_cfg = {
	.regs = &stm32h7_spi_regspec,
	.get_fifo_size = stm32h7_spi_get_fifo_size,
	.get_bpw_mask = stm32h7_spi_get_bpw_mask,
	.disable = stm32h7_spi_disable,
	.config = stm32h7_spi_config,
	.set_bpw = stm32h7_spi_set_bpw,
	.set_mode = stm32h7_spi_set_mode,
	.set_data_idleness = stm32h7_spi_data_idleness,
	.set_number_of_data = stm32h7_spi_number_of_data,
	.transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
	.dma_rx_cb = stm32h7_spi_dma_cb,
	.dma_tx_cb = stm32h7_spi_dma_cb,
	.transfer_one_irq = stm32h7_spi_transfer_one_irq,
	.irq_handler_thread = stm32h7_spi_irq_thread,
	.baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
	.baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
	.has_fifo = true,
};

1823
static const struct of_device_id stm32_spi_of_match[] = {
1824
	{ .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1825
	{ .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
1826 1827 1828 1829 1830 1831 1832 1833 1834
	{},
};
MODULE_DEVICE_TABLE(of, stm32_spi_of_match);

static int stm32_spi_probe(struct platform_device *pdev)
{
	struct spi_master *master;
	struct stm32_spi *spi;
	struct resource *res;
1835
	int ret;
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848

	master = spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
	if (!master) {
		dev_err(&pdev->dev, "spi master allocation failed\n");
		return -ENOMEM;
	}
	platform_set_drvdata(pdev, master);

	spi = spi_master_get_devdata(master);
	spi->dev = &pdev->dev;
	spi->master = master;
	spin_lock_init(&spi->lock);

1849 1850 1851 1852
	spi->cfg = (const struct stm32_spi_cfg *)
		of_match_device(pdev->dev.driver->of_match_table,
				&pdev->dev)->data;

1853 1854 1855 1856 1857 1858
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	spi->base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(spi->base)) {
		ret = PTR_ERR(spi->base);
		goto err_master_put;
	}
1859

1860 1861 1862 1863
	spi->phys_addr = (dma_addr_t)res->start;

	spi->irq = platform_get_irq(pdev, 0);
	if (spi->irq <= 0) {
1864 1865 1866
		ret = spi->irq;
		if (ret != -EPROBE_DEFER)
			dev_err(&pdev->dev, "failed to get irq: %d\n", ret);
1867 1868
		goto err_master_put;
	}
1869 1870 1871 1872
	ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
					spi->cfg->irq_handler_event,
					spi->cfg->irq_handler_thread,
					IRQF_ONESHOT, pdev->name, master);
1873 1874 1875 1876 1877 1878
	if (ret) {
		dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
			ret);
		goto err_master_put;
	}

1879
	spi->clk = devm_clk_get(&pdev->dev, NULL);
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
	if (IS_ERR(spi->clk)) {
		ret = PTR_ERR(spi->clk);
		dev_err(&pdev->dev, "clk get failed: %d\n", ret);
		goto err_master_put;
	}

	ret = clk_prepare_enable(spi->clk);
	if (ret) {
		dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
		goto err_master_put;
	}
	spi->clk_rate = clk_get_rate(spi->clk);
	if (!spi->clk_rate) {
		dev_err(&pdev->dev, "clk rate = 0\n");
		ret = -EINVAL;
1895
		goto err_clk_disable;
1896 1897
	}

1898
	spi->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
1899 1900 1901 1902 1903 1904
	if (!IS_ERR(spi->rst)) {
		reset_control_assert(spi->rst);
		udelay(2);
		reset_control_deassert(spi->rst);
	}

1905 1906
	if (spi->cfg->has_fifo)
		spi->fifo_size = spi->cfg->get_fifo_size(spi);
1907

1908
	ret = spi->cfg->config(spi);
1909 1910 1911 1912 1913 1914 1915 1916 1917
	if (ret) {
		dev_err(&pdev->dev, "controller configuration failed: %d\n",
			ret);
		goto err_clk_disable;
	}

	master->dev.of_node = pdev->dev.of_node;
	master->auto_runtime_pm = true;
	master->bus_num = pdev->id;
1918
	master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1919
			    SPI_3WIRE;
1920 1921 1922
	master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
	master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
	master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1923
	master->use_gpio_descriptors = true;
1924 1925 1926
	master->prepare_message = stm32_spi_prepare_msg;
	master->transfer_one = stm32_spi_transfer_one;
	master->unprepare_message = stm32_spi_unprepare_msg;
1927
	master->flags = SPI_MASTER_MUST_TX;
1928

1929 1930 1931 1932 1933 1934 1935
	spi->dma_tx = dma_request_chan(spi->dev, "tx");
	if (IS_ERR(spi->dma_tx)) {
		ret = PTR_ERR(spi->dma_tx);
		spi->dma_tx = NULL;
		if (ret == -EPROBE_DEFER)
			goto err_clk_disable;

1936
		dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1937
	} else {
1938
		master->dma_tx = spi->dma_tx;
1939 1940 1941 1942 1943 1944 1945 1946
	}

	spi->dma_rx = dma_request_chan(spi->dev, "rx");
	if (IS_ERR(spi->dma_rx)) {
		ret = PTR_ERR(spi->dma_rx);
		spi->dma_rx = NULL;
		if (ret == -EPROBE_DEFER)
			goto err_dma_release;
1947 1948

		dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1949
	} else {
1950
		master->dma_rx = spi->dma_rx;
1951
	}
1952 1953 1954 1955

	if (spi->dma_tx || spi->dma_rx)
		master->can_dma = stm32_spi_can_dma;

1956 1957 1958
	pm_runtime_set_active(&pdev->dev);
	pm_runtime_enable(&pdev->dev);

1959 1960 1961 1962
	ret = devm_spi_register_master(&pdev->dev, master);
	if (ret) {
		dev_err(&pdev->dev, "spi master registration failed: %d\n",
			ret);
1963
		goto err_pm_disable;
1964 1965
	}

1966
	if (!master->cs_gpiods) {
1967 1968
		dev_err(&pdev->dev, "no CS gpios available\n");
		ret = -EINVAL;
1969
		goto err_pm_disable;
1970 1971 1972 1973 1974 1975
	}

	dev_info(&pdev->dev, "driver initialized\n");

	return 0;

1976 1977
err_pm_disable:
	pm_runtime_disable(&pdev->dev);
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
err_dma_release:
	if (spi->dma_tx)
		dma_release_channel(spi->dma_tx);
	if (spi->dma_rx)
		dma_release_channel(spi->dma_rx);
err_clk_disable:
	clk_disable_unprepare(spi->clk);
err_master_put:
	spi_master_put(master);

	return ret;
}

static int stm32_spi_remove(struct platform_device *pdev)
{
	struct spi_master *master = platform_get_drvdata(pdev);
	struct stm32_spi *spi = spi_master_get_devdata(master);

1996
	spi->cfg->disable(spi);
1997 1998 1999 2000 2001 2002 2003 2004

	if (master->dma_tx)
		dma_release_channel(master->dma_tx);
	if (master->dma_rx)
		dma_release_channel(master->dma_rx);

	clk_disable_unprepare(spi->clk);

2005 2006
	pm_runtime_disable(&pdev->dev);

2007 2008
	pinctrl_pm_select_sleep_state(&pdev->dev);

2009 2010 2011
	return 0;
}

2012 2013 2014 2015 2016 2017 2018 2019
#ifdef CONFIG_PM
static int stm32_spi_runtime_suspend(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct stm32_spi *spi = spi_master_get_devdata(master);

	clk_disable_unprepare(spi->clk);

2020
	return pinctrl_pm_select_sleep_state(dev);
2021 2022 2023 2024 2025 2026
}

static int stm32_spi_runtime_resume(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct stm32_spi *spi = spi_master_get_devdata(master);
2027 2028 2029 2030 2031
	int ret;

	ret = pinctrl_pm_select_default_state(dev);
	if (ret)
		return ret;
2032 2033 2034 2035 2036

	return clk_prepare_enable(spi->clk);
}
#endif

2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
#ifdef CONFIG_PM_SLEEP
static int stm32_spi_suspend(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	int ret;

	ret = spi_master_suspend(master);
	if (ret)
		return ret;

2047
	return pm_runtime_force_suspend(dev);
2048 2049 2050 2051 2052 2053 2054 2055
}

static int stm32_spi_resume(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct stm32_spi *spi = spi_master_get_devdata(master);
	int ret;

2056
	ret = pm_runtime_force_resume(dev);
2057 2058
	if (ret)
		return ret;
2059

2060
	ret = spi_master_resume(master);
2061
	if (ret) {
2062
		clk_disable_unprepare(spi->clk);
2063 2064
		return ret;
	}
2065

2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
	ret = pm_runtime_get_sync(dev);
	if (ret) {
		dev_err(dev, "Unable to power device:%d\n", ret);
		return ret;
	}

	spi->cfg->config(spi);

	pm_runtime_mark_last_busy(dev);
	pm_runtime_put_autosuspend(dev);

	return 0;
2078 2079 2080
}
#endif

2081 2082 2083 2084 2085
static const struct dev_pm_ops stm32_spi_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
	SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
			   stm32_spi_runtime_resume, NULL)
};
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102

static struct platform_driver stm32_spi_driver = {
	.probe = stm32_spi_probe,
	.remove = stm32_spi_remove,
	.driver = {
		.name = DRIVER_NAME,
		.pm = &stm32_spi_pm_ops,
		.of_match_table = stm32_spi_of_match,
	},
};

module_platform_driver(stm32_spi_driver);

MODULE_ALIAS("platform:" DRIVER_NAME);
MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
MODULE_LICENSE("GPL v2");