spi-stm32.c 58.6 KB
Newer Older
1 2 3 4 5 6 7
// SPDX-License-Identifier: GPL-2.0
//
// STMicroelectronics STM32 SPI Controller driver (master mode only)
//
// Copyright (C) 2017, STMicroelectronics - All Rights Reserved
// Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.

8 9 10 11 12 13 14 15
#include <linux/debugfs.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of_platform.h>
16
#include <linux/pinctrl/consumer.h>
17
#include <linux/pm_runtime.h>
18 19 20 21 22
#include <linux/reset.h>
#include <linux/spi/spi.h>

#define DRIVER_NAME "spi_stm32"

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
/* STM32F4 SPI registers */
#define STM32F4_SPI_CR1			0x00
#define STM32F4_SPI_CR2			0x04
#define STM32F4_SPI_SR			0x08
#define STM32F4_SPI_DR			0x0C
#define STM32F4_SPI_I2SCFGR		0x1C

/* STM32F4_SPI_CR1 bit fields */
#define STM32F4_SPI_CR1_CPHA		BIT(0)
#define STM32F4_SPI_CR1_CPOL		BIT(1)
#define STM32F4_SPI_CR1_MSTR		BIT(2)
#define STM32F4_SPI_CR1_BR_SHIFT	3
#define STM32F4_SPI_CR1_BR		GENMASK(5, 3)
#define STM32F4_SPI_CR1_SPE		BIT(6)
#define STM32F4_SPI_CR1_LSBFRST		BIT(7)
#define STM32F4_SPI_CR1_SSI		BIT(8)
#define STM32F4_SPI_CR1_SSM		BIT(9)
#define STM32F4_SPI_CR1_RXONLY		BIT(10)
#define STM32F4_SPI_CR1_DFF		BIT(11)
#define STM32F4_SPI_CR1_CRCNEXT		BIT(12)
#define STM32F4_SPI_CR1_CRCEN		BIT(13)
#define STM32F4_SPI_CR1_BIDIOE		BIT(14)
#define STM32F4_SPI_CR1_BIDIMODE	BIT(15)
#define STM32F4_SPI_CR1_BR_MIN		0
#define STM32F4_SPI_CR1_BR_MAX		(GENMASK(5, 3) >> 3)

/* STM32F4_SPI_CR2 bit fields */
#define STM32F4_SPI_CR2_RXDMAEN		BIT(0)
#define STM32F4_SPI_CR2_TXDMAEN		BIT(1)
#define STM32F4_SPI_CR2_SSOE		BIT(2)
#define STM32F4_SPI_CR2_FRF		BIT(4)
#define STM32F4_SPI_CR2_ERRIE		BIT(5)
#define STM32F4_SPI_CR2_RXNEIE		BIT(6)
#define STM32F4_SPI_CR2_TXEIE		BIT(7)

/* STM32F4_SPI_SR bit fields */
#define STM32F4_SPI_SR_RXNE		BIT(0)
#define STM32F4_SPI_SR_TXE		BIT(1)
#define STM32F4_SPI_SR_CHSIDE		BIT(2)
#define STM32F4_SPI_SR_UDR		BIT(3)
#define STM32F4_SPI_SR_CRCERR		BIT(4)
#define STM32F4_SPI_SR_MODF		BIT(5)
#define STM32F4_SPI_SR_OVR		BIT(6)
#define STM32F4_SPI_SR_BSY		BIT(7)
#define STM32F4_SPI_SR_FRE		BIT(8)

/* STM32F4_SPI_I2SCFGR bit fields */
#define STM32F4_SPI_I2SCFGR_I2SMOD	BIT(11)

/* STM32F4 SPI Baud Rate min/max divisor */
#define STM32F4_SPI_BR_DIV_MIN		(2 << STM32F4_SPI_CR1_BR_MIN)
#define STM32F4_SPI_BR_DIV_MAX		(2 << STM32F4_SPI_CR1_BR_MAX)

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
/* STM32H7 SPI registers */
#define STM32H7_SPI_CR1			0x00
#define STM32H7_SPI_CR2			0x04
#define STM32H7_SPI_CFG1		0x08
#define STM32H7_SPI_CFG2		0x0C
#define STM32H7_SPI_IER			0x10
#define STM32H7_SPI_SR			0x14
#define STM32H7_SPI_IFCR		0x18
#define STM32H7_SPI_TXDR		0x20
#define STM32H7_SPI_RXDR		0x30
#define STM32H7_SPI_I2SCFGR		0x50

/* STM32H7_SPI_CR1 bit fields */
#define STM32H7_SPI_CR1_SPE		BIT(0)
#define STM32H7_SPI_CR1_MASRX		BIT(8)
#define STM32H7_SPI_CR1_CSTART		BIT(9)
#define STM32H7_SPI_CR1_CSUSP		BIT(10)
#define STM32H7_SPI_CR1_HDDIR		BIT(11)
#define STM32H7_SPI_CR1_SSI		BIT(12)

/* STM32H7_SPI_CR2 bit fields */
#define STM32H7_SPI_CR2_TSIZE_SHIFT	0
#define STM32H7_SPI_CR2_TSIZE		GENMASK(15, 0)

/* STM32H7_SPI_CFG1 bit fields */
#define STM32H7_SPI_CFG1_DSIZE_SHIFT	0
#define STM32H7_SPI_CFG1_DSIZE		GENMASK(4, 0)
#define STM32H7_SPI_CFG1_FTHLV_SHIFT	5
#define STM32H7_SPI_CFG1_FTHLV		GENMASK(8, 5)
#define STM32H7_SPI_CFG1_RXDMAEN	BIT(14)
#define STM32H7_SPI_CFG1_TXDMAEN	BIT(15)
#define STM32H7_SPI_CFG1_MBR_SHIFT	28
#define STM32H7_SPI_CFG1_MBR		GENMASK(30, 28)
#define STM32H7_SPI_CFG1_MBR_MIN	0
#define STM32H7_SPI_CFG1_MBR_MAX	(GENMASK(30, 28) >> 28)

/* STM32H7_SPI_CFG2 bit fields */
#define STM32H7_SPI_CFG2_MIDI_SHIFT	4
#define STM32H7_SPI_CFG2_MIDI		GENMASK(7, 4)
#define STM32H7_SPI_CFG2_COMM_SHIFT	17
#define STM32H7_SPI_CFG2_COMM		GENMASK(18, 17)
#define STM32H7_SPI_CFG2_SP_SHIFT	19
#define STM32H7_SPI_CFG2_SP		GENMASK(21, 19)
#define STM32H7_SPI_CFG2_MASTER		BIT(22)
#define STM32H7_SPI_CFG2_LSBFRST	BIT(23)
#define STM32H7_SPI_CFG2_CPHA		BIT(24)
#define STM32H7_SPI_CFG2_CPOL		BIT(25)
#define STM32H7_SPI_CFG2_SSM		BIT(26)
#define STM32H7_SPI_CFG2_AFCNTR		BIT(31)

/* STM32H7_SPI_IER bit fields */
#define STM32H7_SPI_IER_RXPIE		BIT(0)
#define STM32H7_SPI_IER_TXPIE		BIT(1)
#define STM32H7_SPI_IER_DXPIE		BIT(2)
#define STM32H7_SPI_IER_EOTIE		BIT(3)
#define STM32H7_SPI_IER_TXTFIE		BIT(4)
#define STM32H7_SPI_IER_OVRIE		BIT(6)
#define STM32H7_SPI_IER_MODFIE		BIT(9)
#define STM32H7_SPI_IER_ALL		GENMASK(10, 0)

/* STM32H7_SPI_SR bit fields */
#define STM32H7_SPI_SR_RXP		BIT(0)
#define STM32H7_SPI_SR_TXP		BIT(1)
#define STM32H7_SPI_SR_EOT		BIT(3)
#define STM32H7_SPI_SR_OVR		BIT(6)
#define STM32H7_SPI_SR_MODF		BIT(9)
#define STM32H7_SPI_SR_SUSP		BIT(11)
#define STM32H7_SPI_SR_RXPLVL_SHIFT	13
#define STM32H7_SPI_SR_RXPLVL		GENMASK(14, 13)
#define STM32H7_SPI_SR_RXWNE		BIT(15)

/* STM32H7_SPI_IFCR bit fields */
#define STM32H7_SPI_IFCR_ALL		GENMASK(11, 3)

/* STM32H7_SPI_I2SCFGR bit fields */
#define STM32H7_SPI_I2SCFGR_I2SMOD	BIT(0)

/* STM32H7 SPI Master Baud Rate min/max divisor */
#define STM32H7_SPI_MBR_DIV_MIN		(2 << STM32H7_SPI_CFG1_MBR_MIN)
#define STM32H7_SPI_MBR_DIV_MAX		(2 << STM32H7_SPI_CFG1_MBR_MAX)
156

157 158 159 160 161 162 163
/* STM32H7 SPI Communication mode */
#define STM32H7_SPI_FULL_DUPLEX		0
#define STM32H7_SPI_SIMPLEX_TX		1
#define STM32H7_SPI_SIMPLEX_RX		2
#define STM32H7_SPI_HALF_DUPLEX		3

/* SPI Communication type */
164 165 166
#define SPI_FULL_DUPLEX		0
#define SPI_SIMPLEX_TX		1
#define SPI_SIMPLEX_RX		2
167 168
#define SPI_3WIRE_TX		3
#define SPI_3WIRE_RX		4
169 170 171

#define SPI_1HZ_NS		1000000000

172 173 174 175 176 177
/*
 * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
 * without fifo buffers.
 */
#define SPI_DMA_MIN_BYTES	16

178
/**
179
 * struct stm32_spi_reg - stm32 SPI register & bitfield desc
180 181 182 183 184 185 186 187 188 189 190
 * @reg:		register offset
 * @mask:		bitfield mask
 * @shift:		left shift
 */
struct stm32_spi_reg {
	int reg;
	int mask;
	int shift;
};

/**
191 192 193 194 195 196 197 198 199 200
 * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
 * @en: enable register and SPI enable bit
 * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
 * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
 * @cpol: clock polarity register and polarity bit
 * @cpha: clock phase register and phase bit
 * @lsb_first: LSB transmitted first register and bit
 * @br: baud rate register and bitfields
 * @rx: SPI RX data register
 * @tx: SPI TX data register
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
 */
struct stm32_spi_regspec {
	const struct stm32_spi_reg en;
	const struct stm32_spi_reg dma_rx_en;
	const struct stm32_spi_reg dma_tx_en;
	const struct stm32_spi_reg cpol;
	const struct stm32_spi_reg cpha;
	const struct stm32_spi_reg lsb_first;
	const struct stm32_spi_reg br;
	const struct stm32_spi_reg rx;
	const struct stm32_spi_reg tx;
};

struct stm32_spi;

/**
217
 * struct stm32_spi_cfg - stm32 compatible configuration data
218 219 220 221 222 223 224 225 226
 * @regs: registers descriptions
 * @get_fifo_size: routine to get fifo size
 * @get_bpw_mask: routine to get bits per word mask
 * @disable: routine to disable controller
 * @config: routine to configure controller as SPI Master
 * @set_bpw: routine to configure registers to for bits per word
 * @set_mode: routine to configure registers to desired mode
 * @set_data_idleness: optional routine to configure registers to desired idle
 * time between frames (if driver has this functionality)
227
 * @set_number_of_data: optional routine to configure registers to desired
228 229 230 231
 * number of data (if driver has this functionality)
 * @can_dma: routine to determine if the transfer is eligible for DMA use
 * @transfer_one_dma_start: routine to start transfer a single spi_transfer
 * using DMA
232 233
 * @dma_rx_cb: routine to call after DMA RX channel operation is complete
 * @dma_tx_cb: routine to call after DMA TX channel operation is complete
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
 * @transfer_one_irq: routine to configure interrupts for driver
 * @irq_handler_event: Interrupt handler for SPI controller events
 * @irq_handler_thread: thread of interrupt handler for SPI controller
 * @baud_rate_div_min: minimum baud rate divisor
 * @baud_rate_div_max: maximum baud rate divisor
 * @has_fifo: boolean to know if fifo is used for driver
 * @has_startbit: boolean to know if start bit is used to start transfer
 */
struct stm32_spi_cfg {
	const struct stm32_spi_regspec *regs;
	int (*get_fifo_size)(struct stm32_spi *spi);
	int (*get_bpw_mask)(struct stm32_spi *spi);
	void (*disable)(struct stm32_spi *spi);
	int (*config)(struct stm32_spi *spi);
	void (*set_bpw)(struct stm32_spi *spi);
	int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
	void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
	int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
	void (*transfer_one_dma_start)(struct stm32_spi *spi);
	void (*dma_rx_cb)(void *data);
	void (*dma_tx_cb)(void *data);
	int (*transfer_one_irq)(struct stm32_spi *spi);
	irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
	irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
	unsigned int baud_rate_div_min;
	unsigned int baud_rate_div_max;
	bool has_fifo;
};

263 264 265 266
/**
 * struct stm32_spi - private data of the SPI controller
 * @dev: driver model representation of the controller
 * @master: controller master interface
267
 * @cfg: compatible configuration data
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
 * @base: virtual memory area
 * @clk: hw kernel clock feeding the SPI clock generator
 * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
 * @rst: SPI controller reset line
 * @lock: prevent I/O concurrent access
 * @irq: SPI controller interrupt line
 * @fifo_size: size of the embedded fifo in bytes
 * @cur_midi: master inter-data idleness in ns
 * @cur_speed: speed configured in Hz
 * @cur_bpw: number of bits in a single SPI data frame
 * @cur_fthlv: fifo threshold level (data frames in a single data packet)
 * @cur_comm: SPI communication mode
 * @cur_xferlen: current transfer length in bytes
 * @cur_usedma: boolean to know if dma is used in current transfer
 * @tx_buf: data to be written, or NULL
 * @rx_buf: data to be read, or NULL
 * @tx_len: number of data to be written in bytes
 * @rx_len: number of data to be read in bytes
 * @dma_tx: dma channel for TX transfer
 * @dma_rx: dma channel for RX transfer
 * @phys_addr: SPI registers physical base address
 */
struct stm32_spi {
	struct device *dev;
	struct spi_master *master;
293
	const struct stm32_spi_cfg *cfg;
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
	void __iomem *base;
	struct clk *clk;
	u32 clk_rate;
	struct reset_control *rst;
	spinlock_t lock; /* prevent I/O concurrent access */
	int irq;
	unsigned int fifo_size;

	unsigned int cur_midi;
	unsigned int cur_speed;
	unsigned int cur_bpw;
	unsigned int cur_fthlv;
	unsigned int cur_comm;
	unsigned int cur_xferlen;
	bool cur_usedma;

	const void *tx_buf;
	void *rx_buf;
	int tx_len;
	int rx_len;
	struct dma_chan *dma_tx;
	struct dma_chan *dma_rx;
	dma_addr_t phys_addr;
};

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
static const struct stm32_spi_regspec stm32f4_spi_regspec = {
	.en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },

	.dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
	.dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },

	.cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
	.cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
	.lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
	.br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },

	.rx = { STM32F4_SPI_DR },
	.tx = { STM32F4_SPI_DR },
};

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
static const struct stm32_spi_regspec stm32h7_spi_regspec = {
	/* SPI data transfer is enabled but spi_ker_ck is idle.
	 * CFG1 and CFG2 registers are write protected when SPE is enabled.
	 */
	.en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },

	.dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
	.dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },

	.cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
	.cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
	.lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
	.br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
		STM32H7_SPI_CFG1_MBR_SHIFT },

	.rx = { STM32H7_SPI_RXDR },
	.tx = { STM32H7_SPI_TXDR },
};

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
static inline void stm32_spi_set_bits(struct stm32_spi *spi,
				      u32 offset, u32 bits)
{
	writel_relaxed(readl_relaxed(spi->base + offset) | bits,
		       spi->base + offset);
}

static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
				      u32 offset, u32 bits)
{
	writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
		       spi->base + offset);
}

/**
368
 * stm32h7_spi_get_fifo_size - Return fifo size
369 370
 * @spi: pointer to the spi controller data structure
 */
371
static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
372 373 374 375 376 377
{
	unsigned long flags;
	u32 count = 0;

	spin_lock_irqsave(&spi->lock, flags);

378
	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
379

380 381
	while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
		writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
382

383
	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
384 385 386 387 388 389 390 391

	spin_unlock_irqrestore(&spi->lock, flags);

	dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);

	return count;
}

392 393 394 395 396 397 398 399 400 401
/**
 * stm32f4_spi_get_bpw_mask - Return bits per word mask
 * @spi: pointer to the spi controller data structure
 */
static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
{
	dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
	return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
}

402
/**
403
 * stm32h7_spi_get_bpw_mask - Return bits per word mask
404 405
 * @spi: pointer to the spi controller data structure
 */
406
static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
407 408 409 410 411 412 413 414 415 416
{
	unsigned long flags;
	u32 cfg1, max_bpw;

	spin_lock_irqsave(&spi->lock, flags);

	/*
	 * The most significant bit at DSIZE bit field is reserved when the
	 * maximum data size of periperal instances is limited to 16-bit
	 */
417
	stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
418

419 420 421
	cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
	max_bpw = (cfg1 & STM32H7_SPI_CFG1_DSIZE) >>
		  STM32H7_SPI_CFG1_DSIZE_SHIFT;
422 423 424 425 426 427 428 429 430 431
	max_bpw += 1;

	spin_unlock_irqrestore(&spi->lock, flags);

	dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);

	return SPI_BPW_RANGE_MASK(4, max_bpw);
}

/**
432
 * stm32_spi_prepare_mbr - Determine baud rate divisor value
433 434
 * @spi: pointer to the spi controller data structure
 * @speed_hz: requested speed
435 436
 * @min_div: minimum baud rate divisor
 * @max_div: maximum baud rate divisor
437
 *
438
 * Return baud rate divisor value in case of success or -EINVAL
439
 */
440 441
static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
				 u32 min_div, u32 max_div)
442 443 444
{
	u32 div, mbrdiv;

445 446
	/* Ensure spi->clk_rate is even */
	div = DIV_ROUND_UP(spi->clk_rate & ~0x1, speed_hz);
447 448 449 450 451 452 453 454

	/*
	 * SPI framework set xfer->speed_hz to master->max_speed_hz if
	 * xfer->speed_hz is greater than master->max_speed_hz, and it returns
	 * an error when xfer->speed_hz is lower than master->min_speed_hz, so
	 * no need to check it there.
	 * However, we need to ensure the following calculations.
	 */
455
	if ((div < min_div) || (div > max_div))
456 457 458
		return -EINVAL;

	/* Determine the first power of 2 greater than or equal to div */
459 460 461 462
	if (div & (div - 1))
		mbrdiv = fls(div);
	else
		mbrdiv = fls(div) - 1;
463 464 465 466 467 468 469

	spi->cur_speed = spi->clk_rate / (1 << mbrdiv);

	return mbrdiv - 1;
}

/**
470
 * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
471
 * @spi: pointer to the spi controller data structure
472
 * @xfer_len: length of the message to be transferred
473
 */
474
static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
475
{
476
	u32 fthlv, half_fifo, packet;
477 478 479 480

	/* data packet should not exceed 1/2 of fifo space */
	half_fifo = (spi->fifo_size / 2);

481 482 483 484 485 486
	/* data_packet should not exceed transfer length */
	if (half_fifo > xfer_len)
		packet = xfer_len;
	else
		packet = half_fifo;

487
	if (spi->cur_bpw <= 8)
488
		fthlv = packet;
489
	else if (spi->cur_bpw <= 16)
490
		fthlv = packet / 2;
491
	else
492
		fthlv = packet / 4;
493 494 495 496 497 498 499

	/* align packet size with data registers access */
	if (spi->cur_bpw > 8)
		fthlv -= (fthlv % 2); /* multiple of 2 */
	else
		fthlv -= (fthlv % 4); /* multiple of 4 */

500 501 502
	if (!fthlv)
		fthlv = 1;

503 504 505
	return fthlv;
}

506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
/**
 * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
 * @spi: pointer to the spi controller data structure
 *
 * Read from tx_buf depends on remaining bytes to avoid to read beyond
 * tx_buf end.
 */
static void stm32f4_spi_write_tx(struct stm32_spi *spi)
{
	if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
				  STM32F4_SPI_SR_TXE)) {
		u32 offs = spi->cur_xferlen - spi->tx_len;

		if (spi->cur_bpw == 16) {
			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);

			writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
			spi->tx_len -= sizeof(u16);
		} else {
			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);

			writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
			spi->tx_len -= sizeof(u8);
		}
	}

	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
}

535
/**
536
 * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
537 538 539 540 541
 * @spi: pointer to the spi controller data structure
 *
 * Read from tx_buf depends on remaining bytes to avoid to read beyond
 * tx_buf end.
 */
542
static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
543 544
{
	while ((spi->tx_len > 0) &&
545 546
		       (readl_relaxed(spi->base + STM32H7_SPI_SR) &
			STM32H7_SPI_SR_TXP)) {
547 548 549 550 551
		u32 offs = spi->cur_xferlen - spi->tx_len;

		if (spi->tx_len >= sizeof(u32)) {
			const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);

552
			writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
553 554 555 556
			spi->tx_len -= sizeof(u32);
		} else if (spi->tx_len >= sizeof(u16)) {
			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);

557
			writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
558 559 560 561
			spi->tx_len -= sizeof(u16);
		} else {
			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);

562
			writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
563 564 565 566 567 568 569
			spi->tx_len -= sizeof(u8);
		}
	}

	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
}

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
/**
 * stm32f4_spi_read_rx - Read bytes from Receive Data Register
 * @spi: pointer to the spi controller data structure
 *
 * Write in rx_buf depends on remaining bytes to avoid to write beyond
 * rx_buf end.
 */
static void stm32f4_spi_read_rx(struct stm32_spi *spi)
{
	if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
				  STM32F4_SPI_SR_RXNE)) {
		u32 offs = spi->cur_xferlen - spi->rx_len;

		if (spi->cur_bpw == 16) {
			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);

			*rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
			spi->rx_len -= sizeof(u16);
		} else {
			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);

			*rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
			spi->rx_len -= sizeof(u8);
		}
	}

	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
}

599
/**
600
 * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
601
 * @spi: pointer to the spi controller data structure
602
 * @flush: boolean indicating that FIFO should be flushed
603 604 605 606
 *
 * Write in rx_buf depends on remaining bytes to avoid to write beyond
 * rx_buf end.
 */
607
static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
608
{
609 610 611
	u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
	u32 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
		     STM32H7_SPI_SR_RXPLVL_SHIFT;
612 613

	while ((spi->rx_len > 0) &&
614 615
	       ((sr & STM32H7_SPI_SR_RXP) ||
		(flush && ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
616 617 618
		u32 offs = spi->cur_xferlen - spi->rx_len;

		if ((spi->rx_len >= sizeof(u32)) ||
619
		    (flush && (sr & STM32H7_SPI_SR_RXWNE))) {
620 621
			u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);

622
			*rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
623 624 625 626 627
			spi->rx_len -= sizeof(u32);
		} else if ((spi->rx_len >= sizeof(u16)) ||
			   (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) {
			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);

628
			*rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
629 630 631 632
			spi->rx_len -= sizeof(u16);
		} else {
			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);

633
			*rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
634 635 636
			spi->rx_len -= sizeof(u8);
		}

637 638 639
		sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
		rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
			 STM32H7_SPI_SR_RXPLVL_SHIFT;
640 641 642 643 644 645 646 647 648 649 650 651 652 653
	}

	dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__,
		flush ? "(flush)" : "", spi->rx_len);
}

/**
 * stm32_spi_enable - Enable SPI controller
 * @spi: pointer to the spi controller data structure
 */
static void stm32_spi_enable(struct stm32_spi *spi)
{
	dev_dbg(spi->dev, "enable controller\n");

654 655
	stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
			   spi->cfg->regs->en.mask);
656 657
}

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
/**
 * stm32f4_spi_disable - Disable SPI controller
 * @spi: pointer to the spi controller data structure
 */
static void stm32f4_spi_disable(struct stm32_spi *spi)
{
	unsigned long flags;
	u32 sr;

	dev_dbg(spi->dev, "disable controller\n");

	spin_lock_irqsave(&spi->lock, flags);

	if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
	      STM32F4_SPI_CR1_SPE)) {
		spin_unlock_irqrestore(&spi->lock, flags);
		return;
	}

	/* Disable interrupts */
	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
						 STM32F4_SPI_CR2_RXNEIE |
						 STM32F4_SPI_CR2_ERRIE);

	/* Wait until BSY = 0 */
	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
					      sr, !(sr & STM32F4_SPI_SR_BSY),
					      10, 100000) < 0) {
		dev_warn(spi->dev, "disabling condition timeout\n");
	}

	if (spi->cur_usedma && spi->dma_tx)
		dmaengine_terminate_all(spi->dma_tx);
	if (spi->cur_usedma && spi->dma_rx)
		dmaengine_terminate_all(spi->dma_rx);

	stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);

	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
						 STM32F4_SPI_CR2_RXDMAEN);

	/* Sequence to clear OVR flag */
	readl_relaxed(spi->base + STM32F4_SPI_DR);
	readl_relaxed(spi->base + STM32F4_SPI_SR);

	spin_unlock_irqrestore(&spi->lock, flags);
}

706
/**
707
 * stm32h7_spi_disable - Disable SPI controller
708 709 710
 * @spi: pointer to the spi controller data structure
 *
 * RX-Fifo is flushed when SPI controller is disabled. To prevent any data
711
 * loss, use stm32h7_spi_read_rxfifo(flush) to read the remaining bytes in
712
 * RX-Fifo.
713 714 715 716
 * Normally, if TSIZE has been configured, we should relax the hardware at the
 * reception of the EOT interrupt. But in case of error, EOT will not be
 * raised. So the subsystem unprepare_message call allows us to properly
 * complete the transfer from an hardware point of view.
717
 */
718
static void stm32h7_spi_disable(struct stm32_spi *spi)
719 720 721 722 723 724 725 726
{
	unsigned long flags;
	u32 cr1, sr;

	dev_dbg(spi->dev, "disable controller\n");

	spin_lock_irqsave(&spi->lock, flags);

727
	cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
728

729
	if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
730 731 732 733 734
		spin_unlock_irqrestore(&spi->lock, flags);
		return;
	}

	/* Wait on EOT or suspend the flow */
735 736
	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32H7_SPI_SR,
					      sr, !(sr & STM32H7_SPI_SR_EOT),
737
					      10, 100000) < 0) {
738 739 740
		if (cr1 & STM32H7_SPI_CR1_CSTART) {
			writel_relaxed(cr1 | STM32H7_SPI_CR1_CSUSP,
				       spi->base + STM32H7_SPI_CR1);
741
			if (readl_relaxed_poll_timeout_atomic(
742 743
						spi->base + STM32H7_SPI_SR,
						sr, !(sr & STM32H7_SPI_SR_SUSP),
744 745 746 747 748 749 750
						10, 100000) < 0)
				dev_warn(spi->dev,
					 "Suspend request timeout\n");
		}
	}

	if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0))
751
		stm32h7_spi_read_rxfifo(spi, true);
752

753
	if (spi->cur_usedma && spi->dma_tx)
754
		dmaengine_terminate_all(spi->dma_tx);
755
	if (spi->cur_usedma && spi->dma_rx)
756 757
		dmaengine_terminate_all(spi->dma_rx);

758
	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
759

760 761
	stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
						STM32H7_SPI_CFG1_RXDMAEN);
762 763

	/* Disable interrupts and clear status flags */
764 765
	writel_relaxed(0, spi->base + STM32H7_SPI_IER);
	writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
766 767 768 769 770 771

	spin_unlock_irqrestore(&spi->lock, flags);
}

/**
 * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
772 773 774
 * @master: controller master interface
 * @spi_dev: pointer to the spi device
 * @transfer: pointer to spi transfer
775
 *
776 777
 * If driver has fifo and the current transfer size is greater than fifo size,
 * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
778 779 780 781 782
 */
static bool stm32_spi_can_dma(struct spi_master *master,
			      struct spi_device *spi_dev,
			      struct spi_transfer *transfer)
{
783
	unsigned int dma_size;
784 785
	struct stm32_spi *spi = spi_master_get_devdata(master);

786 787 788 789 790
	if (spi->cfg->has_fifo)
		dma_size = spi->fifo_size;
	else
		dma_size = SPI_DMA_MIN_BYTES;

791
	dev_dbg(spi->dev, "%s: %s\n", __func__,
792
		(transfer->len > dma_size) ? "true" : "false");
793

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
	return (transfer->len > dma_size);
}

/**
 * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
 * @irq: interrupt line
 * @dev_id: SPI controller master interface
 */
static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
{
	struct spi_master *master = dev_id;
	struct stm32_spi *spi = spi_master_get_devdata(master);
	u32 sr, mask = 0;
	unsigned long flags;
	bool end = false;

	spin_lock_irqsave(&spi->lock, flags);

	sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
	/*
	 * BSY flag is not handled in interrupt but it is normal behavior when
	 * this flag is set.
	 */
	sr &= ~STM32F4_SPI_SR_BSY;

	if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
				 spi->cur_comm == SPI_3WIRE_TX)) {
		/* OVR flag shouldn't be handled for TX only mode */
		sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE;
		mask |= STM32F4_SPI_SR_TXE;
	}

826 827 828
	if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
				spi->cur_comm == SPI_SIMPLEX_RX ||
				spi->cur_comm == SPI_3WIRE_RX)) {
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
		/* TXE flag is set and is handled when RXNE flag occurs */
		sr &= ~STM32F4_SPI_SR_TXE;
		mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
	}

	if (!(sr & mask)) {
		dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
		spin_unlock_irqrestore(&spi->lock, flags);
		return IRQ_NONE;
	}

	if (sr & STM32F4_SPI_SR_OVR) {
		dev_warn(spi->dev, "Overrun: received value discarded\n");

		/* Sequence to clear OVR flag */
		readl_relaxed(spi->base + STM32F4_SPI_DR);
		readl_relaxed(spi->base + STM32F4_SPI_SR);

		/*
		 * If overrun is detected, it means that something went wrong,
		 * so stop the current transfer. Transfer can wait for next
		 * RXNE but DR is already read and end never happens.
		 */
		end = true;
		goto end_irq;
	}

	if (sr & STM32F4_SPI_SR_TXE) {
		if (spi->tx_buf)
			stm32f4_spi_write_tx(spi);
		if (spi->tx_len == 0)
			end = true;
	}

	if (sr & STM32F4_SPI_SR_RXNE) {
		stm32f4_spi_read_rx(spi);
		if (spi->rx_len == 0)
			end = true;
867
		else if (spi->tx_buf)/* Load data for discontinuous mode */
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
			stm32f4_spi_write_tx(spi);
	}

end_irq:
	if (end) {
		/* Immediately disable interrupts to do not generate new one */
		stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
					STM32F4_SPI_CR2_TXEIE |
					STM32F4_SPI_CR2_RXNEIE |
					STM32F4_SPI_CR2_ERRIE);
		spin_unlock_irqrestore(&spi->lock, flags);
		return IRQ_WAKE_THREAD;
	}

	spin_unlock_irqrestore(&spi->lock, flags);
	return IRQ_HANDLED;
}

/**
 * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
 * @irq: interrupt line
 * @dev_id: SPI controller master interface
 */
static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
{
	struct spi_master *master = dev_id;
	struct stm32_spi *spi = spi_master_get_devdata(master);

	spi_finalize_current_transfer(master);
	stm32f4_spi_disable(spi);

	return IRQ_HANDLED;
900 901 902
}

/**
903
 * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
904 905 906
 * @irq: interrupt line
 * @dev_id: SPI controller master interface
 */
907
static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
908 909 910 911 912 913 914 915 916
{
	struct spi_master *master = dev_id;
	struct stm32_spi *spi = spi_master_get_devdata(master);
	u32 sr, ier, mask;
	unsigned long flags;
	bool end = false;

	spin_lock_irqsave(&spi->lock, flags);

917 918
	sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
	ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
919 920 921

	mask = ier;
	/* EOTIE is triggered on EOT, SUSP and TXC events. */
922
	mask |= STM32H7_SPI_SR_SUSP;
923 924 925 926 927
	/*
	 * When TXTF is set, DXPIE and TXPIE are cleared. So in case of
	 * Full-Duplex, need to poll RXP event to know if there are remaining
	 * data, before disabling SPI.
	 */
928
	if (spi->rx_buf && !spi->cur_usedma)
929
		mask |= STM32H7_SPI_SR_RXP;
930 931 932 933 934 935 936 937

	if (!(sr & mask)) {
		dev_dbg(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
			sr, ier);
		spin_unlock_irqrestore(&spi->lock, flags);
		return IRQ_NONE;
	}

938
	if (sr & STM32H7_SPI_SR_SUSP) {
939 940
		dev_warn(spi->dev, "Communication suspended\n");
		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
941
			stm32h7_spi_read_rxfifo(spi, false);
942 943 944 945 946 947
		/*
		 * If communication is suspended while using DMA, it means
		 * that something went wrong, so stop the current transfer
		 */
		if (spi->cur_usedma)
			end = true;
948 949
	}

950
	if (sr & STM32H7_SPI_SR_MODF) {
951 952 953 954
		dev_warn(spi->dev, "Mode fault: transfer aborted\n");
		end = true;
	}

955
	if (sr & STM32H7_SPI_SR_OVR) {
956 957
		dev_warn(spi->dev, "Overrun: received value discarded\n");
		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
958
			stm32h7_spi_read_rxfifo(spi, false);
959 960 961 962 963 964
		/*
		 * If overrun is detected while using DMA, it means that
		 * something went wrong, so stop the current transfer
		 */
		if (spi->cur_usedma)
			end = true;
965 966
	}

967
	if (sr & STM32H7_SPI_SR_EOT) {
968
		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
969
			stm32h7_spi_read_rxfifo(spi, true);
970 971 972
		end = true;
	}

973
	if (sr & STM32H7_SPI_SR_TXP)
974
		if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
975
			stm32h7_spi_write_txfifo(spi);
976

977
	if (sr & STM32H7_SPI_SR_RXP)
978
		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
979
			stm32h7_spi_read_rxfifo(spi, false);
980

981
	writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR);
982 983 984 985

	spin_unlock_irqrestore(&spi->lock, flags);

	if (end) {
986
		stm32h7_spi_disable(spi);
987
		spi_finalize_current_transfer(master);
988 989 990 991 992 993 994
	}

	return IRQ_HANDLED;
}

/**
 * stm32_spi_prepare_msg - set up the controller to transfer a single message
995 996
 * @master: controller master interface
 * @msg: pointer to spi message
997 998 999 1000 1001 1002 1003 1004
 */
static int stm32_spi_prepare_msg(struct spi_master *master,
				 struct spi_message *msg)
{
	struct stm32_spi *spi = spi_master_get_devdata(master);
	struct spi_device *spi_dev = msg->spi;
	struct device_node *np = spi_dev->dev.of_node;
	unsigned long flags;
1005
	u32 clrb = 0, setb = 0;
1006 1007 1008

	/* SPI slave device may need time between data frames */
	spi->cur_midi = 0;
1009
	if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
1010 1011 1012
		dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);

	if (spi_dev->mode & SPI_CPOL)
1013
		setb |= spi->cfg->regs->cpol.mask;
1014
	else
1015
		clrb |= spi->cfg->regs->cpol.mask;
1016 1017

	if (spi_dev->mode & SPI_CPHA)
1018
		setb |= spi->cfg->regs->cpha.mask;
1019
	else
1020
		clrb |= spi->cfg->regs->cpha.mask;
1021 1022

	if (spi_dev->mode & SPI_LSB_FIRST)
1023
		setb |= spi->cfg->regs->lsb_first.mask;
1024
	else
1025
		clrb |= spi->cfg->regs->lsb_first.mask;
1026 1027 1028 1029 1030 1031 1032 1033 1034

	dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
		spi_dev->mode & SPI_CPOL,
		spi_dev->mode & SPI_CPHA,
		spi_dev->mode & SPI_LSB_FIRST,
		spi_dev->mode & SPI_CS_HIGH);

	spin_lock_irqsave(&spi->lock, flags);

1035 1036
	/* CPOL, CPHA and LSB FIRST bits have common register */
	if (clrb || setb)
1037
		writel_relaxed(
1038 1039 1040
			(readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
			 ~clrb) | setb,
			spi->base + spi->cfg->regs->cpol.reg);
1041 1042 1043 1044 1045 1046

	spin_unlock_irqrestore(&spi->lock, flags);

	return 0;
}

1047 1048
/**
 * stm32f4_spi_dma_tx_cb - dma callback
1049
 * @data: pointer to the spi controller data structure
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
 *
 * DMA callback is called when the transfer is complete for DMA TX channel.
 */
static void stm32f4_spi_dma_tx_cb(void *data)
{
	struct stm32_spi *spi = data;

	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
		spi_finalize_current_transfer(spi->master);
		stm32f4_spi_disable(spi);
	}
}

/**
 * stm32f4_spi_dma_rx_cb - dma callback
1065
 * @data: pointer to the spi controller data structure
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
 *
 * DMA callback is called when the transfer is complete for DMA RX channel.
 */
static void stm32f4_spi_dma_rx_cb(void *data)
{
	struct stm32_spi *spi = data;

	spi_finalize_current_transfer(spi->master);
	stm32f4_spi_disable(spi);
}

1077
/**
1078
 * stm32h7_spi_dma_cb - dma callback
1079
 * @data: pointer to the spi controller data structure
1080 1081 1082 1083
 *
 * DMA callback is called when the transfer is complete or when an error
 * occurs. If the transfer is complete, EOT flag is raised.
 */
1084
static void stm32h7_spi_dma_cb(void *data)
1085 1086 1087 1088 1089 1090 1091
{
	struct stm32_spi *spi = data;
	unsigned long flags;
	u32 sr;

	spin_lock_irqsave(&spi->lock, flags);

1092
	sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
1093 1094 1095

	spin_unlock_irqrestore(&spi->lock, flags);

1096
	if (!(sr & STM32H7_SPI_SR_EOT))
1097
		dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr);
1098

1099
	/* Now wait for EOT, or SUSP or OVR in case of error */
1100 1101 1102 1103 1104
}

/**
 * stm32_spi_dma_config - configure dma slave channel depending on current
 *			  transfer bits_per_word.
1105 1106 1107
 * @spi: pointer to the spi controller data structure
 * @dma_conf: pointer to the dma_slave_config structure
 * @dir: direction of the dma transfer
1108 1109 1110 1111 1112 1113 1114 1115
 */
static void stm32_spi_dma_config(struct stm32_spi *spi,
				 struct dma_slave_config *dma_conf,
				 enum dma_transfer_direction dir)
{
	enum dma_slave_buswidth buswidth;
	u32 maxburst;

1116 1117 1118 1119 1120 1121
	if (spi->cur_bpw <= 8)
		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
	else if (spi->cur_bpw <= 16)
		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
	else
		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1122

1123 1124 1125 1126 1127 1128 1129
	if (spi->cfg->has_fifo) {
		/* Valid for DMA Half or Full Fifo threshold */
		if (spi->cur_fthlv == 2)
			maxburst = 1;
		else
			maxburst = spi->cur_fthlv;
	} else {
1130
		maxburst = 1;
1131
	}
1132 1133 1134 1135

	memset(dma_conf, 0, sizeof(struct dma_slave_config));
	dma_conf->direction = dir;
	if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1136
		dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1137 1138 1139 1140 1141 1142
		dma_conf->src_addr_width = buswidth;
		dma_conf->src_maxburst = maxburst;

		dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
			buswidth, maxburst);
	} else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1143
		dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1144 1145 1146 1147 1148 1149 1150 1151
		dma_conf->dst_addr_width = buswidth;
		dma_conf->dst_maxburst = maxburst;

		dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
			buswidth, maxburst);
	}
}

1152 1153 1154
/**
 * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
 *				  interrupts
1155
 * @spi: pointer to the spi controller data structure
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
 *
 * It must returns 0 if the transfer is finished or 1 if the transfer is still
 * in progress.
 */
static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
{
	unsigned long flags;
	u32 cr2 = 0;

	/* Enable the interrupts relative to the current communication mode */
	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
		cr2 |= STM32F4_SPI_CR2_TXEIE;
1168 1169 1170
	} else if (spi->cur_comm == SPI_FULL_DUPLEX ||
				spi->cur_comm == SPI_SIMPLEX_RX ||
				spi->cur_comm == SPI_3WIRE_RX) {
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
		/* In transmit-only mode, the OVR flag is set in the SR register
		 * since the received data are never read. Therefore set OVR
		 * interrupt only when rx buffer is available.
		 */
		cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
	} else {
		return -EINVAL;
	}

	spin_lock_irqsave(&spi->lock, flags);

	stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);

	stm32_spi_enable(spi);

	/* starting data transfer when buffer is loaded */
	if (spi->tx_buf)
		stm32f4_spi_write_tx(spi);

	spin_unlock_irqrestore(&spi->lock, flags);

	return 1;
}

1195
/**
1196 1197
 * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
 *				  interrupts
1198
 * @spi: pointer to the spi controller data structure
1199 1200 1201 1202
 *
 * It must returns 0 if the transfer is finished or 1 if the transfer is still
 * in progress.
 */
1203
static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1204 1205 1206 1207 1208 1209
{
	unsigned long flags;
	u32 ier = 0;

	/* Enable the interrupts relative to the current communication mode */
	if (spi->tx_buf && spi->rx_buf)	/* Full Duplex */
1210
		ier |= STM32H7_SPI_IER_DXPIE;
1211
	else if (spi->tx_buf)		/* Half-Duplex TX dir or Simplex TX */
1212
		ier |= STM32H7_SPI_IER_TXPIE;
1213
	else if (spi->rx_buf)		/* Half-Duplex RX dir or Simplex RX */
1214
		ier |= STM32H7_SPI_IER_RXPIE;
1215 1216

	/* Enable the interrupts relative to the end of transfer */
1217 1218
	ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
	       STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1219 1220 1221 1222 1223 1224 1225

	spin_lock_irqsave(&spi->lock, flags);

	stm32_spi_enable(spi);

	/* Be sure to have data in fifo before starting data transfer */
	if (spi->tx_buf)
1226
		stm32h7_spi_write_txfifo(spi);
1227

1228
	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1229

1230
	writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1231 1232 1233 1234 1235 1236

	spin_unlock_irqrestore(&spi->lock, flags);

	return 1;
}

1237 1238 1239
/**
 * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
 *					transfer using DMA
1240
 * @spi: pointer to the spi controller data structure
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
 */
static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
{
	/* In DMA mode end of transfer is handled by DMA TX or RX callback. */
	if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
	    spi->cur_comm == SPI_FULL_DUPLEX) {
		/*
		 * In transmit-only mode, the OVR flag is set in the SR register
		 * since the received data are never read. Therefore set OVR
		 * interrupt only when rx buffer is available.
		 */
		stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
	}

	stm32_spi_enable(spi);
}

1258
/**
1259 1260
 * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
 *					transfer using DMA
1261
 * @spi: pointer to the spi controller data structure
1262
 */
1263
static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
{
	/* Enable the interrupts relative to the end of transfer */
	stm32_spi_set_bits(spi, STM32H7_SPI_IER, STM32H7_SPI_IER_EOTIE |
						 STM32H7_SPI_IER_TXTFIE |
						 STM32H7_SPI_IER_OVRIE |
						 STM32H7_SPI_IER_MODFIE);

	stm32_spi_enable(spi);

	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
}

1276 1277
/**
 * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1278 1279
 * @spi: pointer to the spi controller data structure
 * @xfer: pointer to the spi_transfer structure
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
 *
 * It must returns 0 if the transfer is finished or 1 if the transfer is still
 * in progress.
 */
static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
				      struct spi_transfer *xfer)
{
	struct dma_slave_config tx_dma_conf, rx_dma_conf;
	struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
	unsigned long flags;

	spin_lock_irqsave(&spi->lock, flags);

	rx_dma_desc = NULL;
1294
	if (spi->rx_buf && spi->dma_rx) {
1295 1296 1297 1298
		stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
		dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);

		/* Enable Rx DMA request */
1299 1300
		stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
				   spi->cfg->regs->dma_rx_en.mask);
1301 1302 1303 1304 1305 1306 1307 1308 1309

		rx_dma_desc = dmaengine_prep_slave_sg(
					spi->dma_rx, xfer->rx_sg.sgl,
					xfer->rx_sg.nents,
					rx_dma_conf.direction,
					DMA_PREP_INTERRUPT);
	}

	tx_dma_desc = NULL;
1310
	if (spi->tx_buf && spi->dma_tx) {
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
		stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
		dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);

		tx_dma_desc = dmaengine_prep_slave_sg(
					spi->dma_tx, xfer->tx_sg.sgl,
					xfer->tx_sg.nents,
					tx_dma_conf.direction,
					DMA_PREP_INTERRUPT);
	}

1321 1322 1323 1324 1325
	if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
	    (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
		goto dma_desc_error;

	if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1326 1327 1328
		goto dma_desc_error;

	if (rx_dma_desc) {
1329
		rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1330 1331
		rx_dma_desc->callback_param = spi;

1332 1333 1334 1335 1336 1337 1338 1339 1340
		if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
			dev_err(spi->dev, "Rx DMA submit failed\n");
			goto dma_desc_error;
		}
		/* Enable Rx DMA channel */
		dma_async_issue_pending(spi->dma_rx);
	}

	if (tx_dma_desc) {
1341 1342
		if (spi->cur_comm == SPI_SIMPLEX_TX ||
		    spi->cur_comm == SPI_3WIRE_TX) {
1343
			tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1344 1345 1346
			tx_dma_desc->callback_param = spi;
		}

1347 1348 1349 1350 1351 1352 1353 1354
		if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
			dev_err(spi->dev, "Tx DMA submit failed\n");
			goto dma_submit_error;
		}
		/* Enable Tx DMA channel */
		dma_async_issue_pending(spi->dma_tx);

		/* Enable Tx DMA request */
1355 1356
		stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
				   spi->cfg->regs->dma_tx_en.mask);
1357 1358
	}

1359
	spi->cfg->transfer_one_dma_start(spi);
1360 1361 1362 1363 1364 1365

	spin_unlock_irqrestore(&spi->lock, flags);

	return 1;

dma_submit_error:
1366
	if (spi->dma_rx)
1367 1368 1369
		dmaengine_terminate_all(spi->dma_rx);

dma_desc_error:
1370 1371
	stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
			   spi->cfg->regs->dma_rx_en.mask);
1372 1373 1374 1375 1376

	spin_unlock_irqrestore(&spi->lock, flags);

	dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");

1377
	spi->cur_usedma = false;
1378
	return spi->cfg->transfer_one_irq(spi);
1379 1380
}

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
/**
 * stm32f4_spi_set_bpw - Configure bits per word
 * @spi: pointer to the spi controller data structure
 */
static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
{
	if (spi->cur_bpw == 16)
		stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
	else
		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
}

1393
/**
1394
 * stm32h7_spi_set_bpw - configure bits per word
1395
 * @spi: pointer to the spi controller data structure
1396
 */
1397
static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1398
{
1399 1400
	u32 bpw, fthlv;
	u32 cfg1_clrb = 0, cfg1_setb = 0;
1401

1402
	bpw = spi->cur_bpw - 1;
1403

1404 1405 1406
	cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
	cfg1_setb |= (bpw << STM32H7_SPI_CFG1_DSIZE_SHIFT) &
		     STM32H7_SPI_CFG1_DSIZE;
1407

1408
	spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
1409
	fthlv = spi->cur_fthlv - 1;
1410

1411 1412 1413
	cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
	cfg1_setb |= (fthlv << STM32H7_SPI_CFG1_FTHLV_SHIFT) &
		     STM32H7_SPI_CFG1_FTHLV;
1414

1415 1416 1417 1418 1419
	writel_relaxed(
		(readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
		 ~cfg1_clrb) | cfg1_setb,
		spi->base + STM32H7_SPI_CFG1);
}
1420

1421 1422 1423 1424 1425 1426 1427
/**
 * stm32_spi_set_mbr - Configure baud rate divisor in master mode
 * @spi: pointer to the spi controller data structure
 * @mbrdiv: baud rate divisor value
 */
static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
{
1428
	u32 clrb = 0, setb = 0;
1429

1430 1431 1432
	clrb |= spi->cfg->regs->br.mask;
	setb |= ((u32)mbrdiv << spi->cfg->regs->br.shift) &
		spi->cfg->regs->br.mask;
1433

1434 1435 1436
	writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
			~clrb) | setb,
		       spi->base + spi->cfg->regs->br.reg);
1437
}
1438

1439 1440 1441
/**
 * stm32_spi_communication_type - return transfer communication type
 * @spi_dev: pointer to the spi device
1442
 * @transfer: pointer to spi transfer
1443 1444 1445 1446 1447
 */
static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
						 struct spi_transfer *transfer)
{
	unsigned int type = SPI_FULL_DUPLEX;
1448 1449 1450 1451

	if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
		/*
		 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1452
		 * is forbidden and unvalidated by SPI subsystem so depending
1453 1454 1455 1456
		 * on the valid buffer, we can determine the direction of the
		 * transfer.
		 */
		if (!transfer->tx_buf)
1457 1458 1459
			type = SPI_3WIRE_RX;
		else
			type = SPI_3WIRE_TX;
1460 1461
	} else {
		if (!transfer->tx_buf)
1462
			type = SPI_SIMPLEX_RX;
1463
		else if (!transfer->rx_buf)
1464
			type = SPI_SIMPLEX_TX;
1465 1466
	}

1467 1468 1469
	return type;
}

1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
/**
 * stm32f4_spi_set_mode - configure communication mode
 * @spi: pointer to the spi controller data structure
 * @comm_type: type of communication to configure
 */
static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
{
	if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
		stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
					STM32F4_SPI_CR1_BIDIMODE |
					STM32F4_SPI_CR1_BIDIOE);
1481 1482
	} else if (comm_type == SPI_FULL_DUPLEX ||
				comm_type == SPI_SIMPLEX_RX) {
1483 1484 1485
		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
					STM32F4_SPI_CR1_BIDIMODE |
					STM32F4_SPI_CR1_BIDIOE);
1486 1487 1488 1489 1490
	} else if (comm_type == SPI_3WIRE_RX) {
		stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
					STM32F4_SPI_CR1_BIDIMODE);
		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
					STM32F4_SPI_CR1_BIDIOE);
1491 1492 1493 1494 1495 1496 1497
	} else {
		return -EINVAL;
	}

	return 0;
}

1498
/**
1499
 * stm32h7_spi_set_mode - configure communication mode
1500 1501 1502
 * @spi: pointer to the spi controller data structure
 * @comm_type: type of communication to configure
 */
1503
static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
{
	u32 mode;
	u32 cfg2_clrb = 0, cfg2_setb = 0;

	if (comm_type == SPI_3WIRE_RX) {
		mode = STM32H7_SPI_HALF_DUPLEX;
		stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
	} else if (comm_type == SPI_3WIRE_TX) {
		mode = STM32H7_SPI_HALF_DUPLEX;
		stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
	} else if (comm_type == SPI_SIMPLEX_RX) {
		mode = STM32H7_SPI_SIMPLEX_RX;
	} else if (comm_type == SPI_SIMPLEX_TX) {
		mode = STM32H7_SPI_SIMPLEX_TX;
	} else {
		mode = STM32H7_SPI_FULL_DUPLEX;
1520 1521
	}

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
	cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
	cfg2_setb |= (mode << STM32H7_SPI_CFG2_COMM_SHIFT) &
		     STM32H7_SPI_CFG2_COMM;

	writel_relaxed(
		(readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
		 ~cfg2_clrb) | cfg2_setb,
		spi->base + STM32H7_SPI_CFG2);

	return 0;
}

/**
1535 1536
 * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
 *			       consecutive data frames in master mode
1537 1538 1539
 * @spi: pointer to the spi controller data structure
 * @len: transfer len
 */
1540
static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1541 1542 1543
{
	u32 cfg2_clrb = 0, cfg2_setb = 0;

1544
	cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1545
	if ((len > 1) && (spi->cur_midi > 0)) {
1546 1547
		u32 sck_period_ns = DIV_ROUND_UP(SPI_1HZ_NS, spi->cur_speed);
		u32 midi = min((u32)DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1548 1549
			       (u32)STM32H7_SPI_CFG2_MIDI >>
			       STM32H7_SPI_CFG2_MIDI_SHIFT);
1550 1551 1552

		dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
			sck_period_ns, midi, midi * sck_period_ns);
1553 1554
		cfg2_setb |= (midi << STM32H7_SPI_CFG2_MIDI_SHIFT) &
			     STM32H7_SPI_CFG2_MIDI;
1555 1556
	}

1557 1558 1559 1560 1561 1562
	writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
			~cfg2_clrb) | cfg2_setb,
		       spi->base + STM32H7_SPI_CFG2);
}

/**
1563
 * stm32h7_spi_number_of_data - configure number of data at current transfer
1564
 * @spi: pointer to the spi controller data structure
1565
 * @nb_words: transfer length (in words)
1566
 */
1567
static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
{
	u32 cr2_clrb = 0, cr2_setb = 0;

	if (nb_words <= (STM32H7_SPI_CR2_TSIZE >>
			 STM32H7_SPI_CR2_TSIZE_SHIFT)) {
		cr2_clrb |= STM32H7_SPI_CR2_TSIZE;
		cr2_setb = nb_words << STM32H7_SPI_CR2_TSIZE_SHIFT;
		writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CR2) &
				~cr2_clrb) | cr2_setb,
			       spi->base + STM32H7_SPI_CR2);
	} else {
		return -EMSGSIZE;
	}

	return 0;
}

/**
 * stm32_spi_transfer_one_setup - common setup to transfer a single
 *				  spi_transfer either using DMA or
 *				  interrupts.
1589 1590 1591
 * @spi: pointer to the spi controller data structure
 * @spi_dev: pointer to the spi device
 * @transfer: pointer to spi transfer
1592 1593 1594 1595 1596 1597 1598 1599
 */
static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
					struct spi_device *spi_dev,
					struct spi_transfer *transfer)
{
	unsigned long flags;
	unsigned int comm_type;
	int nb_words, ret = 0;
1600
	int mbr;
1601 1602 1603

	spin_lock_irqsave(&spi->lock, flags);

1604 1605
	spi->cur_xferlen = transfer->len;

1606 1607
	spi->cur_bpw = transfer->bits_per_word;
	spi->cfg->set_bpw(spi);
1608

1609 1610 1611 1612 1613 1614 1615
	/* Update spi->cur_speed with real clock speed */
	mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
				    spi->cfg->baud_rate_div_min,
				    spi->cfg->baud_rate_div_max);
	if (mbr < 0) {
		ret = mbr;
		goto out;
1616 1617
	}

1618 1619
	transfer->speed_hz = spi->cur_speed;
	stm32_spi_set_mbr(spi, mbr);
1620

1621 1622 1623 1624
	comm_type = stm32_spi_communication_type(spi_dev, transfer);
	ret = spi->cfg->set_mode(spi, comm_type);
	if (ret < 0)
		goto out;
1625

1626
	spi->cur_comm = comm_type;
1627

1628 1629
	if (spi->cfg->set_data_idleness)
		spi->cfg->set_data_idleness(spi, transfer->len);
1630

1631 1632 1633 1634 1635 1636
	if (spi->cur_bpw <= 8)
		nb_words = transfer->len;
	else if (spi->cur_bpw <= 16)
		nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
	else
		nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1637

1638 1639 1640 1641 1642
	if (spi->cfg->set_number_of_data) {
		ret = spi->cfg->set_number_of_data(spi, nb_words);
		if (ret < 0)
			goto out;
	}
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662

	dev_dbg(spi->dev, "transfer communication mode set to %d\n",
		spi->cur_comm);
	dev_dbg(spi->dev,
		"data frame of %d-bit, data packet of %d data frames\n",
		spi->cur_bpw, spi->cur_fthlv);
	dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
	dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
		spi->cur_xferlen, nb_words);
	dev_dbg(spi->dev, "dma %s\n",
		(spi->cur_usedma) ? "enabled" : "disabled");

out:
	spin_unlock_irqrestore(&spi->lock, flags);

	return ret;
}

/**
 * stm32_spi_transfer_one - transfer a single spi_transfer
1663 1664 1665
 * @master: controller master interface
 * @spi_dev: pointer to the spi device
 * @transfer: pointer to spi transfer
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
 *
 * It must return 0 if the transfer is finished or 1 if the transfer is still
 * in progress.
 */
static int stm32_spi_transfer_one(struct spi_master *master,
				  struct spi_device *spi_dev,
				  struct spi_transfer *transfer)
{
	struct stm32_spi *spi = spi_master_get_devdata(master);
	int ret;

	spi->tx_buf = transfer->tx_buf;
	spi->rx_buf = transfer->rx_buf;
	spi->tx_len = spi->tx_buf ? transfer->len : 0;
	spi->rx_len = spi->rx_buf ? transfer->len : 0;

1682
	spi->cur_usedma = (master->can_dma &&
1683
			   master->can_dma(master, spi_dev, transfer));
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693

	ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
	if (ret) {
		dev_err(spi->dev, "SPI transfer setup failed\n");
		return ret;
	}

	if (spi->cur_usedma)
		return stm32_spi_transfer_one_dma(spi, transfer);
	else
1694
		return spi->cfg->transfer_one_irq(spi);
1695 1696 1697 1698
}

/**
 * stm32_spi_unprepare_msg - relax the hardware
1699 1700
 * @master: controller master interface
 * @msg: pointer to the spi message
1701 1702 1703 1704 1705 1706
 */
static int stm32_spi_unprepare_msg(struct spi_master *master,
				   struct spi_message *msg)
{
	struct stm32_spi *spi = spi_master_get_devdata(master);

1707
	spi->cfg->disable(spi);
1708 1709 1710 1711

	return 0;
}

1712 1713
/**
 * stm32f4_spi_config - Configure SPI controller as SPI master
1714
 * @spi: pointer to the spi controller data structure
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
 */
static int stm32f4_spi_config(struct stm32_spi *spi)
{
	unsigned long flags;

	spin_lock_irqsave(&spi->lock, flags);

	/* Ensure I2SMOD bit is kept cleared */
	stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
			   STM32F4_SPI_I2SCFGR_I2SMOD);

	/*
	 * - SS input value high
	 * - transmitter half duplex direction
	 * - Set the master mode (default Motorola mode)
	 * - Consider 1 master/n slaves configuration and
	 *   SS input value is determined by the SSI bit
	 */
	stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
						 STM32F4_SPI_CR1_BIDIOE |
						 STM32F4_SPI_CR1_MSTR |
						 STM32F4_SPI_CR1_SSM);

	spin_unlock_irqrestore(&spi->lock, flags);

	return 0;
}

1743
/**
1744
 * stm32h7_spi_config - Configure SPI controller as SPI master
1745
 * @spi: pointer to the spi controller data structure
1746
 */
1747
static int stm32h7_spi_config(struct stm32_spi *spi)
1748 1749 1750 1751 1752 1753
{
	unsigned long flags;

	spin_lock_irqsave(&spi->lock, flags);

	/* Ensure I2SMOD bit is kept cleared */
1754 1755
	stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
			   STM32H7_SPI_I2SCFGR_I2SMOD);
1756 1757 1758 1759 1760 1761

	/*
	 * - SS input value high
	 * - transmitter half duplex direction
	 * - automatic communication suspend when RX-Fifo is full
	 */
1762 1763 1764
	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI |
						 STM32H7_SPI_CR1_HDDIR |
						 STM32H7_SPI_CR1_MASRX);
1765 1766 1767 1768 1769 1770 1771

	/*
	 * - Set the master mode (default Motorola mode)
	 * - Consider 1 master/n slaves configuration and
	 *   SS input value is determined by the SSI bit
	 * - keep control of all associated GPIOs
	 */
1772 1773 1774
	stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER |
						  STM32H7_SPI_CFG2_SSM |
						  STM32H7_SPI_CFG2_AFCNTR);
1775 1776 1777 1778 1779 1780

	spin_unlock_irqrestore(&spi->lock, flags);

	return 0;
}

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
static const struct stm32_spi_cfg stm32f4_spi_cfg = {
	.regs = &stm32f4_spi_regspec,
	.get_bpw_mask = stm32f4_spi_get_bpw_mask,
	.disable = stm32f4_spi_disable,
	.config = stm32f4_spi_config,
	.set_bpw = stm32f4_spi_set_bpw,
	.set_mode = stm32f4_spi_set_mode,
	.transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
	.dma_tx_cb = stm32f4_spi_dma_tx_cb,
	.dma_rx_cb = stm32f4_spi_dma_rx_cb,
	.transfer_one_irq = stm32f4_spi_transfer_one_irq,
	.irq_handler_event = stm32f4_spi_irq_event,
	.irq_handler_thread = stm32f4_spi_irq_thread,
	.baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
	.baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
	.has_fifo = false,
};

1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
static const struct stm32_spi_cfg stm32h7_spi_cfg = {
	.regs = &stm32h7_spi_regspec,
	.get_fifo_size = stm32h7_spi_get_fifo_size,
	.get_bpw_mask = stm32h7_spi_get_bpw_mask,
	.disable = stm32h7_spi_disable,
	.config = stm32h7_spi_config,
	.set_bpw = stm32h7_spi_set_bpw,
	.set_mode = stm32h7_spi_set_mode,
	.set_data_idleness = stm32h7_spi_data_idleness,
	.set_number_of_data = stm32h7_spi_number_of_data,
	.transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
	.dma_rx_cb = stm32h7_spi_dma_cb,
	.dma_tx_cb = stm32h7_spi_dma_cb,
	.transfer_one_irq = stm32h7_spi_transfer_one_irq,
	.irq_handler_thread = stm32h7_spi_irq_thread,
	.baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
	.baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
	.has_fifo = true,
};

1819
static const struct of_device_id stm32_spi_of_match[] = {
1820
	{ .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1821
	{ .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
1822 1823 1824 1825 1826 1827 1828 1829 1830
	{},
};
MODULE_DEVICE_TABLE(of, stm32_spi_of_match);

static int stm32_spi_probe(struct platform_device *pdev)
{
	struct spi_master *master;
	struct stm32_spi *spi;
	struct resource *res;
1831
	int ret;
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844

	master = spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
	if (!master) {
		dev_err(&pdev->dev, "spi master allocation failed\n");
		return -ENOMEM;
	}
	platform_set_drvdata(pdev, master);

	spi = spi_master_get_devdata(master);
	spi->dev = &pdev->dev;
	spi->master = master;
	spin_lock_init(&spi->lock);

1845 1846 1847 1848
	spi->cfg = (const struct stm32_spi_cfg *)
		of_match_device(pdev->dev.driver->of_match_table,
				&pdev->dev)->data;

1849 1850 1851 1852 1853 1854
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	spi->base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(spi->base)) {
		ret = PTR_ERR(spi->base);
		goto err_master_put;
	}
1855

1856 1857 1858 1859
	spi->phys_addr = (dma_addr_t)res->start;

	spi->irq = platform_get_irq(pdev, 0);
	if (spi->irq <= 0) {
1860 1861 1862
		ret = spi->irq;
		if (ret != -EPROBE_DEFER)
			dev_err(&pdev->dev, "failed to get irq: %d\n", ret);
1863 1864
		goto err_master_put;
	}
1865 1866 1867 1868
	ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
					spi->cfg->irq_handler_event,
					spi->cfg->irq_handler_thread,
					IRQF_ONESHOT, pdev->name, master);
1869 1870 1871 1872 1873 1874
	if (ret) {
		dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
			ret);
		goto err_master_put;
	}

1875
	spi->clk = devm_clk_get(&pdev->dev, NULL);
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
	if (IS_ERR(spi->clk)) {
		ret = PTR_ERR(spi->clk);
		dev_err(&pdev->dev, "clk get failed: %d\n", ret);
		goto err_master_put;
	}

	ret = clk_prepare_enable(spi->clk);
	if (ret) {
		dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
		goto err_master_put;
	}
	spi->clk_rate = clk_get_rate(spi->clk);
	if (!spi->clk_rate) {
		dev_err(&pdev->dev, "clk rate = 0\n");
		ret = -EINVAL;
1891
		goto err_clk_disable;
1892 1893
	}

1894
	spi->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
1895 1896 1897 1898 1899 1900
	if (!IS_ERR(spi->rst)) {
		reset_control_assert(spi->rst);
		udelay(2);
		reset_control_deassert(spi->rst);
	}

1901 1902
	if (spi->cfg->has_fifo)
		spi->fifo_size = spi->cfg->get_fifo_size(spi);
1903

1904
	ret = spi->cfg->config(spi);
1905 1906 1907 1908 1909 1910 1911 1912 1913
	if (ret) {
		dev_err(&pdev->dev, "controller configuration failed: %d\n",
			ret);
		goto err_clk_disable;
	}

	master->dev.of_node = pdev->dev.of_node;
	master->auto_runtime_pm = true;
	master->bus_num = pdev->id;
1914
	master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1915
			    SPI_3WIRE;
1916 1917 1918
	master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
	master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
	master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1919
	master->use_gpio_descriptors = true;
1920 1921 1922
	master->prepare_message = stm32_spi_prepare_msg;
	master->transfer_one = stm32_spi_transfer_one;
	master->unprepare_message = stm32_spi_unprepare_msg;
1923
	master->flags = SPI_MASTER_MUST_TX;
1924

1925 1926 1927 1928 1929 1930 1931
	spi->dma_tx = dma_request_chan(spi->dev, "tx");
	if (IS_ERR(spi->dma_tx)) {
		ret = PTR_ERR(spi->dma_tx);
		spi->dma_tx = NULL;
		if (ret == -EPROBE_DEFER)
			goto err_clk_disable;

1932
		dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1933
	} else {
1934
		master->dma_tx = spi->dma_tx;
1935 1936 1937 1938 1939 1940 1941 1942
	}

	spi->dma_rx = dma_request_chan(spi->dev, "rx");
	if (IS_ERR(spi->dma_rx)) {
		ret = PTR_ERR(spi->dma_rx);
		spi->dma_rx = NULL;
		if (ret == -EPROBE_DEFER)
			goto err_dma_release;
1943 1944

		dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1945
	} else {
1946
		master->dma_rx = spi->dma_rx;
1947
	}
1948 1949 1950 1951

	if (spi->dma_tx || spi->dma_rx)
		master->can_dma = stm32_spi_can_dma;

1952 1953 1954
	pm_runtime_set_active(&pdev->dev);
	pm_runtime_enable(&pdev->dev);

1955 1956 1957 1958
	ret = devm_spi_register_master(&pdev->dev, master);
	if (ret) {
		dev_err(&pdev->dev, "spi master registration failed: %d\n",
			ret);
1959
		goto err_pm_disable;
1960 1961
	}

1962
	if (!master->cs_gpiods) {
1963 1964
		dev_err(&pdev->dev, "no CS gpios available\n");
		ret = -EINVAL;
1965
		goto err_pm_disable;
1966 1967 1968 1969 1970 1971
	}

	dev_info(&pdev->dev, "driver initialized\n");

	return 0;

1972 1973
err_pm_disable:
	pm_runtime_disable(&pdev->dev);
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
err_dma_release:
	if (spi->dma_tx)
		dma_release_channel(spi->dma_tx);
	if (spi->dma_rx)
		dma_release_channel(spi->dma_rx);
err_clk_disable:
	clk_disable_unprepare(spi->clk);
err_master_put:
	spi_master_put(master);

	return ret;
}

static int stm32_spi_remove(struct platform_device *pdev)
{
	struct spi_master *master = platform_get_drvdata(pdev);
	struct stm32_spi *spi = spi_master_get_devdata(master);

1992
	spi->cfg->disable(spi);
1993 1994 1995 1996 1997 1998 1999 2000

	if (master->dma_tx)
		dma_release_channel(master->dma_tx);
	if (master->dma_rx)
		dma_release_channel(master->dma_rx);

	clk_disable_unprepare(spi->clk);

2001 2002
	pm_runtime_disable(&pdev->dev);

2003 2004
	pinctrl_pm_select_sleep_state(&pdev->dev);

2005 2006 2007
	return 0;
}

2008 2009 2010 2011 2012 2013 2014 2015
#ifdef CONFIG_PM
static int stm32_spi_runtime_suspend(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct stm32_spi *spi = spi_master_get_devdata(master);

	clk_disable_unprepare(spi->clk);

2016
	return pinctrl_pm_select_sleep_state(dev);
2017 2018 2019 2020 2021 2022
}

static int stm32_spi_runtime_resume(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct stm32_spi *spi = spi_master_get_devdata(master);
2023 2024 2025 2026 2027
	int ret;

	ret = pinctrl_pm_select_default_state(dev);
	if (ret)
		return ret;
2028 2029 2030 2031 2032

	return clk_prepare_enable(spi->clk);
}
#endif

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
#ifdef CONFIG_PM_SLEEP
static int stm32_spi_suspend(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	int ret;

	ret = spi_master_suspend(master);
	if (ret)
		return ret;

2043
	return pm_runtime_force_suspend(dev);
2044 2045 2046 2047 2048 2049 2050 2051
}

static int stm32_spi_resume(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct stm32_spi *spi = spi_master_get_devdata(master);
	int ret;

2052
	ret = pm_runtime_force_resume(dev);
2053 2054
	if (ret)
		return ret;
2055

2056
	ret = spi_master_resume(master);
2057
	if (ret) {
2058
		clk_disable_unprepare(spi->clk);
2059 2060
		return ret;
	}
2061

2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
	ret = pm_runtime_get_sync(dev);
	if (ret) {
		dev_err(dev, "Unable to power device:%d\n", ret);
		return ret;
	}

	spi->cfg->config(spi);

	pm_runtime_mark_last_busy(dev);
	pm_runtime_put_autosuspend(dev);

	return 0;
2074 2075 2076
}
#endif

2077 2078 2079 2080 2081
static const struct dev_pm_ops stm32_spi_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
	SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
			   stm32_spi_runtime_resume, NULL)
};
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098

static struct platform_driver stm32_spi_driver = {
	.probe = stm32_spi_probe,
	.remove = stm32_spi_remove,
	.driver = {
		.name = DRIVER_NAME,
		.pm = &stm32_spi_pm_ops,
		.of_match_table = stm32_spi_of_match,
	},
};

module_platform_driver(stm32_spi_driver);

MODULE_ALIAS("platform:" DRIVER_NAME);
MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
MODULE_LICENSE("GPL v2");