book3s_hv.c 69.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Paul Mackerras <paulus@au1.ibm.com>
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *
 * Description: KVM functions specific to running on Book 3S
 * processors in hypervisor mode (specifically POWER7 and later).
 *
 * This file is derived from arch/powerpc/kvm/book3s.c,
 * by Alexander Graf <agraf@suse.de>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/preempt.h>
#include <linux/sched.h>
#include <linux/delay.h>
27
#include <linux/export.h>
28 29 30
#include <linux/fs.h>
#include <linux/anon_inodes.h>
#include <linux/cpumask.h>
31 32
#include <linux/spinlock.h>
#include <linux/page-flags.h>
33
#include <linux/srcu.h>
34
#include <linux/miscdevice.h>
35
#include <linux/debugfs.h>
36 37 38

#include <asm/reg.h>
#include <asm/cputable.h>
39
#include <asm/cache.h>
40 41 42 43 44 45 46 47 48
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/lppaca.h>
#include <asm/processor.h>
49
#include <asm/cputhreads.h>
50
#include <asm/page.h>
51
#include <asm/hvcall.h>
52
#include <asm/switch_to.h>
53
#include <asm/smp.h>
54
#include <asm/dbell.h>
55 56 57
#include <linux/gfp.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
58
#include <linux/hugetlb.h>
59
#include <linux/module.h>
60

61 62
#include "book3s.h"

63 64 65
#define CREATE_TRACE_POINTS
#include "trace_hv.h"

66 67 68 69
/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */

70 71 72
/* Used to indicate that a guest page fault needs to be handled */
#define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)

73 74 75
/* Used as a "null" value for timebase values */
#define TB_NIL	(~(u64)0)

76 77
static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);

78 79 80 81 82 83 84
#if defined(CONFIG_PPC_64K_PAGES)
#define MPP_BUFFER_ORDER	0
#elif defined(CONFIG_PPC_4K_PAGES)
#define MPP_BUFFER_ORDER	3
#endif


85
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
86
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
87

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
static bool kvmppc_ipi_thread(int cpu)
{
	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		preempt_disable();
		if (cpu_first_thread_sibling(cpu) ==
		    cpu_first_thread_sibling(smp_processor_id())) {
			unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
			msg |= cpu_thread_in_core(cpu);
			smp_mb();
			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
			preempt_enable();
			return true;
		}
		preempt_enable();
	}

#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
	if (cpu >= 0 && cpu < nr_cpu_ids && paca[cpu].kvm_hstate.xics_phys) {
		xics_wake_cpu(cpu);
		return true;
	}
#endif

	return false;
}

115
static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
116 117 118 119 120 121 122 123 124 125
{
	int cpu = vcpu->cpu;
	wait_queue_head_t *wqp;

	wqp = kvm_arch_vcpu_wq(vcpu);
	if (waitqueue_active(wqp)) {
		wake_up_interruptible(wqp);
		++vcpu->stat.halt_wakeup;
	}

126 127
	if (kvmppc_ipi_thread(cpu + vcpu->arch.ptid))
		return;
128 129

	/* CPU points to the first thread of the core */
130 131
	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
		smp_send_reschedule(cpu);
132 133
}

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
/*
 * We use the vcpu_load/put functions to measure stolen time.
 * Stolen time is counted as time when either the vcpu is able to
 * run as part of a virtual core, but the task running the vcore
 * is preempted or sleeping, or when the vcpu needs something done
 * in the kernel by the task running the vcpu, but that task is
 * preempted or sleeping.  Those two things have to be counted
 * separately, since one of the vcpu tasks will take on the job
 * of running the core, and the other vcpu tasks in the vcore will
 * sleep waiting for it to do that, but that sleep shouldn't count
 * as stolen time.
 *
 * Hence we accumulate stolen time when the vcpu can run as part of
 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
 * needs its task to do other things in the kernel (for example,
 * service a page fault) in busy_stolen.  We don't accumulate
 * stolen time for a vcore when it is inactive, or for a vcpu
 * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
 * a misnomer; it means that the vcpu task is not executing in
 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
 * the kernel.  We don't have any way of dividing up that time
 * between time that the vcpu is genuinely stopped, time that
 * the task is actively working on behalf of the vcpu, and time
 * that the task is preempted, so we don't count any of it as
 * stolen.
 *
 * Updates to busy_stolen are protected by arch.tbacct_lock;
161 162 163 164
 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
 * lock.  The stolen times are measured in units of timebase ticks.
 * (Note that the != TB_NIL checks below are purely defensive;
 * they should never fail.)
165 166
 */

167
static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
168
{
169
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
170
	unsigned long flags;
171

172 173 174 175 176 177 178 179 180 181 182 183 184
	/*
	 * We can test vc->runner without taking the vcore lock,
	 * because only this task ever sets vc->runner to this
	 * vcpu, and once it is set to this vcpu, only this task
	 * ever sets it to NULL.
	 */
	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE) {
		spin_lock_irqsave(&vc->stoltb_lock, flags);
		if (vc->preempt_tb != TB_NIL) {
			vc->stolen_tb += mftb() - vc->preempt_tb;
			vc->preempt_tb = TB_NIL;
		}
		spin_unlock_irqrestore(&vc->stoltb_lock, flags);
185
	}
186
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
187 188 189 190 191
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
	    vcpu->arch.busy_preempt != TB_NIL) {
		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
		vcpu->arch.busy_preempt = TB_NIL;
	}
192
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
193 194
}

195
static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
196
{
197
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
198
	unsigned long flags;
199

200 201
	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE) {
		spin_lock_irqsave(&vc->stoltb_lock, flags);
202
		vc->preempt_tb = mftb();
203 204 205
		spin_unlock_irqrestore(&vc->stoltb_lock, flags);
	}
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
206 207
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
		vcpu->arch.busy_preempt = mftb();
208
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
209 210
}

211
static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
212 213
{
	vcpu->arch.shregs.msr = msr;
214
	kvmppc_end_cede(vcpu);
215 216
}

217
void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
218 219 220 221
{
	vcpu->arch.pvr = pvr;
}

222 223 224 225 226 227 228 229
int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
{
	unsigned long pcr = 0;
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

	if (arch_compat) {
		switch (arch_compat) {
		case PVR_ARCH_205:
230 231 232 233 234
			/*
			 * If an arch bit is set in PCR, all the defined
			 * higher-order arch bits also have to be set.
			 */
			pcr = PCR_ARCH_206 | PCR_ARCH_205;
235 236 237
			break;
		case PVR_ARCH_206:
		case PVR_ARCH_206p:
238 239 240
			pcr = PCR_ARCH_206;
			break;
		case PVR_ARCH_207:
241 242 243 244
			break;
		default:
			return -EINVAL;
		}
245 246 247 248 249 250 251

		if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
			/* POWER7 can't emulate POWER8 */
			if (!(pcr & PCR_ARCH_206))
				return -EINVAL;
			pcr &= ~PCR_ARCH_206;
		}
252 253 254 255 256 257 258 259 260 261
	}

	spin_lock(&vc->lock);
	vc->arch_compat = arch_compat;
	vc->pcr = pcr;
	spin_unlock(&vc->lock);

	return 0;
}

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
{
	int r;

	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
	for (r = 0; r < 16; ++r)
		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
		       r, kvmppc_get_gpr(vcpu, r),
		       r+16, kvmppc_get_gpr(vcpu, r+16));
	pr_err("ctr = %.16lx  lr  = %.16lx\n",
	       vcpu->arch.ctr, vcpu->arch.lr);
	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
	pr_err("fault dar = %.16lx dsisr = %.8x\n",
	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
	for (r = 0; r < vcpu->arch.slb_max; ++r)
		pr_err("  ESID = %.16llx VSID = %.16llx\n",
		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
291
	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
292 293 294
	       vcpu->arch.last_inst);
}

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
{
	int r;
	struct kvm_vcpu *v, *ret = NULL;

	mutex_lock(&kvm->lock);
	kvm_for_each_vcpu(r, v, kvm) {
		if (v->vcpu_id == id) {
			ret = v;
			break;
		}
	}
	mutex_unlock(&kvm->lock);
	return ret;
}

static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
{
313
	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
314
	vpa->yield_count = cpu_to_be32(1);
315 316
}

317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
		   unsigned long addr, unsigned long len)
{
	/* check address is cacheline aligned */
	if (addr & (L1_CACHE_BYTES - 1))
		return -EINVAL;
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (v->next_gpa != addr || v->len != len) {
		v->next_gpa = addr;
		v->len = addr ? len : 0;
		v->update_pending = 1;
	}
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return 0;
}

333 334 335 336
/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
struct reg_vpa {
	u32 dummy;
	union {
337 338
		__be16 hword;
		__be32 word;
339 340 341 342 343 344 345 346 347 348
	} length;
};

static int vpa_is_registered(struct kvmppc_vpa *vpap)
{
	if (vpap->update_pending)
		return vpap->next_gpa != 0;
	return vpap->pinned_addr != NULL;
}

349 350 351 352 353
static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
				       unsigned long flags,
				       unsigned long vcpuid, unsigned long vpa)
{
	struct kvm *kvm = vcpu->kvm;
354
	unsigned long len, nb;
355 356
	void *va;
	struct kvm_vcpu *tvcpu;
357 358 359
	int err;
	int subfunc;
	struct kvmppc_vpa *vpap;
360 361 362 363 364

	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
	if (!tvcpu)
		return H_PARAMETER;

365 366 367 368 369
	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
	    subfunc == H_VPA_REG_SLB) {
		/* Registering new area - address must be cache-line aligned */
		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
370
			return H_PARAMETER;
371 372

		/* convert logical addr to kernel addr and read length */
373 374
		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
		if (va == NULL)
375
			return H_PARAMETER;
376
		if (subfunc == H_VPA_REG_VPA)
377
			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
378
		else
379
			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
380
		kvmppc_unpin_guest_page(kvm, va, vpa, false);
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396

		/* Check length */
		if (len > nb || len < sizeof(struct reg_vpa))
			return H_PARAMETER;
	} else {
		vpa = 0;
		len = 0;
	}

	err = H_PARAMETER;
	vpap = NULL;
	spin_lock(&tvcpu->arch.vpa_update_lock);

	switch (subfunc) {
	case H_VPA_REG_VPA:		/* register VPA */
		if (len < sizeof(struct lppaca))
397
			break;
398 399 400 401 402 403
		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_REG_DTL:		/* register DTL */
		if (len < sizeof(struct dtl_entry))
404
			break;
405 406 407 408 409
		len -= len % sizeof(struct dtl_entry);

		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
410
			break;
411 412 413 414 415 416 417 418 419

		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
420
			break;
421 422 423 424 425 426 427 428 429 430

		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;

	case H_VPA_DEREG_VPA:		/* deregister VPA */
		/* Check they don't still have a DTL or SLB buf registered */
		err = H_RESOURCE;
		if (vpa_is_registered(&tvcpu->arch.dtl) ||
		    vpa_is_registered(&tvcpu->arch.slb_shadow))
431
			break;
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_DEREG_DTL:		/* deregister DTL */
		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;
	}

	if (vpap) {
		vpap->next_gpa = vpa;
		vpap->len = len;
		vpap->update_pending = 1;
452
	}
453

454 455
	spin_unlock(&tvcpu->arch.vpa_update_lock);

456
	return err;
457 458
}

459
static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
460
{
461
	struct kvm *kvm = vcpu->kvm;
462 463
	void *va;
	unsigned long nb;
464
	unsigned long gpa;
465

466 467 468 469 470 471 472 473 474 475 476 477 478 479
	/*
	 * We need to pin the page pointed to by vpap->next_gpa,
	 * but we can't call kvmppc_pin_guest_page under the lock
	 * as it does get_user_pages() and down_read().  So we
	 * have to drop the lock, pin the page, then get the lock
	 * again and check that a new area didn't get registered
	 * in the meantime.
	 */
	for (;;) {
		gpa = vpap->next_gpa;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		va = NULL;
		nb = 0;
		if (gpa)
480
			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
481 482 483 484 485
		spin_lock(&vcpu->arch.vpa_update_lock);
		if (gpa == vpap->next_gpa)
			break;
		/* sigh... unpin that one and try again */
		if (va)
486
			kvmppc_unpin_guest_page(kvm, va, gpa, false);
487 488 489 490 491 492 493 494 495
	}

	vpap->update_pending = 0;
	if (va && nb < vpap->len) {
		/*
		 * If it's now too short, it must be that userspace
		 * has changed the mappings underlying guest memory,
		 * so unregister the region.
		 */
496
		kvmppc_unpin_guest_page(kvm, va, gpa, false);
497
		va = NULL;
498 499
	}
	if (vpap->pinned_addr)
500 501 502
		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
					vpap->dirty);
	vpap->gpa = gpa;
503
	vpap->pinned_addr = va;
504
	vpap->dirty = false;
505 506 507 508 509 510
	if (va)
		vpap->pinned_end = va + vpap->len;
}

static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
{
511 512 513 514 515
	if (!(vcpu->arch.vpa.update_pending ||
	      vcpu->arch.slb_shadow.update_pending ||
	      vcpu->arch.dtl.update_pending))
		return;

516 517
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (vcpu->arch.vpa.update_pending) {
518
		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
519 520
		if (vcpu->arch.vpa.pinned_addr)
			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
521 522
	}
	if (vcpu->arch.dtl.update_pending) {
523
		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
524 525 526 527
		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
		vcpu->arch.dtl_index = 0;
	}
	if (vcpu->arch.slb_shadow.update_pending)
528
		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
529 530 531
	spin_unlock(&vcpu->arch.vpa_update_lock);
}

532 533 534 535 536 537 538
/*
 * Return the accumulated stolen time for the vcore up until `now'.
 * The caller should hold the vcore lock.
 */
static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
{
	u64 p;
539
	unsigned long flags;
540

541 542
	spin_lock_irqsave(&vc->stoltb_lock, flags);
	p = vc->stolen_tb;
543
	if (vc->vcore_state != VCORE_INACTIVE &&
544 545 546
	    vc->preempt_tb != TB_NIL)
		p += now - vc->preempt_tb;
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
547 548 549
	return p;
}

550 551 552 553 554
static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
				    struct kvmppc_vcore *vc)
{
	struct dtl_entry *dt;
	struct lppaca *vpa;
555 556 557
	unsigned long stolen;
	unsigned long core_stolen;
	u64 now;
558 559 560

	dt = vcpu->arch.dtl_ptr;
	vpa = vcpu->arch.vpa.pinned_addr;
561 562 563 564
	now = mftb();
	core_stolen = vcore_stolen_time(vc, now);
	stolen = core_stolen - vcpu->arch.stolen_logged;
	vcpu->arch.stolen_logged = core_stolen;
565
	spin_lock_irq(&vcpu->arch.tbacct_lock);
566 567
	stolen += vcpu->arch.busy_stolen;
	vcpu->arch.busy_stolen = 0;
568
	spin_unlock_irq(&vcpu->arch.tbacct_lock);
569 570 571 572
	if (!dt || !vpa)
		return;
	memset(dt, 0, sizeof(struct dtl_entry));
	dt->dispatch_reason = 7;
573 574 575 576 577
	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
	dt->timebase = cpu_to_be64(now + vc->tb_offset);
	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
578 579 580 581 582 583
	++dt;
	if (dt == vcpu->arch.dtl.pinned_end)
		dt = vcpu->arch.dtl.pinned_addr;
	vcpu->arch.dtl_ptr = dt;
	/* order writing *dt vs. writing vpa->dtl_idx */
	smp_wmb();
584
	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
585
	vcpu->arch.dtl.dirty = true;
586 587
}

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
		return true;
	if ((!vcpu->arch.vcore->arch_compat) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		return true;
	return false;
}

static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
			     unsigned long resource, unsigned long value1,
			     unsigned long value2)
{
	switch (resource) {
	case H_SET_MODE_RESOURCE_SET_CIABR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
		if (value2)
			return H_P4;
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		/* Guests can't breakpoint the hypervisor */
		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
			return H_P3;
		vcpu->arch.ciabr  = value1;
		return H_SUCCESS;
	case H_SET_MODE_RESOURCE_SET_DAWR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		if (value2 & DABRX_HYP)
			return H_P4;
		vcpu->arch.dawr  = value1;
		vcpu->arch.dawrx = value2;
		return H_SUCCESS;
	default:
		return H_TOO_HARD;
	}
}

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
{
	struct kvmppc_vcore *vcore = target->arch.vcore;

	/*
	 * We expect to have been called by the real mode handler
	 * (kvmppc_rm_h_confer()) which would have directly returned
	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
	 * have useful work to do and should not confer) so we don't
	 * recheck that here.
	 */

	spin_lock(&vcore->lock);
	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
	    vcore->vcore_state != VCORE_INACTIVE)
		target = vcore->runner;
	spin_unlock(&vcore->lock);

	return kvm_vcpu_yield_to(target);
}

static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
{
	int yield_count = 0;
	struct lppaca *lppaca;

	spin_lock(&vcpu->arch.vpa_update_lock);
	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
	if (lppaca)
659
		yield_count = be32_to_cpu(lppaca->yield_count);
660 661 662 663
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return yield_count;
}

664 665 666 667
int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
{
	unsigned long req = kvmppc_get_gpr(vcpu, 3);
	unsigned long target, ret = H_SUCCESS;
668
	int yield_count;
669
	struct kvm_vcpu *tvcpu;
670
	int idx, rc;
671

672 673 674 675
	if (req <= MAX_HCALL_OPCODE &&
	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
		return RESUME_HOST;

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
	switch (req) {
	case H_CEDE:
		break;
	case H_PROD:
		target = kvmppc_get_gpr(vcpu, 4);
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		tvcpu->arch.prodded = 1;
		smp_mb();
		if (vcpu->arch.ceded) {
			if (waitqueue_active(&vcpu->wq)) {
				wake_up_interruptible(&vcpu->wq);
				vcpu->stat.halt_wakeup++;
			}
		}
		break;
	case H_CONFER:
696 697 698 699 700 701 702 703
		target = kvmppc_get_gpr(vcpu, 4);
		if (target == -1)
			break;
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
704 705 706 707
		yield_count = kvmppc_get_gpr(vcpu, 5);
		if (kvmppc_get_yield_count(tvcpu) != yield_count)
			break;
		kvm_arch_vcpu_yield_to(tvcpu);
708 709 710 711 712 713
		break;
	case H_REGISTER_VPA:
		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6));
		break;
714 715 716 717
	case H_RTAS:
		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
			return RESUME_HOST;

718
		idx = srcu_read_lock(&vcpu->kvm->srcu);
719
		rc = kvmppc_rtas_hcall(vcpu);
720
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
721 722 723 724 725 726 727 728

		if (rc == -ENOENT)
			return RESUME_HOST;
		else if (rc == 0)
			break;

		/* Send the error out to userspace via KVM_RUN */
		return rc;
729 730 731 732 733 734 735 736 737 738
	case H_LOGICAL_CI_LOAD:
		ret = kvmppc_h_logical_ci_load(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_LOGICAL_CI_STORE:
		ret = kvmppc_h_logical_ci_store(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
739 740 741 742 743 744 745 746
	case H_SET_MODE:
		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6),
					kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
747 748 749 750
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
751 752
	case H_IPOLL:
	case H_XIRR_X:
753 754 755 756
		if (kvmppc_xics_enabled(vcpu)) {
			ret = kvmppc_xics_hcall(vcpu, req);
			break;
		} /* fallthrough */
757 758 759 760 761 762 763 764
	default:
		return RESUME_HOST;
	}
	kvmppc_set_gpr(vcpu, 3, ret);
	vcpu->arch.hcall_needed = 0;
	return RESUME_GUEST;
}

765 766 767 768 769 770 771
static int kvmppc_hcall_impl_hv(unsigned long cmd)
{
	switch (cmd) {
	case H_CEDE:
	case H_PROD:
	case H_CONFER:
	case H_REGISTER_VPA:
772
	case H_SET_MODE:
773 774
	case H_LOGICAL_CI_LOAD:
	case H_LOGICAL_CI_STORE:
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
#ifdef CONFIG_KVM_XICS
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
	case H_IPOLL:
	case H_XIRR_X:
#endif
		return 1;
	}

	/* See if it's in the real-mode table */
	return kvmppc_hcall_impl_hv_realmode(cmd);
}

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
static int kvmppc_emulate_debug_inst(struct kvm_run *run,
					struct kvm_vcpu *vcpu)
{
	u32 last_inst;

	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
					EMULATE_DONE) {
		/*
		 * Fetch failed, so return to guest and
		 * try executing it again.
		 */
		return RESUME_GUEST;
	}

	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
		run->exit_reason = KVM_EXIT_DEBUG;
		run->debug.arch.address = kvmppc_get_pc(vcpu);
		return RESUME_HOST;
	} else {
		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
		return RESUME_GUEST;
	}
}

814 815
static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				 struct task_struct *tsk)
816 817 818 819 820 821 822 823 824 825 826 827 828 829
{
	int r = RESUME_HOST;

	vcpu->stat.sum_exits++;

	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
830
	case BOOK3S_INTERRUPT_H_DOORBELL:
831 832 833
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
834 835
	/* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
	case BOOK3S_INTERRUPT_HMI:
836 837 838
	case BOOK3S_INTERRUPT_PERFMON:
		r = RESUME_GUEST;
		break;
839 840 841 842 843 844 845 846 847 848 849
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
		/*
		 * Deliver a machine check interrupt to the guest.
		 * We have to do this, even if the host has handled the
		 * machine check, because machine checks use SRR0/1 and
		 * the interrupt might have trashed guest state in them.
		 */
		kvmppc_book3s_queue_irqprio(vcpu,
					    BOOK3S_INTERRUPT_MACHINE_CHECK);
		r = RESUME_GUEST;
		break;
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
	case BOOK3S_INTERRUPT_PROGRAM:
	{
		ulong flags;
		/*
		 * Normally program interrupts are delivered directly
		 * to the guest by the hardware, but we can get here
		 * as a result of a hypervisor emulation interrupt
		 * (e40) getting turned into a 700 by BML RTAS.
		 */
		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
	{
		/* hcall - punt to userspace */
		int i;

869 870 871 872
		/* hypercall with MSR_PR has already been handled in rmode,
		 * and never reaches here.
		 */

873 874 875 876 877 878 879 880 881
		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
		for (i = 0; i < 9; ++i)
			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
		run->exit_reason = KVM_EXIT_PAPR_HCALL;
		vcpu->arch.hcall_needed = 1;
		r = RESUME_HOST;
		break;
	}
	/*
882 883 884 885 886
	 * We get these next two if the guest accesses a page which it thinks
	 * it has mapped but which is not actually present, either because
	 * it is for an emulated I/O device or because the corresonding
	 * host page has been paged out.  Any other HDSI/HISI interrupts
	 * have been handled already.
887 888
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
889
		r = RESUME_PAGE_FAULT;
890 891
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
892 893 894
		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
		vcpu->arch.fault_dsisr = 0;
		r = RESUME_PAGE_FAULT;
895 896 897
		break;
	/*
	 * This occurs if the guest executes an illegal instruction.
898 899 900 901
	 * If the guest debug is disabled, generate a program interrupt
	 * to the guest. If guest debug is enabled, we need to check
	 * whether the instruction is a software breakpoint instruction.
	 * Accordingly return to Guest or Host.
902 903
	 */
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
904 905 906 907
		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
				swab32(vcpu->arch.emul_inst) :
				vcpu->arch.emul_inst;
908 909 910 911 912 913
		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
			r = kvmppc_emulate_debug_inst(run, vcpu);
		} else {
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			r = RESUME_GUEST;
		}
914 915 916 917 918 919 920 921
		break;
	/*
	 * This occurs if the guest (kernel or userspace), does something that
	 * is prohibited by HFSCR.  We just generate a program interrupt to
	 * the guest.
	 */
	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
922 923 924 925 926 927 928
		r = RESUME_GUEST;
		break;
	default:
		kvmppc_dump_regs(vcpu);
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
929
		run->hw.hardware_exit_reason = vcpu->arch.trap;
930 931 932 933 934 935 936
		r = RESUME_HOST;
		break;
	}

	return r;
}

937 938
static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
939 940 941 942
{
	int i;

	memset(sregs, 0, sizeof(struct kvm_sregs));
943
	sregs->pvr = vcpu->arch.pvr;
944 945 946 947 948 949 950 951
	for (i = 0; i < vcpu->arch.slb_max; i++) {
		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
	}

	return 0;
}

952 953
static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
954 955 956
{
	int i, j;

957 958 959
	/* Only accept the same PVR as the host's, since we can't spoof it */
	if (sregs->pvr != vcpu->arch.pvr)
		return -EINVAL;
960 961 962 963 964 965 966 967 968 969 970 971 972 973

	j = 0;
	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
			++j;
		}
	}
	vcpu->arch.slb_max = j;

	return 0;
}

974 975
static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
		bool preserve_top32)
976
{
977
	struct kvm *kvm = vcpu->kvm;
978 979 980
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	u64 mask;

981
	mutex_lock(&kvm->lock);
982
	spin_lock(&vc->lock);
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
	/*
	 * If ILE (interrupt little-endian) has changed, update the
	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
	 */
	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
		struct kvm_vcpu *vcpu;
		int i;

		kvm_for_each_vcpu(i, vcpu, kvm) {
			if (vcpu->arch.vcore != vc)
				continue;
			if (new_lpcr & LPCR_ILE)
				vcpu->arch.intr_msr |= MSR_LE;
			else
				vcpu->arch.intr_msr &= ~MSR_LE;
		}
	}

1001 1002 1003
	/*
	 * Userspace can only modify DPFD (default prefetch depth),
	 * ILE (interrupt little-endian) and TC (translation control).
1004
	 * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
1005 1006
	 */
	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1007 1008
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		mask |= LPCR_AIL;
1009 1010 1011 1012

	/* Broken 32-bit version of LPCR must not clear top bits */
	if (preserve_top32)
		mask &= 0xFFFFFFFF;
1013 1014
	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
	spin_unlock(&vc->lock);
1015
	mutex_unlock(&kvm->lock);
1016 1017
}

1018 1019
static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1020
{
1021 1022
	int r = 0;
	long int i;
1023

1024
	switch (id) {
1025 1026 1027
	case KVM_REG_PPC_DEBUG_INST:
		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
		break;
1028
	case KVM_REG_PPC_HIOR:
1029 1030 1031 1032 1033
		*val = get_reg_val(id, 0);
		break;
	case KVM_REG_PPC_DABR:
		*val = get_reg_val(id, vcpu->arch.dabr);
		break;
1034 1035 1036
	case KVM_REG_PPC_DABRX:
		*val = get_reg_val(id, vcpu->arch.dabrx);
		break;
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
	case KVM_REG_PPC_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr);
		break;
	case KVM_REG_PPC_PURR:
		*val = get_reg_val(id, vcpu->arch.purr);
		break;
	case KVM_REG_PPC_SPURR:
		*val = get_reg_val(id, vcpu->arch.spurr);
		break;
	case KVM_REG_PPC_AMR:
		*val = get_reg_val(id, vcpu->arch.amr);
		break;
	case KVM_REG_PPC_UAMOR:
		*val = get_reg_val(id, vcpu->arch.uamor);
		break;
1052
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1053 1054 1055 1056 1057 1058
		i = id - KVM_REG_PPC_MMCR0;
		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1059
		break;
1060 1061 1062 1063
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		*val = get_reg_val(id, vcpu->arch.spmc[i]);
		break;
1064 1065 1066 1067 1068 1069
	case KVM_REG_PPC_SIAR:
		*val = get_reg_val(id, vcpu->arch.siar);
		break;
	case KVM_REG_PPC_SDAR:
		*val = get_reg_val(id, vcpu->arch.sdar);
		break;
1070 1071
	case KVM_REG_PPC_SIER:
		*val = get_reg_val(id, vcpu->arch.sier);
1072
		break;
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	case KVM_REG_PPC_IAMR:
		*val = get_reg_val(id, vcpu->arch.iamr);
		break;
	case KVM_REG_PPC_PSPB:
		*val = get_reg_val(id, vcpu->arch.pspb);
		break;
	case KVM_REG_PPC_DPDES:
		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
		break;
	case KVM_REG_PPC_DAWR:
		*val = get_reg_val(id, vcpu->arch.dawr);
		break;
	case KVM_REG_PPC_DAWRX:
		*val = get_reg_val(id, vcpu->arch.dawrx);
		break;
	case KVM_REG_PPC_CIABR:
		*val = get_reg_val(id, vcpu->arch.ciabr);
		break;
	case KVM_REG_PPC_CSIGR:
		*val = get_reg_val(id, vcpu->arch.csigr);
		break;
	case KVM_REG_PPC_TACR:
		*val = get_reg_val(id, vcpu->arch.tacr);
		break;
	case KVM_REG_PPC_TCSCR:
		*val = get_reg_val(id, vcpu->arch.tcscr);
		break;
	case KVM_REG_PPC_PID:
		*val = get_reg_val(id, vcpu->arch.pid);
		break;
	case KVM_REG_PPC_ACOP:
		*val = get_reg_val(id, vcpu->arch.acop);
		break;
	case KVM_REG_PPC_WORT:
		*val = get_reg_val(id, vcpu->arch.wort);
1108
		break;
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
	case KVM_REG_PPC_VPA_ADDR:
		spin_lock(&vcpu->arch.vpa_update_lock);
		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_SLB:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
		val->vpaval.length = vcpu->arch.slb_shadow.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_DTL:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
		val->vpaval.length = vcpu->arch.dtl.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
1126 1127 1128
	case KVM_REG_PPC_TB_OFFSET:
		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
		break;
1129
	case KVM_REG_PPC_LPCR:
1130
	case KVM_REG_PPC_LPCR_64:
1131 1132
		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
		break;
1133 1134 1135
	case KVM_REG_PPC_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr);
		break;
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		*val = get_reg_val(id, vcpu->arch.tfhar);
		break;
	case KVM_REG_PPC_TFIAR:
		*val = get_reg_val(id, vcpu->arch.tfiar);
		break;
	case KVM_REG_PPC_TEXASR:
		*val = get_reg_val(id, vcpu->arch.texasr);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
		else {
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				val->vval = vcpu->arch.vr_tm.vr[i-32];
			else
				r = -ENXIO;
		}
		break;
	}
	case KVM_REG_PPC_TM_CR:
		*val = get_reg_val(id, vcpu->arch.cr_tm);
		break;
	case KVM_REG_PPC_TM_LR:
		*val = get_reg_val(id, vcpu->arch.lr_tm);
		break;
	case KVM_REG_PPC_TM_CTR:
		*val = get_reg_val(id, vcpu->arch.ctr_tm);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
		break;
	case KVM_REG_PPC_TM_AMR:
		*val = get_reg_val(id, vcpu->arch.amr_tm);
		break;
	case KVM_REG_PPC_TM_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr_tm);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
		else
			r = -ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr_tm);
		break;
	case KVM_REG_PPC_TM_TAR:
		*val = get_reg_val(id, vcpu->arch.tar_tm);
		break;
#endif
1199 1200 1201
	case KVM_REG_PPC_ARCH_COMPAT:
		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
		break;
1202
	default:
1203
		r = -EINVAL;
1204 1205 1206 1207 1208 1209
		break;
	}

	return r;
}

1210 1211
static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1212
{
1213 1214
	int r = 0;
	long int i;
1215
	unsigned long addr, len;
1216

1217
	switch (id) {
1218 1219
	case KVM_REG_PPC_HIOR:
		/* Only allow this to be set to zero */
1220
		if (set_reg_val(id, *val))
1221 1222
			r = -EINVAL;
		break;
1223 1224 1225
	case KVM_REG_PPC_DABR:
		vcpu->arch.dabr = set_reg_val(id, *val);
		break;
1226 1227 1228
	case KVM_REG_PPC_DABRX:
		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
		break;
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
	case KVM_REG_PPC_DSCR:
		vcpu->arch.dscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PURR:
		vcpu->arch.purr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SPURR:
		vcpu->arch.spurr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_AMR:
		vcpu->arch.amr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_UAMOR:
		vcpu->arch.uamor = set_reg_val(id, *val);
		break;
1244
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1245 1246 1247 1248 1249 1250 1251
		i = id - KVM_REG_PPC_MMCR0;
		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		vcpu->arch.pmc[i] = set_reg_val(id, *val);
		break;
1252 1253 1254 1255
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		vcpu->arch.spmc[i] = set_reg_val(id, *val);
		break;
1256 1257 1258 1259 1260 1261
	case KVM_REG_PPC_SIAR:
		vcpu->arch.siar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SDAR:
		vcpu->arch.sdar = set_reg_val(id, *val);
		break;
1262 1263
	case KVM_REG_PPC_SIER:
		vcpu->arch.sier = set_reg_val(id, *val);
1264
		break;
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
	case KVM_REG_PPC_IAMR:
		vcpu->arch.iamr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PSPB:
		vcpu->arch.pspb = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DPDES:
		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DAWR:
		vcpu->arch.dawr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DAWRX:
		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
		break;
	case KVM_REG_PPC_CIABR:
		vcpu->arch.ciabr = set_reg_val(id, *val);
		/* Don't allow setting breakpoints in hypervisor code */
		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
		break;
	case KVM_REG_PPC_CSIGR:
		vcpu->arch.csigr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TACR:
		vcpu->arch.tacr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TCSCR:
		vcpu->arch.tcscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PID:
		vcpu->arch.pid = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_ACOP:
		vcpu->arch.acop = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_WORT:
		vcpu->arch.wort = set_reg_val(id, *val);
1303
		break;
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
	case KVM_REG_PPC_VPA_ADDR:
		addr = set_reg_val(id, *val);
		r = -EINVAL;
		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
			      vcpu->arch.dtl.next_gpa))
			break;
		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
		break;
	case KVM_REG_PPC_VPA_SLB:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
		if (addr && !vcpu->arch.vpa.next_gpa)
			break;
		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
		break;
	case KVM_REG_PPC_VPA_DTL:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
1324 1325
		if (addr && (len < sizeof(struct dtl_entry) ||
			     !vcpu->arch.vpa.next_gpa))
1326 1327 1328 1329
			break;
		len -= len % sizeof(struct dtl_entry);
		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
		break;
1330 1331 1332 1333 1334
	case KVM_REG_PPC_TB_OFFSET:
		/* round up to multiple of 2^24 */
		vcpu->arch.vcore->tb_offset =
			ALIGN(set_reg_val(id, *val), 1UL << 24);
		break;
1335
	case KVM_REG_PPC_LPCR:
1336 1337 1338 1339
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
		break;
	case KVM_REG_PPC_LPCR_64:
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1340
		break;
1341 1342 1343
	case KVM_REG_PPC_PPR:
		vcpu->arch.ppr = set_reg_val(id, *val);
		break;
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		vcpu->arch.tfhar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TFIAR:
		vcpu->arch.tfiar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TEXASR:
		vcpu->arch.texasr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
		else
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				vcpu->arch.vr_tm.vr[i-32] = val->vval;
			else
				r = -ENXIO;
		break;
	}
	case KVM_REG_PPC_TM_CR:
		vcpu->arch.cr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_LR:
		vcpu->arch.lr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_CTR:
		vcpu->arch.ctr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_AMR:
		vcpu->arch.amr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_PPR:
		vcpu->arch.ppr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
		else
			r = - ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		vcpu->arch.dscr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_TAR:
		vcpu->arch.tar_tm = set_reg_val(id, *val);
		break;
#endif
1406 1407 1408
	case KVM_REG_PPC_ARCH_COMPAT:
		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
		break;
1409
	default:
1410
		r = -EINVAL;
1411 1412 1413 1414 1415 1416
		break;
	}

	return r;
}

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
{
	struct kvmppc_vcore *vcore;

	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);

	if (vcore == NULL)
		return NULL;

	INIT_LIST_HEAD(&vcore->runnable_threads);
	spin_lock_init(&vcore->lock);
1428
	spin_lock_init(&vcore->stoltb_lock);
1429 1430 1431 1432 1433 1434
	init_waitqueue_head(&vcore->wq);
	vcore->preempt_tb = TB_NIL;
	vcore->lpcr = kvm->arch.lpcr;
	vcore->first_vcpuid = core * threads_per_subcore;
	vcore->kvm = kvm;

1435 1436 1437 1438 1439 1440 1441
	vcore->mpp_buffer_is_valid = false;

	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		vcore->mpp_buffer = (void *)__get_free_pages(
			GFP_KERNEL|__GFP_ZERO,
			MPP_BUFFER_ORDER);

1442 1443 1444
	return vcore;
}

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
static struct debugfs_timings_element {
	const char *name;
	size_t offset;
} timings[] = {
	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
};

#define N_TIMINGS	(sizeof(timings) / sizeof(timings[0]))

struct debugfs_timings_state {
	struct kvm_vcpu	*vcpu;
	unsigned int	buflen;
	char		buf[N_TIMINGS * 100];
};

static int debugfs_timings_open(struct inode *inode, struct file *file)
{
	struct kvm_vcpu *vcpu = inode->i_private;
	struct debugfs_timings_state *p;

	p = kzalloc(sizeof(*p), GFP_KERNEL);
	if (!p)
		return -ENOMEM;

	kvm_get_kvm(vcpu->kvm);
	p->vcpu = vcpu;
	file->private_data = p;

	return nonseekable_open(inode, file);
}

static int debugfs_timings_release(struct inode *inode, struct file *file)
{
	struct debugfs_timings_state *p = file->private_data;

	kvm_put_kvm(p->vcpu->kvm);
	kfree(p);
	return 0;
}

static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
				    size_t len, loff_t *ppos)
{
	struct debugfs_timings_state *p = file->private_data;
	struct kvm_vcpu *vcpu = p->vcpu;
	char *s, *buf_end;
	struct kvmhv_tb_accumulator tb;
	u64 count;
	loff_t pos;
	ssize_t n;
	int i, loops;
	bool ok;

	if (!p->buflen) {
		s = p->buf;
		buf_end = s + sizeof(p->buf);
		for (i = 0; i < N_TIMINGS; ++i) {
			struct kvmhv_tb_accumulator *acc;

			acc = (struct kvmhv_tb_accumulator *)
				((unsigned long)vcpu + timings[i].offset);
			ok = false;
			for (loops = 0; loops < 1000; ++loops) {
				count = acc->seqcount;
				if (!(count & 1)) {
					smp_rmb();
					tb = *acc;
					smp_rmb();
					if (count == acc->seqcount) {
						ok = true;
						break;
					}
				}
				udelay(1);
			}
			if (!ok)
				snprintf(s, buf_end - s, "%s: stuck\n",
					timings[i].name);
			else
				snprintf(s, buf_end - s,
					"%s: %llu %llu %llu %llu\n",
					timings[i].name, count / 2,
					tb_to_ns(tb.tb_total),
					tb_to_ns(tb.tb_min),
					tb_to_ns(tb.tb_max));
			s += strlen(s);
		}
		p->buflen = s - p->buf;
	}

	pos = *ppos;
	if (pos >= p->buflen)
		return 0;
	if (len > p->buflen - pos)
		len = p->buflen - pos;
	n = copy_to_user(buf, p->buf + pos, len);
	if (n) {
		if (n == len)
			return -EFAULT;
		len -= n;
	}
	*ppos = pos + len;
	return len;
}

static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
				     size_t len, loff_t *ppos)
{
	return -EACCES;
}

static const struct file_operations debugfs_timings_ops = {
	.owner	 = THIS_MODULE,
	.open	 = debugfs_timings_open,
	.release = debugfs_timings_release,
	.read	 = debugfs_timings_read,
	.write	 = debugfs_timings_write,
	.llseek	 = generic_file_llseek,
};

/* Create a debugfs directory for the vcpu */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
	char buf[16];
	struct kvm *kvm = vcpu->kvm;

	snprintf(buf, sizeof(buf), "vcpu%u", id);
	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_timings =
		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
				    vcpu, &debugfs_timings_ops);
}

#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
}
#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */

1593 1594
static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
						   unsigned int id)
1595 1596
{
	struct kvm_vcpu *vcpu;
1597 1598 1599
	int err = -EINVAL;
	int core;
	struct kvmppc_vcore *vcore;
1600

1601
	core = id / threads_per_subcore;
1602 1603 1604 1605
	if (core >= KVM_MAX_VCORES)
		goto out;

	err = -ENOMEM;
1606
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1607 1608 1609 1610 1611 1612 1613 1614
	if (!vcpu)
		goto out;

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

	vcpu->arch.shared = &vcpu->arch.shregs;
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
	/*
	 * The shared struct is never shared on HV,
	 * so we can always use host endianness
	 */
#ifdef __BIG_ENDIAN__
	vcpu->arch.shared_big_endian = true;
#else
	vcpu->arch.shared_big_endian = false;
#endif
#endif
1626 1627 1628
	vcpu->arch.mmcr[0] = MMCR0_FC;
	vcpu->arch.ctrl = CTRL_RUNLATCH;
	/* default to host PVR, since we can't spoof it */
1629
	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1630
	spin_lock_init(&vcpu->arch.vpa_update_lock);
1631 1632
	spin_lock_init(&vcpu->arch.tbacct_lock);
	vcpu->arch.busy_preempt = TB_NIL;
1633
	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1634 1635 1636

	kvmppc_mmu_book3s_hv_init(vcpu);

1637
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1638 1639 1640 1641 1642 1643

	init_waitqueue_head(&vcpu->arch.cpu_run);

	mutex_lock(&kvm->lock);
	vcore = kvm->arch.vcores[core];
	if (!vcore) {
1644
		vcore = kvmppc_vcore_create(kvm, core);
1645
		kvm->arch.vcores[core] = vcore;
1646
		kvm->arch.online_vcores++;
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
	}
	mutex_unlock(&kvm->lock);

	if (!vcore)
		goto free_vcpu;

	spin_lock(&vcore->lock);
	++vcore->num_threads;
	spin_unlock(&vcore->lock);
	vcpu->arch.vcore = vcore;
1657
	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1658

1659 1660 1661
	vcpu->arch.cpu_type = KVM_CPU_3S_64;
	kvmppc_sanity_check(vcpu);

1662 1663
	debugfs_vcpu_init(vcpu, id);

1664 1665 1666
	return vcpu;

free_vcpu:
1667
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1668 1669 1670 1671
out:
	return ERR_PTR(err);
}

1672 1673 1674 1675 1676 1677 1678
static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
{
	if (vpa->pinned_addr)
		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
					vpa->dirty);
}

1679
static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1680
{
1681
	spin_lock(&vcpu->arch.vpa_update_lock);
1682 1683 1684
	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1685
	spin_unlock(&vcpu->arch.vpa_update_lock);
1686
	kvm_vcpu_uninit(vcpu);
1687
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1688 1689
}

1690 1691 1692 1693 1694 1695
static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
{
	/* Indicate we want to get back into the guest */
	return 1;
}

1696
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1697
{
1698
	unsigned long dec_nsec, now;
1699

1700 1701 1702 1703
	now = get_tb();
	if (now > vcpu->arch.dec_expires) {
		/* decrementer has already gone negative */
		kvmppc_core_queue_dec(vcpu);
1704
		kvmppc_core_prepare_to_enter(vcpu);
1705
		return;
1706
	}
1707 1708 1709 1710 1711
	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
		   / tb_ticks_per_sec;
	hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
		      HRTIMER_MODE_REL);
	vcpu->arch.timer_running = 1;
1712 1713
}

1714
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1715
{
1716 1717 1718 1719 1720
	vcpu->arch.ceded = 0;
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
1721 1722
}

1723
extern void __kvmppc_vcore_entry(void);
1724

1725 1726
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
				   struct kvm_vcpu *vcpu)
1727
{
1728 1729
	u64 now;

1730 1731
	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
1732
	spin_lock_irq(&vcpu->arch.tbacct_lock);
1733 1734 1735 1736 1737
	now = mftb();
	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
		vcpu->arch.stolen_logged;
	vcpu->arch.busy_preempt = now;
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1738
	spin_unlock_irq(&vcpu->arch.tbacct_lock);
1739 1740 1741 1742
	--vc->n_runnable;
	list_del(&vcpu->arch.run_list);
}

1743 1744 1745
static int kvmppc_grab_hwthread(int cpu)
{
	struct paca_struct *tpaca;
1746
	long timeout = 10000;
1747 1748 1749 1750

	tpaca = &paca[cpu];

	/* Ensure the thread won't go into the kernel if it wakes */
1751
	tpaca->kvm_hstate.kvm_vcpu = NULL;
1752 1753 1754
	tpaca->kvm_hstate.napping = 0;
	smp_wmb();
	tpaca->kvm_hstate.hwthread_req = 1;
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784

	/*
	 * If the thread is already executing in the kernel (e.g. handling
	 * a stray interrupt), wait for it to get back to nap mode.
	 * The smp_mb() is to ensure that our setting of hwthread_req
	 * is visible before we look at hwthread_state, so if this
	 * races with the code at system_reset_pSeries and the thread
	 * misses our setting of hwthread_req, we are sure to see its
	 * setting of hwthread_state, and vice versa.
	 */
	smp_mb();
	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
		if (--timeout <= 0) {
			pr_err("KVM: couldn't grab cpu %d\n", cpu);
			return -EBUSY;
		}
		udelay(1);
	}
	return 0;
}

static void kvmppc_release_hwthread(int cpu)
{
	struct paca_struct *tpaca;

	tpaca = &paca[cpu];
	tpaca->kvm_hstate.hwthread_req = 0;
	tpaca->kvm_hstate.kvm_vcpu = NULL;
}

1785 1786 1787 1788 1789 1790
static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
{
	int cpu;
	struct paca_struct *tpaca;
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

1791 1792 1793 1794
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
1795 1796 1797
	cpu = vc->pcpu + vcpu->arch.ptid;
	tpaca = &paca[cpu];
	tpaca->kvm_hstate.kvm_vcore = vc;
1798
	tpaca->kvm_hstate.ptid = vcpu->arch.ptid;
1799
	vcpu->cpu = vc->pcpu;
1800
	/* Order stores to hstate.kvm_vcore etc. before store to kvm_vcpu */
1801
	smp_wmb();
1802 1803
	tpaca->kvm_hstate.kvm_vcpu = vcpu;
	if (cpu != smp_processor_id())
1804
		kvmppc_ipi_thread(cpu);
1805
}
1806

1807
static void kvmppc_wait_for_nap(void)
1808
{
1809 1810
	int cpu = smp_processor_id();
	int i, loops;
1811

1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
	for (loops = 0; loops < 1000000; ++loops) {
		/*
		 * Check if all threads are finished.
		 * We set the vcpu pointer when starting a thread
		 * and the thread clears it when finished, so we look
		 * for any threads that still have a non-NULL vcpu ptr.
		 */
		for (i = 1; i < threads_per_subcore; ++i)
			if (paca[cpu + i].kvm_hstate.kvm_vcpu)
				break;
		if (i == threads_per_subcore) {
			HMT_medium();
			return;
1825
		}
1826
		HMT_low();
1827 1828
	}
	HMT_medium();
1829 1830 1831
	for (i = 1; i < threads_per_subcore; ++i)
		if (paca[cpu + i].kvm_hstate.kvm_vcpu)
			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
1832 1833 1834 1835
}

/*
 * Check that we are on thread 0 and that any other threads in
1836 1837
 * this core are off-line.  Then grab the threads so they can't
 * enter the kernel.
1838 1839 1840 1841
 */
static int on_primary_thread(void)
{
	int cpu = smp_processor_id();
1842
	int thr;
1843

1844 1845
	/* Are we on a primary subcore? */
	if (cpu_thread_in_subcore(cpu))
1846
		return 0;
1847 1848 1849

	thr = 0;
	while (++thr < threads_per_subcore)
1850 1851
		if (cpu_online(cpu + thr))
			return 0;
1852 1853

	/* Grab all hw threads so they can't go into the kernel */
1854
	for (thr = 1; thr < threads_per_subcore; ++thr) {
1855 1856 1857 1858 1859 1860 1861 1862
		if (kvmppc_grab_hwthread(cpu + thr)) {
			/* Couldn't grab one; let the others go */
			do {
				kvmppc_release_hwthread(cpu + thr);
			} while (--thr > 0);
			return 0;
		}
	}
1863 1864 1865
	return 1;
}

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
static void kvmppc_start_saving_l2_cache(struct kvmppc_vcore *vc)
{
	phys_addr_t phy_addr, mpp_addr;

	phy_addr = (phys_addr_t)virt_to_phys(vc->mpp_buffer);
	mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK;

	mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_ABORT);
	logmpp(mpp_addr | PPC_LOGMPP_LOG_L2);

	vc->mpp_buffer_is_valid = true;
}

static void kvmppc_start_restoring_l2_cache(const struct kvmppc_vcore *vc)
{
	phys_addr_t phy_addr, mpp_addr;

	phy_addr = virt_to_phys(vc->mpp_buffer);
	mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK;

	/* We must abort any in-progress save operations to ensure
	 * the table is valid so that prefetch engine knows when to
	 * stop prefetching. */
	logmpp(mpp_addr | PPC_LOGMPP_LOG_ABORT);
	mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_WHOLE_TABLE);
}

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
static void prepare_threads(struct kvmppc_vcore *vc)
{
	struct kvm_vcpu *vcpu, *vnext;

	list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
				 arch.run_list) {
		if (signal_pending(vcpu->arch.run_task))
			vcpu->arch.ret = -EINTR;
		else if (vcpu->arch.vpa.update_pending ||
			 vcpu->arch.slb_shadow.update_pending ||
			 vcpu->arch.dtl.update_pending)
			vcpu->arch.ret = RESUME_GUEST;
		else
			continue;
		kvmppc_remove_runnable(vc, vcpu);
		wake_up(&vcpu->arch.cpu_run);
	}
}

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
static void post_guest_process(struct kvmppc_vcore *vc)
{
	u64 now;
	long ret;
	struct kvm_vcpu *vcpu, *vnext;

	now = get_tb();
	list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
				 arch.run_list) {
		/* cancel pending dec exception if dec is positive */
		if (now < vcpu->arch.dec_expires &&
		    kvmppc_core_pending_dec(vcpu))
			kvmppc_core_dequeue_dec(vcpu);

		trace_kvm_guest_exit(vcpu);

		ret = RESUME_GUEST;
		if (vcpu->arch.trap)
			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
						    vcpu->arch.run_task);

		vcpu->arch.ret = ret;
		vcpu->arch.trap = 0;

		if (vcpu->arch.ceded) {
			if (!is_kvmppc_resume_guest(ret))
				kvmppc_end_cede(vcpu);
			else
				kvmppc_set_timer(vcpu);
		}
		if (!is_kvmppc_resume_guest(vcpu->arch.ret)) {
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
	}
}

1949 1950 1951 1952
/*
 * Run a set of guest threads on a physical core.
 * Called with vc->lock held.
 */
1953
static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
1954
{
1955
	struct kvm_vcpu *vcpu;
1956
	int i;
1957
	int srcu_idx;
1958

1959 1960 1961 1962 1963 1964 1965 1966 1967
	/*
	 * Remove from the list any threads that have a signal pending
	 * or need a VPA update done
	 */
	prepare_threads(vc);

	/* if the runner is no longer runnable, let the caller pick a new one */
	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
1968 1969

	/*
1970
	 * Initialize *vc.
1971
	 */
1972
	vc->entry_exit_map = 0;
1973
	vc->preempt_tb = TB_NIL;
1974 1975
	vc->in_guest = 0;
	vc->napping_threads = 0;
1976
	vc->conferring_threads = 0;
1977

1978
	/*
1979 1980 1981
	 * Make sure we are running on primary threads, and that secondary
	 * threads are offline.  Also check if the number of threads in this
	 * guest are greater than the current system threads per guest.
1982
	 */
1983 1984
	if ((threads_per_core > 1) &&
	    ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
1985
		list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1986
			vcpu->arch.ret = -EBUSY;
1987 1988 1989
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
1990 1991 1992
		goto out;
	}

1993

1994
	vc->pcpu = smp_processor_id();
1995
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1996
		kvmppc_start_thread(vcpu);
1997
		kvmppc_create_dtl_entry(vcpu, vc);
1998
		trace_kvm_guest_enter(vcpu);
1999
	}
2000

2001 2002 2003 2004
	/* Set this explicitly in case thread 0 doesn't have a vcpu */
	get_paca()->kvm_hstate.kvm_vcore = vc;
	get_paca()->kvm_hstate.ptid = 0;

2005
	vc->vcore_state = VCORE_RUNNING;
2006
	preempt_disable();
2007 2008 2009

	trace_kvmppc_run_core(vc, 0);

2010
	spin_unlock(&vc->lock);
2011

2012
	kvm_guest_enter();
2013

2014
	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2015

2016 2017 2018
	if (vc->mpp_buffer_is_valid)
		kvmppc_start_restoring_l2_cache(vc);

2019
	__kvmppc_vcore_entry();
2020

2021
	spin_lock(&vc->lock);
2022 2023 2024 2025

	if (vc->mpp_buffer)
		kvmppc_start_saving_l2_cache(vc);

2026 2027 2028 2029
	/* disable sending of IPIs on virtual external irqs */
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
		vcpu->cpu = -1;
	/* wait for secondary threads to finish writing their state to memory */
2030
	kvmppc_wait_for_nap();
2031
	for (i = 0; i < threads_per_subcore; ++i)
2032
		kvmppc_release_hwthread(vc->pcpu + i);
2033
	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
2034
	vc->vcore_state = VCORE_EXITING;
2035 2036
	spin_unlock(&vc->lock);

2037
	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2038

2039 2040
	/* make sure updates to secondary vcpu structs are visible now */
	smp_mb();
2041 2042 2043 2044
	kvm_guest_exit();

	preempt_enable();

2045
	spin_lock(&vc->lock);
2046
	post_guest_process(vc);
2047 2048

 out:
2049
	vc->vcore_state = VCORE_INACTIVE;
2050
	trace_kvmppc_run_core(vc, 1);
2051 2052
}

2053 2054 2055 2056 2057
/*
 * Wait for some other vcpu thread to execute us, and
 * wake us up when we need to handle something in the host.
 */
static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
2058 2059 2060
{
	DEFINE_WAIT(wait);

2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
		schedule();
	finish_wait(&vcpu->arch.cpu_run, &wait);
}

/*
 * All the vcpus in this vcore are idle, so wait for a decrementer
 * or external interrupt to one of the vcpus.  vc->lock is held.
 */
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
{
2073 2074 2075
	struct kvm_vcpu *vcpu;
	int do_sleep = 1;

2076 2077 2078
	DEFINE_WAIT(wait);

	prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095

	/*
	 * Check one last time for pending exceptions and ceded state after
	 * we put ourselves on the wait queue
	 */
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
		if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded) {
			do_sleep = 0;
			break;
		}
	}

	if (!do_sleep) {
		finish_wait(&vc->wq, &wait);
		return;
	}

2096
	vc->vcore_state = VCORE_SLEEPING;
2097
	trace_kvmppc_vcore_blocked(vc, 0);
2098
	spin_unlock(&vc->lock);
2099
	schedule();
2100 2101 2102
	finish_wait(&vc->wq, &wait);
	spin_lock(&vc->lock);
	vc->vcore_state = VCORE_INACTIVE;
2103
	trace_kvmppc_vcore_blocked(vc, 1);
2104
}
2105

2106 2107 2108 2109 2110
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
	int n_ceded;
	struct kvmppc_vcore *vc;
	struct kvm_vcpu *v, *vn;
2111

2112 2113
	trace_kvmppc_run_vcpu_enter(vcpu);

2114 2115 2116
	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;
2117
	kvmppc_update_vpas(vcpu);
2118 2119 2120 2121 2122 2123

	/*
	 * Synchronize with other threads in this virtual core
	 */
	vc = vcpu->arch.vcore;
	spin_lock(&vc->lock);
2124
	vcpu->arch.ceded = 0;
2125 2126
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
2127
	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
2128
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
2129
	vcpu->arch.busy_preempt = TB_NIL;
2130 2131 2132
	list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
	++vc->n_runnable;

2133 2134 2135 2136 2137
	/*
	 * This happens the first time this is called for a vcpu.
	 * If the vcore is already running, we may be able to start
	 * this thread straight away and have it join in.
	 */
2138
	if (!signal_pending(current)) {
2139
		if (vc->vcore_state == VCORE_RUNNING && !VCORE_IS_EXITING(vc)) {
2140
			kvmppc_create_dtl_entry(vcpu, vc);
2141
			kvmppc_start_thread(vcpu);
2142
			trace_kvm_guest_enter(vcpu);
2143 2144
		} else if (vc->vcore_state == VCORE_SLEEPING) {
			wake_up(&vc->wq);
2145 2146
		}

2147
	}
2148

2149 2150
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       !signal_pending(current)) {
2151
		if (vc->vcore_state != VCORE_INACTIVE) {
2152 2153 2154 2155 2156 2157 2158
			spin_unlock(&vc->lock);
			kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
			spin_lock(&vc->lock);
			continue;
		}
		list_for_each_entry_safe(v, vn, &vc->runnable_threads,
					 arch.run_list) {
2159
			kvmppc_core_prepare_to_enter(v);
2160 2161 2162 2163 2164 2165 2166 2167
			if (signal_pending(v->arch.run_task)) {
				kvmppc_remove_runnable(vc, v);
				v->stat.signal_exits++;
				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
				v->arch.ret = -EINTR;
				wake_up(&v->arch.cpu_run);
			}
		}
2168 2169 2170
		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
			break;
		n_ceded = 0;
2171
		list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
2172 2173
			if (!v->arch.pending_exceptions)
				n_ceded += v->arch.ceded;
2174 2175 2176
			else
				v->arch.ceded = 0;
		}
2177 2178
		vc->runner = vcpu;
		if (n_ceded == vc->n_runnable) {
2179
			kvmppc_vcore_blocked(vc);
2180 2181 2182 2183 2184 2185
		} else if (should_resched()) {
			vc->vcore_state = VCORE_PREEMPT;
			/* Let something else run */
			cond_resched_lock(&vc->lock);
			vc->vcore_state = VCORE_INACTIVE;
		} else {
2186
			kvmppc_run_core(vc);
2187
		}
2188
		vc->runner = NULL;
2189
	}
2190

2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       (vc->vcore_state == VCORE_RUNNING ||
		vc->vcore_state == VCORE_EXITING)) {
		spin_unlock(&vc->lock);
		kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
		spin_lock(&vc->lock);
	}

	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		kvmppc_remove_runnable(vc, vcpu);
		vcpu->stat.signal_exits++;
		kvm_run->exit_reason = KVM_EXIT_INTR;
		vcpu->arch.ret = -EINTR;
	}

	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
		/* Wake up some vcpu to run the core */
		v = list_first_entry(&vc->runnable_threads,
				     struct kvm_vcpu, arch.run_list);
		wake_up(&v->arch.cpu_run);
2211 2212
	}

2213
	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
2214 2215
	spin_unlock(&vc->lock);
	return vcpu->arch.ret;
2216 2217
}

2218
static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
2219 2220
{
	int r;
2221
	int srcu_idx;
2222

2223 2224 2225 2226 2227
	if (!vcpu->arch.sane) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return -EINVAL;
	}

2228 2229
	kvmppc_core_prepare_to_enter(vcpu);

2230 2231 2232 2233 2234 2235
	/* No need to go into the guest when all we'll do is come back out */
	if (signal_pending(current)) {
		run->exit_reason = KVM_EXIT_INTR;
		return -EINTR;
	}

2236
	atomic_inc(&vcpu->kvm->arch.vcpus_running);
2237
	/* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
2238 2239
	smp_mb();

2240
	/* On the first time here, set up HTAB and VRMA */
2241
	if (!vcpu->kvm->arch.hpte_setup_done) {
2242
		r = kvmppc_hv_setup_htab_rma(vcpu);
2243
		if (r)
2244
			goto out;
2245
	}
2246 2247 2248 2249 2250

	flush_fp_to_thread(current);
	flush_altivec_to_thread(current);
	flush_vsx_to_thread(current);
	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
2251
	vcpu->arch.pgdir = current->mm->pgd;
2252
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2253

2254 2255 2256 2257 2258
	do {
		r = kvmppc_run_vcpu(run, vcpu);

		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
		    !(vcpu->arch.shregs.msr & MSR_PR)) {
2259
			trace_kvm_hcall_enter(vcpu);
2260
			r = kvmppc_pseries_do_hcall(vcpu);
2261
			trace_kvm_hcall_exit(vcpu, r);
2262
			kvmppc_core_prepare_to_enter(vcpu);
2263 2264 2265 2266 2267
		} else if (r == RESUME_PAGE_FAULT) {
			srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
			r = kvmppc_book3s_hv_page_fault(run, vcpu,
				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
			srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2268
		}
2269
	} while (is_kvmppc_resume_guest(r));
2270 2271

 out:
2272
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2273
	atomic_dec(&vcpu->kvm->arch.vcpus_running);
2274 2275 2276
	return r;
}

2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
				     int linux_psize)
{
	struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];

	if (!def->shift)
		return;
	(*sps)->page_shift = def->shift;
	(*sps)->slb_enc = def->sllp;
	(*sps)->enc[0].page_shift = def->shift;
2287
	(*sps)->enc[0].pte_enc = def->penc[linux_psize];
2288 2289 2290 2291 2292 2293 2294
	/*
	 * Add 16MB MPSS support if host supports it
	 */
	if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
		(*sps)->enc[1].page_shift = 24;
		(*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
	}
2295 2296 2297
	(*sps)++;
}

2298 2299
static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
{
	struct kvm_ppc_one_seg_page_size *sps;

	info->flags = KVM_PPC_PAGE_SIZES_REAL;
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		info->flags |= KVM_PPC_1T_SEGMENTS;
	info->slb_size = mmu_slb_size;

	/* We only support these sizes for now, and no muti-size segments */
	sps = &info->sps[0];
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);

	return 0;
}

2317 2318 2319
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
2320 2321
static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
					 struct kvm_dirty_log *log)
2322 2323 2324 2325 2326 2327 2328 2329
{
	struct kvm_memory_slot *memslot;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
2330
	if (log->slot >= KVM_USER_MEM_SLOTS)
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
		goto out;

	memslot = id_to_memslot(kvm->memslots, log->slot);
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	n = kvm_dirty_bitmap_bytes(memslot);
	memset(memslot->dirty_bitmap, 0, n);

2341
	r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
	if (r)
		goto out;

	r = -EFAULT;
	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
		goto out;

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

2355 2356
static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
					struct kvm_memory_slot *dont)
2357 2358 2359 2360
{
	if (!dont || free->arch.rmap != dont->arch.rmap) {
		vfree(free->arch.rmap);
		free->arch.rmap = NULL;
2361
	}
2362 2363
}

2364 2365
static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
					 unsigned long npages)
2366 2367 2368 2369
{
	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
	if (!slot->arch.rmap)
		return -ENOMEM;
2370

2371 2372
	return 0;
}
2373

2374 2375 2376
static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
					struct kvm_memory_slot *memslot,
					struct kvm_userspace_memory_region *mem)
2377
{
2378
	return 0;
2379 2380
}

2381 2382 2383
static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
				struct kvm_userspace_memory_region *mem,
				const struct kvm_memory_slot *old)
2384
{
2385 2386 2387
	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
	struct kvm_memory_slot *memslot;

2388
	if (npages && old->npages) {
2389 2390 2391 2392 2393 2394 2395 2396 2397
		/*
		 * If modifying a memslot, reset all the rmap dirty bits.
		 * If this is a new memslot, we don't need to do anything
		 * since the rmap array starts out as all zeroes,
		 * i.e. no pages are dirty.
		 */
		memslot = id_to_memslot(kvm->memslots, mem->slot);
		kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
	}
2398 2399
}

2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
/*
 * Update LPCR values in kvm->arch and in vcores.
 * Caller must hold kvm->lock.
 */
void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
{
	long int i;
	u32 cores_done = 0;

	if ((kvm->arch.lpcr & mask) == lpcr)
		return;

	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;

	for (i = 0; i < KVM_MAX_VCORES; ++i) {
		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
		if (!vc)
			continue;
		spin_lock(&vc->lock);
		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
		spin_unlock(&vc->lock);
		if (++cores_done >= kvm->arch.online_vcores)
			break;
	}
}

2426 2427 2428 2429 2430
static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
{
	return;
}

2431
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
2432 2433 2434 2435 2436 2437
{
	int err = 0;
	struct kvm *kvm = vcpu->kvm;
	unsigned long hva;
	struct kvm_memory_slot *memslot;
	struct vm_area_struct *vma;
2438
	unsigned long lpcr = 0, senc;
2439
	unsigned long psize, porder;
2440
	int srcu_idx;
2441 2442

	mutex_lock(&kvm->lock);
2443
	if (kvm->arch.hpte_setup_done)
2444
		goto out;	/* another vcpu beat us to it */
2445

2446 2447 2448 2449 2450 2451 2452 2453 2454
	/* Allocate hashed page table (if not done already) and reset it */
	if (!kvm->arch.hpt_virt) {
		err = kvmppc_alloc_hpt(kvm, NULL);
		if (err) {
			pr_err("KVM: Couldn't alloc HPT\n");
			goto out;
		}
	}

2455
	/* Look up the memslot for guest physical address 0 */
2456
	srcu_idx = srcu_read_lock(&kvm->srcu);
2457
	memslot = gfn_to_memslot(kvm, 0);
2458

2459 2460 2461
	/* We must have some memory at 0 by now */
	err = -EINVAL;
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
2462
		goto out_srcu;
2463 2464 2465 2466 2467 2468 2469 2470 2471

	/* Look up the VMA for the start of this memory slot */
	hva = memslot->userspace_addr;
	down_read(&current->mm->mmap_sem);
	vma = find_vma(current->mm, hva);
	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
		goto up_out;

	psize = vma_kernel_pagesize(vma);
2472
	porder = __ilog2(psize);
2473 2474 2475

	up_read(&current->mm->mmap_sem);

2476 2477 2478 2479 2480
	/* We can handle 4k, 64k or 16M pages in the VRMA */
	err = -EINVAL;
	if (!(psize == 0x1000 || psize == 0x10000 ||
	      psize == 0x1000000))
		goto out_srcu;
2481

2482 2483 2484 2485 2486 2487
	/* Update VRMASD field in the LPCR */
	senc = slb_pgsize_encoding(psize);
	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* the -4 is to account for senc values starting at 0x10 */
	lpcr = senc << (LPCR_VRMASD_SH - 4);
2488

2489 2490
	/* Create HPTEs in the hash page table for the VRMA */
	kvmppc_map_vrma(vcpu, memslot, porder);
2491

2492
	kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
2493

2494
	/* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
2495
	smp_wmb();
2496
	kvm->arch.hpte_setup_done = 1;
2497
	err = 0;
2498 2499
 out_srcu:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
2500 2501 2502
 out:
	mutex_unlock(&kvm->lock);
	return err;
2503

2504 2505
 up_out:
	up_read(&current->mm->mmap_sem);
2506
	goto out_srcu;
2507 2508
}

2509
static int kvmppc_core_init_vm_hv(struct kvm *kvm)
2510
{
2511
	unsigned long lpcr, lpid;
2512
	char buf[32];
2513

2514 2515 2516
	/* Allocate the guest's logical partition ID */

	lpid = kvmppc_alloc_lpid();
2517
	if ((long)lpid < 0)
2518 2519
		return -ENOMEM;
	kvm->arch.lpid = lpid;
2520

2521 2522 2523 2524 2525 2526 2527
	/*
	 * Since we don't flush the TLB when tearing down a VM,
	 * and this lpid might have previously been used,
	 * make sure we flush on each core before running the new VM.
	 */
	cpumask_setall(&kvm->arch.need_tlb_flush);

2528 2529 2530 2531
	/* Start out with the default set of hcalls enabled */
	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
	       sizeof(kvm->arch.enabled_hcalls));

2532
	kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
2533

2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
	/* Init LPCR for virtual RMA mode */
	kvm->arch.host_lpid = mfspr(SPRN_LPID);
	kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
	lpcr &= LPCR_PECE | LPCR_LPES;
	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
		LPCR_VPM0 | LPCR_VPM1;
	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* On POWER8 turn on online bit to enable PURR/SPURR */
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		lpcr |= LPCR_ONL;
2545
	kvm->arch.lpcr = lpcr;
2546

2547
	/*
2548 2549
	 * Track that we now have a HV mode VM active. This blocks secondary
	 * CPU threads from coming online.
2550
	 */
2551
	kvm_hv_vm_activated();
2552

2553 2554 2555 2556 2557 2558 2559 2560
	/*
	 * Create a debugfs directory for the VM
	 */
	snprintf(buf, sizeof(buf), "vm%d", current->pid);
	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
	if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
		kvmppc_mmu_debugfs_init(kvm);

2561
	return 0;
2562 2563
}

2564 2565 2566 2567
static void kvmppc_free_vcores(struct kvm *kvm)
{
	long int i;

2568 2569 2570 2571 2572 2573
	for (i = 0; i < KVM_MAX_VCORES; ++i) {
		if (kvm->arch.vcores[i] && kvm->arch.vcores[i]->mpp_buffer) {
			struct kvmppc_vcore *vc = kvm->arch.vcores[i];
			free_pages((unsigned long)vc->mpp_buffer,
				   MPP_BUFFER_ORDER);
		}
2574
		kfree(kvm->arch.vcores[i]);
2575
	}
2576 2577 2578
	kvm->arch.online_vcores = 0;
}

2579
static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
2580
{
2581 2582
	debugfs_remove_recursive(kvm->arch.debugfs_dir);

2583
	kvm_hv_vm_deactivated();
2584

2585
	kvmppc_free_vcores(kvm);
2586

2587 2588 2589
	kvmppc_free_hpt(kvm);
}

2590 2591 2592
/* We don't need to emulate any privileged instructions or dcbz */
static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				     unsigned int inst, int *advance)
2593
{
2594
	return EMULATE_FAIL;
2595 2596
}

2597 2598
static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong spr_val)
2599 2600 2601 2602
{
	return EMULATE_FAIL;
}

2603 2604
static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong *spr_val)
2605 2606 2607 2608
{
	return EMULATE_FAIL;
}

2609
static int kvmppc_core_check_processor_compat_hv(void)
2610
{
2611 2612
	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
	    !cpu_has_feature(CPU_FTR_ARCH_206))
2613 2614
		return -EIO;
	return 0;
2615 2616
}

2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
static long kvm_arch_vm_ioctl_hv(struct file *filp,
				 unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm __maybe_unused = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {

	case KVM_PPC_ALLOCATE_HTAB: {
		u32 htab_order;

		r = -EFAULT;
		if (get_user(htab_order, (u32 __user *)argp))
			break;
		r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
		if (r)
			break;
		r = -EFAULT;
		if (put_user(htab_order, (u32 __user *)argp))
			break;
		r = 0;
		break;
	}

	case KVM_PPC_GET_HTAB_FD: {
		struct kvm_get_htab_fd ghf;

		r = -EFAULT;
		if (copy_from_user(&ghf, argp, sizeof(ghf)))
			break;
		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
		break;
	}

	default:
		r = -ENOTTY;
	}

	return r;
}

2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
/*
 * List of hcall numbers to enable by default.
 * For compatibility with old userspace, we enable by default
 * all hcalls that were implemented before the hcall-enabling
 * facility was added.  Note this list should not include H_RTAS.
 */
static unsigned int default_hcall_list[] = {
	H_REMOVE,
	H_ENTER,
	H_READ,
	H_PROTECT,
	H_BULK_REMOVE,
	H_GET_TCE,
	H_PUT_TCE,
	H_SET_DABR,
	H_SET_XDABR,
	H_CEDE,
	H_PROD,
	H_CONFER,
	H_REGISTER_VPA,
#ifdef CONFIG_KVM_XICS
	H_EOI,
	H_CPPR,
	H_IPI,
	H_IPOLL,
	H_XIRR,
	H_XIRR_X,
#endif
	0
};

static void init_default_hcalls(void)
{
	int i;
2693
	unsigned int hcall;
2694

2695 2696 2697 2698 2699
	for (i = 0; default_hcall_list[i]; ++i) {
		hcall = default_hcall_list[i];
		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
		__set_bit(hcall / 4, default_enabled_hcalls);
	}
2700 2701
}

2702
static struct kvmppc_ops kvm_ops_hv = {
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
	.get_one_reg = kvmppc_get_one_reg_hv,
	.set_one_reg = kvmppc_set_one_reg_hv,
	.vcpu_load   = kvmppc_core_vcpu_load_hv,
	.vcpu_put    = kvmppc_core_vcpu_put_hv,
	.set_msr     = kvmppc_set_msr_hv,
	.vcpu_run    = kvmppc_vcpu_run_hv,
	.vcpu_create = kvmppc_core_vcpu_create_hv,
	.vcpu_free   = kvmppc_core_vcpu_free_hv,
	.check_requests = kvmppc_core_check_requests_hv,
	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
	.flush_memslot  = kvmppc_core_flush_memslot_hv,
	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
	.unmap_hva = kvm_unmap_hva_hv,
	.unmap_hva_range = kvm_unmap_hva_range_hv,
	.age_hva  = kvm_age_hva_hv,
	.test_age_hva = kvm_test_age_hva_hv,
	.set_spte_hva = kvm_set_spte_hva_hv,
	.mmu_destroy  = kvmppc_mmu_destroy_hv,
	.free_memslot = kvmppc_core_free_memslot_hv,
	.create_memslot = kvmppc_core_create_memslot_hv,
	.init_vm =  kvmppc_core_init_vm_hv,
	.destroy_vm = kvmppc_core_destroy_vm_hv,
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
	.emulate_op = kvmppc_core_emulate_op_hv,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
2734
	.hcall_implemented = kvmppc_hcall_impl_hv,
2735 2736 2737
};

static int kvmppc_book3s_init_hv(void)
2738 2739
{
	int r;
2740 2741 2742 2743 2744
	/*
	 * FIXME!! Do we need to check on all cpus ?
	 */
	r = kvmppc_core_check_processor_compat_hv();
	if (r < 0)
2745
		return -ENODEV;
2746

2747 2748
	kvm_ops_hv.owner = THIS_MODULE;
	kvmppc_hv_ops = &kvm_ops_hv;
2749

2750 2751
	init_default_hcalls();

2752
	r = kvmppc_mmu_hv_init();
2753 2754 2755
	return r;
}

2756
static void kvmppc_book3s_exit_hv(void)
2757
{
2758
	kvmppc_hv_ops = NULL;
2759 2760
}

2761 2762
module_init(kvmppc_book3s_init_hv);
module_exit(kvmppc_book3s_exit_hv);
2763
MODULE_LICENSE("GPL");
2764 2765
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");