safexcel_cipher.c 36.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11
/*
 * Copyright (C) 2017 Marvell
 *
 * Antoine Tenart <antoine.tenart@free-electrons.com>
 */

#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>

12
#include <crypto/aead.h>
13
#include <crypto/aes.h>
14
#include <crypto/authenc.h>
15
#include <crypto/des.h>
16
#include <crypto/sha.h>
17
#include <crypto/skcipher.h>
18
#include <crypto/internal/aead.h>
19
#include <crypto/internal/skcipher.h>
20 21 22 23 24 25 26 27

#include "safexcel.h"

enum safexcel_cipher_direction {
	SAFEXCEL_ENCRYPT,
	SAFEXCEL_DECRYPT,
};

28 29
enum safexcel_cipher_alg {
	SAFEXCEL_DES,
30
	SAFEXCEL_3DES,
31 32 33
	SAFEXCEL_AES,
};

34 35 36 37 38
struct safexcel_cipher_ctx {
	struct safexcel_context base;
	struct safexcel_crypto_priv *priv;

	u32 mode;
39
	enum safexcel_cipher_alg alg;
40
	bool aead;
41 42 43

	__le32 key[8];
	unsigned int key_len;
44 45

	/* All the below is AEAD specific */
46
	u32 hash_alg;
47
	u32 state_sz;
48 49
	u32 ipad[SHA512_DIGEST_SIZE / sizeof(u32)];
	u32 opad[SHA512_DIGEST_SIZE / sizeof(u32)];
50 51
};

52
struct safexcel_cipher_req {
53
	enum safexcel_cipher_direction direction;
54 55 56
	bool needs_inv;
};

57 58 59
static void safexcel_skcipher_token(struct safexcel_cipher_ctx *ctx, u8 *iv,
				    struct safexcel_command_desc *cdesc,
				    u32 length)
60 61 62 63 64
{
	struct safexcel_token *token;
	unsigned offset = 0;

	if (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CBC) {
65 66 67 68 69 70
		switch (ctx->alg) {
		case SAFEXCEL_DES:
			offset = DES_BLOCK_SIZE / sizeof(u32);
			memcpy(cdesc->control_data.token, iv, DES_BLOCK_SIZE);
			cdesc->control_data.options |= EIP197_OPTION_2_TOKEN_IV_CMD;
			break;
71 72 73 74 75 76
		case SAFEXCEL_3DES:
			offset = DES3_EDE_BLOCK_SIZE / sizeof(u32);
			memcpy(cdesc->control_data.token, iv, DES3_EDE_BLOCK_SIZE);
			cdesc->control_data.options |= EIP197_OPTION_2_TOKEN_IV_CMD;
			break;

77 78 79 80 81 82
		case SAFEXCEL_AES:
			offset = AES_BLOCK_SIZE / sizeof(u32);
			memcpy(cdesc->control_data.token, iv, AES_BLOCK_SIZE);
			cdesc->control_data.options |= EIP197_OPTION_4_TOKEN_IV_CMD;
			break;
		}
83 84 85 86 87 88
	}

	token = (struct safexcel_token *)(cdesc->control_data.token + offset);

	token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
	token[0].packet_length = length;
89 90
	token[0].stat = EIP197_TOKEN_STAT_LAST_PACKET |
			EIP197_TOKEN_STAT_LAST_HASH;
91 92 93 94 95
	token[0].instructions = EIP197_TOKEN_INS_LAST |
				EIP197_TOKEN_INS_TYPE_CRYTO |
				EIP197_TOKEN_INS_TYPE_OUTPUT;
}

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
static void safexcel_aead_token(struct safexcel_cipher_ctx *ctx, u8 *iv,
				struct safexcel_command_desc *cdesc,
				enum safexcel_cipher_direction direction,
				u32 cryptlen, u32 assoclen, u32 digestsize)
{
	struct safexcel_token *token;
	unsigned offset = 0;

	if (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CBC) {
		offset = AES_BLOCK_SIZE / sizeof(u32);
		memcpy(cdesc->control_data.token, iv, AES_BLOCK_SIZE);

		cdesc->control_data.options |= EIP197_OPTION_4_TOKEN_IV_CMD;
	}

	token = (struct safexcel_token *)(cdesc->control_data.token + offset);

	if (direction == SAFEXCEL_DECRYPT)
		cryptlen -= digestsize;

	token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
	token[0].packet_length = assoclen;
	token[0].instructions = EIP197_TOKEN_INS_TYPE_HASH |
				EIP197_TOKEN_INS_TYPE_OUTPUT;

	token[1].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
	token[1].packet_length = cryptlen;
	token[1].stat = EIP197_TOKEN_STAT_LAST_HASH;
	token[1].instructions = EIP197_TOKEN_INS_LAST |
				EIP197_TOKEN_INS_TYPE_CRYTO |
				EIP197_TOKEN_INS_TYPE_HASH |
				EIP197_TOKEN_INS_TYPE_OUTPUT;

	if (direction == SAFEXCEL_ENCRYPT) {
		token[2].opcode = EIP197_TOKEN_OPCODE_INSERT;
		token[2].packet_length = digestsize;
		token[2].stat = EIP197_TOKEN_STAT_LAST_HASH |
				EIP197_TOKEN_STAT_LAST_PACKET;
		token[2].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT |
					EIP197_TOKEN_INS_INSERT_HASH_DIGEST;
	} else {
		token[2].opcode = EIP197_TOKEN_OPCODE_RETRIEVE;
		token[2].packet_length = digestsize;
		token[2].stat = EIP197_TOKEN_STAT_LAST_HASH |
				EIP197_TOKEN_STAT_LAST_PACKET;
		token[2].instructions = EIP197_TOKEN_INS_INSERT_HASH_DIGEST;

		token[3].opcode = EIP197_TOKEN_OPCODE_VERIFY;
		token[3].packet_length = digestsize |
					 EIP197_TOKEN_HASH_RESULT_VERIFY;
		token[3].stat = EIP197_TOKEN_STAT_LAST_HASH |
				EIP197_TOKEN_STAT_LAST_PACKET;
		token[3].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT;
	}
}

152 153
static int safexcel_skcipher_aes_setkey(struct crypto_skcipher *ctfm,
					const u8 *key, unsigned int len)
154 155 156
{
	struct crypto_tfm *tfm = crypto_skcipher_tfm(ctfm);
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
157
	struct safexcel_crypto_priv *priv = ctx->priv;
158 159 160 161 162 163 164 165 166
	struct crypto_aes_ctx aes;
	int ret, i;

	ret = crypto_aes_expand_key(&aes, key, len);
	if (ret) {
		crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
		return ret;
	}

167
	if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma) {
168 169 170 171 172
		for (i = 0; i < len / sizeof(u32); i++) {
			if (ctx->key[i] != cpu_to_le32(aes.key_enc[i])) {
				ctx->base.needs_inv = true;
				break;
			}
173 174 175 176 177 178 179 180 181 182 183 184
		}
	}

	for (i = 0; i < len / sizeof(u32); i++)
		ctx->key[i] = cpu_to_le32(aes.key_enc[i]);

	ctx->key_len = len;

	memzero_explicit(&aes, sizeof(aes));
	return 0;
}

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
static int safexcel_aead_aes_setkey(struct crypto_aead *ctfm, const u8 *key,
				    unsigned int len)
{
	struct crypto_tfm *tfm = crypto_aead_tfm(ctfm);
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
	struct safexcel_ahash_export_state istate, ostate;
	struct safexcel_crypto_priv *priv = ctx->priv;
	struct crypto_authenc_keys keys;

	if (crypto_authenc_extractkeys(&keys, key, len) != 0)
		goto badkey;

	if (keys.enckeylen > sizeof(ctx->key))
		goto badkey;

	/* Encryption key */
201
	if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma &&
202 203 204 205
	    memcmp(ctx->key, keys.enckey, keys.enckeylen))
		ctx->base.needs_inv = true;

	/* Auth key */
206
	switch (ctx->hash_alg) {
207 208 209 210 211
	case CONTEXT_CONTROL_CRYPTO_ALG_SHA1:
		if (safexcel_hmac_setkey("safexcel-sha1", keys.authkey,
					 keys.authkeylen, &istate, &ostate))
			goto badkey;
		break;
212 213 214 215 216 217 218 219 220 221
	case CONTEXT_CONTROL_CRYPTO_ALG_SHA224:
		if (safexcel_hmac_setkey("safexcel-sha224", keys.authkey,
					 keys.authkeylen, &istate, &ostate))
			goto badkey;
		break;
	case CONTEXT_CONTROL_CRYPTO_ALG_SHA256:
		if (safexcel_hmac_setkey("safexcel-sha256", keys.authkey,
					 keys.authkeylen, &istate, &ostate))
			goto badkey;
		break;
222 223 224 225 226
	case CONTEXT_CONTROL_CRYPTO_ALG_SHA384:
		if (safexcel_hmac_setkey("safexcel-sha384", keys.authkey,
					 keys.authkeylen, &istate, &ostate))
			goto badkey;
		break;
227 228 229 230 231
	case CONTEXT_CONTROL_CRYPTO_ALG_SHA512:
		if (safexcel_hmac_setkey("safexcel-sha512", keys.authkey,
					 keys.authkeylen, &istate, &ostate))
			goto badkey;
		break;
232 233
	default:
		dev_err(priv->dev, "aead: unsupported hash algorithm\n");
234
		goto badkey;
235
	}
236 237 238 239

	crypto_aead_set_flags(ctfm, crypto_aead_get_flags(ctfm) &
				    CRYPTO_TFM_RES_MASK);

240
	if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma &&
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
	    (memcmp(ctx->ipad, istate.state, ctx->state_sz) ||
	     memcmp(ctx->opad, ostate.state, ctx->state_sz)))
		ctx->base.needs_inv = true;

	/* Now copy the keys into the context */
	memcpy(ctx->key, keys.enckey, keys.enckeylen);
	ctx->key_len = keys.enckeylen;

	memcpy(ctx->ipad, &istate.state, ctx->state_sz);
	memcpy(ctx->opad, &ostate.state, ctx->state_sz);

	memzero_explicit(&keys, sizeof(keys));
	return 0;

badkey:
	crypto_aead_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
	memzero_explicit(&keys, sizeof(keys));
	return -EINVAL;
}

261
static int safexcel_context_control(struct safexcel_cipher_ctx *ctx,
262
				    struct crypto_async_request *async,
263
				    struct safexcel_cipher_req *sreq,
264 265 266 267 268
				    struct safexcel_command_desc *cdesc)
{
	struct safexcel_crypto_priv *priv = ctx->priv;
	int ctrl_size;

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
	if (ctx->aead) {
		if (sreq->direction == SAFEXCEL_ENCRYPT)
			cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_ENCRYPT_HASH_OUT;
		else
			cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_HASH_DECRYPT_IN;
	} else {
		cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_CRYPTO_OUT;

		/* The decryption control type is a combination of the
		 * encryption type and CONTEXT_CONTROL_TYPE_NULL_IN, for all
		 * types.
		 */
		if (sreq->direction == SAFEXCEL_DECRYPT)
			cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_NULL_IN;
	}
284 285 286 287

	cdesc->control_data.control0 |= CONTEXT_CONTROL_KEY_EN;
	cdesc->control_data.control1 |= ctx->mode;

288 289
	if (ctx->aead)
		cdesc->control_data.control0 |= CONTEXT_CONTROL_DIGEST_HMAC |
290 291 292 293
						ctx->hash_alg;

	if (ctx->alg == SAFEXCEL_DES) {
		cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_DES;
294 295
	} else if (ctx->alg == SAFEXCEL_3DES) {
		cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_3DES;
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
	} else if (ctx->alg == SAFEXCEL_AES) {
		switch (ctx->key_len) {
		case AES_KEYSIZE_128:
			cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES128;
			break;
		case AES_KEYSIZE_192:
			cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES192;
			break;
		case AES_KEYSIZE_256:
			cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES256;
			break;
		default:
			dev_err(priv->dev, "aes keysize not supported: %u\n",
				ctx->key_len);
			return -EINVAL;
		}
312
	}
313 314

	ctrl_size = ctx->key_len / sizeof(u32);
315 316 317
	if (ctx->aead)
		/* Take in account the ipad+opad digests */
		ctrl_size += ctx->state_sz / sizeof(u32) * 2;
318 319 320 321 322
	cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(ctrl_size);

	return 0;
}

323 324
static int safexcel_handle_req_result(struct safexcel_crypto_priv *priv, int ring,
				      struct crypto_async_request *async,
325 326 327 328
				      struct scatterlist *src,
				      struct scatterlist *dst,
				      unsigned int cryptlen,
				      struct safexcel_cipher_req *sreq,
329
				      bool *should_complete, int *ret)
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
{
	struct safexcel_result_desc *rdesc;
	int ndesc = 0;

	*ret = 0;

	do {
		rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
		if (IS_ERR(rdesc)) {
			dev_err(priv->dev,
				"cipher: result: could not retrieve the result descriptor\n");
			*ret = PTR_ERR(rdesc);
			break;
		}

345 346
		if (likely(!*ret))
			*ret = safexcel_rdesc_check_errors(priv, rdesc);
347 348 349 350 351 352

		ndesc++;
	} while (!rdesc->last_seg);

	safexcel_complete(priv, ring);

353 354 355
	if (src == dst) {
		dma_unmap_sg(priv->dev, src,
			     sg_nents_for_len(src, cryptlen),
356 357
			     DMA_BIDIRECTIONAL);
	} else {
358 359
		dma_unmap_sg(priv->dev, src,
			     sg_nents_for_len(src, cryptlen),
360
			     DMA_TO_DEVICE);
361 362
		dma_unmap_sg(priv->dev, dst,
			     sg_nents_for_len(dst, cryptlen),
363 364 365 366 367 368 369 370
			     DMA_FROM_DEVICE);
	}

	*should_complete = true;

	return ndesc;
}

371
static int safexcel_send_req(struct crypto_async_request *base, int ring,
372 373
			     struct safexcel_cipher_req *sreq,
			     struct scatterlist *src, struct scatterlist *dst,
374 375
			     unsigned int cryptlen, unsigned int assoclen,
			     unsigned int digestsize, u8 *iv, int *commands,
376
			     int *results)
377
{
378
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
379 380
	struct safexcel_crypto_priv *priv = ctx->priv;
	struct safexcel_command_desc *cdesc;
381
	struct safexcel_result_desc *rdesc, *first_rdesc = NULL;
382
	struct scatterlist *sg;
383 384
	unsigned int totlen = cryptlen + assoclen;
	int nr_src, nr_dst, n_cdesc = 0, n_rdesc = 0, queued = totlen;
385 386
	int i, ret = 0;

387 388
	if (src == dst) {
		nr_src = dma_map_sg(priv->dev, src,
389
				    sg_nents_for_len(src, totlen),
390 391 392 393 394
				    DMA_BIDIRECTIONAL);
		nr_dst = nr_src;
		if (!nr_src)
			return -EINVAL;
	} else {
395
		nr_src = dma_map_sg(priv->dev, src,
396
				    sg_nents_for_len(src, totlen),
397 398 399 400
				    DMA_TO_DEVICE);
		if (!nr_src)
			return -EINVAL;

401
		nr_dst = dma_map_sg(priv->dev, dst,
402
				    sg_nents_for_len(dst, totlen),
403 404
				    DMA_FROM_DEVICE);
		if (!nr_dst) {
405
			dma_unmap_sg(priv->dev, src,
406
				     sg_nents_for_len(src, totlen),
407 408 409 410 411 412 413
				     DMA_TO_DEVICE);
			return -EINVAL;
		}
	}

	memcpy(ctx->base.ctxr->data, ctx->key, ctx->key_len);

414 415 416 417 418 419 420
	if (ctx->aead) {
		memcpy(ctx->base.ctxr->data + ctx->key_len / sizeof(u32),
		       ctx->ipad, ctx->state_sz);
		memcpy(ctx->base.ctxr->data + (ctx->key_len + ctx->state_sz) / sizeof(u32),
		       ctx->opad, ctx->state_sz);
	}

421
	/* command descriptors */
422
	for_each_sg(src, sg, nr_src, i) {
423 424 425 426 427 428 429
		int len = sg_dma_len(sg);

		/* Do not overflow the request */
		if (queued - len < 0)
			len = queued;

		cdesc = safexcel_add_cdesc(priv, ring, !n_cdesc, !(queued - len),
430
					   sg_dma_address(sg), len, totlen,
431 432 433 434 435 436 437 438 439
					   ctx->base.ctxr_dma);
		if (IS_ERR(cdesc)) {
			/* No space left in the command descriptor ring */
			ret = PTR_ERR(cdesc);
			goto cdesc_rollback;
		}
		n_cdesc++;

		if (n_cdesc == 1) {
440
			safexcel_context_control(ctx, base, sreq, cdesc);
441 442 443 444 445 446 447
			if (ctx->aead)
				safexcel_aead_token(ctx, iv, cdesc,
						    sreq->direction, cryptlen,
						    assoclen, digestsize);
			else
				safexcel_skcipher_token(ctx, iv, cdesc,
							cryptlen);
448 449 450 451 452 453 454 455
		}

		queued -= len;
		if (!queued)
			break;
	}

	/* result descriptors */
456
	for_each_sg(dst, sg, nr_dst, i) {
457 458 459 460 461 462 463 464 465 466
		bool first = !i, last = (i == nr_dst - 1);
		u32 len = sg_dma_len(sg);

		rdesc = safexcel_add_rdesc(priv, ring, first, last,
					   sg_dma_address(sg), len);
		if (IS_ERR(rdesc)) {
			/* No space left in the result descriptor ring */
			ret = PTR_ERR(rdesc);
			goto rdesc_rollback;
		}
467 468
		if (first)
			first_rdesc = rdesc;
469 470 471
		n_rdesc++;
	}

472
	safexcel_rdr_req_set(priv, ring, first_rdesc, base);
473

474
	*commands = n_cdesc;
475
	*results = n_rdesc;
476 477 478 479 480 481 482 483 484
	return 0;

rdesc_rollback:
	for (i = 0; i < n_rdesc; i++)
		safexcel_ring_rollback_wptr(priv, &priv->ring[ring].rdr);
cdesc_rollback:
	for (i = 0; i < n_cdesc; i++)
		safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr);

485 486
	if (src == dst) {
		dma_unmap_sg(priv->dev, src,
487
			     sg_nents_for_len(src, totlen),
488 489
			     DMA_BIDIRECTIONAL);
	} else {
490
		dma_unmap_sg(priv->dev, src,
491
			     sg_nents_for_len(src, totlen),
492
			     DMA_TO_DEVICE);
493
		dma_unmap_sg(priv->dev, dst,
494
			     sg_nents_for_len(dst, totlen),
495 496 497 498 499 500 501 502
			     DMA_FROM_DEVICE);
	}

	return ret;
}

static int safexcel_handle_inv_result(struct safexcel_crypto_priv *priv,
				      int ring,
503
				      struct crypto_async_request *base,
504 505
				      bool *should_complete, int *ret)
{
506
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
507 508 509 510 511 512 513 514 515 516 517 518 519 520
	struct safexcel_result_desc *rdesc;
	int ndesc = 0, enq_ret;

	*ret = 0;

	do {
		rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
		if (IS_ERR(rdesc)) {
			dev_err(priv->dev,
				"cipher: invalidate: could not retrieve the result descriptor\n");
			*ret = PTR_ERR(rdesc);
			break;
		}

521 522
		if (likely(!*ret))
			*ret = safexcel_rdesc_check_errors(priv, rdesc);
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537

		ndesc++;
	} while (!rdesc->last_seg);

	safexcel_complete(priv, ring);

	if (ctx->base.exit_inv) {
		dma_pool_free(priv->context_pool, ctx->base.ctxr,
			      ctx->base.ctxr_dma);

		*should_complete = true;

		return ndesc;
	}

538 539
	ring = safexcel_select_ring(priv);
	ctx->base.ring = ring;
540

541
	spin_lock_bh(&priv->ring[ring].queue_lock);
542
	enq_ret = crypto_enqueue_request(&priv->ring[ring].queue, base);
543
	spin_unlock_bh(&priv->ring[ring].queue_lock);
544 545 546 547

	if (enq_ret != -EINPROGRESS)
		*ret = enq_ret;

548 549
	queue_work(priv->ring[ring].workqueue,
		   &priv->ring[ring].work_data.work);
550

551 552 553 554 555
	*should_complete = false;

	return ndesc;
}

556 557 558 559
static int safexcel_skcipher_handle_result(struct safexcel_crypto_priv *priv,
					   int ring,
					   struct crypto_async_request *async,
					   bool *should_complete, int *ret)
560 561 562 563 564 565 566 567 568 569
{
	struct skcipher_request *req = skcipher_request_cast(async);
	struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
	int err;

	if (sreq->needs_inv) {
		sreq->needs_inv = false;
		err = safexcel_handle_inv_result(priv, ring, async,
						 should_complete, ret);
	} else {
570 571
		err = safexcel_handle_req_result(priv, ring, async, req->src,
						 req->dst, req->cryptlen, sreq,
572 573 574 575 576 577
						 should_complete, ret);
	}

	return err;
}

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
static int safexcel_aead_handle_result(struct safexcel_crypto_priv *priv,
				       int ring,
				       struct crypto_async_request *async,
				       bool *should_complete, int *ret)
{
	struct aead_request *req = aead_request_cast(async);
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	struct safexcel_cipher_req *sreq = aead_request_ctx(req);
	int err;

	if (sreq->needs_inv) {
		sreq->needs_inv = false;
		err = safexcel_handle_inv_result(priv, ring, async,
						 should_complete, ret);
	} else {
		err = safexcel_handle_req_result(priv, ring, async, req->src,
						 req->dst,
						 req->cryptlen + crypto_aead_authsize(tfm),
						 sreq, should_complete, ret);
	}

	return err;
}

602
static int safexcel_cipher_send_inv(struct crypto_async_request *base,
603
				    int ring, int *commands, int *results)
604
{
605
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
606 607 608
	struct safexcel_crypto_priv *priv = ctx->priv;
	int ret;

609
	ret = safexcel_invalidate_cache(base, priv, ctx->base.ctxr_dma, ring);
610 611 612 613 614 615 616 617 618
	if (unlikely(ret))
		return ret;

	*commands = 1;
	*results = 1;

	return 0;
}

619 620
static int safexcel_skcipher_send(struct crypto_async_request *async, int ring,
				  int *commands, int *results)
621 622
{
	struct skcipher_request *req = skcipher_request_cast(async);
623
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
624
	struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
625
	struct safexcel_crypto_priv *priv = ctx->priv;
626 627
	int ret;

628
	BUG_ON(!(priv->flags & EIP197_TRC_CACHE) && sreq->needs_inv);
629

630
	if (sreq->needs_inv)
631
		ret = safexcel_cipher_send_inv(async, ring, commands, results);
632
	else
633
		ret = safexcel_send_req(async, ring, sreq, req->src,
634 635 636 637 638 639
					req->dst, req->cryptlen, 0, 0, req->iv,
					commands, results);
	return ret;
}

static int safexcel_aead_send(struct crypto_async_request *async, int ring,
640
			      int *commands, int *results)
641 642 643 644 645 646 647 648
{
	struct aead_request *req = aead_request_cast(async);
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
	struct safexcel_cipher_req *sreq = aead_request_ctx(req);
	struct safexcel_crypto_priv *priv = ctx->priv;
	int ret;

649
	BUG_ON(!(priv->flags & EIP197_TRC_CACHE) && sreq->needs_inv);
650 651

	if (sreq->needs_inv)
652
		ret = safexcel_cipher_send_inv(async, ring, commands, results);
653
	else
654 655
		ret = safexcel_send_req(async, ring, sreq, req->src, req->dst,
					req->cryptlen, req->assoclen,
656
					crypto_aead_authsize(tfm), req->iv,
657 658 659 660
					commands, results);
	return ret;
}

661 662 663 664
static int safexcel_cipher_exit_inv(struct crypto_tfm *tfm,
				    struct crypto_async_request *base,
				    struct safexcel_cipher_req *sreq,
				    struct safexcel_inv_result *result)
665 666 667
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
	struct safexcel_crypto_priv *priv = ctx->priv;
668
	int ring = ctx->base.ring;
669

670
	init_completion(&result->completion);
671

672
	ctx = crypto_tfm_ctx(base->tfm);
673
	ctx->base.exit_inv = true;
674
	sreq->needs_inv = true;
675

676
	spin_lock_bh(&priv->ring[ring].queue_lock);
677
	crypto_enqueue_request(&priv->ring[ring].queue, base);
678
	spin_unlock_bh(&priv->ring[ring].queue_lock);
679

680 681
	queue_work(priv->ring[ring].workqueue,
		   &priv->ring[ring].work_data.work);
682

683
	wait_for_completion(&result->completion);
684

685
	if (result->error) {
686 687
		dev_warn(priv->dev,
			"cipher: sync: invalidate: completion error %d\n",
688 689
			 result->error);
		return result->error;
690 691 692 693 694
	}

	return 0;
}

695
static int safexcel_skcipher_exit_inv(struct crypto_tfm *tfm)
696
{
697
	EIP197_REQUEST_ON_STACK(req, skcipher, EIP197_SKCIPHER_REQ_SIZE);
698
	struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
699 700 701 702 703 704 705 706 707 708 709
	struct safexcel_inv_result result = {};

	memset(req, 0, sizeof(struct skcipher_request));

	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
				      safexcel_inv_complete, &result);
	skcipher_request_set_tfm(req, __crypto_skcipher_cast(tfm));

	return safexcel_cipher_exit_inv(tfm, &req->base, sreq, &result);
}

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
static int safexcel_aead_exit_inv(struct crypto_tfm *tfm)
{
	EIP197_REQUEST_ON_STACK(req, aead, EIP197_AEAD_REQ_SIZE);
	struct safexcel_cipher_req *sreq = aead_request_ctx(req);
	struct safexcel_inv_result result = {};

	memset(req, 0, sizeof(struct aead_request));

	aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
				  safexcel_inv_complete, &result);
	aead_request_set_tfm(req, __crypto_aead_cast(tfm));

	return safexcel_cipher_exit_inv(tfm, &req->base, sreq, &result);
}

725
static int safexcel_queue_req(struct crypto_async_request *base,
726
			struct safexcel_cipher_req *sreq,
727 728
			enum safexcel_cipher_direction dir, u32 mode,
			enum safexcel_cipher_alg alg)
729 730
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
731
	struct safexcel_crypto_priv *priv = ctx->priv;
732
	int ret, ring;
733

734
	sreq->needs_inv = false;
735
	sreq->direction = dir;
736
	ctx->alg = alg;
737 738 739
	ctx->mode = mode;

	if (ctx->base.ctxr) {
740
		if (priv->flags & EIP197_TRC_CACHE && ctx->base.needs_inv) {
741 742 743
			sreq->needs_inv = true;
			ctx->base.needs_inv = false;
		}
744 745 746
	} else {
		ctx->base.ring = safexcel_select_ring(priv);
		ctx->base.ctxr = dma_pool_zalloc(priv->context_pool,
747
						 EIP197_GFP_FLAGS(*base),
748 749 750 751 752
						 &ctx->base.ctxr_dma);
		if (!ctx->base.ctxr)
			return -ENOMEM;
	}

753 754 755
	ring = ctx->base.ring;

	spin_lock_bh(&priv->ring[ring].queue_lock);
756
	ret = crypto_enqueue_request(&priv->ring[ring].queue, base);
757
	spin_unlock_bh(&priv->ring[ring].queue_lock);
758

759 760
	queue_work(priv->ring[ring].workqueue,
		   &priv->ring[ring].work_data.work);
761 762 763 764 765 766

	return ret;
}

static int safexcel_ecb_aes_encrypt(struct skcipher_request *req)
{
767 768 769
	return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
			SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB,
			SAFEXCEL_AES);
770 771 772 773
}

static int safexcel_ecb_aes_decrypt(struct skcipher_request *req)
{
774 775 776
	return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
			SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB,
			SAFEXCEL_AES);
777 778 779 780 781 782 783 784 785
}

static int safexcel_skcipher_cra_init(struct crypto_tfm *tfm)
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
	struct safexcel_alg_template *tmpl =
		container_of(tfm->__crt_alg, struct safexcel_alg_template,
			     alg.skcipher.base);

786 787
	crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm),
				    sizeof(struct safexcel_cipher_req));
788

789 790 791 792
	ctx->priv = tmpl->priv;

	ctx->base.send = safexcel_skcipher_send;
	ctx->base.handle_result = safexcel_skcipher_handle_result;
793 794 795
	return 0;
}

796
static int safexcel_cipher_cra_exit(struct crypto_tfm *tfm)
797 798 799
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);

800
	memzero_explicit(ctx->key, sizeof(ctx->key));
801 802 803

	/* context not allocated, skip invalidation */
	if (!ctx->base.ctxr)
804
		return -ENOMEM;
805

806
	memzero_explicit(ctx->base.ctxr->data, sizeof(ctx->base.ctxr->data));
807 808 809 810 811 812 813 814 815 816 817
	return 0;
}

static void safexcel_skcipher_cra_exit(struct crypto_tfm *tfm)
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
	struct safexcel_crypto_priv *priv = ctx->priv;
	int ret;

	if (safexcel_cipher_cra_exit(tfm))
		return;
818

819
	if (priv->flags & EIP197_TRC_CACHE) {
820
		ret = safexcel_skcipher_exit_inv(tfm);
821
		if (ret)
822 823
			dev_warn(priv->dev, "skcipher: invalidation error %d\n",
				 ret);
824 825 826 827
	} else {
		dma_pool_free(priv->context_pool, ctx->base.ctxr,
			      ctx->base.ctxr_dma);
	}
828 829
}

830 831 832 833 834 835 836 837 838
static void safexcel_aead_cra_exit(struct crypto_tfm *tfm)
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
	struct safexcel_crypto_priv *priv = ctx->priv;
	int ret;

	if (safexcel_cipher_cra_exit(tfm))
		return;

839
	if (priv->flags & EIP197_TRC_CACHE) {
840 841 842 843 844 845 846 847 848 849
		ret = safexcel_aead_exit_inv(tfm);
		if (ret)
			dev_warn(priv->dev, "aead: invalidation error %d\n",
				 ret);
	} else {
		dma_pool_free(priv->context_pool, ctx->base.ctxr,
			      ctx->base.ctxr_dma);
	}
}

850 851
struct safexcel_alg_template safexcel_alg_ecb_aes = {
	.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
852
	.engines = EIP97IES | EIP197B | EIP197D,
853
	.alg.skcipher = {
854
		.setkey = safexcel_skcipher_aes_setkey,
855 856 857 858 859 860 861 862
		.encrypt = safexcel_ecb_aes_encrypt,
		.decrypt = safexcel_ecb_aes_decrypt,
		.min_keysize = AES_MIN_KEY_SIZE,
		.max_keysize = AES_MAX_KEY_SIZE,
		.base = {
			.cra_name = "ecb(aes)",
			.cra_driver_name = "safexcel-ecb-aes",
			.cra_priority = 300,
863
			.cra_flags = CRYPTO_ALG_ASYNC |
864 865 866 867 868 869 870 871 872 873 874 875 876
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = AES_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_skcipher_cra_init,
			.cra_exit = safexcel_skcipher_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};

static int safexcel_cbc_aes_encrypt(struct skcipher_request *req)
{
877 878 879
	return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
			SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC,
			SAFEXCEL_AES);
880 881 882 883
}

static int safexcel_cbc_aes_decrypt(struct skcipher_request *req)
{
884 885 886
	return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
			SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC,
			SAFEXCEL_AES);
887 888 889 890
}

struct safexcel_alg_template safexcel_alg_cbc_aes = {
	.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
891
	.engines = EIP97IES | EIP197B | EIP197D,
892
	.alg.skcipher = {
893
		.setkey = safexcel_skcipher_aes_setkey,
894 895 896 897 898 899 900 901 902
		.encrypt = safexcel_cbc_aes_encrypt,
		.decrypt = safexcel_cbc_aes_decrypt,
		.min_keysize = AES_MIN_KEY_SIZE,
		.max_keysize = AES_MAX_KEY_SIZE,
		.ivsize = AES_BLOCK_SIZE,
		.base = {
			.cra_name = "cbc(aes)",
			.cra_driver_name = "safexcel-cbc-aes",
			.cra_priority = 300,
903
			.cra_flags = CRYPTO_ALG_ASYNC |
904 905 906 907 908 909 910 911 912 913
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = AES_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_skcipher_cra_init,
			.cra_exit = safexcel_skcipher_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};
914

915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
static int safexcel_cbc_des_encrypt(struct skcipher_request *req)
{
	return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
			SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC,
			SAFEXCEL_DES);
}

static int safexcel_cbc_des_decrypt(struct skcipher_request *req)
{
	return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
			SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC,
			SAFEXCEL_DES);
}

static int safexcel_des_setkey(struct crypto_skcipher *ctfm, const u8 *key,
			       unsigned int len)
{
	struct crypto_tfm *tfm = crypto_skcipher_tfm(ctfm);
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
	u32 tmp[DES_EXPKEY_WORDS];
	int ret;

	if (len != DES_KEY_SIZE) {
		crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
		return -EINVAL;
	}

	ret = des_ekey(tmp, key);
	if (!ret && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
		tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
		return -EINVAL;
	}

	/* if context exits and key changed, need to invalidate it */
	if (ctx->base.ctxr_dma)
		if (memcmp(ctx->key, key, len))
			ctx->base.needs_inv = true;

	memcpy(ctx->key, key, len);
	ctx->key_len = len;

	return 0;
}

struct safexcel_alg_template safexcel_alg_cbc_des = {
	.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
	.engines = EIP97IES | EIP197B | EIP197D,
	.alg.skcipher = {
		.setkey = safexcel_des_setkey,
		.encrypt = safexcel_cbc_des_encrypt,
		.decrypt = safexcel_cbc_des_decrypt,
		.min_keysize = DES_KEY_SIZE,
		.max_keysize = DES_KEY_SIZE,
		.ivsize = DES_BLOCK_SIZE,
		.base = {
			.cra_name = "cbc(des)",
			.cra_driver_name = "safexcel-cbc-des",
			.cra_priority = 300,
			.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC |
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = DES_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_skcipher_cra_init,
			.cra_exit = safexcel_skcipher_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};

static int safexcel_ecb_des_encrypt(struct skcipher_request *req)
{
	return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
			SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB,
			SAFEXCEL_DES);
}

static int safexcel_ecb_des_decrypt(struct skcipher_request *req)
{
	return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
			SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB,
			SAFEXCEL_DES);
}

struct safexcel_alg_template safexcel_alg_ecb_des = {
	.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
	.engines = EIP97IES | EIP197B | EIP197D,
	.alg.skcipher = {
		.setkey = safexcel_des_setkey,
		.encrypt = safexcel_ecb_des_encrypt,
		.decrypt = safexcel_ecb_des_decrypt,
		.min_keysize = DES_KEY_SIZE,
		.max_keysize = DES_KEY_SIZE,
		.ivsize = DES_BLOCK_SIZE,
		.base = {
			.cra_name = "ecb(des)",
			.cra_driver_name = "safexcel-ecb-des",
			.cra_priority = 300,
			.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC |
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = DES_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_skcipher_cra_init,
			.cra_exit = safexcel_skcipher_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128

static int safexcel_cbc_des3_ede_encrypt(struct skcipher_request *req)
{
	return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
			SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC,
			SAFEXCEL_3DES);
}

static int safexcel_cbc_des3_ede_decrypt(struct skcipher_request *req)
{
	return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
			SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC,
			SAFEXCEL_3DES);
}

static int safexcel_des3_ede_setkey(struct crypto_skcipher *ctfm,
				   const u8 *key, unsigned int len)
{
	struct crypto_tfm *tfm = crypto_skcipher_tfm(ctfm);
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);

	if (len != DES3_EDE_KEY_SIZE) {
		crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
		return -EINVAL;
	}

	/* if context exits and key changed, need to invalidate it */
	if (ctx->base.ctxr_dma) {
		if (memcmp(ctx->key, key, len))
			ctx->base.needs_inv = true;
	}

	memcpy(ctx->key, key, len);

	ctx->key_len = len;

	return 0;
}

struct safexcel_alg_template safexcel_alg_cbc_des3_ede = {
	.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
	.engines = EIP97IES | EIP197B | EIP197D,
	.alg.skcipher = {
		.setkey = safexcel_des3_ede_setkey,
		.encrypt = safexcel_cbc_des3_ede_encrypt,
		.decrypt = safexcel_cbc_des3_ede_decrypt,
		.min_keysize = DES3_EDE_KEY_SIZE,
		.max_keysize = DES3_EDE_KEY_SIZE,
		.ivsize = DES3_EDE_BLOCK_SIZE,
		.base = {
			.cra_name = "cbc(des3_ede)",
			.cra_driver_name = "safexcel-cbc-des3_ede",
			.cra_priority = 300,
			.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC |
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_skcipher_cra_init,
			.cra_exit = safexcel_skcipher_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};

static int safexcel_ecb_des3_ede_encrypt(struct skcipher_request *req)
{
	return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
			SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB,
			SAFEXCEL_3DES);
}

static int safexcel_ecb_des3_ede_decrypt(struct skcipher_request *req)
{
	return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
			SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB,
			SAFEXCEL_3DES);
}

struct safexcel_alg_template safexcel_alg_ecb_des3_ede = {
	.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
	.engines = EIP97IES | EIP197B | EIP197D,
	.alg.skcipher = {
		.setkey = safexcel_des3_ede_setkey,
		.encrypt = safexcel_ecb_des3_ede_encrypt,
		.decrypt = safexcel_ecb_des3_ede_decrypt,
		.min_keysize = DES3_EDE_KEY_SIZE,
		.max_keysize = DES3_EDE_KEY_SIZE,
		.ivsize = DES3_EDE_BLOCK_SIZE,
		.base = {
			.cra_name = "ecb(des3_ede)",
			.cra_driver_name = "safexcel-ecb-des3_ede",
			.cra_priority = 300,
			.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC |
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_skcipher_cra_init,
			.cra_exit = safexcel_skcipher_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};

1129 1130 1131 1132
static int safexcel_aead_encrypt(struct aead_request *req)
{
	struct safexcel_cipher_req *creq = aead_request_ctx(req);

1133 1134
	return safexcel_queue_req(&req->base, creq, SAFEXCEL_ENCRYPT,
			CONTEXT_CONTROL_CRYPTO_MODE_CBC, SAFEXCEL_AES);
1135 1136 1137 1138 1139 1140
}

static int safexcel_aead_decrypt(struct aead_request *req)
{
	struct safexcel_cipher_req *creq = aead_request_ctx(req);

1141 1142
	return safexcel_queue_req(&req->base, creq, SAFEXCEL_DECRYPT,
			CONTEXT_CONTROL_CRYPTO_MODE_CBC, SAFEXCEL_AES);
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
}

static int safexcel_aead_cra_init(struct crypto_tfm *tfm)
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
	struct safexcel_alg_template *tmpl =
		container_of(tfm->__crt_alg, struct safexcel_alg_template,
			     alg.aead.base);

	crypto_aead_set_reqsize(__crypto_aead_cast(tfm),
				sizeof(struct safexcel_cipher_req));

	ctx->priv = tmpl->priv;

	ctx->aead = true;
	ctx->base.send = safexcel_aead_send;
	ctx->base.handle_result = safexcel_aead_handle_result;
	return 0;
}

1163 1164 1165 1166 1167
static int safexcel_aead_sha1_cra_init(struct crypto_tfm *tfm)
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);

	safexcel_aead_cra_init(tfm);
1168
	ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA1;
1169 1170 1171 1172 1173 1174
	ctx->state_sz = SHA1_DIGEST_SIZE;
	return 0;
}

struct safexcel_alg_template safexcel_alg_authenc_hmac_sha1_cbc_aes = {
	.type = SAFEXCEL_ALG_TYPE_AEAD,
1175
	.engines = EIP97IES | EIP197B | EIP197D,
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
	.alg.aead = {
		.setkey = safexcel_aead_aes_setkey,
		.encrypt = safexcel_aead_encrypt,
		.decrypt = safexcel_aead_decrypt,
		.ivsize = AES_BLOCK_SIZE,
		.maxauthsize = SHA1_DIGEST_SIZE,
		.base = {
			.cra_name = "authenc(hmac(sha1),cbc(aes))",
			.cra_driver_name = "safexcel-authenc-hmac-sha1-cbc-aes",
			.cra_priority = 300,
1186
			.cra_flags = CRYPTO_ALG_ASYNC |
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = AES_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_aead_sha1_cra_init,
			.cra_exit = safexcel_aead_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};

1198 1199 1200 1201 1202
static int safexcel_aead_sha256_cra_init(struct crypto_tfm *tfm)
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);

	safexcel_aead_cra_init(tfm);
1203
	ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA256;
1204 1205 1206 1207 1208 1209
	ctx->state_sz = SHA256_DIGEST_SIZE;
	return 0;
}

struct safexcel_alg_template safexcel_alg_authenc_hmac_sha256_cbc_aes = {
	.type = SAFEXCEL_ALG_TYPE_AEAD,
1210
	.engines = EIP97IES | EIP197B | EIP197D,
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
	.alg.aead = {
		.setkey = safexcel_aead_aes_setkey,
		.encrypt = safexcel_aead_encrypt,
		.decrypt = safexcel_aead_decrypt,
		.ivsize = AES_BLOCK_SIZE,
		.maxauthsize = SHA256_DIGEST_SIZE,
		.base = {
			.cra_name = "authenc(hmac(sha256),cbc(aes))",
			.cra_driver_name = "safexcel-authenc-hmac-sha256-cbc-aes",
			.cra_priority = 300,
1221
			.cra_flags = CRYPTO_ALG_ASYNC |
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = AES_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_aead_sha256_cra_init,
			.cra_exit = safexcel_aead_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};
1232 1233 1234 1235 1236 1237

static int safexcel_aead_sha224_cra_init(struct crypto_tfm *tfm)
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);

	safexcel_aead_cra_init(tfm);
1238
	ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA224;
1239 1240 1241 1242 1243 1244
	ctx->state_sz = SHA256_DIGEST_SIZE;
	return 0;
}

struct safexcel_alg_template safexcel_alg_authenc_hmac_sha224_cbc_aes = {
	.type = SAFEXCEL_ALG_TYPE_AEAD,
1245
	.engines = EIP97IES | EIP197B | EIP197D,
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
	.alg.aead = {
		.setkey = safexcel_aead_aes_setkey,
		.encrypt = safexcel_aead_encrypt,
		.decrypt = safexcel_aead_decrypt,
		.ivsize = AES_BLOCK_SIZE,
		.maxauthsize = SHA224_DIGEST_SIZE,
		.base = {
			.cra_name = "authenc(hmac(sha224),cbc(aes))",
			.cra_driver_name = "safexcel-authenc-hmac-sha224-cbc-aes",
			.cra_priority = 300,
1256
			.cra_flags = CRYPTO_ALG_ASYNC |
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = AES_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_aead_sha224_cra_init,
			.cra_exit = safexcel_aead_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};
1267 1268 1269 1270 1271 1272

static int safexcel_aead_sha512_cra_init(struct crypto_tfm *tfm)
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);

	safexcel_aead_cra_init(tfm);
1273
	ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA512;
1274 1275 1276 1277 1278 1279
	ctx->state_sz = SHA512_DIGEST_SIZE;
	return 0;
}

struct safexcel_alg_template safexcel_alg_authenc_hmac_sha512_cbc_aes = {
	.type = SAFEXCEL_ALG_TYPE_AEAD,
1280
	.engines = EIP97IES | EIP197B | EIP197D,
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
	.alg.aead = {
		.setkey = safexcel_aead_aes_setkey,
		.encrypt = safexcel_aead_encrypt,
		.decrypt = safexcel_aead_decrypt,
		.ivsize = AES_BLOCK_SIZE,
		.maxauthsize = SHA512_DIGEST_SIZE,
		.base = {
			.cra_name = "authenc(hmac(sha512),cbc(aes))",
			.cra_driver_name = "safexcel-authenc-hmac-sha512-cbc-aes",
			.cra_priority = 300,
1291
			.cra_flags = CRYPTO_ALG_ASYNC |
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = AES_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_aead_sha512_cra_init,
			.cra_exit = safexcel_aead_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};
1302 1303 1304 1305 1306 1307

static int safexcel_aead_sha384_cra_init(struct crypto_tfm *tfm)
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);

	safexcel_aead_cra_init(tfm);
1308
	ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA384;
1309 1310 1311 1312 1313 1314
	ctx->state_sz = SHA512_DIGEST_SIZE;
	return 0;
}

struct safexcel_alg_template safexcel_alg_authenc_hmac_sha384_cbc_aes = {
	.type = SAFEXCEL_ALG_TYPE_AEAD,
1315
	.engines = EIP97IES | EIP197B | EIP197D,
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
	.alg.aead = {
		.setkey = safexcel_aead_aes_setkey,
		.encrypt = safexcel_aead_encrypt,
		.decrypt = safexcel_aead_decrypt,
		.ivsize = AES_BLOCK_SIZE,
		.maxauthsize = SHA384_DIGEST_SIZE,
		.base = {
			.cra_name = "authenc(hmac(sha384),cbc(aes))",
			.cra_driver_name = "safexcel-authenc-hmac-sha384-cbc-aes",
			.cra_priority = 300,
1326
			.cra_flags = CRYPTO_ALG_ASYNC |
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = AES_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_aead_sha384_cra_init,
			.cra_exit = safexcel_aead_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};