safexcel_cipher.c 37.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Copyright (C) 2017 Marvell
 *
 * Antoine Tenart <antoine.tenart@free-electrons.com>
 *
 * This file is licensed under the terms of the GNU General Public
 * License version 2. This program is licensed "as is" without any
 * warranty of any kind, whether express or implied.
 */

#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>

15
#include <crypto/aead.h>
16
#include <crypto/aes.h>
17
#include <crypto/authenc.h>
18
#include <crypto/des.h>
19
#include <crypto/sha.h>
20
#include <crypto/skcipher.h>
21
#include <crypto/internal/aead.h>
22
#include <crypto/internal/skcipher.h>
23 24 25 26 27 28 29 30

#include "safexcel.h"

enum safexcel_cipher_direction {
	SAFEXCEL_ENCRYPT,
	SAFEXCEL_DECRYPT,
};

31 32
enum safexcel_cipher_alg {
	SAFEXCEL_DES,
33
	SAFEXCEL_3DES,
34 35 36
	SAFEXCEL_AES,
};

37 38 39 40 41
struct safexcel_cipher_ctx {
	struct safexcel_context base;
	struct safexcel_crypto_priv *priv;

	u32 mode;
42
	enum safexcel_cipher_alg alg;
43
	bool aead;
44 45 46

	__le32 key[8];
	unsigned int key_len;
47 48

	/* All the below is AEAD specific */
49
	u32 hash_alg;
50
	u32 state_sz;
51 52
	u32 ipad[SHA512_DIGEST_SIZE / sizeof(u32)];
	u32 opad[SHA512_DIGEST_SIZE / sizeof(u32)];
53 54
};

55
struct safexcel_cipher_req {
56
	enum safexcel_cipher_direction direction;
57 58 59
	bool needs_inv;
};

60 61 62
static void safexcel_skcipher_token(struct safexcel_cipher_ctx *ctx, u8 *iv,
				    struct safexcel_command_desc *cdesc,
				    u32 length)
63 64 65 66 67
{
	struct safexcel_token *token;
	unsigned offset = 0;

	if (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CBC) {
68 69 70 71 72 73
		switch (ctx->alg) {
		case SAFEXCEL_DES:
			offset = DES_BLOCK_SIZE / sizeof(u32);
			memcpy(cdesc->control_data.token, iv, DES_BLOCK_SIZE);
			cdesc->control_data.options |= EIP197_OPTION_2_TOKEN_IV_CMD;
			break;
74 75 76 77 78 79
		case SAFEXCEL_3DES:
			offset = DES3_EDE_BLOCK_SIZE / sizeof(u32);
			memcpy(cdesc->control_data.token, iv, DES3_EDE_BLOCK_SIZE);
			cdesc->control_data.options |= EIP197_OPTION_2_TOKEN_IV_CMD;
			break;

80 81 82 83 84 85
		case SAFEXCEL_AES:
			offset = AES_BLOCK_SIZE / sizeof(u32);
			memcpy(cdesc->control_data.token, iv, AES_BLOCK_SIZE);
			cdesc->control_data.options |= EIP197_OPTION_4_TOKEN_IV_CMD;
			break;
		}
86 87 88 89 90 91
	}

	token = (struct safexcel_token *)(cdesc->control_data.token + offset);

	token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
	token[0].packet_length = length;
92 93
	token[0].stat = EIP197_TOKEN_STAT_LAST_PACKET |
			EIP197_TOKEN_STAT_LAST_HASH;
94 95 96 97 98
	token[0].instructions = EIP197_TOKEN_INS_LAST |
				EIP197_TOKEN_INS_TYPE_CRYTO |
				EIP197_TOKEN_INS_TYPE_OUTPUT;
}

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
static void safexcel_aead_token(struct safexcel_cipher_ctx *ctx, u8 *iv,
				struct safexcel_command_desc *cdesc,
				enum safexcel_cipher_direction direction,
				u32 cryptlen, u32 assoclen, u32 digestsize)
{
	struct safexcel_token *token;
	unsigned offset = 0;

	if (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CBC) {
		offset = AES_BLOCK_SIZE / sizeof(u32);
		memcpy(cdesc->control_data.token, iv, AES_BLOCK_SIZE);

		cdesc->control_data.options |= EIP197_OPTION_4_TOKEN_IV_CMD;
	}

	token = (struct safexcel_token *)(cdesc->control_data.token + offset);

	if (direction == SAFEXCEL_DECRYPT)
		cryptlen -= digestsize;

	token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
	token[0].packet_length = assoclen;
	token[0].instructions = EIP197_TOKEN_INS_TYPE_HASH |
				EIP197_TOKEN_INS_TYPE_OUTPUT;

	token[1].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
	token[1].packet_length = cryptlen;
	token[1].stat = EIP197_TOKEN_STAT_LAST_HASH;
	token[1].instructions = EIP197_TOKEN_INS_LAST |
				EIP197_TOKEN_INS_TYPE_CRYTO |
				EIP197_TOKEN_INS_TYPE_HASH |
				EIP197_TOKEN_INS_TYPE_OUTPUT;

	if (direction == SAFEXCEL_ENCRYPT) {
		token[2].opcode = EIP197_TOKEN_OPCODE_INSERT;
		token[2].packet_length = digestsize;
		token[2].stat = EIP197_TOKEN_STAT_LAST_HASH |
				EIP197_TOKEN_STAT_LAST_PACKET;
		token[2].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT |
					EIP197_TOKEN_INS_INSERT_HASH_DIGEST;
	} else {
		token[2].opcode = EIP197_TOKEN_OPCODE_RETRIEVE;
		token[2].packet_length = digestsize;
		token[2].stat = EIP197_TOKEN_STAT_LAST_HASH |
				EIP197_TOKEN_STAT_LAST_PACKET;
		token[2].instructions = EIP197_TOKEN_INS_INSERT_HASH_DIGEST;

		token[3].opcode = EIP197_TOKEN_OPCODE_VERIFY;
		token[3].packet_length = digestsize |
					 EIP197_TOKEN_HASH_RESULT_VERIFY;
		token[3].stat = EIP197_TOKEN_STAT_LAST_HASH |
				EIP197_TOKEN_STAT_LAST_PACKET;
		token[3].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT;
	}
}

155 156
static int safexcel_skcipher_aes_setkey(struct crypto_skcipher *ctfm,
					const u8 *key, unsigned int len)
157 158 159
{
	struct crypto_tfm *tfm = crypto_skcipher_tfm(ctfm);
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
160
	struct safexcel_crypto_priv *priv = ctx->priv;
161 162 163 164 165 166 167 168 169
	struct crypto_aes_ctx aes;
	int ret, i;

	ret = crypto_aes_expand_key(&aes, key, len);
	if (ret) {
		crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
		return ret;
	}

170
	if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma) {
171 172 173 174 175
		for (i = 0; i < len / sizeof(u32); i++) {
			if (ctx->key[i] != cpu_to_le32(aes.key_enc[i])) {
				ctx->base.needs_inv = true;
				break;
			}
176 177 178 179 180 181 182 183 184 185 186 187
		}
	}

	for (i = 0; i < len / sizeof(u32); i++)
		ctx->key[i] = cpu_to_le32(aes.key_enc[i]);

	ctx->key_len = len;

	memzero_explicit(&aes, sizeof(aes));
	return 0;
}

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
static int safexcel_aead_aes_setkey(struct crypto_aead *ctfm, const u8 *key,
				    unsigned int len)
{
	struct crypto_tfm *tfm = crypto_aead_tfm(ctfm);
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
	struct safexcel_ahash_export_state istate, ostate;
	struct safexcel_crypto_priv *priv = ctx->priv;
	struct crypto_authenc_keys keys;

	if (crypto_authenc_extractkeys(&keys, key, len) != 0)
		goto badkey;

	if (keys.enckeylen > sizeof(ctx->key))
		goto badkey;

	/* Encryption key */
204
	if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma &&
205 206 207 208
	    memcmp(ctx->key, keys.enckey, keys.enckeylen))
		ctx->base.needs_inv = true;

	/* Auth key */
209
	switch (ctx->hash_alg) {
210 211 212 213 214
	case CONTEXT_CONTROL_CRYPTO_ALG_SHA1:
		if (safexcel_hmac_setkey("safexcel-sha1", keys.authkey,
					 keys.authkeylen, &istate, &ostate))
			goto badkey;
		break;
215 216 217 218 219 220 221 222 223 224
	case CONTEXT_CONTROL_CRYPTO_ALG_SHA224:
		if (safexcel_hmac_setkey("safexcel-sha224", keys.authkey,
					 keys.authkeylen, &istate, &ostate))
			goto badkey;
		break;
	case CONTEXT_CONTROL_CRYPTO_ALG_SHA256:
		if (safexcel_hmac_setkey("safexcel-sha256", keys.authkey,
					 keys.authkeylen, &istate, &ostate))
			goto badkey;
		break;
225 226 227 228 229
	case CONTEXT_CONTROL_CRYPTO_ALG_SHA384:
		if (safexcel_hmac_setkey("safexcel-sha384", keys.authkey,
					 keys.authkeylen, &istate, &ostate))
			goto badkey;
		break;
230 231 232 233 234
	case CONTEXT_CONTROL_CRYPTO_ALG_SHA512:
		if (safexcel_hmac_setkey("safexcel-sha512", keys.authkey,
					 keys.authkeylen, &istate, &ostate))
			goto badkey;
		break;
235 236
	default:
		dev_err(priv->dev, "aead: unsupported hash algorithm\n");
237
		goto badkey;
238
	}
239 240 241 242

	crypto_aead_set_flags(ctfm, crypto_aead_get_flags(ctfm) &
				    CRYPTO_TFM_RES_MASK);

243
	if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma &&
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
	    (memcmp(ctx->ipad, istate.state, ctx->state_sz) ||
	     memcmp(ctx->opad, ostate.state, ctx->state_sz)))
		ctx->base.needs_inv = true;

	/* Now copy the keys into the context */
	memcpy(ctx->key, keys.enckey, keys.enckeylen);
	ctx->key_len = keys.enckeylen;

	memcpy(ctx->ipad, &istate.state, ctx->state_sz);
	memcpy(ctx->opad, &ostate.state, ctx->state_sz);

	memzero_explicit(&keys, sizeof(keys));
	return 0;

badkey:
	crypto_aead_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
	memzero_explicit(&keys, sizeof(keys));
	return -EINVAL;
}

264
static int safexcel_context_control(struct safexcel_cipher_ctx *ctx,
265
				    struct crypto_async_request *async,
266
				    struct safexcel_cipher_req *sreq,
267 268 269 270 271
				    struct safexcel_command_desc *cdesc)
{
	struct safexcel_crypto_priv *priv = ctx->priv;
	int ctrl_size;

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
	if (ctx->aead) {
		if (sreq->direction == SAFEXCEL_ENCRYPT)
			cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_ENCRYPT_HASH_OUT;
		else
			cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_HASH_DECRYPT_IN;
	} else {
		cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_CRYPTO_OUT;

		/* The decryption control type is a combination of the
		 * encryption type and CONTEXT_CONTROL_TYPE_NULL_IN, for all
		 * types.
		 */
		if (sreq->direction == SAFEXCEL_DECRYPT)
			cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_NULL_IN;
	}
287 288 289 290

	cdesc->control_data.control0 |= CONTEXT_CONTROL_KEY_EN;
	cdesc->control_data.control1 |= ctx->mode;

291 292
	if (ctx->aead)
		cdesc->control_data.control0 |= CONTEXT_CONTROL_DIGEST_HMAC |
293 294 295 296
						ctx->hash_alg;

	if (ctx->alg == SAFEXCEL_DES) {
		cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_DES;
297 298
	} else if (ctx->alg == SAFEXCEL_3DES) {
		cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_3DES;
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
	} else if (ctx->alg == SAFEXCEL_AES) {
		switch (ctx->key_len) {
		case AES_KEYSIZE_128:
			cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES128;
			break;
		case AES_KEYSIZE_192:
			cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES192;
			break;
		case AES_KEYSIZE_256:
			cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES256;
			break;
		default:
			dev_err(priv->dev, "aes keysize not supported: %u\n",
				ctx->key_len);
			return -EINVAL;
		}
315
	}
316 317

	ctrl_size = ctx->key_len / sizeof(u32);
318 319 320
	if (ctx->aead)
		/* Take in account the ipad+opad digests */
		ctrl_size += ctx->state_sz / sizeof(u32) * 2;
321 322 323 324 325
	cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(ctrl_size);

	return 0;
}

326 327
static int safexcel_handle_req_result(struct safexcel_crypto_priv *priv, int ring,
				      struct crypto_async_request *async,
328 329 330 331
				      struct scatterlist *src,
				      struct scatterlist *dst,
				      unsigned int cryptlen,
				      struct safexcel_cipher_req *sreq,
332
				      bool *should_complete, int *ret)
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
{
	struct safexcel_result_desc *rdesc;
	int ndesc = 0;

	*ret = 0;

	do {
		rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
		if (IS_ERR(rdesc)) {
			dev_err(priv->dev,
				"cipher: result: could not retrieve the result descriptor\n");
			*ret = PTR_ERR(rdesc);
			break;
		}

348 349
		if (likely(!*ret))
			*ret = safexcel_rdesc_check_errors(priv, rdesc);
350 351 352 353 354 355

		ndesc++;
	} while (!rdesc->last_seg);

	safexcel_complete(priv, ring);

356 357 358
	if (src == dst) {
		dma_unmap_sg(priv->dev, src,
			     sg_nents_for_len(src, cryptlen),
359 360
			     DMA_BIDIRECTIONAL);
	} else {
361 362
		dma_unmap_sg(priv->dev, src,
			     sg_nents_for_len(src, cryptlen),
363
			     DMA_TO_DEVICE);
364 365
		dma_unmap_sg(priv->dev, dst,
			     sg_nents_for_len(dst, cryptlen),
366 367 368 369 370 371 372 373
			     DMA_FROM_DEVICE);
	}

	*should_complete = true;

	return ndesc;
}

374
static int safexcel_send_req(struct crypto_async_request *base, int ring,
375 376
			     struct safexcel_cipher_req *sreq,
			     struct scatterlist *src, struct scatterlist *dst,
377 378
			     unsigned int cryptlen, unsigned int assoclen,
			     unsigned int digestsize, u8 *iv, int *commands,
379
			     int *results)
380
{
381
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
382 383
	struct safexcel_crypto_priv *priv = ctx->priv;
	struct safexcel_command_desc *cdesc;
384
	struct safexcel_result_desc *rdesc, *first_rdesc;
385
	struct scatterlist *sg;
386 387
	unsigned int totlen = cryptlen + assoclen;
	int nr_src, nr_dst, n_cdesc = 0, n_rdesc = 0, queued = totlen;
388 389
	int i, ret = 0;

390 391
	if (src == dst) {
		nr_src = dma_map_sg(priv->dev, src,
392
				    sg_nents_for_len(src, totlen),
393 394 395 396 397
				    DMA_BIDIRECTIONAL);
		nr_dst = nr_src;
		if (!nr_src)
			return -EINVAL;
	} else {
398
		nr_src = dma_map_sg(priv->dev, src,
399
				    sg_nents_for_len(src, totlen),
400 401 402 403
				    DMA_TO_DEVICE);
		if (!nr_src)
			return -EINVAL;

404
		nr_dst = dma_map_sg(priv->dev, dst,
405
				    sg_nents_for_len(dst, totlen),
406 407
				    DMA_FROM_DEVICE);
		if (!nr_dst) {
408
			dma_unmap_sg(priv->dev, src,
409
				     sg_nents_for_len(src, totlen),
410 411 412 413 414 415 416
				     DMA_TO_DEVICE);
			return -EINVAL;
		}
	}

	memcpy(ctx->base.ctxr->data, ctx->key, ctx->key_len);

417 418 419 420 421 422 423
	if (ctx->aead) {
		memcpy(ctx->base.ctxr->data + ctx->key_len / sizeof(u32),
		       ctx->ipad, ctx->state_sz);
		memcpy(ctx->base.ctxr->data + (ctx->key_len + ctx->state_sz) / sizeof(u32),
		       ctx->opad, ctx->state_sz);
	}

424
	/* command descriptors */
425
	for_each_sg(src, sg, nr_src, i) {
426 427 428 429 430 431 432
		int len = sg_dma_len(sg);

		/* Do not overflow the request */
		if (queued - len < 0)
			len = queued;

		cdesc = safexcel_add_cdesc(priv, ring, !n_cdesc, !(queued - len),
433
					   sg_dma_address(sg), len, totlen,
434 435 436 437 438 439 440 441 442
					   ctx->base.ctxr_dma);
		if (IS_ERR(cdesc)) {
			/* No space left in the command descriptor ring */
			ret = PTR_ERR(cdesc);
			goto cdesc_rollback;
		}
		n_cdesc++;

		if (n_cdesc == 1) {
443
			safexcel_context_control(ctx, base, sreq, cdesc);
444 445 446 447 448 449 450
			if (ctx->aead)
				safexcel_aead_token(ctx, iv, cdesc,
						    sreq->direction, cryptlen,
						    assoclen, digestsize);
			else
				safexcel_skcipher_token(ctx, iv, cdesc,
							cryptlen);
451 452 453 454 455 456 457 458
		}

		queued -= len;
		if (!queued)
			break;
	}

	/* result descriptors */
459
	for_each_sg(dst, sg, nr_dst, i) {
460 461 462 463 464 465 466 467 468 469
		bool first = !i, last = (i == nr_dst - 1);
		u32 len = sg_dma_len(sg);

		rdesc = safexcel_add_rdesc(priv, ring, first, last,
					   sg_dma_address(sg), len);
		if (IS_ERR(rdesc)) {
			/* No space left in the result descriptor ring */
			ret = PTR_ERR(rdesc);
			goto rdesc_rollback;
		}
470 471
		if (first)
			first_rdesc = rdesc;
472 473 474
		n_rdesc++;
	}

475
	safexcel_rdr_req_set(priv, ring, first_rdesc, base);
476

477
	*commands = n_cdesc;
478
	*results = n_rdesc;
479 480 481 482 483 484 485 486 487
	return 0;

rdesc_rollback:
	for (i = 0; i < n_rdesc; i++)
		safexcel_ring_rollback_wptr(priv, &priv->ring[ring].rdr);
cdesc_rollback:
	for (i = 0; i < n_cdesc; i++)
		safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr);

488 489
	if (src == dst) {
		dma_unmap_sg(priv->dev, src,
490
			     sg_nents_for_len(src, totlen),
491 492
			     DMA_BIDIRECTIONAL);
	} else {
493
		dma_unmap_sg(priv->dev, src,
494
			     sg_nents_for_len(src, totlen),
495
			     DMA_TO_DEVICE);
496
		dma_unmap_sg(priv->dev, dst,
497
			     sg_nents_for_len(dst, totlen),
498 499 500 501 502 503 504 505
			     DMA_FROM_DEVICE);
	}

	return ret;
}

static int safexcel_handle_inv_result(struct safexcel_crypto_priv *priv,
				      int ring,
506
				      struct crypto_async_request *base,
507 508
				      bool *should_complete, int *ret)
{
509
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
510 511 512 513 514 515 516 517 518 519 520 521 522 523
	struct safexcel_result_desc *rdesc;
	int ndesc = 0, enq_ret;

	*ret = 0;

	do {
		rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
		if (IS_ERR(rdesc)) {
			dev_err(priv->dev,
				"cipher: invalidate: could not retrieve the result descriptor\n");
			*ret = PTR_ERR(rdesc);
			break;
		}

524 525
		if (likely(!*ret))
			*ret = safexcel_rdesc_check_errors(priv, rdesc);
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540

		ndesc++;
	} while (!rdesc->last_seg);

	safexcel_complete(priv, ring);

	if (ctx->base.exit_inv) {
		dma_pool_free(priv->context_pool, ctx->base.ctxr,
			      ctx->base.ctxr_dma);

		*should_complete = true;

		return ndesc;
	}

541 542
	ring = safexcel_select_ring(priv);
	ctx->base.ring = ring;
543

544
	spin_lock_bh(&priv->ring[ring].queue_lock);
545
	enq_ret = crypto_enqueue_request(&priv->ring[ring].queue, base);
546
	spin_unlock_bh(&priv->ring[ring].queue_lock);
547 548 549 550

	if (enq_ret != -EINPROGRESS)
		*ret = enq_ret;

551 552
	queue_work(priv->ring[ring].workqueue,
		   &priv->ring[ring].work_data.work);
553

554 555 556 557 558
	*should_complete = false;

	return ndesc;
}

559 560 561 562
static int safexcel_skcipher_handle_result(struct safexcel_crypto_priv *priv,
					   int ring,
					   struct crypto_async_request *async,
					   bool *should_complete, int *ret)
563 564 565 566 567 568 569 570 571 572
{
	struct skcipher_request *req = skcipher_request_cast(async);
	struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
	int err;

	if (sreq->needs_inv) {
		sreq->needs_inv = false;
		err = safexcel_handle_inv_result(priv, ring, async,
						 should_complete, ret);
	} else {
573 574
		err = safexcel_handle_req_result(priv, ring, async, req->src,
						 req->dst, req->cryptlen, sreq,
575 576 577 578 579 580
						 should_complete, ret);
	}

	return err;
}

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
static int safexcel_aead_handle_result(struct safexcel_crypto_priv *priv,
				       int ring,
				       struct crypto_async_request *async,
				       bool *should_complete, int *ret)
{
	struct aead_request *req = aead_request_cast(async);
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	struct safexcel_cipher_req *sreq = aead_request_ctx(req);
	int err;

	if (sreq->needs_inv) {
		sreq->needs_inv = false;
		err = safexcel_handle_inv_result(priv, ring, async,
						 should_complete, ret);
	} else {
		err = safexcel_handle_req_result(priv, ring, async, req->src,
						 req->dst,
						 req->cryptlen + crypto_aead_authsize(tfm),
						 sreq, should_complete, ret);
	}

	return err;
}

605
static int safexcel_cipher_send_inv(struct crypto_async_request *base,
606
				    int ring, int *commands, int *results)
607
{
608
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
609 610 611
	struct safexcel_crypto_priv *priv = ctx->priv;
	int ret;

612
	ret = safexcel_invalidate_cache(base, priv, ctx->base.ctxr_dma, ring);
613 614 615 616 617 618 619 620 621
	if (unlikely(ret))
		return ret;

	*commands = 1;
	*results = 1;

	return 0;
}

622 623
static int safexcel_skcipher_send(struct crypto_async_request *async, int ring,
				  int *commands, int *results)
624 625
{
	struct skcipher_request *req = skcipher_request_cast(async);
626
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
627
	struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
628
	struct safexcel_crypto_priv *priv = ctx->priv;
629 630
	int ret;

631
	BUG_ON(!(priv->flags & EIP197_TRC_CACHE) && sreq->needs_inv);
632

633
	if (sreq->needs_inv)
634
		ret = safexcel_cipher_send_inv(async, ring, commands, results);
635
	else
636
		ret = safexcel_send_req(async, ring, sreq, req->src,
637 638 639 640 641 642
					req->dst, req->cryptlen, 0, 0, req->iv,
					commands, results);
	return ret;
}

static int safexcel_aead_send(struct crypto_async_request *async, int ring,
643
			      int *commands, int *results)
644 645 646 647 648 649 650 651
{
	struct aead_request *req = aead_request_cast(async);
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
	struct safexcel_cipher_req *sreq = aead_request_ctx(req);
	struct safexcel_crypto_priv *priv = ctx->priv;
	int ret;

652
	BUG_ON(!(priv->flags & EIP197_TRC_CACHE) && sreq->needs_inv);
653 654

	if (sreq->needs_inv)
655
		ret = safexcel_cipher_send_inv(async, ring, commands, results);
656
	else
657 658
		ret = safexcel_send_req(async, ring, sreq, req->src, req->dst,
					req->cryptlen, req->assoclen,
659
					crypto_aead_authsize(tfm), req->iv,
660 661 662 663
					commands, results);
	return ret;
}

664 665 666 667
static int safexcel_cipher_exit_inv(struct crypto_tfm *tfm,
				    struct crypto_async_request *base,
				    struct safexcel_cipher_req *sreq,
				    struct safexcel_inv_result *result)
668 669 670
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
	struct safexcel_crypto_priv *priv = ctx->priv;
671
	int ring = ctx->base.ring;
672

673
	init_completion(&result->completion);
674

675
	ctx = crypto_tfm_ctx(base->tfm);
676
	ctx->base.exit_inv = true;
677
	sreq->needs_inv = true;
678

679
	spin_lock_bh(&priv->ring[ring].queue_lock);
680
	crypto_enqueue_request(&priv->ring[ring].queue, base);
681
	spin_unlock_bh(&priv->ring[ring].queue_lock);
682

683 684
	queue_work(priv->ring[ring].workqueue,
		   &priv->ring[ring].work_data.work);
685

686
	wait_for_completion(&result->completion);
687

688
	if (result->error) {
689 690
		dev_warn(priv->dev,
			"cipher: sync: invalidate: completion error %d\n",
691 692
			 result->error);
		return result->error;
693 694 695 696 697
	}

	return 0;
}

698
static int safexcel_skcipher_exit_inv(struct crypto_tfm *tfm)
699
{
700
	EIP197_REQUEST_ON_STACK(req, skcipher, EIP197_SKCIPHER_REQ_SIZE);
701
	struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
702 703 704 705 706 707 708 709 710 711 712
	struct safexcel_inv_result result = {};

	memset(req, 0, sizeof(struct skcipher_request));

	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
				      safexcel_inv_complete, &result);
	skcipher_request_set_tfm(req, __crypto_skcipher_cast(tfm));

	return safexcel_cipher_exit_inv(tfm, &req->base, sreq, &result);
}

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
static int safexcel_aead_exit_inv(struct crypto_tfm *tfm)
{
	EIP197_REQUEST_ON_STACK(req, aead, EIP197_AEAD_REQ_SIZE);
	struct safexcel_cipher_req *sreq = aead_request_ctx(req);
	struct safexcel_inv_result result = {};

	memset(req, 0, sizeof(struct aead_request));

	aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
				  safexcel_inv_complete, &result);
	aead_request_set_tfm(req, __crypto_aead_cast(tfm));

	return safexcel_cipher_exit_inv(tfm, &req->base, sreq, &result);
}

728
static int safexcel_queue_req(struct crypto_async_request *base,
729
			struct safexcel_cipher_req *sreq,
730 731
			enum safexcel_cipher_direction dir, u32 mode,
			enum safexcel_cipher_alg alg)
732 733
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
734
	struct safexcel_crypto_priv *priv = ctx->priv;
735
	int ret, ring;
736

737
	sreq->needs_inv = false;
738
	sreq->direction = dir;
739
	ctx->alg = alg;
740 741 742
	ctx->mode = mode;

	if (ctx->base.ctxr) {
743
		if (priv->flags & EIP197_TRC_CACHE && ctx->base.needs_inv) {
744 745 746
			sreq->needs_inv = true;
			ctx->base.needs_inv = false;
		}
747 748 749
	} else {
		ctx->base.ring = safexcel_select_ring(priv);
		ctx->base.ctxr = dma_pool_zalloc(priv->context_pool,
750
						 EIP197_GFP_FLAGS(*base),
751 752 753 754 755
						 &ctx->base.ctxr_dma);
		if (!ctx->base.ctxr)
			return -ENOMEM;
	}

756 757 758
	ring = ctx->base.ring;

	spin_lock_bh(&priv->ring[ring].queue_lock);
759
	ret = crypto_enqueue_request(&priv->ring[ring].queue, base);
760
	spin_unlock_bh(&priv->ring[ring].queue_lock);
761

762 763
	queue_work(priv->ring[ring].workqueue,
		   &priv->ring[ring].work_data.work);
764 765 766 767 768 769

	return ret;
}

static int safexcel_ecb_aes_encrypt(struct skcipher_request *req)
{
770 771 772
	return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
			SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB,
			SAFEXCEL_AES);
773 774 775 776
}

static int safexcel_ecb_aes_decrypt(struct skcipher_request *req)
{
777 778 779
	return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
			SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB,
			SAFEXCEL_AES);
780 781 782 783 784 785 786 787 788
}

static int safexcel_skcipher_cra_init(struct crypto_tfm *tfm)
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
	struct safexcel_alg_template *tmpl =
		container_of(tfm->__crt_alg, struct safexcel_alg_template,
			     alg.skcipher.base);

789 790
	crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm),
				    sizeof(struct safexcel_cipher_req));
791

792 793 794 795
	ctx->priv = tmpl->priv;

	ctx->base.send = safexcel_skcipher_send;
	ctx->base.handle_result = safexcel_skcipher_handle_result;
796 797 798
	return 0;
}

799
static int safexcel_cipher_cra_exit(struct crypto_tfm *tfm)
800 801 802
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);

803
	memzero_explicit(ctx->key, sizeof(ctx->key));
804 805 806

	/* context not allocated, skip invalidation */
	if (!ctx->base.ctxr)
807
		return -ENOMEM;
808

809
	memzero_explicit(ctx->base.ctxr->data, sizeof(ctx->base.ctxr->data));
810 811 812 813 814 815 816 817 818 819 820
	return 0;
}

static void safexcel_skcipher_cra_exit(struct crypto_tfm *tfm)
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
	struct safexcel_crypto_priv *priv = ctx->priv;
	int ret;

	if (safexcel_cipher_cra_exit(tfm))
		return;
821

822
	if (priv->flags & EIP197_TRC_CACHE) {
823
		ret = safexcel_skcipher_exit_inv(tfm);
824
		if (ret)
825 826
			dev_warn(priv->dev, "skcipher: invalidation error %d\n",
				 ret);
827 828 829 830
	} else {
		dma_pool_free(priv->context_pool, ctx->base.ctxr,
			      ctx->base.ctxr_dma);
	}
831 832
}

833 834 835 836 837 838 839 840 841
static void safexcel_aead_cra_exit(struct crypto_tfm *tfm)
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
	struct safexcel_crypto_priv *priv = ctx->priv;
	int ret;

	if (safexcel_cipher_cra_exit(tfm))
		return;

842
	if (priv->flags & EIP197_TRC_CACHE) {
843 844 845 846 847 848 849 850 851 852
		ret = safexcel_aead_exit_inv(tfm);
		if (ret)
			dev_warn(priv->dev, "aead: invalidation error %d\n",
				 ret);
	} else {
		dma_pool_free(priv->context_pool, ctx->base.ctxr,
			      ctx->base.ctxr_dma);
	}
}

853 854
struct safexcel_alg_template safexcel_alg_ecb_aes = {
	.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
855
	.engines = EIP97IES | EIP197B | EIP197D,
856
	.alg.skcipher = {
857
		.setkey = safexcel_skcipher_aes_setkey,
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
		.encrypt = safexcel_ecb_aes_encrypt,
		.decrypt = safexcel_ecb_aes_decrypt,
		.min_keysize = AES_MIN_KEY_SIZE,
		.max_keysize = AES_MAX_KEY_SIZE,
		.base = {
			.cra_name = "ecb(aes)",
			.cra_driver_name = "safexcel-ecb-aes",
			.cra_priority = 300,
			.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC |
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = AES_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_skcipher_cra_init,
			.cra_exit = safexcel_skcipher_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};

static int safexcel_cbc_aes_encrypt(struct skcipher_request *req)
{
880 881 882
	return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
			SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC,
			SAFEXCEL_AES);
883 884 885 886
}

static int safexcel_cbc_aes_decrypt(struct skcipher_request *req)
{
887 888 889
	return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
			SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC,
			SAFEXCEL_AES);
890 891 892 893
}

struct safexcel_alg_template safexcel_alg_cbc_aes = {
	.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
894
	.engines = EIP97IES | EIP197B | EIP197D,
895
	.alg.skcipher = {
896
		.setkey = safexcel_skcipher_aes_setkey,
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
		.encrypt = safexcel_cbc_aes_encrypt,
		.decrypt = safexcel_cbc_aes_decrypt,
		.min_keysize = AES_MIN_KEY_SIZE,
		.max_keysize = AES_MAX_KEY_SIZE,
		.ivsize = AES_BLOCK_SIZE,
		.base = {
			.cra_name = "cbc(aes)",
			.cra_driver_name = "safexcel-cbc-aes",
			.cra_priority = 300,
			.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC |
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = AES_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_skcipher_cra_init,
			.cra_exit = safexcel_skcipher_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};
917

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
static int safexcel_cbc_des_encrypt(struct skcipher_request *req)
{
	return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
			SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC,
			SAFEXCEL_DES);
}

static int safexcel_cbc_des_decrypt(struct skcipher_request *req)
{
	return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
			SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC,
			SAFEXCEL_DES);
}

static int safexcel_des_setkey(struct crypto_skcipher *ctfm, const u8 *key,
			       unsigned int len)
{
	struct crypto_tfm *tfm = crypto_skcipher_tfm(ctfm);
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
	u32 tmp[DES_EXPKEY_WORDS];
	int ret;

	if (len != DES_KEY_SIZE) {
		crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
		return -EINVAL;
	}

	ret = des_ekey(tmp, key);
	if (!ret && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
		tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
		return -EINVAL;
	}

	/* if context exits and key changed, need to invalidate it */
	if (ctx->base.ctxr_dma)
		if (memcmp(ctx->key, key, len))
			ctx->base.needs_inv = true;

	memcpy(ctx->key, key, len);
	ctx->key_len = len;

	return 0;
}

struct safexcel_alg_template safexcel_alg_cbc_des = {
	.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
	.engines = EIP97IES | EIP197B | EIP197D,
	.alg.skcipher = {
		.setkey = safexcel_des_setkey,
		.encrypt = safexcel_cbc_des_encrypt,
		.decrypt = safexcel_cbc_des_decrypt,
		.min_keysize = DES_KEY_SIZE,
		.max_keysize = DES_KEY_SIZE,
		.ivsize = DES_BLOCK_SIZE,
		.base = {
			.cra_name = "cbc(des)",
			.cra_driver_name = "safexcel-cbc-des",
			.cra_priority = 300,
			.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC |
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = DES_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_skcipher_cra_init,
			.cra_exit = safexcel_skcipher_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};

static int safexcel_ecb_des_encrypt(struct skcipher_request *req)
{
	return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
			SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB,
			SAFEXCEL_DES);
}

static int safexcel_ecb_des_decrypt(struct skcipher_request *req)
{
	return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
			SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB,
			SAFEXCEL_DES);
}

struct safexcel_alg_template safexcel_alg_ecb_des = {
	.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
	.engines = EIP97IES | EIP197B | EIP197D,
	.alg.skcipher = {
		.setkey = safexcel_des_setkey,
		.encrypt = safexcel_ecb_des_encrypt,
		.decrypt = safexcel_ecb_des_decrypt,
		.min_keysize = DES_KEY_SIZE,
		.max_keysize = DES_KEY_SIZE,
		.ivsize = DES_BLOCK_SIZE,
		.base = {
			.cra_name = "ecb(des)",
			.cra_driver_name = "safexcel-ecb-des",
			.cra_priority = 300,
			.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC |
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = DES_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_skcipher_cra_init,
			.cra_exit = safexcel_skcipher_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131

static int safexcel_cbc_des3_ede_encrypt(struct skcipher_request *req)
{
	return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
			SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC,
			SAFEXCEL_3DES);
}

static int safexcel_cbc_des3_ede_decrypt(struct skcipher_request *req)
{
	return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
			SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC,
			SAFEXCEL_3DES);
}

static int safexcel_des3_ede_setkey(struct crypto_skcipher *ctfm,
				   const u8 *key, unsigned int len)
{
	struct crypto_tfm *tfm = crypto_skcipher_tfm(ctfm);
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);

	if (len != DES3_EDE_KEY_SIZE) {
		crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
		return -EINVAL;
	}

	/* if context exits and key changed, need to invalidate it */
	if (ctx->base.ctxr_dma) {
		if (memcmp(ctx->key, key, len))
			ctx->base.needs_inv = true;
	}

	memcpy(ctx->key, key, len);

	ctx->key_len = len;

	return 0;
}

struct safexcel_alg_template safexcel_alg_cbc_des3_ede = {
	.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
	.engines = EIP97IES | EIP197B | EIP197D,
	.alg.skcipher = {
		.setkey = safexcel_des3_ede_setkey,
		.encrypt = safexcel_cbc_des3_ede_encrypt,
		.decrypt = safexcel_cbc_des3_ede_decrypt,
		.min_keysize = DES3_EDE_KEY_SIZE,
		.max_keysize = DES3_EDE_KEY_SIZE,
		.ivsize = DES3_EDE_BLOCK_SIZE,
		.base = {
			.cra_name = "cbc(des3_ede)",
			.cra_driver_name = "safexcel-cbc-des3_ede",
			.cra_priority = 300,
			.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC |
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_skcipher_cra_init,
			.cra_exit = safexcel_skcipher_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};

static int safexcel_ecb_des3_ede_encrypt(struct skcipher_request *req)
{
	return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
			SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB,
			SAFEXCEL_3DES);
}

static int safexcel_ecb_des3_ede_decrypt(struct skcipher_request *req)
{
	return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
			SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB,
			SAFEXCEL_3DES);
}

struct safexcel_alg_template safexcel_alg_ecb_des3_ede = {
	.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
	.engines = EIP97IES | EIP197B | EIP197D,
	.alg.skcipher = {
		.setkey = safexcel_des3_ede_setkey,
		.encrypt = safexcel_ecb_des3_ede_encrypt,
		.decrypt = safexcel_ecb_des3_ede_decrypt,
		.min_keysize = DES3_EDE_KEY_SIZE,
		.max_keysize = DES3_EDE_KEY_SIZE,
		.ivsize = DES3_EDE_BLOCK_SIZE,
		.base = {
			.cra_name = "ecb(des3_ede)",
			.cra_driver_name = "safexcel-ecb-des3_ede",
			.cra_priority = 300,
			.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC |
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_skcipher_cra_init,
			.cra_exit = safexcel_skcipher_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};

1132 1133 1134 1135
static int safexcel_aead_encrypt(struct aead_request *req)
{
	struct safexcel_cipher_req *creq = aead_request_ctx(req);

1136 1137
	return safexcel_queue_req(&req->base, creq, SAFEXCEL_ENCRYPT,
			CONTEXT_CONTROL_CRYPTO_MODE_CBC, SAFEXCEL_AES);
1138 1139 1140 1141 1142 1143
}

static int safexcel_aead_decrypt(struct aead_request *req)
{
	struct safexcel_cipher_req *creq = aead_request_ctx(req);

1144 1145
	return safexcel_queue_req(&req->base, creq, SAFEXCEL_DECRYPT,
			CONTEXT_CONTROL_CRYPTO_MODE_CBC, SAFEXCEL_AES);
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
}

static int safexcel_aead_cra_init(struct crypto_tfm *tfm)
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
	struct safexcel_alg_template *tmpl =
		container_of(tfm->__crt_alg, struct safexcel_alg_template,
			     alg.aead.base);

	crypto_aead_set_reqsize(__crypto_aead_cast(tfm),
				sizeof(struct safexcel_cipher_req));

	ctx->priv = tmpl->priv;

	ctx->aead = true;
	ctx->base.send = safexcel_aead_send;
	ctx->base.handle_result = safexcel_aead_handle_result;
	return 0;
}

1166 1167 1168 1169 1170
static int safexcel_aead_sha1_cra_init(struct crypto_tfm *tfm)
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);

	safexcel_aead_cra_init(tfm);
1171
	ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA1;
1172 1173 1174 1175 1176 1177
	ctx->state_sz = SHA1_DIGEST_SIZE;
	return 0;
}

struct safexcel_alg_template safexcel_alg_authenc_hmac_sha1_cbc_aes = {
	.type = SAFEXCEL_ALG_TYPE_AEAD,
1178
	.engines = EIP97IES | EIP197B | EIP197D,
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
	.alg.aead = {
		.setkey = safexcel_aead_aes_setkey,
		.encrypt = safexcel_aead_encrypt,
		.decrypt = safexcel_aead_decrypt,
		.ivsize = AES_BLOCK_SIZE,
		.maxauthsize = SHA1_DIGEST_SIZE,
		.base = {
			.cra_name = "authenc(hmac(sha1),cbc(aes))",
			.cra_driver_name = "safexcel-authenc-hmac-sha1-cbc-aes",
			.cra_priority = 300,
			.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC |
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = AES_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_aead_sha1_cra_init,
			.cra_exit = safexcel_aead_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};

1201 1202 1203 1204 1205
static int safexcel_aead_sha256_cra_init(struct crypto_tfm *tfm)
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);

	safexcel_aead_cra_init(tfm);
1206
	ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA256;
1207 1208 1209 1210 1211 1212
	ctx->state_sz = SHA256_DIGEST_SIZE;
	return 0;
}

struct safexcel_alg_template safexcel_alg_authenc_hmac_sha256_cbc_aes = {
	.type = SAFEXCEL_ALG_TYPE_AEAD,
1213
	.engines = EIP97IES | EIP197B | EIP197D,
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
	.alg.aead = {
		.setkey = safexcel_aead_aes_setkey,
		.encrypt = safexcel_aead_encrypt,
		.decrypt = safexcel_aead_decrypt,
		.ivsize = AES_BLOCK_SIZE,
		.maxauthsize = SHA256_DIGEST_SIZE,
		.base = {
			.cra_name = "authenc(hmac(sha256),cbc(aes))",
			.cra_driver_name = "safexcel-authenc-hmac-sha256-cbc-aes",
			.cra_priority = 300,
			.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC |
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = AES_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_aead_sha256_cra_init,
			.cra_exit = safexcel_aead_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};
1235 1236 1237 1238 1239 1240

static int safexcel_aead_sha224_cra_init(struct crypto_tfm *tfm)
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);

	safexcel_aead_cra_init(tfm);
1241
	ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA224;
1242 1243 1244 1245 1246 1247
	ctx->state_sz = SHA256_DIGEST_SIZE;
	return 0;
}

struct safexcel_alg_template safexcel_alg_authenc_hmac_sha224_cbc_aes = {
	.type = SAFEXCEL_ALG_TYPE_AEAD,
1248
	.engines = EIP97IES | EIP197B | EIP197D,
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
	.alg.aead = {
		.setkey = safexcel_aead_aes_setkey,
		.encrypt = safexcel_aead_encrypt,
		.decrypt = safexcel_aead_decrypt,
		.ivsize = AES_BLOCK_SIZE,
		.maxauthsize = SHA224_DIGEST_SIZE,
		.base = {
			.cra_name = "authenc(hmac(sha224),cbc(aes))",
			.cra_driver_name = "safexcel-authenc-hmac-sha224-cbc-aes",
			.cra_priority = 300,
			.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC |
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = AES_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_aead_sha224_cra_init,
			.cra_exit = safexcel_aead_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};
1270 1271 1272 1273 1274 1275

static int safexcel_aead_sha512_cra_init(struct crypto_tfm *tfm)
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);

	safexcel_aead_cra_init(tfm);
1276
	ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA512;
1277 1278 1279 1280 1281 1282
	ctx->state_sz = SHA512_DIGEST_SIZE;
	return 0;
}

struct safexcel_alg_template safexcel_alg_authenc_hmac_sha512_cbc_aes = {
	.type = SAFEXCEL_ALG_TYPE_AEAD,
1283
	.engines = EIP97IES | EIP197B | EIP197D,
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
	.alg.aead = {
		.setkey = safexcel_aead_aes_setkey,
		.encrypt = safexcel_aead_encrypt,
		.decrypt = safexcel_aead_decrypt,
		.ivsize = AES_BLOCK_SIZE,
		.maxauthsize = SHA512_DIGEST_SIZE,
		.base = {
			.cra_name = "authenc(hmac(sha512),cbc(aes))",
			.cra_driver_name = "safexcel-authenc-hmac-sha512-cbc-aes",
			.cra_priority = 300,
			.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC |
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = AES_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_aead_sha512_cra_init,
			.cra_exit = safexcel_aead_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};
1305 1306 1307 1308 1309 1310

static int safexcel_aead_sha384_cra_init(struct crypto_tfm *tfm)
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);

	safexcel_aead_cra_init(tfm);
1311
	ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA384;
1312 1313 1314 1315 1316 1317
	ctx->state_sz = SHA512_DIGEST_SIZE;
	return 0;
}

struct safexcel_alg_template safexcel_alg_authenc_hmac_sha384_cbc_aes = {
	.type = SAFEXCEL_ALG_TYPE_AEAD,
1318
	.engines = EIP97IES | EIP197B | EIP197D,
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
	.alg.aead = {
		.setkey = safexcel_aead_aes_setkey,
		.encrypt = safexcel_aead_encrypt,
		.decrypt = safexcel_aead_decrypt,
		.ivsize = AES_BLOCK_SIZE,
		.maxauthsize = SHA384_DIGEST_SIZE,
		.base = {
			.cra_name = "authenc(hmac(sha384),cbc(aes))",
			.cra_driver_name = "safexcel-authenc-hmac-sha384-cbc-aes",
			.cra_priority = 300,
			.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC |
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = AES_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_aead_sha384_cra_init,
			.cra_exit = safexcel_aead_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};