sparse.c 26.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
A
Andy Whitcroft 已提交
2 3 4 5
/*
 * sparse memory mappings.
 */
#include <linux/mm.h>
6
#include <linux/slab.h>
A
Andy Whitcroft 已提交
7
#include <linux/mmzone.h>
8
#include <linux/memblock.h>
9
#include <linux/compiler.h>
10
#include <linux/highmem.h>
11
#include <linux/export.h>
12
#include <linux/spinlock.h>
13
#include <linux/vmalloc.h>
14 15
#include <linux/swap.h>
#include <linux/swapops.h>
16
#include <linux/bootmem_info.h>
17

18
#include "internal.h"
A
Andy Whitcroft 已提交
19 20 21 22 23 24 25
#include <asm/dma.h>

/*
 * Permanent SPARSEMEM data:
 *
 * 1) mem_section	- memory sections, mem_map's for valid memory
 */
26
#ifdef CONFIG_SPARSEMEM_EXTREME
27
struct mem_section **mem_section;
28 29
#else
struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
30
	____cacheline_internodealigned_in_smp;
31 32 33
#endif
EXPORT_SYMBOL(mem_section);

34 35 36 37 38 39 40 41 42 43 44 45
#ifdef NODE_NOT_IN_PAGE_FLAGS
/*
 * If we did not store the node number in the page then we have to
 * do a lookup in the section_to_node_table in order to find which
 * node the page belongs to.
 */
#if MAX_NUMNODES <= 256
static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
#else
static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
#endif

I
Ian Campbell 已提交
46
int page_to_nid(const struct page *page)
47 48 49 50
{
	return section_to_node_table[page_to_section(page)];
}
EXPORT_SYMBOL(page_to_nid);
51 52 53 54 55 56 57 58 59

static void set_section_nid(unsigned long section_nr, int nid)
{
	section_to_node_table[section_nr] = nid;
}
#else /* !NODE_NOT_IN_PAGE_FLAGS */
static inline void set_section_nid(unsigned long section_nr, int nid)
{
}
60 61
#endif

62
#ifdef CONFIG_SPARSEMEM_EXTREME
63
static noinline struct mem_section __ref *sparse_index_alloc(int nid)
64 65 66 67 68
{
	struct mem_section *section = NULL;
	unsigned long array_size = SECTIONS_PER_ROOT *
				   sizeof(struct mem_section);

69
	if (slab_is_available()) {
70
		section = kzalloc_node(array_size, GFP_KERNEL, nid);
71
	} else {
72 73
		section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
					      nid);
74 75 76 77
		if (!section)
			panic("%s: Failed to allocate %lu bytes nid=%d\n",
			      __func__, array_size, nid);
	}
78 79

	return section;
80
}
B
Bob Picco 已提交
81

82
static int __meminit sparse_index_init(unsigned long section_nr, int nid)
B
Bob Picco 已提交
83
{
84 85
	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
	struct mem_section *section;
B
Bob Picco 已提交
86

87 88 89 90 91 92 93
	/*
	 * An existing section is possible in the sub-section hotplug
	 * case. First hot-add instantiates, follow-on hot-add reuses
	 * the existing section.
	 *
	 * The mem_hotplug_lock resolves the apparent race below.
	 */
B
Bob Picco 已提交
94
	if (mem_section[root])
95
		return 0;
96

97
	section = sparse_index_alloc(nid);
98 99
	if (!section)
		return -ENOMEM;
100 101

	mem_section[root] = section;
G
Gavin Shan 已提交
102

103
	return 0;
104 105 106 107 108
}
#else /* !SPARSEMEM_EXTREME */
static inline int sparse_index_init(unsigned long section_nr, int nid)
{
	return 0;
B
Bob Picco 已提交
109
}
110 111
#endif

112 113 114 115 116 117 118 119
/*
 * During early boot, before section_mem_map is used for an actual
 * mem_map, we use section_mem_map to store the section's NUMA
 * node.  This keeps us from having to use another data structure.  The
 * node information is cleared just before we store the real mem_map.
 */
static inline unsigned long sparse_encode_early_nid(int nid)
{
120
	return ((unsigned long)nid << SECTION_NID_SHIFT);
121 122 123 124 125 126 127
}

static inline int sparse_early_nid(struct mem_section *section)
{
	return (section->section_mem_map >> SECTION_NID_SHIFT);
}

128 129 130
/* Validate the physical addressing limitations of the model */
void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
						unsigned long *end_pfn)
A
Andy Whitcroft 已提交
131
{
132
	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
A
Andy Whitcroft 已提交
133

I
Ingo Molnar 已提交
134 135 136 137
	/*
	 * Sanity checks - do not allow an architecture to pass
	 * in larger pfns than the maximum scope of sparsemem:
	 */
138 139 140 141 142 143 144
	if (*start_pfn > max_sparsemem_pfn) {
		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
			*start_pfn, *end_pfn, max_sparsemem_pfn);
		WARN_ON_ONCE(1);
		*start_pfn = max_sparsemem_pfn;
		*end_pfn = max_sparsemem_pfn;
145
	} else if (*end_pfn > max_sparsemem_pfn) {
146 147 148 149 150 151 152 153
		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
			*start_pfn, *end_pfn, max_sparsemem_pfn);
		WARN_ON_ONCE(1);
		*end_pfn = max_sparsemem_pfn;
	}
}

154 155 156 157 158 159 160 161 162
/*
 * There are a number of times that we loop over NR_MEM_SECTIONS,
 * looking for section_present() on each.  But, when we have very
 * large physical address spaces, NR_MEM_SECTIONS can also be
 * very large which makes the loops quite long.
 *
 * Keeping track of this gives us an easy way to break out of
 * those loops early.
 */
163
unsigned long __highest_present_section_nr;
164 165
static void __section_mark_present(struct mem_section *ms,
		unsigned long section_nr)
166 167 168 169 170 171 172 173 174
{
	if (section_nr > __highest_present_section_nr)
		__highest_present_section_nr = section_nr;

	ms->section_mem_map |= SECTION_MARKED_PRESENT;
}

#define for_each_present_section_nr(start, section_nr)		\
	for (section_nr = next_present_section_nr(start-1);	\
Q
Qian Cai 已提交
175
	     ((section_nr != -1) &&				\
176 177 178
	      (section_nr <= __highest_present_section_nr));	\
	     section_nr = next_present_section_nr(section_nr))

179 180 181 182 183
static inline unsigned long first_present_section_nr(void)
{
	return next_present_section_nr(-1);
}

184
#ifdef CONFIG_SPARSEMEM_VMEMMAP
Y
Yi Wang 已提交
185
static void subsection_mask_set(unsigned long *map, unsigned long pfn,
186 187 188 189 190 191 192 193 194 195 196
		unsigned long nr_pages)
{
	int idx = subsection_map_index(pfn);
	int end = subsection_map_index(pfn + nr_pages - 1);

	bitmap_set(map, idx, end - idx + 1);
}

void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
{
	int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
197
	unsigned long nr, start_sec = pfn_to_section_nr(pfn);
198 199 200 201

	if (!nr_pages)
		return;

202
	for (nr = start_sec; nr <= end_sec; nr++) {
203 204 205 206 207
		struct mem_section *ms;
		unsigned long pfns;

		pfns = min(nr_pages, PAGES_PER_SECTION
				- (pfn & ~PAGE_SECTION_MASK));
208
		ms = __nr_to_section(nr);
209 210
		subsection_mask_set(ms->usage->subsection_map, pfn, pfns);

211
		pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
212 213 214 215 216 217 218
				pfns, subsection_map_index(pfn),
				subsection_map_index(pfn + pfns - 1));

		pfn += pfns;
		nr_pages -= pfns;
	}
}
219 220 221 222 223
#else
void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
{
}
#endif
224

225
/* Record a memory area against a node. */
226
static void __init memory_present(int nid, unsigned long start, unsigned long end)
227 228
{
	unsigned long pfn;
I
Ingo Molnar 已提交
229

230 231 232 233
#ifdef CONFIG_SPARSEMEM_EXTREME
	if (unlikely(!mem_section)) {
		unsigned long size, align;

234
		size = sizeof(struct mem_section *) * NR_SECTION_ROOTS;
235
		align = 1 << (INTERNODE_CACHE_SHIFT);
236
		mem_section = memblock_alloc(size, align);
237 238 239
		if (!mem_section)
			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
			      __func__, size, align);
240 241 242
	}
#endif

A
Andy Whitcroft 已提交
243
	start &= PAGE_SECTION_MASK;
244
	mminit_validate_memmodel_limits(&start, &end);
A
Andy Whitcroft 已提交
245 246
	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
		unsigned long section = pfn_to_section_nr(pfn);
B
Bob Picco 已提交
247 248 249
		struct mem_section *ms;

		sparse_index_init(section, nid);
250
		set_section_nid(section, nid);
B
Bob Picco 已提交
251 252

		ms = __nr_to_section(section);
253
		if (!ms->section_mem_map) {
254 255
			ms->section_mem_map = sparse_encode_early_nid(nid) |
							SECTION_IS_ONLINE;
256
			__section_mark_present(ms, section);
257
		}
A
Andy Whitcroft 已提交
258 259 260
	}
}

261
/*
262 263 264
 * Mark all memblocks as present using memory_present().
 * This is a convenience function that is useful to mark all of the systems
 * memory as present during initialization.
265
 */
266
static void __init memblocks_present(void)
267
{
268 269
	unsigned long start, end;
	int i, nid;
270

271 272
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid)
		memory_present(nid, start, end);
273 274
}

A
Andy Whitcroft 已提交
275 276 277 278 279 280 281
/*
 * Subtle, we encode the real pfn into the mem_map such that
 * the identity pfn - section_mem_map will return the actual
 * physical page frame number.
 */
static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
{
282 283 284 285 286
	unsigned long coded_mem_map =
		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
	return coded_mem_map;
A
Andy Whitcroft 已提交
287 288
}

289
#ifdef CONFIG_MEMORY_HOTPLUG
A
Andy Whitcroft 已提交
290
/*
291
 * Decode mem_map from the coded memmap
A
Andy Whitcroft 已提交
292 293 294
 */
struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
{
295 296
	/* mask off the extra low bits of information */
	coded_mem_map &= SECTION_MAP_MASK;
A
Andy Whitcroft 已提交
297 298
	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
}
299
#endif /* CONFIG_MEMORY_HOTPLUG */
A
Andy Whitcroft 已提交
300

301
static void __meminit sparse_init_one_section(struct mem_section *ms,
302
		unsigned long pnum, struct page *mem_map,
303
		struct mem_section_usage *usage, unsigned long flags)
A
Andy Whitcroft 已提交
304
{
305
	ms->section_mem_map &= ~SECTION_MAP_MASK;
306 307
	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
		| SECTION_HAS_MEM_MAP | flags;
308
	ms->usage = usage;
A
Andy Whitcroft 已提交
309 310
}

311
static unsigned long usemap_size(void)
312
{
313
	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
314 315
}

316
size_t mem_section_usage_size(void)
317
{
318
	return sizeof(struct mem_section_usage) + usemap_size();
319 320
}

321 322
static inline phys_addr_t pgdat_to_phys(struct pglist_data *pgdat)
{
323
#ifndef CONFIG_NUMA
324 325 326 327 328 329
	return __pa_symbol(pgdat);
#else
	return __pa(pgdat);
#endif
}

330
#ifdef CONFIG_MEMORY_HOTREMOVE
331
static struct mem_section_usage * __init
332
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
333
					 unsigned long size)
334
{
335
	struct mem_section_usage *usage;
336 337
	unsigned long goal, limit;
	int nid;
338 339 340
	/*
	 * A page may contain usemaps for other sections preventing the
	 * page being freed and making a section unremovable while
L
Li Zhong 已提交
341
	 * other sections referencing the usemap remain active. Similarly,
342 343 344 345 346 347
	 * a pgdat can prevent a section being removed. If section A
	 * contains a pgdat and section B contains the usemap, both
	 * sections become inter-dependent. This allocates usemaps
	 * from the same section as the pgdat where possible to avoid
	 * this problem.
	 */
348
	goal = pgdat_to_phys(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
349 350 351
	limit = goal + (1UL << PA_SECTION_SHIFT);
	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
again:
352 353
	usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
	if (!usage && limit) {
354 355 356
		limit = 0;
		goto again;
	}
357
	return usage;
358 359
}

360 361
static void __init check_usemap_section_nr(int nid,
		struct mem_section_usage *usage)
362 363
{
	unsigned long usemap_snr, pgdat_snr;
364 365
	static unsigned long old_usemap_snr;
	static unsigned long old_pgdat_snr;
366 367 368
	struct pglist_data *pgdat = NODE_DATA(nid);
	int usemap_nid;

369 370 371 372 373 374
	/* First call */
	if (!old_usemap_snr) {
		old_usemap_snr = NR_MEM_SECTIONS;
		old_pgdat_snr = NR_MEM_SECTIONS;
	}

375
	usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
376
	pgdat_snr = pfn_to_section_nr(pgdat_to_phys(pgdat) >> PAGE_SHIFT);
377 378 379 380 381 382 383 384 385 386 387 388
	if (usemap_snr == pgdat_snr)
		return;

	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
		/* skip redundant message */
		return;

	old_usemap_snr = usemap_snr;
	old_pgdat_snr = pgdat_snr;

	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
	if (usemap_nid != nid) {
389 390
		pr_info("node %d must be removed before remove section %ld\n",
			nid, usemap_snr);
391 392 393 394 395 396 397 398
		return;
	}
	/*
	 * There is a circular dependency.
	 * Some platforms allow un-removable section because they will just
	 * gather other removable sections for dynamic partitioning.
	 * Just notify un-removable section's number here.
	 */
399 400
	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
		usemap_snr, pgdat_snr, nid);
401 402
}
#else
403
static struct mem_section_usage * __init
404
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
405
					 unsigned long size)
406
{
407
	return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
408 409
}

410 411
static void __init check_usemap_section_nr(int nid,
		struct mem_section_usage *usage)
412 413 414 415
{
}
#endif /* CONFIG_MEMORY_HOTREMOVE */

416
#ifdef CONFIG_SPARSEMEM_VMEMMAP
417
static unsigned long __init section_map_size(void)
418 419 420 421 422
{
	return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
}

#else
423
static unsigned long __init section_map_size(void)
424 425 426 427
{
	return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
}

428 429
struct page __init *__populate_section_memmap(unsigned long pfn,
		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
A
Andy Whitcroft 已提交
430
{
431 432
	unsigned long size = section_map_size();
	struct page *map = sparse_buffer_alloc(size);
433
	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
434 435 436

	if (map)
		return map;
A
Andy Whitcroft 已提交
437

438
	map = memblock_alloc_try_nid_raw(size, size, addr,
439
					  MEMBLOCK_ALLOC_ACCESSIBLE, nid);
440 441 442 443
	if (!map)
		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
		      __func__, size, PAGE_SIZE, nid, &addr);

444 445 446 447
	return map;
}
#endif /* !CONFIG_SPARSEMEM_VMEMMAP */

448 449 450
static void *sparsemap_buf __meminitdata;
static void *sparsemap_buf_end __meminitdata;

451 452 453 454 455 456
static inline void __meminit sparse_buffer_free(unsigned long size)
{
	WARN_ON(!sparsemap_buf || size == 0);
	memblock_free_early(__pa(sparsemap_buf), size);
}

457
static void __init sparse_buffer_init(unsigned long size, int nid)
458
{
459
	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
460
	WARN_ON(sparsemap_buf);	/* forgot to call sparse_buffer_fini()? */
461 462 463 464 465
	/*
	 * Pre-allocated buffer is mainly used by __populate_section_memmap
	 * and we want it to be properly aligned to the section size - this is
	 * especially the case for VMEMMAP which maps memmap to PMDs
	 */
466
	sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(),
467
					addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
468 469 470
	sparsemap_buf_end = sparsemap_buf + size;
}

471
static void __init sparse_buffer_fini(void)
472 473 474 475
{
	unsigned long size = sparsemap_buf_end - sparsemap_buf;

	if (sparsemap_buf && size > 0)
476
		sparse_buffer_free(size);
477 478 479 480 481 482 483 484
	sparsemap_buf = NULL;
}

void * __meminit sparse_buffer_alloc(unsigned long size)
{
	void *ptr = NULL;

	if (sparsemap_buf) {
485
		ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
486 487
		if (ptr + size > sparsemap_buf_end)
			ptr = NULL;
488 489 490 491
		else {
			/* Free redundant aligned space */
			if ((unsigned long)(ptr - sparsemap_buf) > 0)
				sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
492
			sparsemap_buf = ptr + size;
493
		}
494 495 496 497
	}
	return ptr;
}

498
void __weak __meminit vmemmap_populate_print_last(void)
499 500
{
}
501

502 503 504 505 506 507 508 509
/*
 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
 * And number of present sections in this node is map_count.
 */
static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
				   unsigned long pnum_end,
				   unsigned long map_count)
{
510 511
	struct mem_section_usage *usage;
	unsigned long pnum;
512 513
	struct page *map;

514 515 516
	usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
			mem_section_usage_size() * map_count);
	if (!usage) {
517 518 519 520 521
		pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
		goto failed;
	}
	sparse_buffer_init(map_count * section_map_size(), nid);
	for_each_present_section_nr(pnum_begin, pnum) {
522 523
		unsigned long pfn = section_nr_to_pfn(pnum);

524 525 526
		if (pnum >= pnum_end)
			break;

527 528
		map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
				nid, NULL);
529 530 531 532
		if (!map) {
			pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
			       __func__, nid);
			pnum_begin = pnum;
533
			sparse_buffer_fini();
534 535
			goto failed;
		}
536
		check_usemap_section_nr(nid, usage);
537 538
		sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
				SECTION_IS_EARLY);
539
		usage = (void *) usage + mem_section_usage_size();
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
	}
	sparse_buffer_fini();
	return;
failed:
	/* We failed to allocate, mark all the following pnums as not present */
	for_each_present_section_nr(pnum_begin, pnum) {
		struct mem_section *ms;

		if (pnum >= pnum_end)
			break;
		ms = __nr_to_section(pnum);
		ms->section_mem_map = 0;
	}
}

/*
 * Allocate the accumulated non-linear sections, allocate a mem_map
 * for each and record the physical to section mapping.
 */
559
void __init sparse_init(void)
560
{
561 562 563 564 565 566 567
	unsigned long pnum_end, pnum_begin, map_count = 1;
	int nid_begin;

	memblocks_present();

	pnum_begin = first_present_section_nr();
	nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589

	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
	set_pageblock_order();

	for_each_present_section_nr(pnum_begin + 1, pnum_end) {
		int nid = sparse_early_nid(__nr_to_section(pnum_end));

		if (nid == nid_begin) {
			map_count++;
			continue;
		}
		/* Init node with sections in range [pnum_begin, pnum_end) */
		sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
		nid_begin = nid;
		pnum_begin = pnum_end;
		map_count = 1;
	}
	/* cover the last node */
	sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
	vmemmap_populate_print_last();
}

590
#ifdef CONFIG_MEMORY_HOTPLUG
591 592 593 594 595 596 597

/* Mark all memory sections within the pfn range as online */
void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
{
	unsigned long pfn;

	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
598
		unsigned long section_nr = pfn_to_section_nr(pfn);
599 600 601 602 603 604 605 606 607 608 609
		struct mem_section *ms;

		/* onlining code should never touch invalid ranges */
		if (WARN_ON(!valid_section_nr(section_nr)))
			continue;

		ms = __nr_to_section(section_nr);
		ms->section_mem_map |= SECTION_IS_ONLINE;
	}
}

610
/* Mark all memory sections within the pfn range as offline */
611 612 613 614 615
void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
{
	unsigned long pfn;

	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
616
		unsigned long section_nr = pfn_to_section_nr(pfn);
617 618 619 620 621 622 623 624 625 626 627 628 629 630
		struct mem_section *ms;

		/*
		 * TODO this needs some double checking. Offlining code makes
		 * sure to check pfn_valid but those checks might be just bogus
		 */
		if (WARN_ON(!valid_section_nr(section_nr)))
			continue;

		ms = __nr_to_section(section_nr);
		ms->section_mem_map &= ~SECTION_IS_ONLINE;
	}
}

631
#ifdef CONFIG_SPARSEMEM_VMEMMAP
632
static struct page * __meminit populate_section_memmap(unsigned long pfn,
633
		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
634
{
635
	return __populate_section_memmap(pfn, nr_pages, nid, altmap);
636
}
637 638

static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
639
		struct vmem_altmap *altmap)
640
{
641 642
	unsigned long start = (unsigned long) pfn_to_page(pfn);
	unsigned long end = start + nr_pages * sizeof(struct page);
643

644
	vmemmap_free(start, end, altmap);
645
}
646
static void free_map_bootmem(struct page *memmap)
647
{
648
	unsigned long start = (unsigned long)memmap;
649
	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
650

651
	vmemmap_free(start, end, NULL);
652
}
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701

static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
{
	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
	DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
	struct mem_section *ms = __pfn_to_section(pfn);
	unsigned long *subsection_map = ms->usage
		? &ms->usage->subsection_map[0] : NULL;

	subsection_mask_set(map, pfn, nr_pages);
	if (subsection_map)
		bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);

	if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
				"section already deactivated (%#lx + %ld)\n",
				pfn, nr_pages))
		return -EINVAL;

	bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
	return 0;
}

static bool is_subsection_map_empty(struct mem_section *ms)
{
	return bitmap_empty(&ms->usage->subsection_map[0],
			    SUBSECTIONS_PER_SECTION);
}

static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
{
	struct mem_section *ms = __pfn_to_section(pfn);
	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
	unsigned long *subsection_map;
	int rc = 0;

	subsection_mask_set(map, pfn, nr_pages);

	subsection_map = &ms->usage->subsection_map[0];

	if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
		rc = -EINVAL;
	else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
		rc = -EEXIST;
	else
		bitmap_or(subsection_map, map, subsection_map,
				SUBSECTIONS_PER_SECTION);

	return rc;
}
702
#else
703
struct page * __meminit populate_section_memmap(unsigned long pfn,
704
		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
705
{
706 707
	return kvmalloc_node(array_size(sizeof(struct page),
					PAGES_PER_SECTION), GFP_KERNEL, nid);
708 709
}

710
static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
711
		struct vmem_altmap *altmap)
712
{
713
	kvfree(pfn_to_page(pfn));
714
}
715

716
static void free_map_bootmem(struct page *memmap)
717 718
{
	unsigned long maps_section_nr, removing_section_nr, i;
719
	unsigned long magic, nr_pages;
720
	struct page *page = virt_to_page(memmap);
721

722 723 724
	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
		>> PAGE_SHIFT;

725
	for (i = 0; i < nr_pages; i++, page++) {
726
		magic = (unsigned long) page->freelist;
727 728 729 730

		BUG_ON(magic == NODE_INFO);

		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
731
		removing_section_nr = page_private(page);
732 733 734 735 736 737 738 739 740 741 742 743 744

		/*
		 * When this function is called, the removing section is
		 * logical offlined state. This means all pages are isolated
		 * from page allocator. If removing section's memmap is placed
		 * on the same section, it must not be freed.
		 * If it is freed, page allocator may allocate it which will
		 * be removed physically soon.
		 */
		if (maps_section_nr != removing_section_nr)
			put_page_bootmem(page);
	}
}
745

746
static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
747
{
748 749 750 751 752
	return 0;
}

static bool is_subsection_map_empty(struct mem_section *ms)
{
753
	return true;
754 755
}

756
static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
757
{
758
	return 0;
759
}
760
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
761

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
/*
 * To deactivate a memory region, there are 3 cases to handle across
 * two configurations (SPARSEMEM_VMEMMAP={y,n}):
 *
 * 1. deactivation of a partial hot-added section (only possible in
 *    the SPARSEMEM_VMEMMAP=y case).
 *      a) section was present at memory init.
 *      b) section was hot-added post memory init.
 * 2. deactivation of a complete hot-added section.
 * 3. deactivation of a complete section from memory init.
 *
 * For 1, when subsection_map does not empty we will not be freeing the
 * usage map, but still need to free the vmemmap range.
 *
 * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
 */
778 779 780 781 782 783 784 785 786 787
static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
		struct vmem_altmap *altmap)
{
	struct mem_section *ms = __pfn_to_section(pfn);
	bool section_is_early = early_section(ms);
	struct page *memmap = NULL;
	bool empty;

	if (clear_subsection_map(pfn, nr_pages))
		return;
788

789
	empty = is_subsection_map_empty(ms);
790
	if (empty) {
791 792
		unsigned long section_nr = pfn_to_section_nr(pfn);

793 794 795 796 797 798 799 800
		/*
		 * When removing an early section, the usage map is kept (as the
		 * usage maps of other sections fall into the same page). It
		 * will be re-used when re-adding the section - which is then no
		 * longer an early section. If the usage map is PageReserved, it
		 * was allocated during boot.
		 */
		if (!PageReserved(virt_to_page(ms->usage))) {
801 802 803 804
			kfree(ms->usage);
			ms->usage = NULL;
		}
		memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
805 806 807 808 809 810
		/*
		 * Mark the section invalid so that valid_section()
		 * return false. This prevents code from dereferencing
		 * ms->usage array.
		 */
		ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
811 812
	}

813 814 815 816 817
	/*
	 * The memmap of early sections is always fully populated. See
	 * section_activate() and pfn_valid() .
	 */
	if (!section_is_early)
818
		depopulate_section_memmap(pfn, nr_pages, altmap);
819 820
	else if (memmap)
		free_map_bootmem(memmap);
821 822 823

	if (empty)
		ms->section_mem_map = (unsigned long)NULL;
824 825
}

826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
static struct page * __meminit section_activate(int nid, unsigned long pfn,
		unsigned long nr_pages, struct vmem_altmap *altmap)
{
	struct mem_section *ms = __pfn_to_section(pfn);
	struct mem_section_usage *usage = NULL;
	struct page *memmap;
	int rc = 0;

	if (!ms->usage) {
		usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
		if (!usage)
			return ERR_PTR(-ENOMEM);
		ms->usage = usage;
	}

	rc = fill_subsection_map(pfn, nr_pages);
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
	if (rc) {
		if (usage)
			ms->usage = NULL;
		kfree(usage);
		return ERR_PTR(rc);
	}

	/*
	 * The early init code does not consider partially populated
	 * initial sections, it simply assumes that memory will never be
	 * referenced.  If we hot-add memory into such a section then we
	 * do not need to populate the memmap and can simply reuse what
	 * is already there.
	 */
	if (nr_pages < PAGES_PER_SECTION && early_section(ms))
		return pfn_to_page(pfn);

	memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
	if (!memmap) {
		section_deactivate(pfn, nr_pages, altmap);
		return ERR_PTR(-ENOMEM);
	}

	return memmap;
}

868
/**
869
 * sparse_add_section - add a memory section, or populate an existing one
870 871
 * @nid: The node to add section on
 * @start_pfn: start pfn of the memory range
872
 * @nr_pages: number of pfns to add in the section
873 874 875 876
 * @altmap: device page map
 *
 * This is only intended for hotplug.
 *
877 878 879 880
 * Note that only VMEMMAP supports sub-section aligned hotplug,
 * the proper alignment and size are gated by check_pfn_span().
 *
 *
881 882 883 884
 * Return:
 * * 0		- On success.
 * * -EEXIST	- Section has been present.
 * * -ENOMEM	- Out of memory.
A
Andy Whitcroft 已提交
885
 */
886 887
int __meminit sparse_add_section(int nid, unsigned long start_pfn,
		unsigned long nr_pages, struct vmem_altmap *altmap)
A
Andy Whitcroft 已提交
888
{
889 890 891 892
	unsigned long section_nr = pfn_to_section_nr(start_pfn);
	struct mem_section *ms;
	struct page *memmap;
	int ret;
A
Andy Whitcroft 已提交
893

894
	ret = sparse_index_init(section_nr, nid);
895
	if (ret < 0)
896
		return ret;
897

898 899 900
	memmap = section_activate(nid, start_pfn, nr_pages, altmap);
	if (IS_ERR(memmap))
		return PTR_ERR(memmap);
901

902 903 904 905
	/*
	 * Poison uninitialized struct pages in order to catch invalid flags
	 * combinations.
	 */
906
	page_init_poison(memmap, sizeof(struct page) * nr_pages);
907

908
	ms = __nr_to_section(section_nr);
909
	set_section_nid(section_nr, nid);
910
	__section_mark_present(ms, section_nr);
911

912 913
	/* Align memmap to section boundary in the subsection case */
	if (section_nr_to_pfn(section_nr) != start_pfn)
914
		memmap = pfn_to_page(section_nr_to_pfn(section_nr));
915 916 917
	sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);

	return 0;
A
Andy Whitcroft 已提交
918
}
919

920 921 922 923 924
#ifdef CONFIG_MEMORY_FAILURE
static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
{
	int i;

925 926 927 928 929 930 931 932 933
	/*
	 * A further optimization is to have per section refcounted
	 * num_poisoned_pages.  But that would need more space per memmap, so
	 * for now just do a quick global check to speed up this routine in the
	 * absence of bad pages.
	 */
	if (atomic_long_read(&num_poisoned_pages) == 0)
		return;

934
	for (i = 0; i < nr_pages; i++) {
935
		if (PageHWPoison(&memmap[i])) {
936
			num_poisoned_pages_dec();
937 938 939 940 941 942 943 944 945 946
			ClearPageHWPoison(&memmap[i]);
		}
	}
}
#else
static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
{
}
#endif

947
void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
948 949
		unsigned long nr_pages, unsigned long map_offset,
		struct vmem_altmap *altmap)
950
{
951 952 953
	clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
			nr_pages - map_offset);
	section_deactivate(pfn, nr_pages, altmap);
954
}
955
#endif /* CONFIG_MEMORY_HOTPLUG */