sparse.c 26.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
A
Andy Whitcroft 已提交
2 3 4 5
/*
 * sparse memory mappings.
 */
#include <linux/mm.h>
6
#include <linux/slab.h>
A
Andy Whitcroft 已提交
7
#include <linux/mmzone.h>
8
#include <linux/memblock.h>
9
#include <linux/compiler.h>
10
#include <linux/highmem.h>
11
#include <linux/export.h>
12
#include <linux/spinlock.h>
13
#include <linux/vmalloc.h>
14 15
#include <linux/swap.h>
#include <linux/swapops.h>
16

17
#include "internal.h"
A
Andy Whitcroft 已提交
18
#include <asm/dma.h>
19 20
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
A
Andy Whitcroft 已提交
21 22 23 24 25 26

/*
 * Permanent SPARSEMEM data:
 *
 * 1) mem_section	- memory sections, mem_map's for valid memory
 */
27
#ifdef CONFIG_SPARSEMEM_EXTREME
28
struct mem_section **mem_section;
29 30
#else
struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
31
	____cacheline_internodealigned_in_smp;
32 33 34
#endif
EXPORT_SYMBOL(mem_section);

35 36 37 38 39 40 41 42 43 44 45 46
#ifdef NODE_NOT_IN_PAGE_FLAGS
/*
 * If we did not store the node number in the page then we have to
 * do a lookup in the section_to_node_table in order to find which
 * node the page belongs to.
 */
#if MAX_NUMNODES <= 256
static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
#else
static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
#endif

I
Ian Campbell 已提交
47
int page_to_nid(const struct page *page)
48 49 50 51
{
	return section_to_node_table[page_to_section(page)];
}
EXPORT_SYMBOL(page_to_nid);
52 53 54 55 56 57 58 59 60

static void set_section_nid(unsigned long section_nr, int nid)
{
	section_to_node_table[section_nr] = nid;
}
#else /* !NODE_NOT_IN_PAGE_FLAGS */
static inline void set_section_nid(unsigned long section_nr, int nid)
{
}
61 62
#endif

63
#ifdef CONFIG_SPARSEMEM_EXTREME
64
static noinline struct mem_section __ref *sparse_index_alloc(int nid)
65 66 67 68 69
{
	struct mem_section *section = NULL;
	unsigned long array_size = SECTIONS_PER_ROOT *
				   sizeof(struct mem_section);

70
	if (slab_is_available()) {
71
		section = kzalloc_node(array_size, GFP_KERNEL, nid);
72
	} else {
73 74
		section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
					      nid);
75 76 77 78
		if (!section)
			panic("%s: Failed to allocate %lu bytes nid=%d\n",
			      __func__, array_size, nid);
	}
79 80

	return section;
81
}
B
Bob Picco 已提交
82

83
static int __meminit sparse_index_init(unsigned long section_nr, int nid)
B
Bob Picco 已提交
84
{
85 86
	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
	struct mem_section *section;
B
Bob Picco 已提交
87

88 89 90 91 92 93 94
	/*
	 * An existing section is possible in the sub-section hotplug
	 * case. First hot-add instantiates, follow-on hot-add reuses
	 * the existing section.
	 *
	 * The mem_hotplug_lock resolves the apparent race below.
	 */
B
Bob Picco 已提交
95
	if (mem_section[root])
96
		return 0;
97

98
	section = sparse_index_alloc(nid);
99 100
	if (!section)
		return -ENOMEM;
101 102

	mem_section[root] = section;
G
Gavin Shan 已提交
103

104
	return 0;
105 106 107 108 109
}
#else /* !SPARSEMEM_EXTREME */
static inline int sparse_index_init(unsigned long section_nr, int nid)
{
	return 0;
B
Bob Picco 已提交
110
}
111 112
#endif

113
#ifdef CONFIG_SPARSEMEM_EXTREME
114
unsigned long __section_nr(struct mem_section *ms)
115 116
{
	unsigned long root_nr;
117
	struct mem_section *root = NULL;
118

119 120
	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
121 122 123 124 125 126 127
		if (!root)
			continue;

		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
		     break;
	}

128
	VM_BUG_ON(!root);
129

130 131
	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
}
132
#else
133
unsigned long __section_nr(struct mem_section *ms)
134
{
135
	return (unsigned long)(ms - mem_section[0]);
136 137
}
#endif
138

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
/*
 * During early boot, before section_mem_map is used for an actual
 * mem_map, we use section_mem_map to store the section's NUMA
 * node.  This keeps us from having to use another data structure.  The
 * node information is cleared just before we store the real mem_map.
 */
static inline unsigned long sparse_encode_early_nid(int nid)
{
	return (nid << SECTION_NID_SHIFT);
}

static inline int sparse_early_nid(struct mem_section *section)
{
	return (section->section_mem_map >> SECTION_NID_SHIFT);
}

155 156 157
/* Validate the physical addressing limitations of the model */
void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
						unsigned long *end_pfn)
A
Andy Whitcroft 已提交
158
{
159
	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
A
Andy Whitcroft 已提交
160

I
Ingo Molnar 已提交
161 162 163 164
	/*
	 * Sanity checks - do not allow an architecture to pass
	 * in larger pfns than the maximum scope of sparsemem:
	 */
165 166 167 168 169 170 171
	if (*start_pfn > max_sparsemem_pfn) {
		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
			*start_pfn, *end_pfn, max_sparsemem_pfn);
		WARN_ON_ONCE(1);
		*start_pfn = max_sparsemem_pfn;
		*end_pfn = max_sparsemem_pfn;
172
	} else if (*end_pfn > max_sparsemem_pfn) {
173 174 175 176 177 178 179 180
		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
			*start_pfn, *end_pfn, max_sparsemem_pfn);
		WARN_ON_ONCE(1);
		*end_pfn = max_sparsemem_pfn;
	}
}

181 182 183 184 185 186 187 188 189
/*
 * There are a number of times that we loop over NR_MEM_SECTIONS,
 * looking for section_present() on each.  But, when we have very
 * large physical address spaces, NR_MEM_SECTIONS can also be
 * very large which makes the loops quite long.
 *
 * Keeping track of this gives us an easy way to break out of
 * those loops early.
 */
190
unsigned long __highest_present_section_nr;
191 192
static void section_mark_present(struct mem_section *ms)
{
193
	unsigned long section_nr = __section_nr(ms);
194 195 196 197 198 199 200 201 202

	if (section_nr > __highest_present_section_nr)
		__highest_present_section_nr = section_nr;

	ms->section_mem_map |= SECTION_MARKED_PRESENT;
}

#define for_each_present_section_nr(start, section_nr)		\
	for (section_nr = next_present_section_nr(start-1);	\
Q
Qian Cai 已提交
203
	     ((section_nr != -1) &&				\
204 205 206
	      (section_nr <= __highest_present_section_nr));	\
	     section_nr = next_present_section_nr(section_nr))

207 208 209 210 211
static inline unsigned long first_present_section_nr(void)
{
	return next_present_section_nr(-1);
}

212
#ifdef CONFIG_SPARSEMEM_VMEMMAP
Y
Yi Wang 已提交
213
static void subsection_mask_set(unsigned long *map, unsigned long pfn,
214 215 216 217 218 219 220 221 222 223 224
		unsigned long nr_pages)
{
	int idx = subsection_map_index(pfn);
	int end = subsection_map_index(pfn + nr_pages - 1);

	bitmap_set(map, idx, end - idx + 1);
}

void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
{
	int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
225
	unsigned long nr, start_sec = pfn_to_section_nr(pfn);
226 227 228 229

	if (!nr_pages)
		return;

230
	for (nr = start_sec; nr <= end_sec; nr++) {
231 232 233 234 235
		struct mem_section *ms;
		unsigned long pfns;

		pfns = min(nr_pages, PAGES_PER_SECTION
				- (pfn & ~PAGE_SECTION_MASK));
236
		ms = __nr_to_section(nr);
237 238
		subsection_mask_set(ms->usage->subsection_map, pfn, pfns);

239
		pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
240 241 242 243 244 245 246
				pfns, subsection_map_index(pfn),
				subsection_map_index(pfn + pfns - 1));

		pfn += pfns;
		nr_pages -= pfns;
	}
}
247 248 249 250 251
#else
void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
{
}
#endif
252

253 254 255 256
/* Record a memory area against a node. */
void __init memory_present(int nid, unsigned long start, unsigned long end)
{
	unsigned long pfn;
I
Ingo Molnar 已提交
257

258 259 260 261
#ifdef CONFIG_SPARSEMEM_EXTREME
	if (unlikely(!mem_section)) {
		unsigned long size, align;

262
		size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
263
		align = 1 << (INTERNODE_CACHE_SHIFT);
264
		mem_section = memblock_alloc(size, align);
265 266 267
		if (!mem_section)
			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
			      __func__, size, align);
268 269 270
	}
#endif

A
Andy Whitcroft 已提交
271
	start &= PAGE_SECTION_MASK;
272
	mminit_validate_memmodel_limits(&start, &end);
A
Andy Whitcroft 已提交
273 274
	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
		unsigned long section = pfn_to_section_nr(pfn);
B
Bob Picco 已提交
275 276 277
		struct mem_section *ms;

		sparse_index_init(section, nid);
278
		set_section_nid(section, nid);
B
Bob Picco 已提交
279 280

		ms = __nr_to_section(section);
281
		if (!ms->section_mem_map) {
282 283
			ms->section_mem_map = sparse_encode_early_nid(nid) |
							SECTION_IS_ONLINE;
284 285
			section_mark_present(ms);
		}
A
Andy Whitcroft 已提交
286 287 288
	}
}

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
/*
 * Mark all memblocks as present using memory_present(). This is a
 * convienence function that is useful for a number of arches
 * to mark all of the systems memory as present during initialization.
 */
void __init memblocks_present(void)
{
	struct memblock_region *reg;

	for_each_memblock(memory, reg) {
		memory_present(memblock_get_region_node(reg),
			       memblock_region_memory_base_pfn(reg),
			       memblock_region_memory_end_pfn(reg));
	}
}

A
Andy Whitcroft 已提交
305 306 307 308 309 310 311
/*
 * Subtle, we encode the real pfn into the mem_map such that
 * the identity pfn - section_mem_map will return the actual
 * physical page frame number.
 */
static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
{
312 313 314 315 316
	unsigned long coded_mem_map =
		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
	return coded_mem_map;
A
Andy Whitcroft 已提交
317 318 319
}

/*
320
 * Decode mem_map from the coded memmap
A
Andy Whitcroft 已提交
321 322 323
 */
struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
{
324 325
	/* mask off the extra low bits of information */
	coded_mem_map &= SECTION_MAP_MASK;
A
Andy Whitcroft 已提交
326 327 328
	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
}

329
static void __meminit sparse_init_one_section(struct mem_section *ms,
330
		unsigned long pnum, struct page *mem_map,
331
		struct mem_section_usage *usage, unsigned long flags)
A
Andy Whitcroft 已提交
332
{
333
	ms->section_mem_map &= ~SECTION_MAP_MASK;
334 335
	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
		| SECTION_HAS_MEM_MAP | flags;
336
	ms->usage = usage;
A
Andy Whitcroft 已提交
337 338
}

339
static unsigned long usemap_size(void)
340
{
341
	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
342 343
}

344
size_t mem_section_usage_size(void)
345
{
346
	return sizeof(struct mem_section_usage) + usemap_size();
347 348
}

349
#ifdef CONFIG_MEMORY_HOTREMOVE
350
static struct mem_section_usage * __init
351
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
352
					 unsigned long size)
353
{
354
	struct mem_section_usage *usage;
355 356
	unsigned long goal, limit;
	int nid;
357 358 359
	/*
	 * A page may contain usemaps for other sections preventing the
	 * page being freed and making a section unremovable while
L
Li Zhong 已提交
360
	 * other sections referencing the usemap remain active. Similarly,
361 362 363 364 365 366
	 * a pgdat can prevent a section being removed. If section A
	 * contains a pgdat and section B contains the usemap, both
	 * sections become inter-dependent. This allocates usemaps
	 * from the same section as the pgdat where possible to avoid
	 * this problem.
	 */
367
	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
368 369 370
	limit = goal + (1UL << PA_SECTION_SHIFT);
	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
again:
371 372
	usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
	if (!usage && limit) {
373 374 375
		limit = 0;
		goto again;
	}
376
	return usage;
377 378
}

379 380
static void __init check_usemap_section_nr(int nid,
		struct mem_section_usage *usage)
381 382
{
	unsigned long usemap_snr, pgdat_snr;
383 384
	static unsigned long old_usemap_snr;
	static unsigned long old_pgdat_snr;
385 386 387
	struct pglist_data *pgdat = NODE_DATA(nid);
	int usemap_nid;

388 389 390 391 392 393
	/* First call */
	if (!old_usemap_snr) {
		old_usemap_snr = NR_MEM_SECTIONS;
		old_pgdat_snr = NR_MEM_SECTIONS;
	}

394
	usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
395 396 397 398 399 400 401 402 403 404 405 406 407
	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
	if (usemap_snr == pgdat_snr)
		return;

	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
		/* skip redundant message */
		return;

	old_usemap_snr = usemap_snr;
	old_pgdat_snr = pgdat_snr;

	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
	if (usemap_nid != nid) {
408 409
		pr_info("node %d must be removed before remove section %ld\n",
			nid, usemap_snr);
410 411 412 413 414 415 416 417
		return;
	}
	/*
	 * There is a circular dependency.
	 * Some platforms allow un-removable section because they will just
	 * gather other removable sections for dynamic partitioning.
	 * Just notify un-removable section's number here.
	 */
418 419
	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
		usemap_snr, pgdat_snr, nid);
420 421
}
#else
422
static struct mem_section_usage * __init
423
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
424
					 unsigned long size)
425
{
426
	return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
427 428
}

429 430
static void __init check_usemap_section_nr(int nid,
		struct mem_section_usage *usage)
431 432 433 434
{
}
#endif /* CONFIG_MEMORY_HOTREMOVE */

435
#ifdef CONFIG_SPARSEMEM_VMEMMAP
436
static unsigned long __init section_map_size(void)
437 438 439 440 441
{
	return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
}

#else
442
static unsigned long __init section_map_size(void)
443 444 445 446
{
	return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
}

447 448
struct page __init *__populate_section_memmap(unsigned long pfn,
		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
A
Andy Whitcroft 已提交
449
{
450 451
	unsigned long size = section_map_size();
	struct page *map = sparse_buffer_alloc(size);
452
	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
453 454 455

	if (map)
		return map;
A
Andy Whitcroft 已提交
456

457
	map = memblock_alloc_try_nid_raw(size, size, addr,
458
					  MEMBLOCK_ALLOC_ACCESSIBLE, nid);
459 460 461 462
	if (!map)
		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
		      __func__, size, PAGE_SIZE, nid, &addr);

463 464 465 466
	return map;
}
#endif /* !CONFIG_SPARSEMEM_VMEMMAP */

467 468 469
static void *sparsemap_buf __meminitdata;
static void *sparsemap_buf_end __meminitdata;

470 471 472 473 474 475
static inline void __meminit sparse_buffer_free(unsigned long size)
{
	WARN_ON(!sparsemap_buf || size == 0);
	memblock_free_early(__pa(sparsemap_buf), size);
}

476
static void __init sparse_buffer_init(unsigned long size, int nid)
477
{
478
	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
479
	WARN_ON(sparsemap_buf);	/* forgot to call sparse_buffer_fini()? */
480 481 482 483 484
	/*
	 * Pre-allocated buffer is mainly used by __populate_section_memmap
	 * and we want it to be properly aligned to the section size - this is
	 * especially the case for VMEMMAP which maps memmap to PMDs
	 */
485
	sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(),
486
					addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
487 488 489
	sparsemap_buf_end = sparsemap_buf + size;
}

490
static void __init sparse_buffer_fini(void)
491 492 493 494
{
	unsigned long size = sparsemap_buf_end - sparsemap_buf;

	if (sparsemap_buf && size > 0)
495
		sparse_buffer_free(size);
496 497 498 499 500 501 502 503
	sparsemap_buf = NULL;
}

void * __meminit sparse_buffer_alloc(unsigned long size)
{
	void *ptr = NULL;

	if (sparsemap_buf) {
504
		ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
505 506
		if (ptr + size > sparsemap_buf_end)
			ptr = NULL;
507 508 509 510
		else {
			/* Free redundant aligned space */
			if ((unsigned long)(ptr - sparsemap_buf) > 0)
				sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
511
			sparsemap_buf = ptr + size;
512
		}
513 514 515 516
	}
	return ptr;
}

517
void __weak __meminit vmemmap_populate_print_last(void)
518 519
{
}
520

521 522 523 524 525 526 527 528
/*
 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
 * And number of present sections in this node is map_count.
 */
static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
				   unsigned long pnum_end,
				   unsigned long map_count)
{
529 530
	struct mem_section_usage *usage;
	unsigned long pnum;
531 532
	struct page *map;

533 534 535
	usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
			mem_section_usage_size() * map_count);
	if (!usage) {
536 537 538 539 540
		pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
		goto failed;
	}
	sparse_buffer_init(map_count * section_map_size(), nid);
	for_each_present_section_nr(pnum_begin, pnum) {
541 542
		unsigned long pfn = section_nr_to_pfn(pnum);

543 544 545
		if (pnum >= pnum_end)
			break;

546 547
		map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
				nid, NULL);
548 549 550 551 552 553
		if (!map) {
			pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
			       __func__, nid);
			pnum_begin = pnum;
			goto failed;
		}
554
		check_usemap_section_nr(nid, usage);
555 556
		sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
				SECTION_IS_EARLY);
557
		usage = (void *) usage + mem_section_usage_size();
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
	}
	sparse_buffer_fini();
	return;
failed:
	/* We failed to allocate, mark all the following pnums as not present */
	for_each_present_section_nr(pnum_begin, pnum) {
		struct mem_section *ms;

		if (pnum >= pnum_end)
			break;
		ms = __nr_to_section(pnum);
		ms->section_mem_map = 0;
	}
}

/*
 * Allocate the accumulated non-linear sections, allocate a mem_map
 * for each and record the physical to section mapping.
 */
577
void __init sparse_init(void)
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
{
	unsigned long pnum_begin = first_present_section_nr();
	int nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
	unsigned long pnum_end, map_count = 1;

	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
	set_pageblock_order();

	for_each_present_section_nr(pnum_begin + 1, pnum_end) {
		int nid = sparse_early_nid(__nr_to_section(pnum_end));

		if (nid == nid_begin) {
			map_count++;
			continue;
		}
		/* Init node with sections in range [pnum_begin, pnum_end) */
		sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
		nid_begin = nid;
		pnum_begin = pnum_end;
		map_count = 1;
	}
	/* cover the last node */
	sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
	vmemmap_populate_print_last();
}

604
#ifdef CONFIG_MEMORY_HOTPLUG
605 606 607 608 609 610 611

/* Mark all memory sections within the pfn range as online */
void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
{
	unsigned long pfn;

	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
612
		unsigned long section_nr = pfn_to_section_nr(pfn);
613 614 615 616 617 618 619 620 621 622 623 624
		struct mem_section *ms;

		/* onlining code should never touch invalid ranges */
		if (WARN_ON(!valid_section_nr(section_nr)))
			continue;

		ms = __nr_to_section(section_nr);
		ms->section_mem_map |= SECTION_IS_ONLINE;
	}
}

#ifdef CONFIG_MEMORY_HOTREMOVE
625
/* Mark all memory sections within the pfn range as offline */
626 627 628 629 630
void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
{
	unsigned long pfn;

	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
631
		unsigned long section_nr = pfn_to_section_nr(pfn);
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
		struct mem_section *ms;

		/*
		 * TODO this needs some double checking. Offlining code makes
		 * sure to check pfn_valid but those checks might be just bogus
		 */
		if (WARN_ON(!valid_section_nr(section_nr)))
			continue;

		ms = __nr_to_section(section_nr);
		ms->section_mem_map &= ~SECTION_IS_ONLINE;
	}
}
#endif

647
#ifdef CONFIG_SPARSEMEM_VMEMMAP
648
static struct page * __meminit populate_section_memmap(unsigned long pfn,
649
		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
650
{
651
	return __populate_section_memmap(pfn, nr_pages, nid, altmap);
652
}
653 654

static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
655
		struct vmem_altmap *altmap)
656
{
657 658
	unsigned long start = (unsigned long) pfn_to_page(pfn);
	unsigned long end = start + nr_pages * sizeof(struct page);
659

660
	vmemmap_free(start, end, altmap);
661
}
662
static void free_map_bootmem(struct page *memmap)
663
{
664
	unsigned long start = (unsigned long)memmap;
665
	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
666

667
	vmemmap_free(start, end, NULL);
668
}
669
#else
670
struct page * __meminit populate_section_memmap(unsigned long pfn,
671
		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
672
{
673 674
	return kvmalloc_node(array_size(sizeof(struct page),
					PAGES_PER_SECTION), GFP_KERNEL, nid);
675 676
}

677
static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
678
		struct vmem_altmap *altmap)
679
{
680
	kvfree(pfn_to_page(pfn));
681
}
682

683
static void free_map_bootmem(struct page *memmap)
684 685
{
	unsigned long maps_section_nr, removing_section_nr, i;
686
	unsigned long magic, nr_pages;
687
	struct page *page = virt_to_page(memmap);
688

689 690 691
	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
		>> PAGE_SHIFT;

692
	for (i = 0; i < nr_pages; i++, page++) {
693
		magic = (unsigned long) page->freelist;
694 695 696 697

		BUG_ON(magic == NODE_INFO);

		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
698
		removing_section_nr = page_private(page);
699 700 701 702 703 704 705 706 707 708 709 710 711

		/*
		 * When this function is called, the removing section is
		 * logical offlined state. This means all pages are isolated
		 * from page allocator. If removing section's memmap is placed
		 * on the same section, it must not be freed.
		 * If it is freed, page allocator may allocate it which will
		 * be removed physically soon.
		 */
		if (maps_section_nr != removing_section_nr)
			put_page_bootmem(page);
	}
}
712
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
713

714
#ifdef CONFIG_SPARSEMEM_VMEMMAP
715
static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
716 717 718 719 720 721 722 723 724 725 726 727 728 729
{
	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
	DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
	struct mem_section *ms = __pfn_to_section(pfn);
	unsigned long *subsection_map = ms->usage
		? &ms->usage->subsection_map[0] : NULL;

	subsection_mask_set(map, pfn, nr_pages);
	if (subsection_map)
		bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);

	if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
				"section already deactivated (%#lx + %ld)\n",
				pfn, nr_pages))
730
		return -EINVAL;
731

732 733 734 735 736 737 738 739 740
	bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
	return 0;
}

static bool is_subsection_map_empty(struct mem_section *ms)
{
	return bitmap_empty(&ms->usage->subsection_map[0],
			    SUBSECTIONS_PER_SECTION);
}
741 742 743 744 745 746 747 748 749 750 751
#else
static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
{
	return 0;
}

static bool is_subsection_map_empty(struct mem_section *ms)
{
	return true;
}
#endif
752

753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
/*
 * To deactivate a memory region, there are 3 cases to handle across
 * two configurations (SPARSEMEM_VMEMMAP={y,n}):
 *
 * 1. deactivation of a partial hot-added section (only possible in
 *    the SPARSEMEM_VMEMMAP=y case).
 *      a) section was present at memory init.
 *      b) section was hot-added post memory init.
 * 2. deactivation of a complete hot-added section.
 * 3. deactivation of a complete section from memory init.
 *
 * For 1, when subsection_map does not empty we will not be freeing the
 * usage map, but still need to free the vmemmap range.
 *
 * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
 */
769 770 771 772 773 774 775 776 777 778
static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
		struct vmem_altmap *altmap)
{
	struct mem_section *ms = __pfn_to_section(pfn);
	bool section_is_early = early_section(ms);
	struct page *memmap = NULL;
	bool empty;

	if (clear_subsection_map(pfn, nr_pages))
		return;
779

780
	empty = is_subsection_map_empty(ms);
781
	if (empty) {
782 783
		unsigned long section_nr = pfn_to_section_nr(pfn);

784 785 786 787 788 789 790 791
		/*
		 * When removing an early section, the usage map is kept (as the
		 * usage maps of other sections fall into the same page). It
		 * will be re-used when re-adding the section - which is then no
		 * longer an early section. If the usage map is PageReserved, it
		 * was allocated during boot.
		 */
		if (!PageReserved(virt_to_page(ms->usage))) {
792 793 794 795
			kfree(ms->usage);
			ms->usage = NULL;
		}
		memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
796 797 798 799 800 801
		/*
		 * Mark the section invalid so that valid_section()
		 * return false. This prevents code from dereferencing
		 * ms->usage array.
		 */
		ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
802 803 804 805 806 807
	}

	if (section_is_early && memmap)
		free_map_bootmem(memmap);
	else
		depopulate_section_memmap(pfn, nr_pages, altmap);
808 809 810

	if (empty)
		ms->section_mem_map = (unsigned long)NULL;
811 812
}

813
#ifdef CONFIG_SPARSEMEM_VMEMMAP
814
static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
815 816
{
	struct mem_section *ms = __pfn_to_section(pfn);
817
	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
	unsigned long *subsection_map;
	int rc = 0;

	subsection_mask_set(map, pfn, nr_pages);

	subsection_map = &ms->usage->subsection_map[0];

	if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
		rc = -EINVAL;
	else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
		rc = -EEXIST;
	else
		bitmap_or(subsection_map, map, subsection_map,
				SUBSECTIONS_PER_SECTION);

833 834
	return rc;
}
835 836 837 838 839 840
#else
static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
{
	return 0;
}
#endif
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857

static struct page * __meminit section_activate(int nid, unsigned long pfn,
		unsigned long nr_pages, struct vmem_altmap *altmap)
{
	struct mem_section *ms = __pfn_to_section(pfn);
	struct mem_section_usage *usage = NULL;
	struct page *memmap;
	int rc = 0;

	if (!ms->usage) {
		usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
		if (!usage)
			return ERR_PTR(-ENOMEM);
		ms->usage = usage;
	}

	rc = fill_subsection_map(pfn, nr_pages);
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
	if (rc) {
		if (usage)
			ms->usage = NULL;
		kfree(usage);
		return ERR_PTR(rc);
	}

	/*
	 * The early init code does not consider partially populated
	 * initial sections, it simply assumes that memory will never be
	 * referenced.  If we hot-add memory into such a section then we
	 * do not need to populate the memmap and can simply reuse what
	 * is already there.
	 */
	if (nr_pages < PAGES_PER_SECTION && early_section(ms))
		return pfn_to_page(pfn);

	memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
	if (!memmap) {
		section_deactivate(pfn, nr_pages, altmap);
		return ERR_PTR(-ENOMEM);
	}

	return memmap;
}

884
/**
885
 * sparse_add_section - add a memory section, or populate an existing one
886 887
 * @nid: The node to add section on
 * @start_pfn: start pfn of the memory range
888
 * @nr_pages: number of pfns to add in the section
889 890 891 892
 * @altmap: device page map
 *
 * This is only intended for hotplug.
 *
893 894 895 896
 * Note that only VMEMMAP supports sub-section aligned hotplug,
 * the proper alignment and size are gated by check_pfn_span().
 *
 *
897 898 899 900
 * Return:
 * * 0		- On success.
 * * -EEXIST	- Section has been present.
 * * -ENOMEM	- Out of memory.
A
Andy Whitcroft 已提交
901
 */
902 903
int __meminit sparse_add_section(int nid, unsigned long start_pfn,
		unsigned long nr_pages, struct vmem_altmap *altmap)
A
Andy Whitcroft 已提交
904
{
905 906 907 908
	unsigned long section_nr = pfn_to_section_nr(start_pfn);
	struct mem_section *ms;
	struct page *memmap;
	int ret;
A
Andy Whitcroft 已提交
909

910
	ret = sparse_index_init(section_nr, nid);
911
	if (ret < 0)
912
		return ret;
913

914 915 916
	memmap = section_activate(nid, start_pfn, nr_pages, altmap);
	if (IS_ERR(memmap))
		return PTR_ERR(memmap);
917

918 919 920 921
	/*
	 * Poison uninitialized struct pages in order to catch invalid flags
	 * combinations.
	 */
922
	page_init_poison(memmap, sizeof(struct page) * nr_pages);
923

924
	ms = __nr_to_section(section_nr);
925
	set_section_nid(section_nr, nid);
926
	section_mark_present(ms);
927

928 929
	/* Align memmap to section boundary in the subsection case */
	if (section_nr_to_pfn(section_nr) != start_pfn)
930
		memmap = pfn_to_page(section_nr_to_pfn(section_nr));
931 932 933
	sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);

	return 0;
A
Andy Whitcroft 已提交
934
}
935

936 937 938 939 940
#ifdef CONFIG_MEMORY_FAILURE
static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
{
	int i;

941 942 943 944 945 946 947 948 949
	/*
	 * A further optimization is to have per section refcounted
	 * num_poisoned_pages.  But that would need more space per memmap, so
	 * for now just do a quick global check to speed up this routine in the
	 * absence of bad pages.
	 */
	if (atomic_long_read(&num_poisoned_pages) == 0)
		return;

950
	for (i = 0; i < nr_pages; i++) {
951
		if (PageHWPoison(&memmap[i])) {
952
			num_poisoned_pages_dec();
953 954 955 956 957 958 959 960 961 962
			ClearPageHWPoison(&memmap[i]);
		}
	}
}
#else
static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
{
}
#endif

963
void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
964 965
		unsigned long nr_pages, unsigned long map_offset,
		struct vmem_altmap *altmap)
966
{
967 968 969
	clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
			nr_pages - map_offset);
	section_deactivate(pfn, nr_pages, altmap);
970
}
971
#endif /* CONFIG_MEMORY_HOTPLUG */