amdtp-stream.c 29.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
 * with Common Isochronous Packet (IEC 61883-1) headers
 *
 * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
 * Licensed under the terms of the GNU General Public License, version 2.
 */

#include <linux/device.h>
#include <linux/err.h>
#include <linux/firewire.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <sound/pcm.h>
15
#include <sound/pcm_params.h>
16
#include "amdtp-stream.h"
17 18 19 20 21

#define TICKS_PER_CYCLE		3072
#define CYCLES_PER_SECOND	8000
#define TICKS_PER_SECOND	(TICKS_PER_CYCLE * CYCLES_PER_SECOND)

22 23 24 25
/* Always support Linux tracing subsystem. */
#define CREATE_TRACE_POINTS
#include "amdtp-stream-trace.h"

26
#define TRANSFER_DELAY_TICKS	0x2e00 /* 479.17 microseconds */
27

28 29
/* isochronous header parameters */
#define ISO_DATA_LENGTH_SHIFT	16
30
#define TAG_NO_CIP_HEADER	0
31 32
#define TAG_CIP			1

33
/* common isochronous packet header parameters */
34 35
#define CIP_EOH_SHIFT		31
#define CIP_EOH			(1u << CIP_EOH_SHIFT)
36
#define CIP_EOH_MASK		0x80000000
37 38 39 40
#define CIP_SID_SHIFT		24
#define CIP_SID_MASK		0x3f000000
#define CIP_DBS_MASK		0x00ff0000
#define CIP_DBS_SHIFT		16
41 42
#define CIP_SPH_MASK		0x00000400
#define CIP_SPH_SHIFT		10
43 44
#define CIP_DBC_MASK		0x000000ff
#define CIP_FMT_SHIFT		24
45
#define CIP_FMT_MASK		0x3f000000
46 47
#define CIP_FDF_MASK		0x00ff0000
#define CIP_FDF_SHIFT		16
48 49 50
#define CIP_SYT_MASK		0x0000ffff
#define CIP_SYT_NO_INFO		0xffff

51
/* Audio and Music transfer protocol specific parameters */
52
#define CIP_FMT_AM		0x10
53
#define AMDTP_FDF_NO_DATA	0xff
54 55 56 57 58

/* TODO: make these configurable */
#define INTERRUPT_INTERVAL	16
#define QUEUE_LENGTH		48

59 60
#define IR_HEADER_SIZE		8	// For header and timestamp.
#define HEADER_TSTAMP_MASK	0x0000ffff
61

62 63
static void pcm_period_tasklet(unsigned long data);

64
/**
65 66
 * amdtp_stream_init - initialize an AMDTP stream structure
 * @s: the AMDTP stream to initialize
67
 * @unit: the target of the stream
68
 * @dir: the direction of stream
69
 * @flags: the packet transmission method to use
70
 * @fmt: the value of fmt field in CIP header
71 72
 * @process_data_blocks: callback handler to process data blocks
 * @protocol_size: the size to allocate newly for protocol
73
 */
74
int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
75
		      enum amdtp_stream_direction dir, enum cip_flags flags,
76 77 78
		      unsigned int fmt,
		      amdtp_stream_process_data_blocks_t process_data_blocks,
		      unsigned int protocol_size)
79
{
80 81 82 83 84 85 86
	if (process_data_blocks == NULL)
		return -EINVAL;

	s->protocol = kzalloc(protocol_size, GFP_KERNEL);
	if (!s->protocol)
		return -ENOMEM;

87
	s->unit = unit;
88
	s->direction = dir;
89 90 91
	s->flags = flags;
	s->context = ERR_PTR(-1);
	mutex_init(&s->mutex);
92
	tasklet_init(&s->period_tasklet, pcm_period_tasklet, (unsigned long)s);
93
	s->packet_index = 0;
94

95 96 97
	init_waitqueue_head(&s->callback_wait);
	s->callbacked = false;

98
	s->fmt = fmt;
99
	s->process_data_blocks = process_data_blocks;
100

101 102
	return 0;
}
103
EXPORT_SYMBOL(amdtp_stream_init);
104 105

/**
106 107
 * amdtp_stream_destroy - free stream resources
 * @s: the AMDTP stream to destroy
108
 */
109
void amdtp_stream_destroy(struct amdtp_stream *s)
110
{
111 112 113 114
	/* Not initialized. */
	if (s->protocol == NULL)
		return;

115
	WARN_ON(amdtp_stream_running(s));
116
	kfree(s->protocol);
117 118
	mutex_destroy(&s->mutex);
}
119
EXPORT_SYMBOL(amdtp_stream_destroy);
120

121
const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
122 123 124 125 126 127 128 129 130 131
	[CIP_SFC_32000]  =  8,
	[CIP_SFC_44100]  =  8,
	[CIP_SFC_48000]  =  8,
	[CIP_SFC_88200]  = 16,
	[CIP_SFC_96000]  = 16,
	[CIP_SFC_176400] = 32,
	[CIP_SFC_192000] = 32,
};
EXPORT_SYMBOL(amdtp_syt_intervals);

132
const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
133 134 135 136 137 138 139 140 141 142
	[CIP_SFC_32000]  =  32000,
	[CIP_SFC_44100]  =  44100,
	[CIP_SFC_48000]  =  48000,
	[CIP_SFC_88200]  =  88200,
	[CIP_SFC_96000]  =  96000,
	[CIP_SFC_176400] = 176400,
	[CIP_SFC_192000] = 192000,
};
EXPORT_SYMBOL(amdtp_rate_table);

143 144 145 146 147 148
static int apply_constraint_to_size(struct snd_pcm_hw_params *params,
				    struct snd_pcm_hw_rule *rule)
{
	struct snd_interval *s = hw_param_interval(params, rule->var);
	const struct snd_interval *r =
		hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE);
149 150
	struct snd_interval t = {0};
	unsigned int step = 0;
151 152 153
	int i;

	for (i = 0; i < CIP_SFC_COUNT; ++i) {
154 155
		if (snd_interval_test(r, amdtp_rate_table[i]))
			step = max(step, amdtp_syt_intervals[i]);
156 157
	}

158 159 160
	t.min = roundup(s->min, step);
	t.max = rounddown(s->max, step);
	t.integer = 1;
161 162 163 164

	return snd_interval_refine(s, &t);
}

165 166 167 168 169 170 171 172
/**
 * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
 * @s:		the AMDTP stream, which must be initialized.
 * @runtime:	the PCM substream runtime
 */
int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
					struct snd_pcm_runtime *runtime)
{
173
	struct snd_pcm_hardware *hw = &runtime->hw;
174 175
	int err;

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
	hw->info = SNDRV_PCM_INFO_BATCH |
		   SNDRV_PCM_INFO_BLOCK_TRANSFER |
		   SNDRV_PCM_INFO_INTERLEAVED |
		   SNDRV_PCM_INFO_JOINT_DUPLEX |
		   SNDRV_PCM_INFO_MMAP |
		   SNDRV_PCM_INFO_MMAP_VALID;

	/* SNDRV_PCM_INFO_BATCH */
	hw->periods_min = 2;
	hw->periods_max = UINT_MAX;

	/* bytes for a frame */
	hw->period_bytes_min = 4 * hw->channels_max;

	/* Just to prevent from allocating much pages. */
	hw->period_bytes_max = hw->period_bytes_min * 2048;
	hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min;

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
	/*
	 * Currently firewire-lib processes 16 packets in one software
	 * interrupt callback. This equals to 2msec but actually the
	 * interval of the interrupts has a jitter.
	 * Additionally, even if adding a constraint to fit period size to
	 * 2msec, actual calculated frames per period doesn't equal to 2msec,
	 * depending on sampling rate.
	 * Anyway, the interval to call snd_pcm_period_elapsed() cannot 2msec.
	 * Here let us use 5msec for safe period interrupt.
	 */
	err = snd_pcm_hw_constraint_minmax(runtime,
					   SNDRV_PCM_HW_PARAM_PERIOD_TIME,
					   5000, UINT_MAX);
	if (err < 0)
		goto end;

	/* Non-Blocking stream has no more constraints */
	if (!(s->flags & CIP_BLOCKING))
		goto end;

	/*
	 * One AMDTP packet can include some frames. In blocking mode, the
	 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
	 * depending on its sampling rate. For accurate period interrupt, it's
218
	 * preferrable to align period/buffer sizes to current SYT_INTERVAL.
219
	 */
220 221
	err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
				  apply_constraint_to_size, NULL,
222
				  SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
223 224 225 226 227
				  SNDRV_PCM_HW_PARAM_RATE, -1);
	if (err < 0)
		goto end;
	err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
				  apply_constraint_to_size, NULL,
228
				  SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
229 230 231
				  SNDRV_PCM_HW_PARAM_RATE, -1);
	if (err < 0)
		goto end;
232 233 234 235 236
end:
	return err;
}
EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);

237
/**
238 239
 * amdtp_stream_set_parameters - set stream parameters
 * @s: the AMDTP stream to configure
240
 * @rate: the sample rate
241
 * @data_block_quadlets: the size of a data block in quadlet unit
242
 *
243
 * The parameters must be set before the stream is started, and must not be
244 245
 * changed while the stream is running.
 */
246 247
int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate,
				unsigned int data_block_quadlets)
248
{
249
	unsigned int sfc;
250

251
	for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) {
252
		if (amdtp_rate_table[sfc] == rate)
253 254 255 256
			break;
	}
	if (sfc == ARRAY_SIZE(amdtp_rate_table))
		return -EINVAL;
257 258

	s->sfc = sfc;
259
	s->data_block_quadlets = data_block_quadlets;
260
	s->syt_interval = amdtp_syt_intervals[sfc];
261

262 263 264 265 266 267 268 269 270 271 272 273
	// default buffering in the device.
	if (s->direction == AMDTP_OUT_STREAM) {
		s->ctx_data.rx.transfer_delay =
					TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;

		if (s->flags & CIP_BLOCKING) {
			// additional buffering needed to adjust for no-data
			// packets.
			s->ctx_data.rx.transfer_delay +=
				TICKS_PER_SECOND * s->syt_interval / rate;
		}
	}
274

275
	return 0;
276
}
277
EXPORT_SYMBOL(amdtp_stream_set_parameters);
278 279

/**
280 281
 * amdtp_stream_get_max_payload - get the stream's packet size
 * @s: the AMDTP stream
282 283
 *
 * This function must not be called before the stream has been configured
284
 * with amdtp_stream_set_parameters().
285
 */
286
unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
287
{
288
	unsigned int multiplier = 1;
289
	unsigned int header_size = 0;
290 291 292

	if (s->flags & CIP_JUMBO_PAYLOAD)
		multiplier = 5;
293 294
	if (!(s->flags & CIP_NO_HEADER))
		header_size = 8;
295

296 297
	return header_size +
		s->syt_interval * s->data_block_quadlets * 4 * multiplier;
298
}
299
EXPORT_SYMBOL(amdtp_stream_get_max_payload);
300

301
/**
302 303
 * amdtp_stream_pcm_prepare - prepare PCM device for running
 * @s: the AMDTP stream
304 305 306
 *
 * This function should be called from the PCM device's .prepare callback.
 */
307
void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
308 309 310 311 312
{
	tasklet_kill(&s->period_tasklet);
	s->pcm_buffer_pointer = 0;
	s->pcm_period_pointer = 0;
}
313
EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
314

315 316
static unsigned int calculate_data_blocks(struct amdtp_stream *s,
					  unsigned int syt)
317 318 319
{
	unsigned int phase, data_blocks;

320 321 322 323 324 325 326 327
	/* Blocking mode. */
	if (s->flags & CIP_BLOCKING) {
		/* This module generate empty packet for 'no data'. */
		if (syt == CIP_SYT_NO_INFO)
			data_blocks = 0;
		else
			data_blocks = s->syt_interval;
	/* Non-blocking mode. */
328
	} else {
329
		if (!cip_sfc_is_base_44100(s->sfc)) {
330 331
			// Sample_rate / 8000 is an integer, and precomputed.
			data_blocks = s->ctx_data.rx.data_block_state;
332
		} else {
333
			phase = s->ctx_data.rx.data_block_state;
334 335 336 337 338 339 340 341 342

		/*
		 * This calculates the number of data blocks per packet so that
		 * 1) the overall rate is correct and exactly synchronized to
		 *    the bus clock, and
		 * 2) packets with a rounded-up number of blocks occur as early
		 *    as possible in the sequence (to prevent underruns of the
		 *    device's buffer).
		 */
343 344 345 346 347 348 349 350 351
			if (s->sfc == CIP_SFC_44100)
				/* 6 6 5 6 5 6 5 ... */
				data_blocks = 5 + ((phase & 1) ^
						   (phase == 0 || phase >= 40));
			else
				/* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
				data_blocks = 11 * (s->sfc >> 1) + (phase == 0);
			if (++phase >= (80 >> (s->sfc >> 1)))
				phase = 0;
352
			s->ctx_data.rx.data_block_state = phase;
353
		}
354 355 356 357 358
	}

	return data_blocks;
}

359
static unsigned int calculate_syt(struct amdtp_stream *s,
360 361 362 363
				  unsigned int cycle)
{
	unsigned int syt_offset, phase, index, syt;

364
	if (s->ctx_data.rx.last_syt_offset < TICKS_PER_CYCLE) {
365
		if (!cip_sfc_is_base_44100(s->sfc))
366 367
			syt_offset = s->ctx_data.rx.last_syt_offset +
				     s->ctx_data.rx.syt_offset_state;
368 369 370 371 372 373 374 375 376 377 378
		else {
		/*
		 * The time, in ticks, of the n'th SYT_INTERVAL sample is:
		 *   n * SYT_INTERVAL * 24576000 / sample_rate
		 * Modulo TICKS_PER_CYCLE, the difference between successive
		 * elements is about 1386.23.  Rounding the results of this
		 * formula to the SYT precision results in a sequence of
		 * differences that begins with:
		 *   1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
		 * This code generates _exactly_ the same sequence.
		 */
379
			phase = s->ctx_data.rx.syt_offset_state;
380
			index = phase % 13;
381
			syt_offset = s->ctx_data.rx.last_syt_offset;
382 383 384 385
			syt_offset += 1386 + ((index && !(index & 3)) ||
					      phase == 146);
			if (++phase >= 147)
				phase = 0;
386
			s->ctx_data.rx.syt_offset_state = phase;
387 388
		}
	} else
389 390
		syt_offset = s->ctx_data.rx.last_syt_offset - TICKS_PER_CYCLE;
	s->ctx_data.rx.last_syt_offset = syt_offset;
391

392
	if (syt_offset < TICKS_PER_CYCLE) {
393
		syt_offset += s->ctx_data.rx.transfer_delay;
394 395
		syt = (cycle + syt_offset / TICKS_PER_CYCLE) << 12;
		syt += syt_offset % TICKS_PER_CYCLE;
396

397
		return syt & CIP_SYT_MASK;
398
	} else {
399
		return CIP_SYT_NO_INFO;
400
	}
401 402
}

403 404 405
static void update_pcm_pointers(struct amdtp_stream *s,
				struct snd_pcm_substream *pcm,
				unsigned int frames)
406 407 408
{
	unsigned int ptr;

409 410 411
	ptr = s->pcm_buffer_pointer + frames;
	if (ptr >= pcm->runtime->buffer_size)
		ptr -= pcm->runtime->buffer_size;
412
	WRITE_ONCE(s->pcm_buffer_pointer, ptr);
413 414 415 416 417 418 419 420 421 422 423

	s->pcm_period_pointer += frames;
	if (s->pcm_period_pointer >= pcm->runtime->period_size) {
		s->pcm_period_pointer -= pcm->runtime->period_size;
		tasklet_hi_schedule(&s->period_tasklet);
	}
}

static void pcm_period_tasklet(unsigned long data)
{
	struct amdtp_stream *s = (void *)data;
424
	struct snd_pcm_substream *pcm = READ_ONCE(s->pcm);
425 426 427 428 429

	if (pcm)
		snd_pcm_period_elapsed(pcm);
}

430
static int queue_packet(struct amdtp_stream *s, unsigned int payload_length)
431 432
{
	struct fw_iso_packet p = {0};
433 434 435 436
	int err = 0;

	if (IS_ERR(s->context))
		goto end;
437 438

	p.interrupt = IS_ALIGNED(s->packet_index + 1, INTERRUPT_INTERVAL);
439
	p.tag = s->tag;
440 441 442 443 444 445 446 447 448

	if (s->direction == AMDTP_IN_STREAM) {
		// Queue one packet for IR context.
		p.header_length = s->ctx_data.tx.ctx_header_size;
	} else {
		// No header for this packet.
		p.header_length = 0;
	}

449 450 451 452
	if (payload_length > 0)
		p.payload_length = payload_length;
	else
		p.skip = true;
453 454 455 456 457 458 459 460 461 462 463 464 465 466
	err = fw_iso_context_queue(s->context, &p, &s->buffer.iso_buffer,
				   s->buffer.packets[s->packet_index].offset);
	if (err < 0) {
		dev_err(&s->unit->device, "queueing error: %d\n", err);
		goto end;
	}

	if (++s->packet_index >= QUEUE_LENGTH)
		s->packet_index = 0;
end:
	return err;
}

static inline int queue_out_packet(struct amdtp_stream *s,
467
				   unsigned int payload_length)
468
{
469
	return queue_packet(s, payload_length);
470 471
}

472 473
static inline int queue_in_packet(struct amdtp_stream *s)
{
474
	return queue_packet(s, s->ctx_data.tx.max_payload_length);
475 476
}

477 478
static int handle_out_packet(struct amdtp_stream *s,
			     unsigned int payload_length, unsigned int cycle,
479
			     unsigned int index)
480 481
{
	__be32 *buffer;
482 483
	unsigned int syt;
	unsigned int data_blocks;
484
	unsigned int pcm_frames;
485 486
	struct snd_pcm_substream *pcm;

487
	buffer = s->buffer.packets[s->packet_index].buffer;
488 489
	syt = calculate_syt(s, cycle);
	data_blocks = calculate_data_blocks(s, syt);
490
	pcm_frames = s->process_data_blocks(s, buffer + 2, data_blocks, &syt);
491

492 493 494 495
	if (s->flags & CIP_DBC_IS_END_EVENT)
		s->data_block_counter =
				(s->data_block_counter + data_blocks) & 0xff;

496
	buffer[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) |
497
				(s->data_block_quadlets << CIP_DBS_SHIFT) |
498
				((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) |
499
				s->data_block_counter);
500
	buffer[1] = cpu_to_be32(CIP_EOH |
501 502 503
			((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) |
			((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) |
			(syt & CIP_SYT_MASK));
504

505 506 507
	if (!(s->flags & CIP_DBC_IS_END_EVENT))
		s->data_block_counter =
				(s->data_block_counter + data_blocks) & 0xff;
508
	payload_length = 8 + data_blocks * 4 * s->data_block_quadlets;
509

510
	trace_amdtp_packet(s, cycle, buffer, payload_length, data_blocks, index);
511

512
	if (queue_out_packet(s, payload_length) < 0)
513
		return -EIO;
514

515
	pcm = READ_ONCE(s->pcm);
516 517
	if (pcm && pcm_frames > 0)
		update_pcm_pointers(s, pcm, pcm_frames);
518 519 520

	/* No need to return the number of handled data blocks. */
	return 0;
521 522
}

523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
static int handle_out_packet_without_header(struct amdtp_stream *s,
			unsigned int payload_length, unsigned int cycle,
			unsigned int index)
{
	__be32 *buffer;
	unsigned int syt;
	unsigned int data_blocks;
	unsigned int pcm_frames;
	struct snd_pcm_substream *pcm;

	buffer = s->buffer.packets[s->packet_index].buffer;
	syt = calculate_syt(s, cycle);
	data_blocks = calculate_data_blocks(s, syt);
	pcm_frames = s->process_data_blocks(s, buffer, data_blocks, &syt);
	s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff;

	payload_length = data_blocks * 4 * s->data_block_quadlets;
540

541
	trace_amdtp_packet(s, cycle, NULL, payload_length, data_blocks, index);
542

543 544 545
	if (queue_out_packet(s, payload_length) < 0)
		return -EIO;

546
	pcm = READ_ONCE(s->pcm);
547 548 549 550 551 552 553
	if (pcm && pcm_frames > 0)
		update_pcm_pointers(s, pcm, pcm_frames);

	/* No need to return the number of handled data blocks. */
	return 0;
}

554
static int handle_in_packet(struct amdtp_stream *s,
555
			    unsigned int payload_length, unsigned int cycle,
556
			    unsigned int index)
557
{
558
	__be32 *buffer;
559
	u32 cip_header[2];
560
	unsigned int sph, fmt, fdf, syt;
561
	unsigned int data_block_quadlets, data_block_counter, dbc_interval;
562
	unsigned int data_blocks;
563 564
	struct snd_pcm_substream *pcm;
	unsigned int pcm_frames;
565
	bool lost;
566

567
	buffer = s->buffer.packets[s->packet_index].buffer;
568 569 570 571 572
	cip_header[0] = be32_to_cpu(buffer[0]);
	cip_header[1] = be32_to_cpu(buffer[1]);

	/*
	 * This module supports 'Two-quadlet CIP header with SYT field'.
573
	 * For convenience, also check FMT field is AM824 or not.
574
	 */
575 576 577
	if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
	     ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) &&
	    (!(s->flags & CIP_HEADER_WITHOUT_EOH))) {
578 579 580
		dev_info_ratelimited(&s->unit->device,
				"Invalid CIP header for AMDTP: %08X:%08X\n",
				cip_header[0], cip_header[1]);
581
		data_blocks = 0;
582
		pcm_frames = 0;
583 584 585
		goto end;
	}

586
	/* Check valid protocol or not. */
587
	sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT;
588
	fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT;
589
	if (sph != s->sph || fmt != s->fmt) {
590 591 592
		dev_info_ratelimited(&s->unit->device,
				     "Detect unexpected protocol: %08x %08x\n",
				     cip_header[0], cip_header[1]);
593
		data_blocks = 0;
594 595
		pcm_frames = 0;
		goto end;
596 597
	}

598
	/* Calculate data blocks */
599
	fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT;
600
	if (payload_length < 12 ||
601
	    (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) {
602
		data_blocks = 0;
603 604
	} else {
		data_block_quadlets =
605
			(cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT;
606 607
		/* avoid division by zero */
		if (data_block_quadlets == 0) {
608
			dev_err(&s->unit->device,
609 610
				"Detect invalid value in dbs field: %08X\n",
				cip_header[0]);
611
			return -EPROTO;
612
		}
613 614
		if (s->flags & CIP_WRONG_DBS)
			data_block_quadlets = s->data_block_quadlets;
615

616 617
		data_blocks = (payload_length / 4 - 2) /
							data_block_quadlets;
618 619 620
	}

	/* Check data block counter continuity */
621
	data_block_counter = cip_header[0] & CIP_DBC_MASK;
622
	if (data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
623 624 625
	    s->data_block_counter != UINT_MAX)
		data_block_counter = s->data_block_counter;

626
	if (((s->flags & CIP_SKIP_DBC_ZERO_CHECK) &&
627
	     data_block_counter == s->ctx_data.tx.first_dbc) ||
628
	    s->data_block_counter == UINT_MAX) {
629 630
		lost = false;
	} else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
631
		lost = data_block_counter != s->data_block_counter;
632
	} else {
633 634
		if (data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0)
			dbc_interval = s->ctx_data.tx.dbc_interval;
635
		else
636
			dbc_interval = data_blocks;
637

638
		lost = data_block_counter !=
639 640
		       ((s->data_block_counter + dbc_interval) & 0xff);
	}
641 642

	if (lost) {
643 644 645
		dev_err(&s->unit->device,
			"Detect discontinuity of CIP: %02X %02X\n",
			s->data_block_counter, data_block_counter);
646
		return -EIO;
647 648
	}

649
	trace_amdtp_packet(s, cycle, buffer, payload_length, data_blocks, index);
650

651 652
	syt = be32_to_cpu(buffer[1]) & CIP_SYT_MASK;
	pcm_frames = s->process_data_blocks(s, buffer + 2, data_blocks, &syt);
653

654 655 656 657
	if (s->flags & CIP_DBC_IS_END_EVENT)
		s->data_block_counter = data_block_counter;
	else
		s->data_block_counter =
658
				(data_block_counter + data_blocks) & 0xff;
659 660
end:
	if (queue_in_packet(s) < 0)
661
		return -EIO;
662

663
	pcm = READ_ONCE(s->pcm);
664 665
	if (pcm && pcm_frames > 0)
		update_pcm_pointers(s, pcm, pcm_frames);
666

667
	return 0;
668 669
}

670
static int handle_in_packet_without_header(struct amdtp_stream *s,
671
			unsigned int payload_length, unsigned int cycle,
672 673 674 675 676 677 678 679
			unsigned int index)
{
	__be32 *buffer;
	unsigned int data_blocks;
	struct snd_pcm_substream *pcm;
	unsigned int pcm_frames;

	buffer = s->buffer.packets[s->packet_index].buffer;
680
	data_blocks = payload_length / sizeof(__be32) / s->data_block_quadlets;
681

682
	trace_amdtp_packet(s, cycle, NULL, payload_length, data_blocks, index);
683

684 685 686 687 688 689
	pcm_frames = s->process_data_blocks(s, buffer, data_blocks, NULL);
	s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff;

	if (queue_in_packet(s) < 0)
		return -EIO;

690
	pcm = READ_ONCE(s->pcm);
691 692 693 694 695 696
	if (pcm && pcm_frames > 0)
		update_pcm_pointers(s, pcm, pcm_frames);

	return 0;
}

697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
/*
 * In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On
 * the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent
 * it. Thus, via Linux firewire subsystem, we can get the 3 bits for second.
 */
static inline u32 compute_cycle_count(u32 tstamp)
{
	return (((tstamp >> 13) & 0x07) * 8000) + (tstamp & 0x1fff);
}

static inline u32 increment_cycle_count(u32 cycle, unsigned int addend)
{
	cycle += addend;
	if (cycle >= 8 * CYCLES_PER_SECOND)
		cycle -= 8 * CYCLES_PER_SECOND;
	return cycle;
}

715 716 717 718 719 720 721 722
static inline void cancel_stream(struct amdtp_stream *s)
{
	s->packet_index = -1;
	if (in_interrupt())
		amdtp_stream_pcm_abort(s);
	WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN);
}

723
static void out_stream_callback(struct fw_iso_context *context, u32 tstamp,
724 725
				size_t header_length, void *header,
				void *private_data)
726
{
727
	struct amdtp_stream *s = private_data;
728
	unsigned int i, packets = header_length / 4;
729
	u32 cycle;
730

731 732 733
	if (s->packet_index < 0)
		return;

734 735 736 737
	cycle = compute_cycle_count(tstamp);

	/* Align to actual cycle count for the last packet. */
	cycle = increment_cycle_count(cycle, QUEUE_LENGTH - packets);
738

739
	for (i = 0; i < packets; ++i) {
740
		cycle = increment_cycle_count(cycle, 1);
741
		if (s->handle_packet(s, 0, cycle, i) < 0) {
742
			cancel_stream(s);
743 744
			return;
		}
745
	}
746

747
	fw_iso_context_queue_flush(s->context);
748 749
}

750
static void in_stream_callback(struct fw_iso_context *context, u32 tstamp,
751 752 753 754
			       size_t header_length, void *header,
			       void *private_data)
{
	struct amdtp_stream *s = private_data;
755
	unsigned int i, packets;
756
	unsigned int payload_length, max_payload_length;
757
	__be32 *ctx_header = header;
758

759 760 761
	if (s->packet_index < 0)
		return;

762 763
	// The number of packets in buffer.
	packets = header_length / s->ctx_data.tx.ctx_header_size;
764

765
	/* For buffer-over-run prevention. */
766
	max_payload_length = s->ctx_data.tx.max_payload_length;
767

768
	for (i = 0; i < packets; i++) {
769 770 771 772 773
		u32 iso_header = be32_to_cpu(ctx_header[0]);
		unsigned int cycle;

		tstamp = be32_to_cpu(ctx_header[1]) & HEADER_TSTAMP_MASK;
		cycle = compute_cycle_count(tstamp);
774

775
		/* The number of bytes in this packet */
776
		payload_length = iso_header >> ISO_DATA_LENGTH_SHIFT;
777
		if (payload_length > max_payload_length) {
778
			dev_err(&s->unit->device,
779 780
				"Detect jumbo payload: %04x %04x\n",
				payload_length, max_payload_length);
781 782 783
			break;
		}

784
		if (s->handle_packet(s, payload_length, cycle, i) < 0)
785
			break;
786

787
		ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header);
788 789
	}

790
	/* Queueing error or detecting invalid payload. */
791
	if (i < packets) {
792
		cancel_stream(s);
793 794 795
		return;
	}

796 797 798
	fw_iso_context_queue_flush(s->context);
}

799 800
/* this is executed one time */
static void amdtp_stream_first_callback(struct fw_iso_context *context,
801
					u32 tstamp, size_t header_length,
802 803 804
					void *header, void *private_data)
{
	struct amdtp_stream *s = private_data;
805
	__be32 *ctx_header = header;
806 807
	u32 cycle;
	unsigned int packets;
808 809 810 811 812 813 814 815

	/*
	 * For in-stream, first packet has come.
	 * For out-stream, prepared to transmit first packet
	 */
	s->callbacked = true;
	wake_up(&s->callback_wait);

816
	if (s->direction == AMDTP_IN_STREAM) {
817 818 819
		tstamp = be32_to_cpu(ctx_header[1]) & HEADER_TSTAMP_MASK;
		cycle = compute_cycle_count(tstamp);

820
		context->callback.sc = in_stream_callback;
821 822 823 824
		if (s->flags & CIP_NO_HEADER)
			s->handle_packet = handle_in_packet_without_header;
		else
			s->handle_packet = handle_in_packet;
825 826
	} else {
		packets = header_length / 4;
827
		cycle = compute_cycle_count(tstamp);
828
		cycle = increment_cycle_count(cycle, QUEUE_LENGTH - packets);
829
		context->callback.sc = out_stream_callback;
830 831 832 833
		if (s->flags & CIP_NO_HEADER)
			s->handle_packet = handle_out_packet_without_header;
		else
			s->handle_packet = handle_out_packet;
834 835 836
	}

	s->start_cycle = cycle;
837

838
	context->callback.sc(context, tstamp, header_length, header, s);
839 840
}

841
/**
842 843
 * amdtp_stream_start - start transferring packets
 * @s: the AMDTP stream to start
844 845 846 847
 * @channel: the isochronous channel on the bus
 * @speed: firewire speed code
 *
 * The stream cannot be started until it has been configured with
848 849
 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
 * device can be started.
850
 */
851
int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed)
852 853 854 855
{
	static const struct {
		unsigned int data_block;
		unsigned int syt_offset;
856
	} *entry, initial_state[] = {
857 858 859 860 861 862 863 864
		[CIP_SFC_32000]  = {  4, 3072 },
		[CIP_SFC_48000]  = {  6, 1024 },
		[CIP_SFC_96000]  = { 12, 1024 },
		[CIP_SFC_192000] = { 24, 1024 },
		[CIP_SFC_44100]  = {  0,   67 },
		[CIP_SFC_88200]  = {  0,   67 },
		[CIP_SFC_176400] = {  0,   67 },
	};
865
	unsigned int ctx_header_size;
866
	enum dma_data_direction dir;
867
	int type, tag, err;
868 869 870

	mutex_lock(&s->mutex);

871
	if (WARN_ON(amdtp_stream_running(s) ||
872
		    (s->data_block_quadlets < 1))) {
873 874 875 876
		err = -EBADFD;
		goto err_unlock;
	}

877
	if (s->direction == AMDTP_IN_STREAM) {
878
		s->data_block_counter = UINT_MAX;
879 880 881
	} else {
		entry = &initial_state[s->sfc];

882
		s->data_block_counter = 0;
883 884 885 886
		s->ctx_data.rx.data_block_state = entry->data_block;
		s->ctx_data.rx.syt_offset_state = entry->syt_offset;
		s->ctx_data.rx.last_syt_offset = TICKS_PER_CYCLE;
	}
887

888 889 890 891
	/* initialize packet buffer */
	if (s->direction == AMDTP_IN_STREAM) {
		dir = DMA_FROM_DEVICE;
		type = FW_ISO_CONTEXT_RECEIVE;
892
		ctx_header_size = IR_HEADER_SIZE;
893 894 895
	} else {
		dir = DMA_TO_DEVICE;
		type = FW_ISO_CONTEXT_TRANSMIT;
896
		ctx_header_size = 0;	// No effect for IT context.
897
	}
898
	err = iso_packets_buffer_init(&s->buffer, s->unit, QUEUE_LENGTH,
899
				      amdtp_stream_get_max_payload(s), dir);
900 901 902 903
	if (err < 0)
		goto err_unlock;

	s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
904 905
					  type, channel, speed, ctx_header_size,
					  amdtp_stream_first_callback, s);
906 907 908 909
	if (IS_ERR(s->context)) {
		err = PTR_ERR(s->context);
		if (err == -EBUSY)
			dev_err(&s->unit->device,
910
				"no free stream on this controller\n");
911 912 913
		goto err_buffer;
	}

914
	amdtp_stream_update(s);
915

916 917 918 919 920
	if (s->direction == AMDTP_IN_STREAM) {
		s->ctx_data.tx.max_payload_length =
						amdtp_stream_get_max_payload(s);
		s->ctx_data.tx.ctx_header_size = ctx_header_size;
	}
921

922 923 924 925 926
	if (s->flags & CIP_NO_HEADER)
		s->tag = TAG_NO_CIP_HEADER;
	else
		s->tag = TAG_CIP;

927
	s->packet_index = 0;
928
	do {
929 930 931
		if (s->direction == AMDTP_IN_STREAM)
			err = queue_in_packet(s);
		else
932
			err = queue_out_packet(s, 0);
933 934 935
		if (err < 0)
			goto err_context;
	} while (s->packet_index > 0);
936

937
	/* NOTE: TAG1 matches CIP. This just affects in stream. */
938
	tag = FW_ISO_CONTEXT_MATCH_TAG1;
939
	if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER))
940 941
		tag |= FW_ISO_CONTEXT_MATCH_TAG0;

942
	s->callbacked = false;
943
	err = fw_iso_context_start(s->context, -1, 0, tag);
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
	if (err < 0)
		goto err_context;

	mutex_unlock(&s->mutex);

	return 0;

err_context:
	fw_iso_context_destroy(s->context);
	s->context = ERR_PTR(-1);
err_buffer:
	iso_packets_buffer_destroy(&s->buffer, s->unit);
err_unlock:
	mutex_unlock(&s->mutex);

	return err;
}
961
EXPORT_SYMBOL(amdtp_stream_start);
962

963
/**
964 965
 * amdtp_stream_pcm_pointer - get the PCM buffer position
 * @s: the AMDTP stream that transports the PCM data
966 967 968
 *
 * Returns the current buffer position, in frames.
 */
969
unsigned long amdtp_stream_pcm_pointer(struct amdtp_stream *s)
970
{
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
	/*
	 * This function is called in software IRQ context of period_tasklet or
	 * process context.
	 *
	 * When the software IRQ context was scheduled by software IRQ context
	 * of IR/IT contexts, queued packets were already handled. Therefore,
	 * no need to flush the queue in buffer anymore.
	 *
	 * When the process context reach here, some packets will be already
	 * queued in the buffer. These packets should be handled immediately
	 * to keep better granularity of PCM pointer.
	 *
	 * Later, the process context will sometimes schedules software IRQ
	 * context of the period_tasklet. Then, no need to flush the queue by
	 * the same reason as described for IR/IT contexts.
	 */
	if (!in_interrupt() && amdtp_stream_running(s))
988
		fw_iso_context_flush_completions(s->context);
989

990
	return READ_ONCE(s->pcm_buffer_pointer);
991
}
992
EXPORT_SYMBOL(amdtp_stream_pcm_pointer);
993

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
/**
 * amdtp_stream_pcm_ack - acknowledge queued PCM frames
 * @s: the AMDTP stream that transfers the PCM frames
 *
 * Returns zero always.
 */
int amdtp_stream_pcm_ack(struct amdtp_stream *s)
{
	/*
	 * Process isochronous packets for recent isochronous cycle to handle
	 * queued PCM frames.
	 */
	if (amdtp_stream_running(s))
		fw_iso_context_flush_completions(s->context);

	return 0;
}
EXPORT_SYMBOL(amdtp_stream_pcm_ack);

1013
/**
1014 1015
 * amdtp_stream_update - update the stream after a bus reset
 * @s: the AMDTP stream
1016
 */
1017
void amdtp_stream_update(struct amdtp_stream *s)
1018
{
1019
	/* Precomputing. */
1020 1021
	WRITE_ONCE(s->source_node_id_field,
                   (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK);
1022
}
1023
EXPORT_SYMBOL(amdtp_stream_update);
1024 1025

/**
1026 1027
 * amdtp_stream_stop - stop sending packets
 * @s: the AMDTP stream to stop
1028 1029 1030 1031
 *
 * All PCM and MIDI devices of the stream must be stopped before the stream
 * itself can be stopped.
 */
1032
void amdtp_stream_stop(struct amdtp_stream *s)
1033 1034 1035
{
	mutex_lock(&s->mutex);

1036
	if (!amdtp_stream_running(s)) {
1037 1038 1039 1040
		mutex_unlock(&s->mutex);
		return;
	}

1041
	tasklet_kill(&s->period_tasklet);
1042 1043 1044 1045 1046
	fw_iso_context_stop(s->context);
	fw_iso_context_destroy(s->context);
	s->context = ERR_PTR(-1);
	iso_packets_buffer_destroy(&s->buffer, s->unit);

1047 1048
	s->callbacked = false;

1049 1050
	mutex_unlock(&s->mutex);
}
1051
EXPORT_SYMBOL(amdtp_stream_stop);
1052 1053

/**
1054
 * amdtp_stream_pcm_abort - abort the running PCM device
1055 1056 1057 1058 1059
 * @s: the AMDTP stream about to be stopped
 *
 * If the isochronous stream needs to be stopped asynchronously, call this
 * function first to stop the PCM device.
 */
1060
void amdtp_stream_pcm_abort(struct amdtp_stream *s)
1061 1062 1063
{
	struct snd_pcm_substream *pcm;

1064
	pcm = READ_ONCE(s->pcm);
1065 1066
	if (pcm)
		snd_pcm_stop_xrun(pcm);
1067
}
1068
EXPORT_SYMBOL(amdtp_stream_pcm_abort);